
Technical Report UCB//CSD-04-1311, 3/16/04

GridDB: A Data-Centric Overlay for Scientific Grids
David T. Liu Michael J. Franklin

UC Berkeley, EECS Dept.
Berkeley, CA 94720, USA

{dtliu,franklin}@cs.berkeley.edu

Abstract

We present GridDB, a data-centric overlay for
scientific grid data analysis. In contrast to
currently deployed process-centric middleware,
GridDB manages data entities rather than pro-
cesses. GridDB provides a suite of services
important to data analysis: a declarative inter-
face, type-checking, interactive query processing,
and memoization. We discuss several elements
of GridDB: data model, query language, software
architecture and query processing; and a proto-
type implementation. We validate GridDB by
showing its modeling of real-world physics and
astronomy analyses; and measurements on our
prototype.

1 Introduction

Scientists in fields including high-energy physics, astron-
omy, and biology continue to push the envelope in terms
of computational demands and data creation. For ex-
ample, the ATLAS and CMS high energy physics exper-
iments are both collecting and analyzing one petabyte
(1015 bytes) of particle collision data per year [16]. Fur-
thermore, continuing advances in such ”big science”
fields increasingly requires long-term, globe-spanning
collaborations involving hundreds or even thousands of
researchers. Given such large-scale demands, these fields
have embraced grid computing [26] as the platform for
the creation, processing, and management of their ex-
permental data.

1.1 From Process-Centric to Data-Centric

Grid computing derives primarily from two research do-
mains: cluster-based metacomputing [34, 11] and dis-
tributed cluster federation [23]. As such, grid comput-
ing has inherited a process-centric approach, where the
software infrastructure is focused on the management of
program invocations (or processes). Process-centric grid
middleware enables users to submit and monitor jobs
(i.e., processes). Modern grid software (e.g., Globus[25]
and Condor [34]) also provides additional services such
as batching, resource allocation, process migration, etc.
These systems, however, provide a fairly low-level, OS-
like interface involving imperative programs and files.

The process-centric approach is a direct extension of
the techniques used by scientists in the past. But, with

process-centric overlay

distributed grid resources

scientific

apparatus

Internet

clusters

data-centric interface:

SQL, tuples

GridDB: data-centric overlay

process-centric interface: processes,files

process-centric

client

data-centric client

Figure 1: Grid Access Overview

the increasing complexity, scope, and longevity of col-
laborations and the continuing growth in the scale of
the scientific endeavour, it has become apparent that
new tools and paradigms are needed. Furthermore, the
widespread popularity of interactive processing in many
domains has lead to a desire among scientists for more
interactive access to grid resources. As a result a number
of large, multi-disciplinary efforts have been started by
scientists to define the next generation of grid models,
tools and infrastructure. These include the Grid Physics
Network (GriPhyN) [28], the International Virtual Data
Grid Observatory [37], the Particle Physics Data Grid
[35], and the European Union DataGrid [9].

GriPhyN, in particular, is built around the notion of
“Virtual Data” [50], which aims to put the concept of
“data” on an equal footing with that of “process” in grid
computing. Our GridDB project, which is being done
in the context of GriPhyN, takes the importance of data
one step further, by proposing a data-centric view of the
grid.

As illustrated in Figure 1, GridDB provides a veneer,
or overlay, on top of existing process-centric grid ser-
vices that enables clients to create, manage, and inter-
actively access the results of grid computations using
a query language-like interface to manipulate tables of
input parameters and results. The benefits of GridDB
include:

• Declarative Interface: Scientific computing is a
data-intensive task. The benefits of declarative inter-
faces for such tasks are well-known in the database

1

Technical Report UCB//CSD-04-1311, 3/16/04

field, and include: ease of programming, resilience to
change, and support for transparent, system-directed
optimization.

• Type Checking: A related benefit is type checking.
In contrast to process-centric approaches, which have
little or no knowledge of data types, GridDB provides
a language for describing data types and function sig-
natures that enables a number of features including
more timely error reporting, and support for code
sharing [20, 38].

• Interactive Query Processing: Scientific comput-
ing jobs are often long running. The batch-oriented
mode of interaction supported by existing process-
centric middleware severely limits scientists’ ability
to observe and prioritize computations based on par-
tial results of jobs [36, 19]. GridDB’s data-centric
interface directly supports interactive query process-
ing, enabling scientists to more effectively exploit grid
resources for data analysis tasks.

• Memoization Support: A key feature advocated
by many current grid efforts is the minimization of
resources wasted due to the recomputation of previ-
ously generated data products [28]. GridDB’s data-
centric approach provides the necessary infrastruc-
ture for supporting such ”memoization” [32], even
for highly sophisticated analysis routines.

• Data Provenance: Because grid data production
will entail promiscuous, anonymous, and transparent
resource sharing, scientists must have the ability to
retroactively check information on how a data prod-
uct was created [50, 28]. GridDB’s model of function-
based data processing lends itself well towards track-
ing the lineage of individual data products, as is re-
quired for supporting data provenance.

• Co-existence: Perhaps most importantly, GridDB
provides these benefits by working on top of process-
centric middleware, rather than replacing it. This
allows users to continue to employ their existing (or
even new), imperative data processing codes while se-
lectively choosing which aspects of such processing to
make visible to GridDB. This approach also enables
incremental migration of scientific workflows into the
GridDB framework.

1.2 Contributions and Overview

In this paper, we describe the design, implementation
and evaluation of GridDB, a data-centric overlay for sci-
entific grid computing. GridDB is based on two core
principles: First, scientific analysis programs can be ab-
stracted as typed functions, and program invocations as
typed function calls. Second, that while most scientific
analysis data is not relational in nature (and therefore

not directly amenable to relational database manage-
ment), a key subset, including the inputs and outputs of
scientific workflows, have relational characteristics. This
data can be manipulated with SQL and can serve as an
interface to the full data set. We use this principle to
provide users with a SQL-like interface to grid analysis
along with the benefits of data-centric processing listed
previously.

Following these two principles, we have developed a
grid computing data model, the Functional Data Model
with Relational Covers (FDM/RC), and a data defi-
nition language for creating FDM/RC schemas. We
then developed a set of software services that implement
the data-centric, GridDB model using existing process-
centric middleware. In this paper we describe this model
and its implementation. We demonstrate its usefulness
with two example data analysis workflows taken from a
High Energy Physics experiment and an Astronomy sur-
vey, and report on experiments that examine the bene-
fits of the memoization and interactive query processing
features of the system.

The remainder of the paper is structured as follows.
Section 2 provides background on grid applications and
process-centric middleware. Section 3 describes the
GridDB analysis interface. Section 4 describes the FD-
M/RC data model. Section 5 the design and imple-
mentation of a GridDB prototype. Section 6 describes
GridDB’s modeling of a complex analysis. Section 7 de-
scribes advanced performance-enhancing features. Sec-
tions 8 and 9 discuss Related Work and our Conclusion.

2 High-Energy Physics Example

In this section we introduce a simplified workflow ob-
tained from the ATLAS High-Energy Physics experi-
ment [19, 21]. We refer to this workflow as HepEx (High
Energy Physics Example) and use it as a running exam-
ple throughout the paper1.

The ATLAS team wants to supplement a slow, but
trusted detector simulation with a faster, less-precise,
one. To guarantee the soundness of the fast simula-
tion, however, the team must compare the response of
the new and old simulations for various physics events.
A workflow achieving these comparisons is shown in
Fig. 2(a). It consists of three programs: an event
generator, gen; the fast simulation, atlfast; and the
original, slower simulation, atlsim. gen is called
with an integer parameter, pmas, and creates a file,
〈pmas〉.evts that digitally describes a particle’s decay
into subparticles. 〈pmas〉.evts is then fed into both
atlfast and atlsim, each simulating a detector’s re-
action to the event, and creating a file which contains a
value, imas. For atlfast to be sound, the difference
between pmas and imas must be roughly the same in

1The GridDB implementation of a more complex scientific
workflow is described in Section 6.

2

Technical Report UCB//CSD-04-1311, 3/16/04

imas = x

atlfast

gen

<pmas>

<pmas>
.atlfast
 <pmas>
.atlsim

<pmas>
.evts

imas = y

atlsim

(a)

...
p
m

a

s

=

1

0

1

101

101.atlfast
 101.atlsim

p
m

a

s

=

2

0

0

200

200.atlfast
 200.atlsim

...

pmas

diff

(b)

s

i

m

C

o

m

p

a

r

e

M

a

p

gID
 pmas

g00
 101

g99
 200

...
 ...

gRn

s99
 ...

...
 ...

s00
 100

sID
 sImas
sRn
fID
 fImas

f00
 102

f99
 ...

...
 ...

fRn

genF

evts
 ...

atlfastF
 atlsimF

(c)

Figure 2: (a) HepEx abstract workflow (b) HepEx grid job (c) GridDB’s simCompareMap replaces(a) and (b).

both simulations across a range of pmas values 2. All
three programs are long-running, and compute-bound,
thus requiring grid processing.

Before describing GridDB, it is useful to examine how
HepEx would be deployed in a process-centric system.
We identify three types of users who would contribute to
such a deployment: coders, who create programs; mod-
elers, who compose these programs into analysis work-
flows; and analysts, who execute workflows and perform
data analysis.

To deploy HepEx , coders write the three programs
gen, atlfast, and atlsim, in an imperative language,
and publish them on the web. A modeler then com-
poses the programs into an abstract workflow, or AWF.
Logically, the AWF , is a DAG of programs to be ex-
ecuted in a partial order. Physically, the AWF is en-
coded as a script[1], in perl or some other procedural
language. Each program to be executed is represented
with a process specification (proc-spec) file, which con-
tains a program, a command-line to execute the pro-
gram, and a set of input files [2, 5]. The AWF script
creates these proc-spec files along with a precendence
specification (prec-spec) file that encodes the dependen-
cies among the programs.

The analyst carries out the third and final step:
data procurement. Existing middleware systems are ex-
tremely effective in presenting a single-machine inter-
face to the grid [1]. Thus, the analyst works as if
he/she is submitting jobs on a single (very powerful)
machine and the grid middleware handles the execution
and management of the jobs across the distributed grid
resources. The analyst creates a grid job by executing
another script that invokes the AWF script multiple
times. For example, to run HepEx for all pmas val-
ues from 101 to 200, the AWF script would be invoked
100 times. Each invocation results in three processes

2The physics can be described as follows: pmas is the mass of a
particle, while imas is the sum of subparticles after the particle’s
decay. pmas− imas is a loss of mass after decay, which should be
the same between the two simulations.

pmas(GeV)

1
1

0

expedite

fImas, sImas

in this range

1
0

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

1
2

0

pmas

101

...

130

...

160

...

200

fImas

101

...

139

...

168

...

198

sImas

100

...

133

...

164

...

200

fImas

sImas
(
G

e
V

)

131

inputs vs. outputs

not yet

computed

Figure 3: Interactive Query Processing

being submitted and scheduled. Fig. 2(b) shows the
HepEx grid job consisting of these invocations.

3 Data Analysis With GridDB

In the previous section, we identified three roles involved
in the deployment of grid applications. With GridDB,
the job of the coder is not changed significantly; rather
than publishing to the web, the coder publishes pro-
grams into a GridDB code repository available to grid
users. In contrast, the modeler sees a major change: in-
stead of encoding the AWF in a procedural script, he ex-
presses it in a GridDB data definition language (DDL),
conveying semantics to GridDB, and allowing it to pro-
vide data-centric services and interfaces. The analyst’s
interaction with the grid is also changed dramatically.

We describe the data model and DDL used by the
modeler in detail in Section 4. Here, we focus on the
analyst ’s interactions using the GridDB data manipu-
lation language (DML).

3.1 Motivating Example: IQP

To illustrate the benefits of data-centric grid analysis,
we describe how Interactive Query Processing (IQP) can
provide increased flexibility and power to the data anal-
ysis prcoess.

Recall from Section 1 that GridDB provides a rela-
tional interface for data analysis; for example, the table
on the right-side of Fig. 3. This table shows, for each

3

Technical Report UCB//CSD-04-1311, 3/16/04

value of an input pmas, the output imas values from
two simulations (fImas and sImas). On the left-side
of of the figure, we show streaming partial results in
the table’s corresponding scatter plot, which has been
populated with 20 out of 200 data points.

The scatter plot indicates discrepancies between fI-
mas and sImas in the range where pmas is between
130 and 160, a phenomenom that needs investigation.
Using the IQP service, an analyst can prioritize data in
this range simply by selecting the data in this range (be-
tween the dashed lines) and prioritizing it with a GUI
command. GridDB is capable of expediting the com-
putations that create the points of interest. Through
this graphical, data-centric interface, the user drives grid
process execution. In contrast, users of process-centric
middleware usually run jobs in batch.

By understanding data and workflow semantics,
GridDB is able to provide such data-centric services,
which are unavailable in process-centric middleware. In
the next section, we explain GridDB’s modeling princi-
ples.

3.2 GridDB Overview

The GridDB model rests on two main principles: (1)
it represents programs and workflows as functions, and
(2) an important subset of the data in a workflow can
be represented as relations. We refer to this subset of
data as the relational cover.

Representing programs and workflows as functions
provides GridDB with the knowledge necessary to per-
form type checking of program inputs and outputs and
enables a functional representation for AWFs; namely,
composite functions. Note, however, that this does
not require a change to the programs themselves, but
rather, consists of wrapping programs with functional
definitions, as described in the Section 4. In contrast,
the process-centered approach uses opaque command-
line strings, thereby depriving the middleware of any
knowledge of data types for type checking and support-
ing compostion.

In terms of data, while most scientific data is not
relational in nature, the inputs and outputs to work-
flows, can typically be represented as tables. For in-
put data, consider data procurement, as described in
Section 2: a scientist typically uses nested-loops in a
script to enumerate a set of points within a multidi-
mensional parameter space and invoke an AWF for each
point. Each point in the input set can be represented
as a tuple whose attributes are the point’s dimensional
values, a well-known technique in OLAP systems [49];
therefore, an input set can be represented as a tuple set,
or relation.

The relational nature of outputs is observed through
a different line of reasoning: scientists commonly ma-
nipulate workflow output with interactive analysis tools
such as fv in astronomy[4] and root or paw in high

Analyst Actions
1 gRn:set(g); fRn:set(f); sRn:set(s);
2 (fRn,sRn) = simCompareMap(gRn);
3 INSERT INTO gRn VALUES pmas = {101, . . . , 200};
4 SELECT * FROM autoview (gRn,fRn ,sRn);

energy physics[17, 6]. Within these tools, scientists ma-
nipulate — with operations like projection and selection
— workflow data to generate multidimensional, multi-
variate graphs [48]. Such graphs — including scatter
plots, time-series plots, histograms, and bar-charts —
are fundamentally visualizations of relations.

Figure 2(c) shows a HepEx model using these two
principles3. In the figure, the HepEx workflow is a
represented as a function, simCompareMap , which is a
composition including three functions representing the
workflow programs: genF, atlfastF, and atlsimF. The
input data is represented as a relation of tuples con-
taining pmas values, and the outputs are represented
similarly.

3.3 Data Manipulation Language

Having described the main modeling principles, we now
describe the data manipulation language for analyst in-
teraction. With GridDB, analysts first create their own
computational “sandbox”, in which to perform their
analyses. This sandbox consists of private copies of re-
lations to be populated and manipulated by GridDB.
Next, the analyst specifies the analysis workflow he/she
wishes to execute by connecting sandboxed relations to
the inputs and outputs of a GridDB-specified workflow
function.

The DML required for setting up HepEx is shown
in Listing 1. Line 1 creates the sandbox relations.
For example, gRn is declared with a type of set of
g. That statement assigns the two-relation output of
simCompareMap, applied to gRn, to the output relations
fRn and sRn. The modeler, at this point, has already
declared simCompareMap, with the signature: set(g)
→ set(f) × set(s), an action we show in Section
4.3.2.

With a sandbox and workflow established, data pro-
curement proceeds as a simple INSERT statement into
the workflow’s input relation, gRn, as shown in Line 3.
Insertion of values into the input relation triggers the is-
sue of proc-specs for grid execution, conceptually similar
to the execution shown in Fig. 2(b). A readily apparent
benefit of GridDB’s data procurement is that INSERT’s
are type-checked; for example, inserting a non-integral
value, such as 110.5, would result in an immediate ex-
ception.

Analyses commonly seek to discover relationships be-
tween different physical quantities. To support this
analysis task, GridDBautomatically creates relational

3This model is created by DDL commands written by the mod-
eler, as we describe in Section 4

4

Technical Report UCB//CSD-04-1311, 3/16/04

views that map between inputs and outputs of func-
tions. We call such views automatic views. For exam-
ple, GridDB can show the relationships between tuples
of gRn, fRn, and sRn in a view called autoview(gRn,
fRn, sRn) (Line 4). Using this view, the analyst can
see, for each value of pmas, what values of fImas re-
sulted. The implementation of autoviews is described
in Section 5.1.2. The autoview mechanism also plays in
an important role in the provison of Interactive Query
Processing, as is discussed in Section 7.1.

3.4 Summary

To summarize, GridDB provides a SQL-like DML that
allows users to initiate grid analysis tasks by creating
private copies of relations, mapping some of those re-
lations to workflow inputs and then inserting tuples
containing input parameters into those relations. The
outputs of the workflow can also be manipulated using
the relational DML. The system can maintain automatic
views that record the mappings between inputs and out-
puts; these “autoviews” are useful for analysis in their
own right, and also play an important role in support-
ing Interactive Query Processing. By understanding the
semantics of workflow and data, GridDB is able to pro-
vide data-centric services unavailable in process-centric
middleware.

4 Data Model: FDM/RC

The previous section illustrated the benefits of
GridDB data analysis provided that the modeler has
exposed workflow and data semantics to GridDB, es-
sentially defining a schema. In this section, we describe
a grid data model for the schema and its data defini-
tion language. The data model is called the Functional
Data Model with Relational Covers(FDM/RC) and has
two main constructs, data entities and functions which
map entities to other entities. To take advantage of the
relational cover, a subset of the entities are modeled as
relations.

4.1 Core Design Concepts

Before defining the data model, we discuss two concepts
that shape the FDM/RC: (1) the inclusion of transpar-
ent and opaque data and (2) the need for fold/unfold
operations.

4.1.1 Opaque and Transparent Data

The FDM/RC models entities in three ways: transpar-
ent, opaque and transparent-opaque.

One major distinction of GridDB, compared with
process-centric middleware, is that it understands de-
tailed semantics for some data, which it treats as rela-
tions. Within the data model, these are transparent en-
tities, as GridDB interacts with their contents. By pro-
viding more information about data, transparent mod-
eling enables GridDB to provide richer services. For
example, the input, pmas, to program gen in Fig. 2(a)

is modeled as a transparent entity: it can be modeled as
a tuple with one integer attribute, pmas. Knowing the
contents of this data, that the input is a tuple with an
integer attribute, GridDB can perform type-checking
on gen’s inputs.

On the other hand, there are times when a modeler
wants GridDB to catalog a file, but has neither the need
for enhanced services, nor the resources to describe data
semantics. GridDB allows lighter weight modeling of
these entities as opaque objects. As an example, con-
sider an output file of gen, x.evt. The entity is used to
execute programs atlfast and atlsim. GridDB must
catalog and retrieve the file for later use, but the mod-
eler does not need extra services.

Finally, there is opaque-transparent data, file data
that is generated by programs, and therefore needs to be
stored in its opaque form for later usage, but also needs
to be understood by GridDB to gain data-centric ser-
vices. An example is the output of atlfast; it is a file
that needs to be stored, possibly for later use (although
not in this workflow), but it can also be represented as
a single-attribute tuple (attribute fImas of type int).
As part of data analysis, the user may want to execute
SQL over a set of these entities.

4.1.2 Unfold/Fold

The second concept deals with GridDB’s other core ab-
straction: programs behind functions, i.e. a user makes
a function call instead of program invocation. The un-
fold and fold operations define the “glue” between a
program and its dual function.

For this abstraction to be sound, function evaluations
must be defined by a program execution, a matter of two
translations: (1) The function input arguments must
map to program inputs and (2) the programs outputs
files, upon termination, must map to the functions re-
turn values. These two mappings are defined by the fold
and unfold operations, respectively.

In Section 4.3.2, we describe atomic functions, which
encapsulate imperative programs and employ fold and
unfold operations. In Section 4.3.3, we elucidate the
operations with an example.

4.2 Definition

Having described the core concepts of our grid data
model, we now define it:

The FDM/RC has two constructs: entities and func-
tions. An FDM schema consists of a set entity-sets,
T , and a set of functions, F , such that each func-
tion, Fi ∈ F , is a mapping from entities to entities:
Fi : X1 × . . . × Xm → Y1 × . . . × Yn, Xi, Yi ∈ T , and
can be the composition of other functions. Each non-set
type, τ = [τt, τo] ∈ T , can have a transparent compo-
nent, τt, an opaque component τo, or both4. τt is a

4one of τt and τo can be null, but not both

5

Technical Report UCB//CSD-04-1311, 3/16/04

tuple of scalar entities. Set-types, set(τ), can be con-
structed from any type τ . The relational cover is the
subset, R, of types, T , that are of type set(τ), where
τ has a transparent component. An FDM/RC schema
(T, R, F) consists of a type set, T ; a relational cover, R;
and a function set, F .

4.3 Data Definition Language

An FDM/RC schema, as we have just described, is de-
fined by a data definition language (DDL). The DDL is
divided into type and function definition constructs. In
this section, we describe the constructs, and illustrate
them with HepEx’s data definition, when possible. Its
DDL is shown in Listing 2.

4.3.1 Types

As suggested in Section 4.1.1, modelers can define three
kinds of types: transparent, opaque and transparent-
opaque. All types, regardless of their kind, are defined
with the type keyword. We show declarations for all
three HepEx types below.

Transparent type declarations include a set of
typed attributes and are prefixed with the keyword
transparent. As an example, the following statement
defines a transparent type g, with an integer attribute
pmas:

transparent type g = (pmas:int);

Opaque types do not specify attributes and there-
fore are easier to declare. Opaque type declarations are
prefixed with the keyword opaque. For example, the
following statement declares an opaque type evt :

opaque type evt;

Suppose an entity e is of an opaque type. It’s opaque
component is accessed as e.opq.

transparent-opaque type declarations are not pre-
fixed, and contain a list of attributes; for example, this
statement declares a transparent-opaque type f, which
has one integer attribute imas:

type f = (imas:int);

A variable of type f also has an opaque component.

Finally, users can construct set types from any type.
For example, this statement creates a set of g entities:

type setG = set(g);

Because setG has type set(g), and g has a trans-
parent component, setG belongs in the relational cover.

4.3.2 Functions

There are four kinds of functions that can be defined in
DDL: atomic, composite, map and SQL.

Function interfaces, regardless of kind, are defined as
typed lists of input and output entities. The definition
header of atomic function genF is:

atomic fun genF (params:g):(out:evt)

This declares genF as a function with an input
params, output out, and type signature g → evt. We

proceed by describing body definitions for each kind of
function.

As mentioned in Section 4.1.2, atomic functions em-
body grid programs, and therefore determine GridDB’s
interaction with process-centric middleware. The body
of atomic function definitions describe these interac-
tions. Three items need to be specified: (1) the program
(using a unique program ID) that defines this function.
(2) The unfold operation for tranforming GridDB enti-
ties into program inputs and (3) the fold operation for
transforming program outputs to function output en-
tities. Three examples of atomic functions are genF,
atlfastF, and atlsimF(see their headers in Listing 2,
Lines 12-14). Because the body of an atomic function
definition is quite involved, we defer its discussion to
Section 4.3.3.

Composite functions are used to express complex
analyses, and then abstract it — analogous to the en-
coding of abstract workflows in scripts. As an example,
a composite function simCompare composes the three
atomic functions we have just described. It is defined
with:

fun simCompare(in:g):(fOut:f,sOut:s) =

(atlfastF(genF(in)), atlsimF(genF(in));

This statement says that the first output, fOut, is
the result of function atlfastF applied to the result of
function genF applied to input in. sOutxo, the second
return-value, is defined similarly. The larger function,
simCompare, now represents a workflow of programs.
The composition is type-checked and can be reused in
other compositions.

Map functions, or maps, provide a declarative form
of finite iteration. Given a set of inputs, the map func-
tion repeatedly applies a particular function to each in-
put, creating a set of outputs. For a function, F , with
a signature X1 × . . . × Xm → Y1 × . . . × Yn, a map,
FMap, with a signature: set(X1) × . . . × set(Xm) →
set(Y1) × . . . × set(Yn), can be created, which executes
F for each combination of its inputs, creating a combi-
nation of outputs.

As an example, the following statement creates a
map function, simCompareMap with the type signature
set(g) → set(f) × set(s), given that SimCompare has a
signature g → f × s:

fun simCompareMap = map(simCompare);

We call SimCompare the body of simCompareMap.
Maps serve as the front-line for data procurement —
analysts submit their input sets to a map, and receive
their output sets, being completely abstracted from grid
machinery.

The benefit of transparent, relational data is that
GridDB can now support SQL functions within work-
flows. As an example, a workflow function which joins
two relations, holding transparent entities of r and s,
with attributes a and b, and returns only r tuples, can

6

Technical Report UCB//CSD-04-1311, 3/16/04

Listing 2: Abridged HepEx DDL
1 //opaque -only type definitions
2 opaque type evt ;
3

4 // transparent -only type declarations
5 transparent type g = (pmas:int);
6

7 //both opaque and transparent types
8 type f = (fImas :int);
9 type s = (sImas :int);

10

11 // headers of atomic function definitions for
genF, atlfastF, atlsimF

12 atomic fun genF(params :g):(out:evt) = ...;
13 atomic fun atlsim (evtsIn :evt):(outTuple :s)

= ...;
14 atomic fun atlfastF (inEvt:evt):(outTuple :f) =
15 exec(‘‘atlfast ’’,
16 [(‘‘ events ’’,inEvt)],
17 [(/. atlfast \$/, outTuple , ‘‘adapterX ’’)

]);
18

19 // composite function simCompare definition
20 fun simCompare (in:g):(fOut:f,sOut:s) =
21 (atlfast (gen(in)) , atlsim (gen(in)));
22

23 //a map function for simCompare
24 fun simCompareMap = map(simCompare);

be defined as:

sql fun (R:set(r), S:set(s)):(ROut:set(r)) =

sql(SELECT R.* FROM R,S WHERE R.A = S.B);

In Section 6, we will show an SQL workflow func-
tion that simplifies a spatial computation with a spatial
“overlaps” query, as used in an actual astronomy anal-
ysis.

4.3.3 Fold/Unfold Revisited

Finally, we return to defining atomic functions and their
fold and unfold operations. Recall from Section 4.1.2
that the fold and unfold operations define how data
moves between GridDB and process-centric middle-
ware.

Consider the body of function atlfastF, which trans-
lates into the execution of the program atlfast:

atomic fun atlfastF(inEvt:evt):(outTuple:f) =

exec(

‘‘atlfast’’,

[(‘‘events’’,inEvt)],

[(/.atlfast$/, outTuple, ‘‘adapterX’’)]

)

The body is a call to a system-defined exec function,
which submits a process execution to process-centric
middleware. exec has three arguments, the first of
which specifies the program (with a unique program ID)
which this function maps to. The second and third ar-
guments are lists that specify the unfold and fold oper-
ations for each input or output entity.

The second argument is a list of pairs (only one here)
which specifies how arguments are unfolded. In this

a

t
l
f

a
s

t

p
r

o

c
e

s
s

e

x
e

c
u

t
i

o
n

atlfast

outfile

GridDB: entities + functions

process-centric grid:

files + cmd-lines + pgms

tFile

adapterX
 101
 127

fID
 fImas
 opq

inEvt

-events tFile

atlfastF

fold

outTuple

atlfastF

function

invocation

Unfold
(out of GridDB,

into grid)

Fold
(into GridDB,

out of grid)

Figure 4: Unfold/Fold in atomic functions

case, because evtsIn is an opaque entity, the file it repre-
sents is copied into the process’ working directory before
execution, and the name of the newly created file is ap-
pended to the command-line, with the tag events. For
example, atlfast would be called with the command-
line atlfast -events tFile, where tFile is the name
of the temporary file (top of Fig. 4).

The last argument to exec is also a list, this time of
triples (only one here), which specify fold operations for
each output entity (bottom of Fig. 4). In this case, the
first list item instructs GridDB to look in the work-
ing directory after process termination, for a file that
ends with .atlfast (or matches the regular expression
/.atlfast$/). The second item says that the opq com-
ponent of the output, outTuple, resolves to the newly
created file. The third item specifies an adapter program
— a program that extracts the attributes of outTuple’s
transparent component into a format understandable by
GridDB; for example, comma-separated-value format.
GridDB ingests the contents (in this case, fImas) into
the transparent component. The adapter program is
also registered by the coder and assigned a unique pro-
gram ID.

5 GridDB Design

In this section, we discuss the design of GridDB, fo-
cusing on the query processing of analyst actions, as
embodied in DML statements.

GridDB’s software architecture is shown in Fig. 5.
The GridDB overlay mediates interaction between a
GridDB Client and process-centric middleware. Four
main modules implement GridDB logic: the Request
Manager receives and initializes queries; the Query Pro-
cessor manages query execution; the Scheduler dis-
patches processes to process-centric middleware; and an
RDBMS (we use PostgreSQL) stores and manipulates
data and the system catalog.

In the rest of this section, we describe how
GridDB processes DML statements. We do not discuss

7

Technical Report UCB//CSD-04-1311, 3/16/04

process-centric

middleware

GridDB

Overlay

DML
 streaming tuples

GridDB

Client
 x

y

Query

Processor

Scheduler

proc-specs,files

Grid Resources

Request

Manager

RDBMS (PostgreSQL)

data, catalog

Figure 5: GridDB’s Architecture

the processing of DDL statements, as they are straight-
forward updates to the system catalog.

5.1 Query Processing

Our implementation strategy is to translate
GridDB DML to SQL, enabling the use of an ex-
isting relational query processor for most processing.
One consequence of this strategy is that our main data
structures must be stored in tables. In this section,
we take a bottom-up approach, first describing the
tabular data structures, and then describing the query
translation process.

5.1.1 Tabular Data Structures

GridDB uses three kinds of tables; the first two store
entities and functions. The last stores processes, which
are later outsourced to process-centric middleware for
execution. We describe these three in turn.

Entity Tables: Recall from Section 4.1.1 that non-
set entities may have two components: a transpar-
ent component, τt, which is a tuple of scalar values;
and an opaque component, τo, which is an opaque
set of bits. Each entity also has a unique system-
assigned ID. Thus, an entity of type τ having an m-
attribute transparent component (τt) and an opaque
component (τo) is represented as the following tuple:
(τID, τt.attr1, . . . , τt.attrm, τo). Entity-sets are repre-
sented as tables of these tuples.

Function Memo Tables: Given an instance of its
input entities, a function call returns an instance of out-
put entities. Function evaluations establish these map-
pings, and can be remembered in function memo ta-
bles [32]. A function, F , with a signature X → Y , has
an associated memo table, FMemo, with the schema
(FID, XID, Y ID). Each mapping tuple has an ID,
FID, which is used for process book-keeping (see be-
low); and pointers to its domain and range entities
(XID and Y ID, respectively). Each domain entity can
only map to one range entity, stipulating that XID is
a candidate key. This definition is easily extended to
functions with multiple inputs or outputs.

Process Table: Function evaluations are re-
solved through process executions. Process executions
are stored in a table with the following attributes:
(PID, FID, funcName, priority, status). PID is a
unique process ID; FID points to the function evalu-
ation this process resolves; priority is used for execu-

tion order; and status is one of done, running, ready,
or pending, where a pending process cannot execute be-
cause another process that creates its inputs is not done.

5.1.2 Query Processing: Translation to SQL

Having represented entities, functions and processes as
tables in the RDBMS, query processing proceeds pre-
dominantly as SQL execution.

In this section, we describe how each analyst action is
processed and show, as an example, query processing for
HepEx analysis. Internal data structures for HepEx are
shown in Fig. 6. The diagram is an enhanced version of
the analyst’s view (Fig. 2(c)).

Recall from Section 3, the three basic analyst actions:
workflow setup creates sandbox entity-sets and connects
them as inputs and outputs of a map; data procurement
submits inputs to the workflow, triggering a function
evaluation to create outputs. Finally, streaming partial
results can be perused with automatic views. We repeat
the listing for convenience:

1: gRn:set(g); fRn:set(f); sRn:set(s);

2: (fRn,sRn) = simCompareMap(gRn);

3: INSERT INTO gRn VALUES pmas = {101, . . . , 200};

4: SELECT * FROM autoview(gRn,fRn);

Workflow Setup

During workflow setup (Lines 1-2), tables are created
for the entity-sets and workflow functions. Workflow
setup creates a table for each of the four entity-sets (gRn,
fRn, sRn, evts), as well as each of the three functions
(genFMemo, atlfastFMemo, atlsimMemo) . At this
step, GridDB also stores a workflow graph (represented
by the solid arrows in the figure) for the analysis.

Data procurement and Process Execution

Data procurement is performed with an INSERT state-
ment (Line 3) into a map’s input entity-set variables.
In GridDB, INSERTs into entity-tables trigger function
evaluations, if a workflow graph indicates that the entity
is input to a function. Function outputs are appended
to output entity tables. If these tables feed into another
function, function calls are recursively triggered. Calls
can be resolved in two ways: a function can be evalu-
ated, or a memoized result can be retrieved. Evaluation
requires process execution

Process execution is a three step procedure that uses
the fold and unfold operations described in Section 4.3.3.
To summarize: first, the function’s input entities are
converted to files and a command-line string using the
unfold operation; second, the process (defined by pro-
gram, input files and command-line) is executed on the
grid; and third, the fold operations ingest the process’
output files into GridDB entities.

In the example, a data procurement INSERT into
gRn has cascaded into 9 function calls (F1-F9 in the

8

Technical Report UCB//CSD-04-1311, 3/16/04

s

i

m

C

o

m

p

a

r

e

M

a

p

gID
 pmas

g1
 101

g3
 103

g2
 102
gRn

evts

eID
 opq

e1

e3

e2

fID
 fImas

f1
 101

f3

f2

fRn

opq
 sID
 sImas

s1
 102

s3

s2

sRn

opq

g3
 e3

g2
 e2

g1
 e1

gID
 eID
genFMemo

F3

F2

F1

FID

e3
 s3

e2
 s2

e1
 s1

eID
 sID

atlsimFMemo

F9

F8

F7

FID

e3
 f3

e2
 f2

e1
 f1

eID
 fID

atlfastFMemo

F6

F5

F4

FID

FID

Process table

Status
 Priority

F3

F2

F1
 done

ready

running

0

0

0
 2

F6

F5

F4
 done

pending

pending

0

0

0
 2

F9

F8

F7
 done

pending

pending

0

0

0

Function

genF

genF

genF

atlfastF

atlfastF

atlfastF

atlsimF

atlsimF

atlsimF

PID

P3

P2

P1

P6

P5

P4

P9

P8

P7

Figure 6: Internal data structures representing
HepEx functions, entities, and processes. Shaded fields
are system-managed. Dashed arrows indicate interest-
ing tuples in our IQP dicussion (Sec. 7.1)

three function tables) and the insert of tuple stubs
(placeholders for results) for the purpose of partial re-
sults. We assume an absence of memoized results, so
each function call requires evaluation through a process
(P1-P9 in the process table).

The process table snapshot of Fig. 6 indicates the
completion of three processes (P1, P4, P7), whose re-
sults have been folded back into entity tables (entities
e1, f1, r1, respectively).

Automatic Views (Autoviews)

A user may peruse data by querying an autoview. Be-
cause each edge in a workflow graph is always associated
with a foreign key-primary key relationship, autoviews
can be constructed from workflow graphs. As long as a
path exists between two entity-sets, an automatic view
between can be created by joining all function- and
entity-tables on the path.

In Fig. 7, we show autoview(gRn, fRn), which is
automatically constructed by joining all tables on the
path from gRn to fRn and projecting out non-system
attributes.

6 ClustFind: A Complex Example

Up until this point, we have demonstrated GridDB con-
cepts using HepEx, a rather simple analysis. In this sec-
tion, we describe how GridDB handles a complex as-
tronomy application. First, we describe the application
science and general workflow. Next, we describe how the
workflow can be modeled in the FDM/RC. Finally, we
show how the example benefits from memoization and
interactive query processing, advanced features that we

gID
 pmas

g1
 101

g3
 103

g2
 102

gRn
 evts

eID
 opq

e1

e3

e2

fID
 fImas

f1
 101

f3

f2

fRn

opq

g3
 e3

g2
 e2

g1
 e1

gID
 eID

genF

P3

P2

P1

PID

e3
 f3

e2
 f2

e1
 f1

eID
 fID

atlfastF

p6

p5

p4

pID

priority upgrade to 2

pmas

101

fImas

101

102

103

priority

n/a

0

0

 2

autoview(gRn, fRn)

projection(
pmas
,
fImas
)
autoview(gRn, fRn)
 query graph

partial result

Figure 7: autoview(gRn, fRn)

describe in the following section.

6.1 Finding Clusters of Galaxies

The Sloan Digital Sky Survey (SDSS) [7] is a 12 TB
digital imaging survey mapping 250,000,000 celestial
objects with two orders of magnitudes greater sensi-
tivity than previous large sky surveys. ClustFind is
a computationally-intense SDSS analysis that detects
galaxy clusters, the largest gravitation-bound objects in
the universe. The analysis uses the MaxBCG cluster
finding algorithm [14], requiring 7000 CPU hours on a
500 MHz computer [15].

In this analysis, all survey objects are characterized
by two coordinates, ra and dec. All objects fit within a
two-dimensional mesh of fields such that each field holds
objects in a particular square (Fig. 8(a)). The goal is
to find, in each field, all cluster cores, each of which is
the center-of-gravitation for a cluster. To find the cores
in a target field (e.g., F33, annotated with a ? in Fig.
8(a)), the algorithm first finds all core candidates in the
target, and all candidates in the target’s “buffer,” or set
of neighboring fields (in Fig. 8(a), each field in the buffer
of F33 is annotated with a •). It then applies a core
selection algorithm, which selects cores from the target
candidates based on interactions with buffer candidates
and other core candidates.

6.2 An FDM/RC Model for ClustFind

In this section, we describe the FDM/RC function,
getCores, which, given a target field entity, returns the
target’s set of cores. getCores is shown as the outer-
most function of Fig. 8(b). The analysis would actually
build a map function using getCores as its body, in
order to find cores for many targets.

getCores is a composite of five functions: getCands,
on the right-side of the diagram, creates A, a file of
target candidates. The three left-most functions —
sqlBuffer, getCandsMap, and catCands— create D, a
file of buffer candidates. Finally, bcgCoalesce is the
core selection algorithm; it takes in both buffer candi-
dates, D, and target candidates, A, returning a file of
target cores, cores. During the fold operation, cores is
ingested as a set of Core entities (shown at the bottom
of Fig. 8(b)).

9

Technical Report UCB//CSD-04-1311, 3/16/04

F
11
 F
12
 F
13
 F
14
 F
15

F

21

F

22

F

23

F

24

F

25

F
31
 F
32
 F
33
 F
34
 F
35

F

41

F

42

F

43

F

44

F

45

F
51
 F
52
 F
53
 F
54
 F
55

ra

d
e

c

(a)

catCands

bcgCoalesce

g
e
t
C

o
r
e
s

target:

Field

sqlBuffer

getCands
getCandsMap

A:bcgF

C:set(bcgF)

D:bcgF

cores:set(Core)

allFlds:

set(Field)

B:set(Field)

(b)

brgLL

bcgLL

sqlBuffer

catBufferFiles

g
e
t
C

a
n
d
s

f:Field

H:Buffer

I:brgF

cands:bcgF

allFields:set(Field)

G:set(Field)

(c)

Figure 8: (a) ClustFind divides sky objects into a square mesh of buckets (b) getCores, the body of the top-level
ClustFind map function. (c) getCands, a composite subfunction used in getCores.

ClustFind analysis is carried out with a map based
on the getCores function we have just described, map-
ping each target field to a set of cores.

This use-case illustrates three notable features not
encountered in HepEx: (1) it uses an SQL function,
sqlBuffer. Given a target field (target) and the set of
all fields (allFields), sqlBuffer uses a spatial over-
lap query to compute the target’s buffer fields, B. (2)
it uses a nested map, getCandsMap, which iterates over
a dynamically created set of entities. This means that
materialization of B will create a new set of processes,
each executing the contents of getCands to map an
element of B to an element of C. (3) getCores, as
a whole, creates a set of Core objects from one tar-
get, having a signature of the form α → set(β). This
pattern, where one entity maps to a set of entities, is
actually quite common and suggests the use of a nested
relational model and query language[41]. We have de-
cided that even though such a model provides sophisti-
cated support for set types, its added complexity is not
justified in the system.

In Fig. 8(c), we show getCands, a function used in
getCores, and also the basis of getCandsMap, which
is also used in getCores. Given a target field, f ,
getCands returns a set of core candidates, cands. It
is interesting to note that, like getCores, a buffer cal-
culation is needed to compute a field’s candidates —
resulting in the reuse of sqlBuffer in getCands. As
an example, in computing the candidates for F44, we
compute its buffer, or the set of fields annotated with
a ◦ in Fig. 8(a). Note that the bcgLL function within
getCands is the most expensive function to evaluate
[15], making getCands the bottleneck in getCores.

The analysis touches upon 2 kinds of entity types (ex-
amples in parentheses): opaque (A), and transparent-
opaque (target); set types (C); and all four kinds

of functions: atomic (bcgCoalesce) , composite
(getCands), sql (sqlBuffer) , map (getCandsMap).
The atomic functions, which cause grid process execu-
tions, are the solid boxes.

6.3 Memoization & IQP in ClustFind

Embedded in our description is this fact: getCands is
called ten times per field: twice in computing the field’s
cores and once for computing the cores for each of
its eight neighbors. By modeling this workflow in a
GridDB schema, an astronomer automatically gains the
performance of memoization, without needing to imple-
ment it himself.

We describe the implementation of both of these ad-
vanced features in the next section.

Finally, it is common for astronomers to point to a
spot on an image map — for instance, the using Sky-
Server interface[7] — and query for results from those
coordinates. As these requests translate to (ra, dec) co-
ordinates, GridDB’s data-driven IQP service accomo-
dates selective prioritization of interesting fields.

We describe the implementation of both of these ad-
vnaced features in the next section.

7 Performance Enhancements

Previous sections have shown GridDB providing ba-
sic grid services. In this section, we show that GridDB’s
model serves as a foundation for two other performance-
enhancing services: interactive query processing and
memoization. We describe these two services and val-
idate their benefits using a prototype GridDB imple-
mentation.

7.1 Interactive Query Processing

Due to the conflict between the long-running nature of
grid jobs and the iterative nature of data analysis, scien-

10

Technical Report UCB//CSD-04-1311, 3/16/04

tists [19, 36] have expressed a need for interactive query
processing (IQP) [39].

In this section, we describe how the FDM/RC en-
ables IQP through a relational interface. We introduce
IQP with an example. Consider the autoview at the
top of Fig. 7. The view presents the relation between
pmas and fImas values. The user has received one
partial result, where pmas= 101. At this point, the
user may upgrade the priority of a particular tuple (with
pmas= 103) with an SQL UPDATE statement:

A: UPDATE autoview(gRn, fRn) SET PRIORITY = 2 WHERE

pmas = 103

By defining a relational cover, GridDB allows prior-
itization of data, rather than processes. GridDB the
UPDATE statement is enhanced; one can update the
PRIORITY attribute of any view. This scheme is expres-
sive: a set of views can express, and therefore one may
prioritize, any combination of cells in a relational schema
(the relational cover).

Next, we turn to how such a request affects query
processing and process scheduling, where GridDB bor-
rows an technique from functional languages, that of
lazy evaluation [32]. Any view tuple can always be
traced back to entities of the relational cover, using ba-
sic data lineage techniques [22]. Each entity also has a
functional expression, which encodes all necessary and
sufficient function evaluations. Since function evalua-
tions are associated with process execution, GridDB can
prioritize only the necessary and sufficient process exe-
cutions, delaying the computation of other, irrelevant
computations.

As an example, consider the processing of the prioriti-
zation request in Fig. 7. The only missing uncomputed
attribute is fImas, which is derived from from relational
cover tuple f3. Fig. 6 (see dashed arrows) shows that
f3 is a result of function evaluation F6, which depends
on the result function of evaluation F3. The two pro-
cesses for these evaluations are P3 and P6, which are
prioritized. Such lineage allows lazy evaluation of other
irrelevant, possibly function evaluation, such as any in-
volving atlsimF.

In summary, the FDM/RC, with its functional rep-
resentation of workflows and relational cover, have pro-
vided a data-centric, tabular interface for grid process
scheduling.

7.2 Memoization

Recall from Section 5.1.1 that function evaluations are
stored in memo tables. Using these tables, memoiza-
tion is simple: if a function call with the same entities
has been previously evaluated and memoized, we can
return the memoized entities, rather than re-evaluating.
This is possible if function calls, and the programs
which implement them, are deterministic. Scientific
analysis programs are often deterministic, as repeati-
bility is paramount to experimental science [8]. How-

Module(s) LOC Module(s) LOC

Rqst Mgr. & Q.P. 1495 Catalog Routines 756
Scheduler 529 Data Structures 7207
Client 7471 Utility Routines 1400

Total 18858

Table 1: LOCs for a java-based GridDB prototype.

worker

worker

worker

GridDB

Client

Condor

master

D

M

L

t
u

p

 l
e

s

GridDB

f
i
l

e

s

p
r

o

c
-

s
p

e

c

s
,

f
i
l

e

s

worker

Figure 9: Experimental setup.

ever, if required, our our modeling language could be
extended to allow the declaration of non-deterministic
functions, which may not be memoized, as is done with
the VARIANT function modifier of PostgreSQL [?].

7.3 Implementation

We have implemented a java-based prototype of
GridDB, consisting of almost 19K lines of code. Mod-
ular line counts are in Table. 1. The large size of the
client is explained by its graphical interface, which we
implemented for a demonstration of the system during
SIGMOD 2003 [24]. Currently, the system uses Con-
dor [34] as its process-centric middleware; therefore,
it allows access to a cluster of machines. In the fu-
ture, we plan to use Globus, in order for the system to
leverage distributively-owned computing resources. The
change should not be conceptually different, as both are
process-submission interfaces.

7.4 Validation

To demonstrate the effectiveness of IQP and memoiza-
tion, we conducted validation experiments with our pro-
totype GridDB implementation and the cluster testbed
of Fig. 9. Measurements were conducted on a minia-
ture “grid” consisting of six nodes (Fig. 9). The
GridDB client issued results from a laptop while the
GridDB overlay, a “Condor Master” batch scheduler
[34] and 4 worker nodes each resided on one of 6 cluster
nodes. All machines, with the exception of the client,
were Pentium 4, 1.3 GHz machines with 512 MB RAM,
running Redhat Linux 7.3. The client was run on an
IBM Thinkpad Mobile Pentium 4, 1.7 GHz with 512
MB RAM. The machines were connected by a 100 Mbit
network.

7.4.1 Validation 1: Data Prioritization

In the first validation experiment, we show the bene-
fits of IQP by comparing GridDB’s dynamic scheduler,
which modifies its scheduling decisions based on interac-
tive data prioritizations, against two static schedulers:
batch and pipelined.

11

Technical Report UCB//CSD-04-1311, 3/16/04

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20

T
im

e(
s)

Number of Prioritized Data Points

Interactive Query Processing

dynamic
pipelined

batch

Figure 10: Validation 1, IQP for HepEx

In this experiment, an analyst performs the data pro-
curement of Section 3, inserting 100 values of pmas into
simCompareMap. 200 hundred seconds after submission,
we inject an IQP request, prioritizing 25 as yet uncom-
puted f tuples:

UPDATE autoview(gRn, fRn) SET PRIORITY = 2 WHERE

131 ≤pmas≤ 150

The batch scheduler evaluates all instances of each
function consecutively, applying genF to all pmas in-
puts, and then to atlsimF, and then atlfastF. The
pipelined scheduler processes one input at a time, start-
ing with pmas=1, and applying all three functions to it.
Neither changes its schedule based on priority updates.
In contrast, the GridDB dynamic scheduler does change
its computation order as a user updates preferences.

In Fig. 10, we plot Number of Prioritized Data Points
returned vs. time. In the plot, GridDB(dynamic) has
delivered all 20 interesting results. The figure shows that
dynamic has delivered all 20 interesting results within
1047s. The static pipelined and batch schedulers re-
quire 2608s and 3677s, respectively. In this instance,
GridDB cut time-to-interesting-result by 60% and 72%,
respectively.

The performance gains are due to the lazy evaluation
of the expensive function, atlsimF, as well as the priori-
tization of interesting input points, two effects explained
in Section 7.1.

7.4.2 Validation 2: Memoization Speedup

We validated the GridDB memoization implementation
by testing how well it exploits ClustFind memoization
opportunities (from Section 6). We observed that when
memoization is used, system throughput speeds up by
6.13 relative to when it is absent. Note that process-
centric middleware typically does not provide a memo-
ization service.

In these experiments, we used GridDB to drive clus-
ter core search for square meshes of varying size. The
smallest, of size 5, is shown in Fig. 8(a). Each field was
of length 0.1× 0.1 degrees. Recall from Section 6.3 that

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14 16 18 20

Jo
b

C
om

pl
et

io
n

T
im

e(
s)

Mesh Size

Memoization

noMemo
memo

Figure 11: Validation 2, Memoization in ClustFind

the GridDB modeling of ClustFind analysis presents
a prime opportunity for memoization, as the most ex-
pensive functions are also repeated many times.

As shown in Fig. 11, an analysis using memoiza-
tion (memo) out-performs an analysis without memo-
ization (noMemo) for meshes from sizes 6 to 19. Meshes
of size 5 have no memoization opportunities; we can
only calculate one target (each target requires a 5 by 5
buffer around it for computation). At mesh size 19 (361
fields), a memoized analysis requires 5041 seconds while
one without memoization requires 30894 seconds — a
speedup of 6.13.

To precisely understand these performance gains, we
profiled the ClustFind analysis, recording the amount
of time spent in the four main modules of Fig. 8(b):
sqlBuffer, getCands(and getCandsMap) , catCands,
and bcgCoalesce. We discovered 95% of the execu-
tion time was spent in getCands. Our profiling showed
that memoization reduced the time calling getCands by
up to 86%, where 90% is optimal (each call is made a
maximum of 10 times, so a 10 to 1 reduction is optimal).

8 Related Work

To streamline our discussion, we classify related sys-
tems into three categories: process-centric, Workflow
and Database.

The relationships amongst the three categories is
shown in Figure 12, where an arrow goes from category
A to category B if B derives from A. Process-centric
systems provide an OS-like process submission interface.
Workflow systems focus on the management of process
workflows and are naturally built on top of process-
centric systems. Database systems provide a declara-
tive interface to data — the final product of workflows
— but do not support workflow management. Also in
the diagram is a fourth category, Workflow-Database,
which contains systems that exhibit characteristics of
both workflow and database systems. GridDB is a
member of this category.

Process-centric software systems such as Condor [34]

12

Technical Report UCB//CSD-04-1311, 3/16/04

Workflow:

Chimera, Dagman, WASA,

CRISTAL

Database:

SkyServer, and other scientific

databases

Process-centric:

Condor (and other batch

schedulers), globus

Workflow-Database:

GridDB, Zoo

Figure 12: A cateogorization of related systems.

and Globus [25] provide an OS-like interface, providing
process submission services. While such systems provide
an essential computational substrate, scientific collabo-
rations are seeking to abstract these low-level interfaces
and use data-centric interfaces so they can focus on data
analysis (as we describe in Section 1).

Workflow systems build on top of process-centric
middleware, modeling sets of dependent processes. In
general, workflow systems model human-tasks in addi-
tion to computer-tasks[33]. The task sets often exhibit
dependencies and are long-running. While workflow sys-
tems were also built for other domains, such as business
process modeling, we focus our attention on those that
support scientific data analysis.

Some scientific workflow systems, such as WASA [46],
and CRISTAL [30] model general human and computer
tasks. In contrast, systems such as Chimera [15, 50] and
DAGMan [3], specialize in the modeling of computer
tasks (which we have called processes in this paper),
similar to GridDB. All of these workflow systems lack
one characteristic, which is present in GridDB: they do
not understand the data which is being created by their
tasks, as embodied by an analysis’ relational cover. As
such, these systems do not provide a declarative inter-
face, as is provided by GridDB.

At the other end of the spectrum are Database sys-
tems, which focus on the querying of final data values,
but provide minimal support for process management.

An example of a recently developed scientific
database system is the SkyServer [44, 45], which pro-
vides a web interface to terabytes of astronomy data
from the Sloan Digital Sky Survey (the ClustFind anal-
ysis of Section 6 used this data). With about 500 users
per day, the SkyServer has established itself as a use-
ful astronomy resource. However, it does not model
the processing pipeline that converts raw telescope data
into SQLServer tables, as is possible in a workflow sys-
tem. Memoization of data products as well as interac-
tive query processing cannot be provided in grid envi-

ronments without this modeling information.

Workflow-Database systems accomodate both the
modeling of final data values (as is done in Database sys-
tems) and workflows (as is done in Workflow systems).
GridDB fits into this category by allowing the modeling
of final values using a relational cover and the modeling
of workflows through typed functions. To our knowl-
edge, ZOO [31, 12], a Desktop Experiment Management
Environment from the University of Wisconsin, is the
first, and only other, system to incorporate workflow and
database functionality into a scientific analysis frame-
work. In fact, GridDB and ZOO bear many similarities;
for example, ZOO also provides a data model (Moose)
and query language (Fox) for representing and manipu-
lating scientific worfklows and data [47]. Also, the no-
tions of folding and unfolding file data (as described in
Section 4.1.2) are comprehensively addressed through
the Frog and Turtle object-to-file mapping framework
[13].

Unlike GridDB, however, Zoo was designed before the
conception of grid computing and therefore was focused
towards the desktop, rather than a more powerful com-
putional grid. Additionally, GridDB uses the simpler,
relational data model, as opposed to an object-oriented
data model [47], as is used in ZOO. We believe this sim-
plicity to be an advantage and have argued in Section
3 why the model is sufficient for modeling an impor-
tant subset of data, the inputs and outputs. Finally,
GridDB leverages its knowledge of both workflow and
dat ato provide computational steering services, which
are unavailable in ZOO.

In contrast to GridDB, ZOO and other high-level
Workflow and Database systems, some systems provide
a lower-level interface for managing grid resources. For
example, the Master-Worker [27] framework is a soft-
ware library for programming data parallel applications
on clusters. While one can imagine performing compu-
tation steering within such a framework, it is done by
extending C++ classes — a procedural programming
model.

The Functional Data Model (FDM) and Interac-
tive Query Processing are two related ideas that
GridDB builds upon. The FDM was developed in the
late 70s [42, 43, 18] as an alternative to the relational
model with a more “natural” querying interface . While
the FDM never displaced the relational model, it has
been recently established as a “common-denominator”
data model to federate distributively managed data
sources [10]. We have used the FDM for an unrelated
purpose, that of modeling programs and workflows.

Interactive Query Processing (IQP) has recently been
proposed for RDBMSs [39, 40, 29]. The past work has
focused relational query processing. While GridDB pro-
vides the same relational interface for steering compu-
tations, it allows the steering of non-relational “opera-
tors,” programs that execute on grid nodes.

13

Technical Report UCB//CSD-04-1311, 3/16/04

9 Conclusion

In this paper, we have presented GridDB, a software
overlay that provides a relational interface, and data-
centric interfaces to the grid. We exploit two key prin-
ciples: first, imperative programs can be modeled as
typed-functions and second, that a key subset of data,
the relational cover, can be modeled as relations, and
used as a window to the full data set. As such, we have
built a data model (FDM/RC) and query language (a
DDL and a DML) for representing workflows and ac-
cessing their data through a relational interface. We
have demonstrated the use of GridDB in modeling High
Energy Physics and Astronomy analyses and have vali-
dated our ideas by measuring a prototype implementa-
tion. Next, we plan to deploy the software overlay with
our scientific collaborators in the GriPhyN project.

10 Acknowledgements

We thank Mike Wilde, Jens-S. Vöeckler, Yong Zhao,
and Ian Foster, our collaborators from the GriPhyN and
Chimera projects, for helping us understand scientific
grid workflows; the Nordugrid project for deploying a
portable version of ATLAS software; the PPDG-CS 11
Working Group on Interactive Analysis for specifying
scientific grid requirements; Yuri Smirnov, Craig Tull,
Wim Lavrijsen, Rob Gardner and Marco Mambelli from
the ATLAS project for helping us construct an ATLAS
use-case and execute its software; Jim Annis for docu-
menting the cluster finding use case, and making cluster
finding code amenable to grid execution; Jim Gray for
discussions of databases in science collaborations; and
Sirish Chandarasekaran, Mehul Shah, Boon Thau Loo
and Sailesh Krishnamurthy for discussion on this work.

This work was funded by the NSF under grant ITR-
0086044 (GriPhyN) and by research grants from IBM,
Intel and Microsoft.

References
[1] Condor-G and DAGMan Hands-On Lab.

http://www.cs.wisc.edu/condor/tutorials/

miron-condor-g-dagman-tutorial.%html.
[2] Condor Manual. Chapter 2.6: Submitting a Job to Con-

dor.
[3] Dagman home page. http://www.cs.wisc.edu/

condor/dagman/. Accessed 10/25/03.
[4] fv: The Interactive FITS File Editor. http://heasarc.

gsfc.nasa.gov/docs/software/ftools/fv/. Accessed
10/28/03.

[5] globus-job-submit man page. http://www.globus.

org/v1.1/programs/globus-job-submit.html. Ac-
cessed 11/19/03.

[6] PAW: Physics Analysis Workstation. http://wwwasd.

web.cern.ch/wwwasd/paw/. Accessed 10/28/03.
[7] Sloan digital sky survey. http://www.sdss.org/.
[8] Handbook of Mathematics and Computational Science.

Springer Verlag, 1998.
[9] Data Management in an International Data Grid

Project , 2000.

[10] The Functional Approach to Data Management: Mod-
eling, Analyzing and Integrating Heterogeneous Data,
2003.

[11] A. Bayucash and R. L. Henderson and C. Lesiak and B.
Mashn and T. Proerr and D. Tweten. Portable batch
system: External reference specification. Technical re-
port, MRJ Technology Solutions, November 1999.

[12] A. Ailamaki, et al.. Scientific workflow management
by database management. In Statistical and Scientific
Database Management , pp. 190–199. 1998.

[13] V. Anjur, et al.. FROG and TURTLE: Visual bridges
between files and object-oriented data. In Proceed-
ings of the Eighth International Conference on Scien-
tific and Statistical Database Management , pp. 76–85.
IEEE, Stockholm, Sweden, 18–20 1996.

[14] Annis, et al.. MaxBCG Technique for Finding Galaxy
Clusters in SDSS Data . In AAS 195th Meeting . 2000.

[15] J. Annis, et al.. Applying chimera virtual data concepts
to cluster finding in the sloan sky survey. In Supercom-
puting . 2002.

[16] Grid Physics Network High-Energy Particle Physics
Description. http://www.griphyn.org/projinfo/
physics/highenergy.php. Accessed 11/19/03.

[17] R. Brun, et al.. ROOT - An Interactive Object Oriented
Framework and its application to NA49 data analysis.
In Proceedings of Computing in High Energy Physics.
May 1997.

[18] P. Buneman et al.. FQL–A Functional Query Language.
In ACM SIGMOD International Conference on Man-
agement of Data. May 1979.

[19] Carminati, F., et al. Hepcal ii: Common use cases for
a hep common application layer for analysis. Technical
report, LHC Grid Computing Project, 2003.

[20] Charles W. Krueger. Software Reuse. ACM Comput.
Surv., 24(2):131–183, 1992. ISSN 0360-0300.

[21] 2003. Personal communication with Craig Tull.
[22] Y. Cui, et al.. Tracing the lineage of view data in a ware-

housing environment. ACM Transactions on Database
Systems, 25(2):179–227, 2000.

[23] K. Czajkowski, et al.. A resource management architec-
ture for metacomputing systems. LNCS , 1459, 1998.

[24] David T. Liu and Michael J. Franklin and Devesh
Parekh. Demo. GridDB: A Relational Interface to the
Grid. In SIGMOD . 2003.

[25] I. Foster et al.. Globus: A metacomputing infrastruc-
ture toolkit. The International Journal of Supercom-
puter Applications and High Performance Computing ,
11(2):115–128, Summer 1997.

[26] I. Foster, et al.. The anatomy of the grid. In Interna-
tional Journal of Supercomputer Applications. 2001.

[27] J.-P. Goux, et al.. An Enabling Framework for Master-
Worker Applications on the Computational Grid. In
HPDC , pp. 43–50. 2000.

[28] Grid physics network (griphyn) white paper, 2003.
[29] J. M. Hellerstein, et al.. Informix under control: On-

line query processing. In Data Mining and Knowledge
Discovery 4(4), pp. 281–314. 2000.

[30] C. R. Information. Cristal. URL citeseer.ist.psu.

edu/417078.html.
[31] Y. E. Ioannidis, et al.. Zoo: a desktop experiment man-

agement environment. In Proceedings of the 22 nd Con-
ference on Very Large Data Bases (VLDB), 1996 , pp.

14

Technical Report UCB//CSD-04-1311, 3/16/04

580–583. 1997.
[32] John Hughes. Lazy memo-functions. Functional

Programming Languages and Computer Architecture,
(201):129–146, September 1985.

[33] F. Leymann et al.. Production workflow: concepts and
techniques. Prentice Hall PTR, 2000. ISBN 0-13-
021753-0.

[34] M. Litzkow, et al.. Condor - a hunter of idle worksta-
tions. In Proceedings of the 8th International Conference
of Distributed Computing Systems. 1988.

[35] M. Livny, et al.. Particle physics data grid collabora-
tory pilot. http://www.ppdg.net/docs/SciDAC/PPDG_

overview.pdf, September 2001.
[36] D. Olson et al.. PPDG-19: Grid Service Re-

quirements for Interactive Analysis. http:

//www.ppdg.net/pa/ppdg-pa/idat/papers/analysis_

use-cases-grid-reqs%.pdf. Access 11/21/03.
[37] e. a. Paul Avery. ivdgl itr proposal: An inter-

national virtual-data grid laboratory for data in-
tensive science. http://www.phys.ufl.edu/~avery/

ivdgl/itr2001/proposal_all.pdf, 2001. ”Proposal
0122557”.

[38] L. Prechelt et al.. An experiment to assess the benefits
of intermodule type checking, 1996.

[39] V. Raman, et al.. Online dynamic reordering for in-
teractive data processing. In The VLDB Journal , pp.
709–720. 1999.

[40] V. Raman et al.. Partial results for online query pro-
cessing. In SIGMOD Conference, pp. 275–286. 2002.

[41] Serge Abiteboul and Richard Hull and Victor Vianu.
Foundations of Databases: The Logical Level , chapter
Chapter 20: Complex Values. Addison-Wesley Long-
man Publishing Co., Inc., 1995. ISBN 0201537710.

[42] D. W. Shipman. The functional data model and the
data language daplex. ACM Transactions on Database
Systems (TODS), 6(1):140–173, 1981. ISSN 0362-5915.

[43] E. H. Sibley et al.. Data architecture and data model
considerations. In In Proceedings of the AFIPS National
Computer Conference, Dallas, Texas. American Feder-
ation of Information Processing Societies, june 1977.

[44] A. S. Szalay, et al.. Designing and mining multi-terabyte
astronomy archives: the Sloan Digital Sky Survey. pp.
451–462. 2000.

[45] A. S. Szalay, et al.. The SDSS skyserver: Public Access
to the Sloan Digital Sky Server Data. In SIGMOD , pp.
570–581. 2002.

[46] M. Weske, et al.. Wasa: A workflow-based architecture
to support scientific database applications. In DEXA.
1995.

[47] J. L. Wiener et al.. A moose and a fox can aid scien-
tists with data management problems. In Workshop on
Database Programming Languages, pp. 376–398. 1993.

[48] P. Wong et al.. 30 years of multidimensional multivari-
ate visualization, 1997.

[49] Y. Zhao, et al.. An array-based algorithm for simultane-
ous multidimensional aggregates. In Proceedings of the
1997 ACM SIGMOD international conference on Man-
agement of data, pp. 159–170. ACM Press, 1997. ISBN
0-89791-911-4.

[50] Y. Zhao, et al.. Chimera: A virtual data system for
representing, querying, and automating data derivation.
In 14th Conference on Scientific and Statistical Data

Management . 2002.

15

