
Efficient Multi-Match Packet Classification with TCAM

Fang Yu and Randy Katz�
fyu, randy � @eecs.berkeley.edu

CS Division, EECS Department, U.C.Berkeley

Report No. UCB/CSD-4-1316
March 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

This technical report is supported by UC Micro grant number 03-041

and 02-032

Efficient Multi-Match Packet Classification with TCAM
Fang Yu, Randy H. Katz

EECS Department, UC Berkeley, Berkeley, CA 94720
E-mail: {fyu, randy}@eecs.berkeley.edu

Abstract
Today's packet classification systems are designed to provide the
highest priority matching result, e.g., the longest prefix match,
even if a packet matches multiple classification rules. However,
new network applications, such as intrusion detection systems,
require information about all the matching results. We call this
the multi-match classification problem. In several complex net-
work applications, multi-match classification is usually the first
step followed by other processing that is dependent on the classifi-
cation results. Therefore, classification should be even faster than
line rate. Pure software solutions cannot support such applica-
tions due to their slow speeds.

In this paper, we present a solution with Ternary Content
Addressable Memory (TCAM), which produces multi-match clas-
sification results with only one TCAM lookup and one SRAM
lookup per packet— about ten times fewer memory lookups than
pure software solutions. In addition, we present a scheme to re-
move the negation format in rule sets, which can save up to 95%
of TCAM space than the straight-forward solution. We show that
using the pre-processing scheme presented in the paper, header
processing for SNORT rule set can be done with one TCAM and
one SRAM lookup using a 135KB TCAM.

1. Introduction
The emergence of new network applications demands multi-match
classification, namely reporting all the matching results instead of
only the highest priority match. One example of such applications
is the network intrusion detection system, which monitors packets
in a network and detects malicious intrusions or DOS attacks. In
systems such as SNORT [1], there are thousands of rules. Figure
1.a is an example SNORT rule that detects a MS-SQL worm
probe. Figure 1.b is a rule for detecting an RPC old password
overflow attempt.

Rule Headerudp $EXTERNAL_NET any
-> $HOME_NET 1434

content:"|04|"; depth:1;
content:"|81 F1 03 01 04

9B 81 F1 01|";
content:"sock";
content:"send"

Rule Content

udp $EXTERNAL_NET any -
> $HOME_NET any

content:"|00 01 86 A9|";
offset:12; depth:4;

content:"|00 00 00 01|";
distance:4; within:4;

byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align;
byte_test:4,>,64,0,relative;

content:"|00 00 00 00|";
offset:4; depth:4; sid:2027;

rev:4;

1.a: A rule for MS-SQL
Worm detection.

1.b: A rule for RPC old
password overflow attempt

Figure 1: SNORT rule examples.

Each rule has two components: a rule header and a rule con-
tent. The rule header is a classification rule that consists of five
fixed fields: protocol, source IP, source port, destination IP, and
destination port. The rule content is more complicated: it specifies
intrusion patterns used for packet content scanning. Rule headers
may have overlaps, so a packet may match multiple rule headers
(e.g., both examples above). Multi-match classification is used to

find all the rule headers that match a given packet so that we can
check the corresponding rule contents one by one later.

Another application is programmable network elements
(PNEs) [2, 3] proposed for implementing edge network functions.
Typically, a packet traverses a number of network devices that
perform different functions, e.g., firewall, HTTP load balancing,
intrusion detection, NAT, etc. This can be highly inefficient be-
cause a packet has to traverse every device even if only a subset of
them needs to operate on the packet contents. In addition, because
each network device is separately built, common functions like
classification are repeatedly applied. This wastes resources and
induces extra delay. To address this problem, PNEs have been
proposed to support multiple functions in one device. Multi-match
classification is one important building block in PNEs: when a
packet first enters a PNE, it is classified to identify the relevant
functions. Then, only those selected functions will be applied,
which saves resources and increases processing speed.

As we can see from the above two applications, multi-match
classification is usually the first step in performing complex net-
work system functions followed by processing that is dependent
on the classification results. Applications that require only single-
match classifications, however, tend to have further processing
that is also simple (e.g., go to a specific port, or drop a packet,
etc.). Therefore, to keep up the same line rate, multi-match classi-
fication may have to be much faster than single match to leave
enough time for the complicated processing to follow without
increasing latency too much.

Single-match packet classification is a well-studied problem.
Given a packet, a classifier, which consists of a set of rules, re-
ports the highest priority match. The single-match problem on
multiple fields is a complex problem [4]. For n arbitrary non-
overlapping regions in F dimensions, it is possible to achieve an
optimized query time of O(logn), with a complexity of O(nF)
storage in the theoretical worst case [5, 6]. However, real-world
rule sets are typically simpler than the theoretical worst case, and
heuristic approaches [6, 7, 8] provide faster solutions, e.g., 20-30
memory accesses per packet in the “worst case”.

The multi-match classification problem is more complex to
implement than single-match classification since it needs all the
matching results. Thus, some of the heuristic optimizations used
for the single-match classification do not apply for multiple-match
classification. Pure software solutions for multi-match classifica-
tion are expected to take longer than that for single-match classifi-
cation. However, as explained above, multi-match classification,
because of the complex follow-up processing, is likely to have
much tighter time requirements and hence pure software solutions
are not likely to be sufficient.

In this paper, we present a scheme that provides a solution for
the multi-match problem with two memory lookups: one using a
Ternary Content Addressable Memory (TCAM), which is a type
of memory that can do parallel search at high speed, and the other
lookup using a standard Static Random Access Memory (SRAM).
The remainder of the paper is organized as follows: we will begin

by exploring some design choices and technical challenges in
Section 2. Section 3 and 4 present our solution to the multi-match
classification problem with TCAM. Finally we present simulation
results in Section 5 and conclude in Section 6.

2. Motivation and Technical Challenges
A TCAM consists of many entries, the top entry of the TCAM has
the smallest index and the bottom entry has the largest index. Each
entry has several cells which can be used to store a string.
TCAMs work as follows: given an input string, it compares the
string against all entries in its memory in parallel, and reports the
“first” entry that matches the input. The lookup time (5 ns or less)
is deterministic for any input. Unlike a binary CAM, each cell in a
TCAM can take one of three states: 0, 1, or ‘do not care’ (X). With
‘do not care’ states, a TCAM can support matching on variable
prefix CIDR IP addresses and thus can be used in high-speed IP
lookups [9, 10]. Also because it has ‘do not care’ states, one input
may match multiple TCAM entries. In this paper, we assume the
use of the widely-adopted first-match TCAM, which gives out the
lowest index match of the input string if there are multiple
matches as shown in Figure 2.

1 0 0 0

0 1 1 0

1 0 X X

Match1 0 0 X

Input

TCAM

Rule 1
Rule 2, 3

Rule 3

SRAM
Match list

1
2

3

n

1st entry

 nth entry

Figure 2: TCAM.

To solve the multi-match classification problem with TCAM,
there are two challenges to be tackled: rule ordering and negation
representation.

Challenge 1: Arrange rules in the TCAM compatible order
Rules can have different relationships such as subset, intersection,
and superset. These relationships can cause problems for the
matching results given a first-match TCAM. For example, suppose
we have the following two rules:

(a) “Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any”
(b) “Tcp Any Any → Any 139”

If we put rule (a) before rule (b) in the TACM, a packet
matching both rules will report a match of (a) and never report (b),
and vice versa. This is because rule (a) and (b) have an intersec-
tion relationship. Hence, we need to design an algorithm to add
additional rules into the rule sets and order the rules in a specific
way so that the above problem will not happen. We call such an
ordering a “TCAM compatible order”, which means: when a
packet is compared with rules according to this order, we can re-
trieve all matching results solely based on the first matched rule.
There should be no need to check the successive rules.

Challenge 2: Representing Negation with TCAM
Negation (!) operation is common in rule sets. For example, sup-
pose we wish to find packets that are not destined to TCP port 80,
we will use a rule “tcp any any → any !80”. The 16-bit binary
form of 80 is 0000 0000 0101 0000. There is no direct way to map
the negation into one TCAM entry. If we directly flip every bit
over, 1111 1111 1010 1111 stands for 65375, which is only a sub-
set of !80. To represent the whole range of !80, we need 16
TCAM entries. The basic idea is to flip one bit in one of the 16

binary positions and put ‘do not care’ to all the others. For exam-
ple, the first entry would be 1xxx xxxx xxxx xxxx. The tenth
entry would be xxxx xxxx x0xx xxxx, and so on.

In addition to port negation, some rules require subnets to be
negated. For example, $EXTERNAL_NET frequently appears in
rule sets, where $EXTERNAL_NET = !$HOME_NET. To repre-
sent this in TCAM directly, we need to flip every bit in the prefix
of $HOME_NET and put ‘do not care’ to the other positions. Be-
cause IP subnet addresses are 32 bits, this costs up to 32 TCAM
entries. Moreover, there could be several negations in one rule.
For example, the rule “tcp $EXTERNAL_NET any→ $ EXTER-
NAL_NET !80” requires up to a total of 32*32*16=16384 TCAM
entries for this single rule! This is obviously not an acceptable
approach since TCAMs have a much smaller capacity than
SRAMs (e.g., 1MB with current technology).

The next two sections describe our approach to addressing
these two technical challenges.

3. Create Rules Sets in TCAM Compatible Order
To obtain multi-match results in one lookup with a first-match
TCAM, we need to record intersections between rules. Studies in
[4] show that the number of intersections between real-world rules
is significantly smaller than the theoretical upper bound because
each field has a limited number of values (e.g., all known port
numbers) instead of unconstrained random values. So maintaining
all the intersection rules is feasible. Indices of all those rules that
used to generate the intersection are stored in a list. We call this a
“Match List” and store the list in SRAM. Given a packet, we first
perform a TCAM lookup and then use the matching index to re-
trieve all matching results with a secondary SRAM lookup as
shown in Figure 2. The extended rules plus the original rules form
an extended rule set. Throughout the remainder of this paper, a
“rule” refers to a member of the extended rule set, unless other-
wise specified as a member of the original rule set. The items in
the match list are the indices of rules in the original rule set.

As defined in Section 2, the TCAM compatible order requires
rules to be ordered so that the first match should record all the
matching results in the match list. We first enumerate the relation-
ships between any two different rules Ei and Ej, with match list Mi
and Mj. There are four cases: exclusive, subset, superset, and inter-
section, each with following corresponding requirements:

1. Exclusive (Ei∩ Ej,=φ): then i and j can have any order.
2. Subset (Ei⊆ Ej): then i<j and Mj⊆ Mi .
3. Superset (Ej⊂ Ei): then j<i and Mi⊆ Mj .

4. Intersection (Ei∩ Ej ≠ φ): then there is a rule El = (Ei∩
Ej) (l<i, l<j), and (Mi ∪Mj)⊆ Ml.

Case 1 is trivial: if Ei and Ej are disjoint, they can be in any
order since every packet matching Ei never matches Ej. For Case 2
where Ei is a subset of Ej, every packet matching Ei will match Ej
as well, so Ei should be put before Ej and match list Mi should
include Mj. In this way, packets first matching Ei will not miss
matching Ej. Similar operations are required for Case 3. Besides
these three cases, partially overlapping rules lead to Case 4. In this
case, we need a new rule El recording the intersection of these two
rules (Ei∩ Ej) placed before both Ei and Ej with both match re-
sults included in its match list (Mi ∪ Mj) ⊆ Ml). Note that the
intersection of Ei and Ej may be further divided into smaller re-
gions by other rules (e.g., Ek in Figure 3). In this case, all the
smaller regions (Ei∩ Ej and Ei∩ Ej ∩ Ek) have to be presented

before both Ei and Ej. This can actually be deduced by requirement
(4).

iE
iE

jE

kE

jE

ji EE ∩ ki EE ∩kji EEE ∩∩

Figure 3: Example of intersection of three rules.

Case 1 to 4 covers all the possible relationships between any
two rules. By applying the corresponding operations talked above,
we can meet the requirements and get a TCAM compatible order.
__
Extend_rule_set(R){

E=φ ;
For all the rule Ri in R

 E=Insert(Ri, E);
return E;

}
Insert(x, E){
 for all the rule Ei in E {
 Switch the relationship between Ei and x:
 Case exclusive:
 continue;
 Case subset:
 Mi = Mx∪ Mi;
 continue;
 Case superset:
 Mx = Mx∪ Mi;
 add x before Ei ;
 return E;
 Case intersection:
 If (Ei∩ x ∉E and Mx⊄ Mi)

 add t = Ei∩ x before Ei ;
 Mt = Mx∪ Mi
 }
 add x at the end of E and return E;
}
__

Figure 4: Code for generating TCAM compatible order.

Figure 4 is the pseudo-code for creating a TCAM compatible
order. The algorithm takes the original rule set R={R1, R2, …., Rn}
as the input. Each rule Ri is associated with a match list, which is
index of itself ({i}). The algorithm will output an extended rule set
E in the TCAM compatible order. The algorithm inserts one rule
at a time into the extended rule set E, which is initially empty (the
empty set obviously follows the requirements of TCAM compati-
ble order). Next, we will show that after each insertion, E still
meets the requirements. Insert(x, E) is the routine to insert rule x
into E. It scans every rule Ei in E and checks the relationship be-
tween Ei and x. If they are exclusive, then we can bypass Ei. If Ei
is a subset of x, we just add match list Mx to Mi and proceed to the
next rule. If Ei is a superset of x, we should add x before Ei accord-
ing to requirement (3) and ignore all the rules after Ei (see the
proof in the appendix). Otherwise, if they intersect, then according
to requirement (4), a new rule Ei∩ x needs to be inserted before
Ei if it is not presented before. The match list for the new rule is
Mx∪ Mi. As you can see, we strictly follow the four requirements

when adding every new rule, so the generated extended rule set E
is in the TCAM compatible order. Due to space limitations, we do
not go into the details of the deletion algorithm.

To better illustrate the algorithm, let’s look at the following
example in Table 1 which contains three rules. To generate ex-
tended rule set E, first we insert rule 1. Rule 2 does not intersect
with rule 1 so it can be added directly. Now, we have rule 1 fol-
lowed by rule 2. When inserting rule 3, we find that it intersects
with both rule 1 and rule 2, so we add two intersection rules with
match list {1, 3} and {2, 3} and put rule 3 at the bottom of the
TCAM. The final extended rule set E is presented in Table 2.

 Original rule sets
1 Tcp $SQL_SERVER 1433 → $EXTERNAL_NET any
2 Tcp $EXTERNAL_NET 119 → $HOME_NET Any
3 Tcp Any Any → Any 139

Table 1: Example of original rule set with 3 rules.

Extended Rules Match
List

Tcp $SQL_SERVER 1443 →$EXTERNAL_NET 139 1,3
Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any 1
Tcp $EXTERNAL_NET 119 →$HOME_NET 139 2,3
Tcp $EXTERNAL_NET 119 → $HOME_NET any 2
Tcp any any → any 139 3

Table 2: Extended rule set in the TCAM compatible order.

4. Negation Removing
The scheme presented in Section 3 can be used to generate a set of
rules in the TCAM compatible order. In this section, we describe
how to insert them into TCAM. As explained before, each cell in
the TCAM can take one of three states: 0, 1 or ‘do not care’.
Hence, each rule needs to be represented by these three states.

Usually, a rule contains IP addresses, port information, proto-
col type, etc. IP addresses in the CIDR form can be represented in
the TCAM using the ‘do not care’ state. However, the port number
may be selected from an arbitrary range. Liu[11] has proposed a
scheme to efficiently solve port range problem, so we will not
discuss this further in this paper. A more complicated problem for
the TCAM is that some IP and port information is in a negation
form. As explained in Section 2, each negation consumes many
TCAM entries, so in this section, our goal is to remove negation
from the rule set to save TCAM space.

C

A

D

B

Home Net

Home Net External Net

External Net

Rule 3

Rule 2, 3

Rule 1, 3

Rule 3

Source IP

Destination IP

Figure 5: Source and destination IP addresses space.
Before we present our scheme, let us first look at the combi-

nations of source and destination IP address spaces as shown in
Figure 5. Use the rule set in Table 1 as an example, rule 3 applies
to all 4 regions since it is “any” source to “any” destination; rule 1
applies to region D because we assume $SQL_SERVER is in side
$HOME_NET; and rule 2 applies to region A. The regions that

contain negation ($EXTERNAL_NET) are region A ($EXTER-
NAL_NET to $HOME_NET), B ($HOME_NET to $EXTER-
NAL_NET), and D ($EXTERNAL_NET to $EXTERNAL_NET).

Consider region A as an example: the rules in this region are
in the form of “* $EXTERNAL_NET * → $HOME_NET+ *”.
Note that * means it could be any thing (e.g. “tcp” or “any” or a
specific value). $HOME_NET+ stands for $HOME_NET and any
subset of it such as $SQL_SERVER. If we can extend rules in
region A to region A and C, we can replace $EXTERNAL_NET
with keyword “any” and now rules are in the format of “* any *
→ $HOME_NET+ *”. However, after extending the region, we
change the semantics of the rule and this may affect packets in
region C. In another word, packet “* $HOME_NET * →
$HOME_NET+ *” will report a match of this rule as well.

This problem, however, is solvable because TCAM only re-
ports the first matching result. With this property, we can first
extract all the rules applying to region C and put those rules at the
top of TCAM. Next, we add a separator rule between region C and
region A: “any $HOME_NET any → $HOME_NET any” with an
empty action list. In this way, all the packets in region C will be
matched first and thus ignore all the rules afterwards. With this
separator rule, we can now extend all the rules in region A to re-
gion A and C. Similarly, rules in region D can be extended to re-
gion C and D, rules in region B can be extended to region A, B, C,
D. Therefore, we will put all the rules in the following order:

• Rules in region C: “* $HOME_NET+ * →$HOME_NET+ *”
• Separator rule 1: “any $HOME_NET any →$HOME_NET any”
• Rules in region D, specified in the form of region C and D:

“* $HOME_NET+ * →any *”
• Rules in region A, specified in the form of region A and C:

“* any * →$HOME_NET+ *”
• Separator rule 2: “any $HOME_NET any → any any”
• Separator rule 3: “any any any →$HOME_NET any”
• Rules applying to region B, specified in the form of region A, B, C

and D: “* any * →any *”

Putting extended rule sets in the above order can be simply
achieved by first adding all three separator rules to the beginning
of the original rule set, then following the algorithm in section 2.
If a rule applies to regions A, it will automatically intersect with
the separator 1 and generate a rule in region C. If a rule applies
region B, then it will intersect with all three separators and create
three intersection rules. After that, we can replace all the $EX-
TERNAL_NET with keyword “any”.

TCAM
Index

TCAM entries Match
list

1 tcp $HOME_NET any →$HOME_NET 139 3
2 any $HOME_NET any →$HOME_NET any
3 tcp $SQL_SERVER 1433 → any 139 3, 1
4 tcp $SQL_SERVER 1433 → any any 1
5 tcp any 119 → $HOME_NET 139 2,3
6 tcp any 119 →$HOME_NET any 2
7 tcp any any →any 139 3

Table 3: Extended rule set in a TCAM with no negation.

Table 3 shows the result of mapping the rule set of Table 1
into TACM. The first rule in region C is extracted from rule 3 that
applies to all four regions. The second rule is a separator rule.
With these two rules, we can replace the $EXTERNAL_NET in

rules 3-6 with keyword “any”. At the end, there is rule 7 which
applies to all the regions. Separator rules 2 and 3 are omitted be-
cause no rule is in the form of $EXTERNAL_NET to $EXTER-
NAL_NET in the original rule set. In this example, by adding only
two rules, we can completely remove the $EXTERNAL_NET.
Compared to the solution in table 2 which needs up to 4*32 +1 =
129 TCAM entries, it is 94.5% of space saving!

The above example is a special case because there is only one
type of negation ($EXTERNAL_NET) in one field. In a more
general case, there can be more than one negation in each field.
For example, there could be both !80 and !90 or !subnet1 and
!subnet2 in the same field. Our scheme can be easily extended. If
there are k unique negations in one field and their non-negation
forms do not intersect (e.g., 80 and 90), then we need k separators
of the non-negation form (80, 90) and they can be in any order. If
they intersect, then we need up to 2k -1 separation rules for this
field. For instance, suppose there are !subnet1 and !subnet2, there
should be three separation rules applying to subnet1 ∩ subnet2,
subnet2, and subnet1. k is usually a very small number because it
is limited by a number of peered subnet. In general, if each field i
needs ki separators, then at most of ∏ + 1-1))(k(i separator rules

should be added. In our previous example of removing $EXTER-
NAL_NET from source and destination IP addresses, k1= k1=1, so
we need a total of 2*2-1=3 separator rules.

5. Simulation results
To test the effectiveness of our algorithm, we use the SNORT [2]
rule set. The SNORT rule set has undergone significant changes
since 1999. We tested all the versions after 2.0 that are publicly
available. Although each rule set has around 1700-2000 rules,
many of the rules share a common rule header. As illustrated in
Table 4, unique rule headers in each version are relatively stable.
Note that we omitted the versions that share the same rule headers
with the previous version.

Our task is to put these rule headers into TCAM as classifica-
tion rules, and store the corresponding matching rule indices in the
match list. Hence, given an incoming packet, with one TCAM
lookup and another SRAM lookup, we can implement multi-
match packet classification.

The second column in Table 5 records the size of extended
rule set in the TCAM compatible order. It is roughly 10 times the
size of the original rule set, which is well below the theoretical
upper bound. This agrees with the findings in [4, 7, 8].

Version Release
Date

Rule Set
Size

Rules
added

Rules
deleted

2.0.0 4/14/2003 240 - -
2.0.1 7/22/2003 255 21 6
2.1.0 12/18/2003 257 3 1
2.1.1 2/25/2004 263 6 0

Table 4: SNORT rule headers statistics.

Version # of rules
in extended set

Single
negation

Double
negations

Triple
negations

2.0.0 3,693 62.334% 0.975% 0
2.0.1 4,009 62.484% 1.422% 0.025%
2.1.0 4,015 62.540% 1.420% 0.025%
2.1.1 4,330 62.332% 1.363% 0.023%

Table 5: Statistics of extended rules set in TCAM compatible order.

With Negation Negation Removed Snort
version Extended

rule set
size

TCAM
entries
needed

 Extended
rule set size

TCAM
entries
needed

TCAM
space
saved

2.0.0 3,693 120,409 4,101 7,853 93.4%
2.0.1 4,009 145,208 4,411 8,124 94.4%
2.1.0 4,015 145,352 4,420 8,133 94.4%
2.1.1 4,330 151,923 4,797 8,649 94.3%

Table 6: Performance of negation removing scheme.

The number of negations in the extended rule set is signifi-
cant. As shown in Table 5, on average 62.4% of the rules have one
negation, 1.295% of the rules have two negations and there are
even rules with three negations. In our simulation, we assume
home network is a class C address that has a 24 bit prefix, so each
$EXTERNAL_NET needs 24 TCAM entries. Negation of port,
e.g., !80, !21:23 consumes 16 TCAM entries. Under this setting, a
single negation takes up to 24 TCAM entries; a double negation
consumes up to 24*24=576 TCAM entries; and a triple negation
requires up to 24*24*16=9216 TCAM entries. Hence, if we di-
rectly put all the rules with negation into the TCAM, it takes up to
151,923 TCAM entries as shown in the third column of Table 6.

Our negation removing scheme in Section 3 can significantly
save TCAM space. For the SNORT rule header set, we added
2*3*2*2-1 = 23 separation rules in front of the original rule set
because there are four types of negations: $EXTERNAL_NET at
source IP, $EXTERNAL_NET at destination IP, !21:23 and !80 at
source port, and !80 at destination port. It only adds about 10%
extra rules in the extended rule set (4th column of Table 6). How-
ever, with this 10% more rules, we can reduce the number of
TCAM entries required by over 93%.

Note that the total number of required TCAM entries is larger
than the extended rule set size. This is because some rules contain
port ranges and consume extra TCAM entries. The range mapping
approach in [11] is not used because this approach requires two
additional memory lookups for key translations, and classification
speed is our main concern. If a lower speed is acceptable, then we
can also incorporate the range mapping technique and the total
TCAM entries needed is just the size of extended rule set after
removing negations.

Each rule is 104 bits (8 bits protocol id, 2 ports with 16 bits
each, 2 IP addresses with 32 bits each), which can be rounded up
to use a 128 bits entry TCAM. The total TCAM space needed for
SNORT rule header set is 128*8649=135KB.

To study the effect of negation, we randomly vary the nega-
tion percentages in the original rule set. In the SNORT original
rule header sets, 89.7% of rules contain single negation and 1.1%
of the rules contain double negation. So, we first focus on the
effect of single negation. Figure 6 shows the TCAM space needed
both with and without our negation removing scheme. When the
percentage of negation is very low, the two schemes perform
closely. If we study closely, when the negation percentage is very
small (<2%), putting negation directly is better than our scheme
since we introduce extra separation rules that may intersect with
other rules. However, as the percentage of negation is higher, the
TCAM space needed for “with negation” case grows very fast. In
contrast, the curve of our scheme remains flat and thus can save a
huge number of TCAM space. For example, when 98% of the
rules involve negation, our scheme can save 95.2% of the TCAM

space compared to the “with negation” case. This is only for the
single negation case. Due to space limitations, we do not present
result for double negation cases. However, we can imagine that
the saving would be even higher since each double negation rule
requires more TCAM entries.

Performance of Negation Removing Scheme

0

20000

40000

60000

80000

100000

0
0.0

8
0.16 0.24

0.3
2 0.4

0.48
0.5

6
0.64 0.7

2 0.8 0.88 0.9
6

% of single Negation

TC
AM

 E
nt

ri
es

 n
ee

de
d

With Negation
Negation Removed

Figure 6: Negation removing scheme.

6. Conclusion
In this paper, we use a TCAM-based solution to solve the multi-
match classification problem. The solution reports all the matching
results with a single TCAM lookup and a SRAM lookup. In addi-
tion, we propose a scheme to remove negation in the rule sets
which saves 93% to 95% of the TCAM space over the straight-
forward implementation. From our simulation results, the SNORT
rule header set can easily fit into a small TCAM of size 135KB
and is able to retrieve all matching results within two memory
accesses. We believe a TCAM-based approach is viable, as
TCAM is now becoming a common extension to network proces-
sors. Although TCAM is more expensive and has higher power
consumption than standard memory such as DRAM and SRAM,
the capability and speed it offer still make it an attractive approach
for high speed networks.

References

[1] SNORT network intrusion detection system, www.snort.org,
[2] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active
Network Architecture,” Computer Communication Review, Vol.
26, No. 2, April 1996
[3] G. Porter, M. Tsai, L. Yin, and R. Katz, “The OASIS Group at
U.C. Berkeley: Research Summary and Future Directions,”
http://oasis.cs.berkeley.edu/pubs/oasis_wp.doc
[4] M. E. Kounavis, etc., “Directions in Packet Classification for
Network Processors,” NP2 Workshop, Feburary 2003
[5] M. H. Overmars and A. F. Stappen, “Range searching and
point location among fat objects,” European Symposium on Algo-
rithms, 1994
[6] P. Gupta, N. McKeown “Packet classification using hierarchi-
cal intelligent cuttings,” in Hot Interconnects, August 1999
[7] P. Gupta, N. McKeown “Packet classification on multiple
fields,” in SIGCOMM, August 1999.
[8] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
Classification Using Multidimensional Cutting,” in SIGCOMM,
August 2003
[9] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” ICNP, November 2003
[10] P. Gupta, and N. McKeown, “Algorithms for Packet Classifi-
cation,” IEEE Network, March 2001
[11] H. Liu, “Reducing Routing Table Size Using Ternary-CAM”,
Hot Interconnects, August 2001

Appendix
Claim in section 3: If Ei is the first superset of x (x⊂ Ei) in E, we
can add x before Ei according to requirement (3) and bypass all the
rules after Ei.

Proof: For any rule Ej after Ei, there could be four cases. We
will study it one by one and show why we can bypass all of them.

First, we can bypass any rule Ej that is disjoint with x, accord-
ing to requirement (1).

Second, it is impossible that Ej ⊂ x. If so, Ej ⊂ x⊂ Ei,
which contradicts with requirement (2).

Third, If x ⊂ Ej, Ej must also be a superset of Ei. Otherwise,
the intersection of Ej and Ei must be a superset of x as well and it
must be presented before Ei , according to requirement (4). This
contradicts with the assumption that Ei is the first superset of x in
E. Therefore, Ei ⊂ Ej and we have Mj ⊂ Mi according to re-
quirement (2). In this case, we don’t need to process Ej since we
can extract all the information from Mi.

Fourth case, if Ej intersects with x and suppose z = Ej∩ x,
then z must have appeared before Ei. This is because Ej must inter-
sect with Ei as well since Ei is a superset of x. Let Ek = Ei∩ Ej,
according to requirement (4), k < i. In addition, z = Ej ∩ x=
Ej∩ x ∩ Ei = Ek ∩ x, because x⊂ Ei. Therefore, we must have
generated z when processing Ek which is before Ei. This meets the
requirement (4), so we can bypass Ej.

Hence, all the rules after Ei are either exclusive to x, or their
intersections have already been included, so we can skip all those
rules.

