
An Overlay MAC Layer for 802.11 Networks

Ananth Rao , Ion Stoica
fananthar,istoicag@cs.berkeley.edu

Report No. UCB/CSD-4-1317

April 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Abstract

The widespread availability of the 802.11-based hardware
has made it the premier choice of both researchers and prac-
titioners for developing new wireless networks and applica-
tions. However, the ever increasing set of demands posed
by these applications are stretching the 802.11 MAC proto-
col beyond its intended capabilities. For example, 802.11
provides no control over allocation of resources, and the de-
fault allocation policy is ill-suited for heterogeneous envi-
ronments and multi-hop networks. In this paper, we take
a first step towards addressing these problems by present-
ing the design and the implementation of anoverlay MAC
layer (OML), that works on top of the 802.11 MAC layer.
OML uses loosely-synchronized clocks to divide the time
in equal size slots, and employs a distributed algorithm to
allocate these slots among competing nodes. We have im-
plemented OML in both a simulator and a wireless test-bed
using the Click modular router. Our evaluation shows that
OML can provide better flexibility as well as improve the
fairness, throughput and predictability of 802.11 networks.

1 Introduction

In recent years, the widespread popularity of the 802.11 pro-
tocol has made it the de facto choice for developing and de-
ploying a multitude of wireless networks and applications.
Apart from the traditional model of a last-hop wireless link
to an access point, 802.11 networks are used to setup wire-
less infrastructures in corporate networks, long-haul links
using directional antennae in rural areas [10], and more re-
cently multi-hop networks for broadband Internet access,
e.g.,rooftop or mesh networking.

Despite providing the initial ease in deployment for many
of these wireless technologies, the 802.11 protocol does pose
serious limitations in addressing the different demands of
these emerging applications. The original design of 802.11
MAC protocol was carefully engineered for the wireless
LAN environment [22] and many of the underlying design
assumptions may not hold in the new operating environ-
ments. The primary drawback in the 802.11 protocol is that
it does not provide any support for application-specific con-
trol over resource allocation. For example, the traditional
802.11 resource allocation policy is known to be unfair in
a multi-hop wireless network, and, in the worst case, can
potentially starve certain nodes in the system without pro-
viding any throughput. Additionally, Bharghavanet al. [11]
have shown the existence of a trade-off between through-
put and fairness in resource allocation in multi-hop wire-
less networks which is dependent on the underlying topol-
ogy connecting the nodes. The simple access control model
of 802.11 does not incorporate topology based constraints to
achieve this trade-off.

While several approaches have been discussed extensively
in literature to address these problems, almost all of these re-
quire modifications to the 802.11 MAC layer. While some
proposals [9, 11] provide the design of new MAC proto-
cols with enough parameters for different applications, oth-
ers have optimized the MAC protocol for specific targeted
applications [21]. Over the past few years, it has become
abundantly clear that the process of obtaining the approval
of the IEEE and FCC organizations for any modifications to
802.11 is a laborious and notoriously difficult process. In the
process, none of these proposals have moved towards univer-
sal deployability.

To address the dichotomy between the limitations of the
802.11 MAC protocol and the deployability problems of new
MAC protocols, we propose the design of an Overlay MAC
layer (OML) which does not any require changes to the
802.11 MAC hardware or the standard. The main idea of our
solution is to perform the access control and scheduling at a
layer above the MAC layer. Since our solution implements
MAC functionality in software on top of the existing 802.11
MAC, we call it Overlay MAC Layer (OML). OML allows
users to implement application-specific resource allocation,
in the same way overlay networks allow users to implement
application specific routing. To achieve this goal, OML uses
loosely synchronized clocks to divide the time in equal size
slots, and then uses a distributed algorithm to allocate these
slots across the competing nodes. The slot allocation algo-
rithm, called Weighted Slot Allocation (WSA), implements
the weighted fair queueing policy [16], where each of the
competing nodes that has traffic to send receives a number
of slots proportional to its weight.

The contribution of this paper is two-fold. First it presents
the design and the implementation of a MAC layer above
802.11, and it demonstrates by simulations and experiments
that such an overlay layer can offer both more control, and
better performance (by minimizing losses due to contention)
than the ubiquitous 802.11. Second, it extends the fair al-
location algorithm proposed in [9] by adding support for
arbitrary weights to nodes and support for single channel
multi-hop networks. Our solution requires no changes to the
802.11 layer, and it is compatible with native 802.11 clients.

The rest of the paper is organized as follows. In Section 2,
we survey some related work in this area. Section 3 moti-
vates the need for an overlay MAC protocol based on mea-
surements performed in a test-bed. In Section 4 we describe
the challenges involved and our design on the overlay MAC.
Section 5 describes our test-bed and Section 5 describes how
we implement OML in this test-bed. Sections 7 and 8 present
results from simulations and the testbed respectively. Fi-
nally, we present future work and open issues in Section 9
and conclude our paper in Section 10.

1

2 Related Work

Our design of OML is motivated by some recent work which
exposes problems with the 802.11 MAC in certain applica-
tion scenarios. In [18], the authors describe how the pres-
ence of heterogeneous data rate senders can affect the system
throughput in 802.11. They do not propose a solution to mit-
igate this problem. OML provides a solution for this problem
and at the same time also addresses other issues like ad-hoc
routing etc. The Roofnet and Grid projects at MIT[3, 2] have
built multihop networks using 802.11 in ad-hoc mode. The
primary focus of their work is on network layer issues; if
fact we use the routing software developed by these projects
in our testbed. Their results also indicate several problems
like low throughput and very unpredictable performance of
802.11 at the MAC layer. We experience similar problems in
our testbed also, and we recognize that many of these prob-
lems are because of interference from other senders and cap-
ture effects of the radio hardware. OML eliminates these
problems by scheduling transmissions. On the other hand,
[15] tries to improve throughput by adaptively picking bet-
ter routes. Our work is complementary to improvements in
the routing protocol. Extremely Opportunistic Routing[12]
(ExOR) proposes a modification to the 802.11 MAC so that
any eligible node that receives a packet clearly can send an
ACK and forward the packet. Since OML schedules trans-
missions based on the sender only, and not on the destination
of a packet, OML can be used on top of ExOR also.

A plethora of MAC protocols have been proposed to im-
prove the predictability and the resource management capa-
bilities in wireless networks. These solutions either use so-
phisticated back-off protocols [11], or slot allocation algo-
rithms based on reservations[14, 25, 8, 9] to implement allo-
cation policies such as WFQ[16]. Some MAC protocols use
a hybrid of both approaches[14, 25]. Yet another approach
is to use simple extensions to 802.11,e.g.,Sadegiet al. pro-
pose Opportunistic Rate Control (OAR) in [27] to address
the problem of heterogeneous data rates. All these proto-
cols work at the MAC layer and assume full control over the
hardware and the physical layer. In contrast we assume that
OML, can use only the limited interface exposed by most
802.11 cards to control packet transmission.

WSA uses pseudo-random functions in a similar way
as the Neighborhood-aware Contention Resolution (NCR)
proposed by Bao and Garcia-Luna-Aceves in [9] and [8].
Weighted Slot Allocation (WSA) algorithm builds on NCR,
and extends it in two aspects. First, unlike OML, NCR as-
sumes that the interference graph in a multi-hop network
consists of isolated, easily identifiable cliques,i.e., if node
A interferes with B and B with C, then A interferes with C.
Second, while NCR usespseudo-identitiesto support integer
weights, WSA can support arbitrary weights.

Several papers[26, 29, 17] provide sophisticated and very
accurate mechanisms for clock synchronization in a multi-

hop network. In the design of OML, we assume clock syn-
chronization as an available primitive, and could possibly use
any one of these algorithms.

Our solution is similar in spirit to the overlay network
solutions that aim to improve routing resilience and perfor-
mance in IP networks[6, 30, 13, 7]. Overlay networks try to
overcome the barrier of modifying the network layer (i.e.,IP
layer) by employing a layer on top of the IP to implement the
desired routing functionality. Similarly, OML runs on top of
the existing 802.11 MAC layer, and its goal is to enhance
the MAC functionality without changing the existing MAC
protocols.

3 Limitations of the 802.11 MAC

In this section, we will illustrate three specific limitations of
the 802.11 MAC protocol using a wireless network testbed
comprising six nodes. These limitations are:

1. In a network comprising of nodes with heterogeneous
transmission rates, the 802.11 standard provides a very
low system throughput since it attempts to be fair to
every competing node.

2. 802.11 can sometimes cause significant unfairness and
unpredictable performance when the interference re-
gions of different senders overlap at a receiver.

3. 802.11 MAC provides sub-optimal resource allocation
in multi-hop wireless networks.

3.1 Limitation 1: Heterogeneous transmission
rates

The 802.11 standard aims to allocate an equal number of
transmission opportunitiesto every competing node. How-
ever, as shown in previous work [18], this fairness criterion
can lead to a low throughput in a network in which nodes
transmit at widely different sending rates.

We illustrate this behavior using a simple experiment com-
prising of two heterogeneous senders connected to a single
access point. We emulate heterogeneous senders by fixing
the data-rate from Node 1 to the access point to54 Mbps
and varying the data-rate of Node 2 between6 Mbps and54
Mbps. Figure 1 shows the average throughputs of two TCP
flows originated at the two nodes. This experiment shows
that while the behavior is fair as nodes see equal performance
irrespective of their sending rate, it hurts the overall system
throughput. In particular, as the sending rate of Node 2 de-
creases from54Mbps to6Mbps, the system total throughput
decreases from24 Mbps to7:2 Mbps. In addition, this be-
havior leads to poor predictability. For example, if Node 1 is
the only active one, it will have a throughput of roughly24
Mbps. However, when Node 2 starts transmitting at6 Mbps,
the throughput observed by Node 1 drops suddenly to3:6
Mbps.

2

Figure 1: 802.11 throughput in the presence of heteroge-
neous data rate senders

Very
Good

Very
Good

Very
Good

Very
Good

R
ec

ei
ve

r

Sender

1

2

3

5

4

1 2 3 4 5

Fair

Fair

Fair

Good

Figure 2: Received signal strength (RSS) in a chain config-
uration of our test-bed. The quality of the signal strength,
namely, “Very Good or Fair” is shown as reported by the
device driver of the network card.

3.2 Limitation 2: Interference and Signal
Strength

An assumption often used in modeling and simulating wire-
less networks is that the interference is binary,i.e.,two nodes
either interfere or don’t interfere. However, this assumption
is not necessary true in practice. The failure of this assump-
tion can lead to significant unfairness, and unpredictable per-
formance.

To illustrate this, we consider a simple testbed consisting
of five nodes arranged in a chain, with nodes being num-
bered from1 to 5. The network card of each node is set to
operate at6 Mbps. Figure 2 shows the quality of the link in
each direction for every link in the chain measured as a func-
tion of the relative signal strength (RSS). Even though some
of the links are asymmetric and the signal strengths varies

significantly, measurements results show that, in the absence
of any other traffic, each link can support a TCP flow with
throughput of about4:6 Mbps in each direction.

Next, consider two long lived TCP flows across a single
hop along two different non-overlapping links in our chain
topology. Table 3.2 reports the measured throughputs of each
flow in various configurations. Under the simplistic assump-
tions of binary-mode interference and a perfect MAC proto-
col, we would expect each flow to receive around2:3 Mbps
if they interfere, and4:6 Mbps if they don’t. Instead, we find
that the throughput varies between0:01 Mbps and4:6 Mbps.

By inspecting the measured data at the nodes (not shown
here), we inferred that the interference observed by the two
flows is not symmetric. For example, when we initiate two
TCP flows along the wireless links3� > 2 and5� > 4,
we notice one of the TCP flows to receive a meager through-
put of 0:01 Mbps (row4 in Table 3.2). This is illustrated by
the fact that the RSS from node3 at node4 is much weaker
than the RSS at node4 from node5. Hence the throughput
of a flow from 5� > 4 is limited by the weaker interfer-
ence caused by Node3’s transmission to2. Consequently,
much alike the case of heterogeneous transmission rates, the
flow from 5� > 4 receives a very low throughput (Node4
attempts to be fair in its allocation of transmission opportuni-
ties to3 and5 irrespective of the fact that3 is communicating
with 2). Additionally, we observe that the effect of one flow
on another, is unpredictable. Consider the scenario where
initially only one flow is active in the system and a second
flow starts at a later time. The first flow can potentially ex-
perience a sudden decrease in throughput when the second
flow starts. This decrease in throughput cannot always be
predicted and can be highly variable depending on the signal
interference that one flow induces on the other.

3.3 Limitation 3: Fairness in Multi-hop Net-
works

In a multihop network, the fairness policy implemented by
802.11 can lead to decreased system throughput and in some
cases can completely shut-down certain flows. Nodes in a
multi-hop network forward packets on behalf of other nodes
in addition to generating their own traffic. Hence, the trans-
mission opportunities of a node are divided proportionally
between these two types of traffic. The fairness policy of
802.11 does not account for the additional traffic at a node
and hence can generate a suboptimal allocation of resources.

Consider the example in Figure 3 where nodesN1,N4,N5

andN6 each generate a single flow to nodeN2. Assume the
interference range is twice the transmission range. ThenN2

cannot receive when nodesN4, N5 or N6 are transmitting,
andN3 cannot receive whenN1 is transmitting. According
to the 802.11 fairness policy,N1 andN3 each get1=3 of
the bandwidth (ofN2), while the rest of the nodes share the
rest. As a result,N4, N5, andN6 get only1=9 of the entire

3

First flow Second flow
Sender Receiver Throughput (Mbps) Sender Receiver Throughput (Mbps)

1 2 3.7 3 4 4.64
1 2 4.4 4 3 4.62
2 1 2.81 3 4 4.22
3 2 4.57 5 4 0.01
2 1 4.58 5 4 4.2
3 2 0.64 4 3 4.63

Table 1: Throughput of two simultaneous flows in the test-bed

N1

N2

N3

N4 N5 N6

Figure 3: Example of interaction of multiple flows in multi-
hop networks

capacity. It is worth noting that a better solution, would be
to allocate3=7 of the capacity to nodeN3, and1=7 of the
capacity to each of the other senders. This way, the trans-
mission rates of nodesN4, N5, andN6 will increase from
1=9 to 1=7 of the capacity.

While this is an analytical example, we will show via both
simulations and experiments that in a multi hop network,
802.11 can indeed lead to significant un-fairness. Actually,
in some cases, the un-fairness is so pronounced that it causes
flows to be shut-off.

4 Design

In this Section, we present our solution, an overlay MAC
layer (OML), that alleviates the problems described in Sec-
tion 3. We first state our assumptions.

4.1 Assumptions

The primitives available for the design of OML are deter-
mined by the interface exposed by the device driver. For the
sake of generality, in this paper we make minimal assump-
tions about this interface. In particular, we assume that

� The card can send and receive both unicast and broad-
cast packets.

� It is possible to set the wireless interface in promiscu-
ous mode to listen to all transmissions from its 1-hop
neighbors.

� It is possible to disable the RTS-CTS handshake by cor-
respondingly setting the RTS threshold.

� It is possible to limit the number of packets in the card’s
queue to a few packets. This is critical for enabling
OML to control packet scheduling because once the
packets are in the card’s queue, OML has little control
over when these packets are sent out.

We note that these assumptions already hold or can be en-
forced, eventually by modifying the device drivers, in most
802.11 cards.

While carrier-sensing is a very important primitive for the
design of a MAC protocol, we do not assume that OML can
use this primitive. This assumption reflects the fact that most
802.11 cards do not export the current status of the channel
or the network allocation vector (NAV)1 to the higher layers.

Since 802.11 uses the unlicensed ISM bands for commu-
nication, we cannot assume that all interfering stations will
implement an overlay MAC. Thus, a station using OML
should coexist with an unmodified 802.11 station,i.e., an
OML station should neither hurt the performance of another
802.11 station, nor suffer significantly in the presence of
other 802.11 stations.

4.2 Solution

As noted in the previous section, the only control that OML
can exercise over packet scheduling iswhento send a packet
to the network card; once the packet is enqueued at the net-
work card, OML has no control on when the packet is ac-
tually transmitted. Thus, ideally, we would like that when
OML issues a send request to the network card, the network
card transmits the packet immediately (or at least with a pre-
dictable delay), and the packet to be delivered to the next hop
or destination with high probability.

1NAV is maintained internally in the hardware to keep track of RTS,
CTS and reservations in the packet header

4

To implement this idealized scenario, we propose a solu-
tion that aims to (a) limit the number of packets queued in
the network card, and (b) eliminate the node interference,
which is the major cause of packet loss and unpredictability
in wireless networks. Goal (a) can be simply achieved by
reducing the buffer size of the network card.

To achieve goal (b), we divide the time into slots of equal
sizel, and allocate the slots to nodes according to a weighted
fair queueing (WFQ) policy [16]. We call this allocation
algorithm the Weighted Slot Allocation (WSA) algorithm.
WSA assigns to each node a weight, and in every interfer-
ence region allocates slots in proportion to nodes’ weights.
Thus, a node with weight two will get twice as many slots
as a node with weight one in the same interference region.
Only nodes that have packets to send contend for time slots,
and a node can transmit only during its time slots. Since
a time slot is allocated to no more than one node in an in-
terference region, no two sending nodes will interfere with
each other. This can substantially increase the predictability
of packet transmission, and reduce packet loss at the MAC
layer. However, in practice, it is hard to totally eliminate the
interference. In an open environment there might be other
devices out of our control (e.g.,phones, microwave ovens),
as well as other nodes that run the baseline 802.11 protocol
which can interfere with our network. Furthermore, as we
will see, accurately estimating the interference region is very
challenging.

The reason we base WSA on the WFQ policy is because
WFQ is highly flexible, and it avoids starvation. WFQ
has emerged as the policy of choice for providing QoS and
resource management in both network and processor sys-
tems [16, 23, 31]. Note however that WSA is only one
allocation mechanism that can be implemented in OML;
one could easily implement other allocation mechanisms, if
needed.

There are three questions we need to answer when imple-
menting WSA: (a) what is the length of a time-slot,l, (b)
how are the starting times of the slots synchronized, and (c)
how exactly are the times slots allocated among competing
clients. We answer these questions in the next three sections.

4.2.1 Slot size

The slot sizel is dictated by the following considerations:
1. l has to be considerably larger than the clock synchro-

nization error.
2. l should be larger than the transmission time,i.e., the

interval between the time the first bit of the packet is
sent to the hardware, and the time the last bit of the
packets is transmitted in the air. This interval includes
the queueing time in the network card.

3. Subject to the above two constraints,l should be as
small as possible. This will decrease the time a packet
has to wait in the OML layer before being transmitted

and will decrease the burstiness of traffic sent by a node.
In our evaluation, we chosel to be the time it takes

to transmit about 10 packets of maximum size (i.e., 1500
bytes). We found this value ofl to work well in both simula-
tions and in our implementation.

4.2.2 Clock synchronization

Several very accurate and sophisticated algorithms have
been proposed for clock synchronization in multi-hop
networks[26, 29, 17]. We believe it is possible to adapt any
of these algorithms to OML. However, clock synchroniza-
tion is not the focus of our work. For evaluation of OML,
we have implemented a very simple algorithm that provides
adequate performance within the context of our experiments
on the simulator and the test-bed.

We attempt to synchronize all the clocks in the network to
the clock at a pre-designatedleader node. We estimate the
one-way latency of packet transmission based on the data-
rate, packet size and other fixed parameters of the 802.11
protocol. We then use this estimated latency and a timestamp
in the header of the packet to compute the clock skew at the
receiver.

4.2.3 Weighted Slot Allocation (WSA)

In this section, we describe the implementation of WSA. The
challenge is to design a slot allocation mechanism that (a) is
fully decentralized, (b) has low control overhead, (c) and is
robust in the presence of control message losses.

For ease of explanation, we divide the presentation of our
solution in three stages. In the first two stages, we assume
that every node in the network can receive transmissions
from every other node. This also implies that only one sender
can be active in the network at any given time. Furthermore,
in the first stage, we assume that all nodes have unit weight.
In the final stage, we relax both these assumptions.

Step 1 - Network of diameter one with unit weights:One
solution to achieve fair allocation is to use pseudo-random
hash functions as proposed in [9]. Each node computes a
random number at the beginning of each time slot, and the
node with the highest number wins the slot. Since the ran-
dom numbers are based on the use of pseudo-random hash
function, a node can easily compute the numbers of the other
nodes without any explicit communication from those nodes.

Let H be a pseudo-random function that takes values in
the interval(0; 1]. Considerc nodes,n1, n2, : : :, nc, that
compete for time slott. Then each node computes the value
Hi = H(ni; t) for 1 � i � c, whereH is a pseudo-random
function, andt is the index of the slot in contention. A node
nr wins slott if and only if

arg max
1�i�c

Hi = r: (1)

5

SinceHi is a pseudo-random random number, it is equally
likely that any node will win the slot. This results in a fair
allocation of the time slots among the competing nodes.

A nodens will incorrectly decide that it can transmit if and
only if it is unaware of another nodeni such thatHi > Hs.
While the probability that this can happen cannot be ne-
glected (e.g.,when a nodeni joins the network), having more
than one winner occasionally is acceptable as the underlying
MAC layer will resolve the contention using CSMA/CD. As
long as such events are rare they will not significantly impact
the long term allocation.

Step 2 - Network of diameter one with arbitrary weights:
Letwi denote an arbitrary weight associated to nodei. Then
we defineHi = H(ni; t)

1=wi , and again allocate slott to
noder with the highest numberHr. The next result shows
that this allocation will indeed lead to a weighted fair alloca-
tion.

Theorem 1. If nodesn1,. . . ,nc have weightsw1,. . . ,wc, and
H is a pseudo-random function that takes values in the range
(0; 1], then

P [(arg max
1�i�c

Hi) = r] =
wrPc
j=1 wj

(2)

Proof. The probability distribution function forHi is given
by

P [Hi � x] = P [H(ni; t)
1=wi � x]

= P [H(ni; t) � xwi]

= xwi

Hence the probability density function forHi, obtained by
differentiating the distribution function is given by

fHi(x) = wix
wi�1 for 0 � x � 1 (3)

Next, we compute the distribution function of the
max[Hi; Hj] as follows,

P [max(Hi; Hj) � x] = P [Hi � x and Hj � x]

= P [Hi � x]:P [Hj � x]

= xwi+wj

By induction on the above result, we get

P [max(Hi1 ; : : : ; Hin) � x] = xwi1+:::+win (4)

Now, letW =
Pc

i=1 wi and letYr denote the random vari-
able given by

Yr = max
1�i�c;i6=r

Hi

Note thatHr is the maximum if and only if it is greater than
Yr. From Eqs (4) and (3), the distribution and the density
functions ofYr are given by

P [Yr � y] = y

P
1�i�c;i6=r

wi = yW�wr

fYr(y) = (W � wr)y
W�wr�1

Finally, we can compute

P [(arg max
1�i�c

Hi) = r] = P [Hr > Yr]

=

Z 1

0

Z x

0

fHr (x)fYr (y)dx dy

=

Z 1

0

wrx
wr�1yW�wr jy=xy=0dx

=

Z 1

0

wrx
W�1dx

= wr=W

Step 3 - Larger diameter network: To enable frequency
reuse in networks of a larger diameter, WSA must be able to
assign the same slot to multiple nodes as long as they don’t
interfere with each other. Ideally, the decision to allocate a
new time slot should involve only nodes that interfere with
each other. Therefore, at any given node we use only the
hash values computed for nodes that interfere with this node
in determining whether or not it should transmit. As a result
we ensure weighted fairness only between nodes within the
same contention context. Globally the resulting allocation
depends on (a) which other nodes a given node interferes
with, (b) the interaction between multiplepartially overlap-
ping contention contexts and (c) the interaction of fairness
constraints at each hop of a multi-hop flow.

Computing the set of nodes that interfere with a given
node is difficult to achieve in a distributed manner. To get
around this problem we make the assumption that a node
can interfere with all the nodes withink-hop distance, where
k is given. Thus, when a node wants to contend for a slot, it
will broadcast its intention to all nodes withink hops. The
set of nodes with which one node interferes is then the set of
nodes from which it heard a broadcast message. The node
will then consider only those nodes when deciding whether
it has won the slot or not.

There is a clear trade-off between the level of interference
and the bandwidth utilization in choosing the value ofk. As
the value ofk increases, both the probability of interference
and the utilization decrease. The reason why the utiliza-
tion decreases is because, ask increases, ak-hop region will
cover more and more nodes that do not interfere with each

6

other in the real system. In this paper we assume two values
of k, k = 1, which represents an optimistic assumption as
the interference range is typically greater than the transmis-
sion range, andk = 2, which as we found in our experiments
is a more conservative assumption.

However, interference regions can causerace conditions.
It is possible thatni thinks thatnj is the winner of a slot, but
nj does not transmit in that slot, since it knows another node
nl within k hops such thatHl > Hj . Thus, event thoughni
andnl do not interfere,ni ends up not transmitting. We use
two mechanisms to address this problem.
Inactivity timer: Assumek = 1. At the beginning of each
slot if a nodeni thinks that nodenj is going to transmit in
that slot, it initializes an inactivity timer to listen for trans-
missions from that node. If this timer expires and the node
still hasn’t heard any transmissions fromnj , it assumes that
the slot is still free. Ifni has the next highest hash value af-
ternj it starts transmitting in that slot. Whenk = 2, nodes
ni andnj are not necessary within one hop distance. In this
case, nodes within one hop of bothnj andni will announce
ni thatnj is silent2. In practice, we set the inactivity timer to
be the time it takes to transmit three maximum-sized packets.
This helps us avoid false-positives due to packet losses.
Localized resolution: The above mentioned problem is
more likely to occur when we resolve contention over a large
number of partially over-lapping contention contexts in a
slot. In Section 4.2.4, we present a mechanism that reduces
the number of competing nodes, which in turn reduces the
probability of race condition in the case of over-lapping re-
gions.

4.2.4 Amortizing the cost of contention resolution

Even though our contention resolution mechanism is fairly
light-weight, it is more expensive than the hardware based
contention mechanisms used in 802.11, CSMA/CD, and
RTS/CTS, respectively. For example, some fraction of a slot
might be wasted due to the inactivity timer.

To amortize the cost of the contention resolution, in this
section we present a simple mechanism that basically allo-
cates a node more than one slot at once. A straightforward
solution would be to allocate a number of consecutive slots
to a node once it wins the competition. However, this would
increase the delay experienced by a packet as a packet now
needs to wait multiple slots before being transmitted. We
next present a simple algorithm to address this drawback.

The idea is to form groups ofN consecutive slots as
shown in Figure 4. Theindexof a time-slot is defined as the
position of the time-slot within a group ofN slots. If a node
is allowed to transmit in the slot with indexi, the node is im-
plicitly allowed to transmit in the indexi of the next group

2To suppress multiple announcements from one-hop neighbors ofnj to
ni, we enforce that on all the nodes within 1-hop of bothni andnj , only
the node with the highest hash value will notifyni.

Figure 4: Groups of slots used in the overlay MAC (draw a
better figure

with probabilityp. In other words, the node will relinquish
slot i with probability1� p. Once the node relinquishes the
slot, other nodes are allowed to compete for the slot. This
mechanism amortizes the cost of contention by1=(1� p).

Another advantage of this mechanism is that when a node
relinquishes a slot, we only have to resolve contention among
the nodes withink hops from it. Thus, not only do we use
the contention-resolution mechanism less often, but we also
reduced the likelihood that the hash-based mechanism will
suffer inefficiency due to overlapping regions.

However, the reduction in the overhead does not come for
free. A node needs now to wait for1=(1�p) slots on average
before it can compete. As a result it will take the system
longer (i.e.,by a factor of1=(1� p)) to converge to the fair
allocation when a new node joins or leaves the competition.

To address this issue, we make a slight modification to our
earlier definition of ofHi. Let oi be the number of slots im-
plicitly owned by the nodeni when contending for a times-
lot. We now redefine

Hi = H(ni; t)
Woi=N

w2
i

In other words, if the true weight of nodeni iswi, nodeni
uses a virtual weightw0i =

w2i
Woi=N

instead ofwi. In steady

state,oi � wiN
W and hencew0i � wi. Thus,w0i inflates a

nodes weight when it has less than its fair share of slots, but
diminishes its weight when it has more than its fair share.
Thus, a new sender that becomes active will gain about(1�
p)N slots in each round and quickly ramp up to its fair rate.

To illustrate the advantage of using an inflated weight
w0i, we use a simple simulation involving three flows with
weights1, 2, and3 respectively. We assumeN = 30, and
p = 0:95. Figure 5 plots the number of slots allocated to
each flow as a function of the group index. As expected,

7

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

o

f
sl

o
ts

Group Index

Flow 1
Flow 2
Flow 3

(a)

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

o

f
sl

o
ts

Group Index

Flow 1
Flow 2
Flow 3

(b)

Figure 5: Number of slots in every group when using (a)
default weights (wi), and (b) inflated weights (w0i).

when using inflated weights allow new flows to reach their
fair allocation faster. In addition, the fluctuations in steady
state behavior are smaller than in the case of using default
weights.

The choice ofN impacts both the short-term fairness and
the time a winner needs to wait to receive subsequent slots
without competing again. At the limit, ifN = 1, the winner
is allocated1=(1 � p) consecutive time slots, which hurts
the short-term fairness. IfN = 1, the winner is allocated
one slot at a time as in the baseline algorithm. Based on our
experimental results, we choseN = 20.

4.2.5 Reducing the control overhead

OML employs control messages to signal (a) when a node
has relinquished a slot, and (b) which nodes enter the com-
petition for a slot. Next, we present two simple optimizations
to reduce the signaling overhead of OML.

First, we make use of another pseudo-random functionH 0

to decide if a node should relinquish its slot,i.e., if nodeni
owns the slott, it will give up the slot only ifH 0(ni; t) <
(1� p). Again,H 0 is a pseudo-random function with range
(0; 1] and other nodes can compute this value without any
communication.

Second, we include in the header of each packet the queue
length at the sender. Thus, if the queue becomes empty dur-
ing the current slot, the node’s neighbors are implicitly no-
tified, and the remaining node with the next highestHi is
allowed to transmit in the rest of the slot. If on the other
hand the queue of the sender is not empty at the end of the
time slot, then its one-hop neighbors will implicitly assume
that the node will compete in the next time slot.

In summary, only nodes that join the competition need
to transmit individual control messages. All the additional
information about active nodes in the interference region is

piggy-backed in the packet header. To deal with node fail-
ures, we remove a node from the list of contenders if we
don’t receive an update on its queue-length for an extended
period of time.

4.3 Putting everything together

Figure 6 shows the WSA pseudocode. For readability, here
we assume that the interference region is the same as the
transmission region,i.e.,k = 1.

Each node maintains a list of all nodes in its interference
region that are active, and a map of which time slot is allo-
cated to which node. Since nodes are in promiscuous mode,
each node can maintain the list of active nodes by simply
inspecting the queue lengths in the headers of the packets
it hears about. If a node does not hear from a neighbor for
a predefined interval of time, it assumes that the neighbor is
no longer competing and removes it from its list. This allows
the algorithm to be robust in the presence of packet loss and
node failures.

To implement ak (= 2) hop interference region, a node
simply piggybacks the information about all its one-hop
neighbors in the packets it sends. This information is spread
across the headers of all packets it sends during the slot to re-
duce the per-packet overhead. This allows each node to learn
about its two-hop neighborhood. Similarly, when a node be-
comes active it broadcast a control message to its two-hop
neighborhood.

Recall that the size of the interference region determines
both the level of interference and the network utilization.
The level of interference can be significantly higher for
k = 1 thank = 2. While the MAC layer still resolves the
contentions using CSMA/CD, contentions at the MAC layer
reduce the level of control of OML on packet scheduling. On
the other hand, the network utilization can be lower fork = 2
thank = 1, as there can exists nodes at two-hop distance that
do not interference with each other in a real system.

5 Experimental Test-bed

In order to motivate our work in Section 3, we use some ex-
amples of actual observed performance in an 802.11 testbed.
In this Section, we describe the test-bed that we use for these
results. Our test-bed currently consists of 6 wireless nodes
based on commodity hardware and software.

The hardware consists of booksized computers equipped
with a 2.4GHz Celeron processor and 256MB of RAM. Each
computer is also equipped with a Netgear WAG511[4] tri-
mode PCMCIA wireless Ethernet adapter. This card is capa-
ble of operating in 802.11a,b and g modes, but we conduct all
out experiments in 802.11a mode to avoid interference with
the production 2.4GHz wireless network in our building.

8

function scheduler()
while (TRUE)

getSlotIndex(&slotId, &slotIndex);
// check whether you already own the slot
if (owner[slotIndex]! = myAddress)

setInactivityTimer();
if (H’(slotId, owner[slotIndex])< (1� p))

// contendForSlot updates owner[]
contendForSlot(slotId, slotIndex);

while (!endOfCurrentSlot())
if (owner[slotIndex]== myAddress)

p = getPacket(omlQueue);
if (p) send(p);

function recvPacket(p)
if (p.type == CONTENDor p.header.qsize> 0)

active list.add(p.src);
// don’t content for this slot
cancelInactivityTimer();
// active list may have changed; recompute winner
computeWinner(slotId, slotIndex);

if (p.type == RELINQUISHor p.header.qsize== 0)
contendForSlot(slotId, slotIndex);

if (p.header.qsize== 0)
active list.remove(p.src);

if (p.type == DATA)
// deliver packet locally if this node is
// the destination; otherwise route it
processData(p);

function contendForSlot(slotId, slotIndex)
if (!isEmpty(omlQueue)and totalOwnedSlots== 0)

// other nodes may not be aware this node is active
sendContentionMessage();

computeWinner(slotId, slotIdx)

function handleInactivityTimer()
contendForSlot(slotId, slotIndex);

function cleanActiveList()
// This function is called periodically by every node
// to time-out failed nodes from the activelist
for all n2 active list

if (curr time - n.timeadded> FAIL TIMEOUT)
active list.remove(n);

Figure 6: The WSA algorithm for an one-hop interference
region.

We have installed Linux (kernel 2.4.22) in all these sys-
tems along with the MadWiFi[1] driver for the wireless
cards. For routing, we use the Click software router[20] be-
cause it provides an easily extensible modular framework.
Also, the MIT Grid[2] project provides a readily download-
able implementation of DSR[19] and AODV[24] on top of
Click.

6 Implementation

In this Section we describe how OML is implemented in our
testbed. We start with a brief overview of Click and then
describe the newelementswe have implemented in Click.
Finally, we show how these elements are used in a typical
multi-hop wireless router configuration.

6.1 Overview of Click

The Click Modular Router[20] is a software architecture de-
veloped at MIT for building routers. Here, we only cover
the essentials required to understand our implementation of
OML. For further details, we refer the reader to [20].

Elements are the building block of a Click router. Ele-
ments typically perform some simple packet processing task
and are implemented as a C++ class. Packets flow in and
out of elements throughports. A router is a directed graph
of elements connect through their ports usingpushor pull
connections. In a push connection, data flow is initiated by
the upstream element (e.g.,input to a queue), whereas in a
pull connection, the downstream element is the initiator (e.g.,
output from a queue). The configuration for the router which
defines the vertices and edges of the directed graph is speci-
fied using a simple text file.

In addition to ports which deal with the data flow, elements
can also implementhandlers. Handlers are used to imple-
ment control operations outside the data flow,e.g.,a queue
might export a handler that reports the current length of the
queue. A downstream element that implements a schedul-
ing algorithm will use this handler to decide which input to
dequeue from.

6.2 OML Elements in Click

The majority of OML functionality is implemented using the
two elements,TimeSlotEnforcerand ContentionResolver.
TimeSlotEnforceris responsible for making sure that send
requests are issued only in the allowed time slots. The length
of a slot (l) and the number of slots in a group (N) are spec-
ified through a configuration file. This element is included
just before the packets are sent to the device in the router.
It implements onepull input and one pull output. It does
no packet manipulations, but the downstream request is for-
warded up stream only if the node is allowed to send packets

9

Figure 7: Click configuration for OML

in that slot. It also implements two handler functions.TimeS-
lotEnforcer::SetAllowedSlotstakes a bitmap of lengthN as
argument to notify the element about which slots are active.
TimeSlotEnforcer::SetTimeOffsetis used to set a clock skew
relative to the system time for synchronization.

TheContentionResolverimplements a bulk of the control
signaling for OML. Every packet being sent to or received
from the device flows through theContentionResolver. This
element manipulates packet headers as well as introduce new
control packets for signaling. It has twopushoutputs, one
for regular packets and one for high-priority control packets
that go directly to the head of the output queue. It commu-
nicates with theTimeSlotEnforcerusing theSetAllowedSlots
handler.

The EncapTimeStampand DecapTimeStampelements
handle clock synchronization. EncapTimeStampimple-
ments apull input and output and is connected to the out-
put of TimeSlotResolver. TheDecapTimeStampelement re-
moves the header added byEncapTimeStampand computes
a new clock offset. It also implements theDecapTimeS-
tamp::GetTimeOffsethandler which is used by bothEncap-
TimeStampandContentionResolver.

A typical router configuration that implements OML is
shown in Figure 7. We do not show the elements of the
routing protocol in this figure. The OML elements can be
used either with the DSR or AODV elements developed in
the GRID project or with theLinearIPLookupelement to im-
plement static routing.

7 Simulation Results

In this Section, we evaluate the benefits of OML by using
Qualnet[5], a commercial packet-level wireless simulator. In
particular, we use simulation to make three points. First, de-
spite the additional control overhead, the throughput of an

OML/WSA network is comparable to the throughput of an
802.11 network. This is because the loss in throughput due
to the control overhead is offset by the fact that OML/WSA
experiences much lower contention. Second, WSA signif-
icantly improves the fairness in a multi-hop network. In
particular, while in a multi-hop 802.11 network, a signifi-
cant percentage of TCP flows are shut-off, OML/WSA com-
pletely avoids this problem. Third, we show that WSA al-
lows fine grained resource control by accordingly setting the
weights of the nodes.

We next describe the simulation setting. Each node in the
simulation is equipped with an 802.11a network interface op-
erating at6 Mbps. We use the outdoor two-ray propagation
model which yields a radio range of about350 m. In all
experiments we hold the density of the network constant at
50 nodes per square km, and place the nodes at random lo-
cations. The time it takes to transmit an1500 byte packet,
including the overhead of the MAC and physical layers is
about2 ms. Hence, we choose a slot time ofl = 10 ms, and
a group withN = 20 slots. We have disabled the RTS-CTS
handshake in all the simulations since it yields better perfor-
mance both with and without OML. We use the AODV[24]
routing algorithm, and run each simulation for one minute.

7.1 Collisions and Throughput

As mentioned earlier, OML/WSA trades off less frequency
re-use and some control overhead in packet headers for fewer
collisions and better fairness. To evaluate the effects of
this trade-off on throughput, in this experiment we vary
the size of the network from15 to 50 nodes, and measure
the throughput achieved by a number of simultaneous UDP
flows. All flows originate at different nodes, but have the
same sink. Such a traffic pattern models a multi-hop network
used to access the Internet through a single gateway.

Figure 8 shows the effect of the size of the network on
the total number of (a) DATA packet transmissions, (b) ACK
transmissions and (c) successful unicast transmissions. For
each network size we consider10 simultaneous UDP flows.
The difference between (a) and (c) gives the total number of
packet retransmissions at the MAC layer. Of these (a)-(b)
are due to the loss of DATA packets, and (b)-(c) are due to
the loss of ACK packets. Because with OML we make the
conservative assumption that all nodes in a two hop neigh-
borhood interfere, there is less frequency reuse and the total
number of transmissions attempted is lower than in 802.11.
On the other hand, since OML does not allow competing
senders to be active at the same time, there is hardly any
MAC layer retransmission. In contrast, in the case of 802.11,
up to 25% of the packets are retransmitted. Applications
that use broadcast transmissions (e.g.,routing protocols) can
greatly benefit from fewer collisions since broadcast packets
are not acknowledged and retransmitted at the MAC layer.

Figure 9 plots the average throughput of5 or 10 simul-

10

0

10000

20000

30000

40000

50000

60000

15 20 25 30 35 40 45 50

T
o

ta
l #

 s
en

t

Nodes

Data Sent - w/o OML
Ack Sent - w/o OML

Unicast Sent - w/o OML
Data Sent - with OML
Ack Sent - with OML

Unicast Sent - with OML

Figure 8: Packet retransmissions in a multi-hop network with
10 flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Nodes

10 flows - w/o OML
10 flows - with OML

5 flows - w/o OML
5 flows - with OML

Figure 9: Average throughput in a multi-hop network with
and without OML

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
ra

ct
io

n
 o

f
fl

o
w

s

Throughput (Mbps)

30 nodes - w/o OML
30 nodes - with OML
50 nodes - w/o OML

50 nodes - with OML

Figure 10: CDF of throughput received by flows in a multi-
hop network

taneous flows both with and without OML. Even though
OML uses additional control overhead permits less fre-
quency reuse, the throughput with OML is pretty close to
the throughput without OML. Also, it is important to note
that since OML aims to provide better fairness, we devote
more resources to flows that use longer routes. Thus, OML
trades throughput for fairness in the case of longer routes as
compared to 802.11.

7.2 Fairness

A well-known problem with multi-hop 802.11 networks is
that short flows, in terms of number of hops, receive a much
higher throughput than long flows. To show how OML/WSA
can address this problem, in the following experiment we set
the weight of each node to be equal to the number of unique
IP source addresses seen in its output queue. Thus nodes that
forward on behalf of other nodes will have a higher weight.
Within a single node, we maintain separate queues for each
IP source address and implement round-robin scheduling be-
tween these queues. If all nodes contend with each other, the
weight allocations and the scheduling algorithm will ensure
that all flows receive equal throughput irrespective of their
length.

Figure 10 shows the cumulative distribution function
(CDF) of the throughputs of10 simultaneous flows averaged
over10 simulation runs. We report results for both a30 node
and a50 node network. As shown in Figure 10, in the case
of 802.11 several long flows are shut-off, about 40% of the
flows receive less than100 kbps. In contrast, the throughputs
of flows under OML/WSA are more evenly distributed, with
only 2% or10% of the flows below100 kbps in the30 node
case and the 50 node case respectively. This is at the expense
of the high bandwidth flows getting less bandwidth than in
the case of 802.11. However, we believe that this is the right
trade-off asconnectivityis the most important service pro-
vided by a communication network.

11

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3 3.5 4 4.5 5

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Hops

30 nodes - w/o OML
30 nodes - with OML
50 nodes - w/o OML

50 nodes - with OML

Figure 11: Relationship between throughput and the number
of hops

In Figure 11 we plot the average throughput of a flow as
the function of the number of hops. As expected, 802.11 fa-
vors shorter flows, but OML/WSA is more fair. For example,
in the30-node case, four-hops flows receive less than10% of
the throughput received by one-hop flows on average. With
OML, four-hops flows receive more than half the throughput
of 1-hop flows.

7.3 Flexibility

In this section, we demonstrate the flexibility of OML/WSA
using two examples.

7.3.1 Weights for nodes

In this experiment, we assign to each flow a random weight
in the setf1; 2; 3g. The weight of a node is equal to the
sum of the weights of all flows which have queued packets
at that node. At each node, OML serves the flows using a
weighted round robin algorithm. Figure 12 shows the CDF
of the flows of different weights over10 simulation runs,
with 10 flows in each run. The allocation for a flow not only
depends on its weight, but also on which other flows it com-
petes with. Hence, the allocation is not perfectly in accor-
dance with the weights of the flows. However, we can see
that flows of higher weight are much more likely to receive
a higher throughput than flows of lower weight.

7.3.2 Bandwidth allocation by nodes or by flows

In the previous examples, we have considered only the case
in which at most one flow originates at a node. Next, we
consider a simulation scenario in which10 flows originate at
only 4 nodes, where one flow originates at node1, two flows
originate at node2, and so on. To illustrate the ability of
OML/WSA to control the bandwidth allocation we consider
two cases: (a) each node has the same weight, (b) the weight

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

F
ra

ct
io

n
 o

f
fl

o
w

s

Throughput (Mbps)

Weight 1 flows
Weight 2 flows
Weight 3 flows

Figure 12: CDF of throughput received by flows with differ-
ent weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
ra

ct
io

n
 o

f
fl

o
w

s

Throughput (Mbps)

Allocation by node
Allocation by flow

Figure 13: CDF of throughput received by flows when using
per-flow and per-node bandwidth allocation

12

of a node is equal to the number of flows it handles. Fig-
ure 13 plots the CDF of the throughput received by each flow
in the two cases. In case (a), even though the bandwidth is
divided fairly among nodes, the throughputs received by the
flows differ widely with almost50% of the flows being vir-
tually shut-off, and some flows receiving close to10 Mbps.
In contrast, in case (b), no flow is shut-off, with all flows
getting a throughput between1 and3:5 Mbps.

8 Results from the testbed

In this section, we evaluate OML/WSA using the experimen-
tal testbed described in Section 5. The main results in this
section can be summarized as follows. Section 8.1 shows
that OML/WSA can increase the overall throughput of the
system by fairly allocating transmission times, instead of op-
portunities of transmission like in the 802.11 protocol. Sec-
tion 8.2 shows that even in a simple chain topology involving
one-hop flows, 802.11 can cause a significant number of TCP
flows to experience starvation, while OML avoids this phe-
nomenon. Section 8.3 shows that, as expected, the starvation
problem is even worse in the case of multi-hop routing, but
OML can still handle this problem. Finally, in Section 8.4,
we use a simple setting involving two flows to evaluate the
allocation accuracy of WSA.

8.1 Heterogeneous data rates

In this experiment, we re-consider the scenario described in
Section 3.1, where two nodes are simultaneously sending
one TCP flow each. One node operates at54 Mbps, and
the other node operates at rates ranging from6 to 54 Mbps.
We use the WSA algorithm to allocate the bandwidth, with
each node having the same weight. This leads to each node
receiving an equal channel-access time, rather than an equal
number of transmission opportunities like in 802.11. Note
that this allocation implements the temporal-sharing policy
as proposed in [28]. Figure 14 shows the throughputs of both
flows. The two flows receive throughputs approximately pro-
portional to the rates they are operating at, and the total sys-
tem throughput drops less than in the case of 802.11 when
the second node is operating at6 Mbps.

8.2 Chain topology

In this experiment, we configure our test-bed as a five-hop
chain, and start two simultaneous one-hop flows along ran-
dom links in this chain. Each node in the chain operates at6
Mbps. Figure 15 shows the CDF of the throughput of these
flows based on50 trials. We consider three scenarios: (a)
baseline 802.11 (without OML), (b) OML assuming one-hop
interference regions, and (c) OML assuming two-hop inter-
ference regions. When using OML each flow is assigned a
unit weight,

Figure 14: 802.11 throughput in the presence of heteroge-
neous data rate senders using OML

Without OML, in 26% of all the cases, one of the two
flows is not even able to establish a TCP connection. This
is shown in Figure 15, where13% of all flows have zero
throughput. Furthermore, about20% of all flows receive less
than1:5 Mbps. In contrast, with either version of OML only
about5% of the flows have a throughput below1:5 Mbps.
When using two-hop interference regions, no flow receives
less than0:3 Mbps, and over85% of the flows receive be-
tween2 and2:6 Mbps. On the other hand, when using one-
hop interference regions, there are far more flows with higher
throughputs: around22% of the flows have throughputs
around4:5 Mbps. These results illustrates the trade-off be-
tween using one-hop and two-hop interference regions. Us-
ing two-hop interference regions lead to a more conservative
spatial reuse of the channel. Hence, there are cases in which
two nodes cannot transmit simultaneously even though they
do not interfere in the real system. In contrast, using one-
hop interference regions lead to higher throughputs, but at
the cost of hurting the fairness. Indeed, as shown Figure 15,
in this case there are significantly more flows which experi-
ence low throughputs than when using two-hops interference
regions.

8.3 Multi-hop routing

In this section, we study how OML can improve the flow
throughputs in a multi-hop routing network. For this pur-
pose, we use a simple Y-shaped topology of the nodes as
described below. Flows A and B originate at nodes1 and
2, respectively, and terminate at node4, after being routed
via node3. Flow C is an one-hop flow from node5 to node
4. The weight of each node is proportional to the number of

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n
 o

f
fl

o
w

s

Throughput (Mbps)

No OML
OML - 1 hop signaling
OML - 2 hop signaling

Figure 15: CDF of throughput of 1-hop flows in the network

Active Flows Throughput (Mbps)
Flow A Flow B Flow C

A&C w/o OML 0.14 4.40
A&C with OML 1.39 2.56
B&C w/o OML 0.06 4.48
B&C with OML 1.01 2.58
A&B w/o OML 1.31 1.65
A&B with OML 1.11 1.11

A,B&C w/o OML 0.11 0.03 4.42
A,B&C with OML 0.86 0.54 2.57

Table 2: Interaction of flows in an ad-hoc topology

flows it sees: the weights of nodes1, 2, and5 are one, the
weight of node3 is two, and the weight of node4 is three.
In this experiment, OML assumes two-hop interference re-
gions.

When only one of the three flows is active, flows A and B
receive about2:24 Mbps, while flow C receives4:55 Mbps,
with or without OML.

Table 2 shows the throughputs of each flow when more
than one flow is active. Without OML, flow C effectively
shuts-off the two-hop flows. In contrast, OML allocates to
each flow at least1 Mbps, when only one of the two-hop
flows is active, and at least0:54 Mbps, when all flows are
active. The reason why the throughputs of the two-hop flows
are not higher is because the two-hop interference assump-
tion is violated. According to this assumption, either node
1 and2 can send data simultaneously with node5 without
interfering to each other. However, this assumption did not
hold at the time this experiment was conducted. Let flow A’
be the one-hop flow from node 1 to 3. When flows A’ and C
were simultaneously active, C received4:53 Mbps whereas
A’ received only0:69 Mbps.

Weight of A 1 1 1 1
Throughput of A 2.26 1.48 1.36 0.92

Weight of B 1 2 3 4
Throughput of B 2.20 2.97 3.06 3.64

Table 3: Throughput received by senders with different
weights

8.4 Weighted allocation

In this experiment, we evaluate the accuracy of WSA, and
thus its ability to provide per-node service differentiation by
manipulating the node weights. We consider two nodes A
and B that send a TCP flow each to a third node C. We set
the weight of node A to 1, and assign a weight ranging from
1 to 4 to node B. Table 3 shows the throughput achieved by
the nodes for each combination of weights. As expected, the
ratio of throughputs obtained by the two nodes tracks closely
the ratio of their weights.

9 Open Issues

The current design of OML should be viewed as a first iter-
ation. As we gather more experience with using OML, we
expect the OML design to evolve significantly. For exam-
ple, in this paper we have considered only the performance
of long-lived TCP flows. We expect that short-lived flows
to put additional stress on OML. Such flows will affect the
accuracy of theactive list which in turn will lead to addi-
tional control messages. We plan to extensively evaluate
OML with web-like traffic load. Another potential prob-
lem is that OML can introduce additional packet delays as
a node is allowed to send packets only during its allocated
time slots. We plan to evaluate to what extent these delays
affect interactive applications. OML does not work well in
the presence of unmodified 802.11 networks. In this case,all
OML nodes will receive an aggregate bandwidth equivalent
to that of asingle802.11 node. One solution to address this
problem would be to detect when there is competing traf-
fic, and then allow multiple OML nodes to send data in the
same time slot. Finally, in multi-hop networks the interplay
between the flow constraints and the interference constraints
makes it difficult to precisely formalize the notion of fairness
achieved by WSA. We plan on further studying how to de-
fine and achieve weighted fairness in the presence multiple
partially overlapping contention contexts.

10 Conclusions

In this paper, we have described the design and the imple-
mentation of an overlay MAC layer (OML) solution which
addresses some of the limitations of the 802.11 MAC layer.

14

By using both simulation and experimental evaluation, we
show that while 802.11 may cause TCP flows to experience
starvation, OML can avoid this problem. In addition, we
show that OML can reduce the contention in the network,
and provide service differentiation among nodes, with rela-
tively low control overhead.

The power of the OML approach is that it allows us to
implement MAC layer functionalitywithout modifying the
existing 802.11 protocol. In this respect, our approach is
reminiscent of the overlay network solutions that aim to im-
plement network layer functionality such as resilient routing
on top of the existing IP layer. Ultimately, OML would en-
able us to experiment with new scheduling and bandwidth
management algorithms, and evaluate their benefits to the
existing applications, before implementing these algorithm
in the MAC layer.

References

[1] MadWifi. http://madwifi.sourceforge.net/.
[2] MIT grid project. http://www.pods.lcs.mit.edu/grid/.
[3] MIT roofnet. http://www.pdos.lcs.mit.edu/roofnet/.
[4] Netgear. http://www.netgear.com/.
[5] The Qualnet Simulator from Scalable Networks Inc.

http://www.scalable-networks.com/.
[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.

Resilient overlay networks. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), Oct.
2001.

[7] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
application layer multicast. InSIGCOMM, 2002.

[8] L. Bao and J. Garcia-Luna-Aceves. Hybrid channel access
scheduling in ad hoc networks. InTenth International Con-
ference on Network Protocols (ICNP), 2002.

[9] L. Bao and J. J. Garcia-Luna-Aceves. Distributed dynamic
channel access scheduling for ad hoc networks. InJournal of
Parallel and Distributed Computing, 2002.

[10] P. Bhagwat, B. Raman, and D. Sanghi. Turning 802.11 inside-
out. SIGCOMM Comput. Commun. Rev., 34(1):33–38, 2004.

[11] V. Bharghavan, S. Lu, and T. Nandagopal. Fair queueing in
wireless networks: Issues and approaches, 1999.

[12] S. Biswas and R. Morris. Opportunistic routing in multi-
hop wireless networks.SIGCOMM Comput. Commun. Rev.,
34(1):69–74, 2004.

[13] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. InACM SIGMETRICS 2000, pages 1–12, Santa
Clara, CA, June 2000. ACM.

[14] I. Cidon and M. Sidi. Distributed assignment algorithms
for multihop packet radio networks.IEEE Trans. Comput.,
38(10):1353–1361, 1989.

[15] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
In Proc. of ACM Mobicom 2003, 2003.

[16] A. Demers, S. Keshav, and S. Shenker. Analysis and simula-
tion of a fair queueing algorithm. InSymposium proceedings
on Communications architectures & protocols, pages 1–12.
ACM Press, 1989.

[17] J. Elson and D. Estrin. Time synchronization for wireless
sensor networks. InPDPS Workshop on Parallel and Dis-
tributed Computing Issues in Wireless Networks and Mobile
Computing, pages 186–186.

[18] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda.
Performance anomaly of 802.11b. InProceedings of IEEE
INFOCOM 2003, San Francisco, USA, March-April 2003.

[19] D. B. Johnson, D. A. Maltz, and J. Broch. Dsr: The dy-
namic source routing protocol for multihop wireless ad hoc
networks. InAd Hoc Networking, 2001.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router.ACM Transactions on
Computer Systems, 18(3):263–297, 2000.

[21] C. Liu, Y. Ge, J. Hou, M. Fitz, W.-P. Chen, and R. Jain. Osu-
mac: A new, real-time medium access control protocol for
wireless wans with asymmetric wireless links. In21st In-
ternational Conference on Distributed Computing Systems,
2001.

[22] L. M. S. C. of the IEEE Computer Society. Wireless LAN
medium access control (MAC) and physical layer (PHY)
specifications.IEEE Standard 802.11, 1999.

[23] A. K. Parekh and R. G. Gallager. A generalized proces-
sor sharing approach to flow control in integrated services
networks: the single-node case.IEEE/ACM Trans. Netw.,
1(3):344–357, 1993.

[24] C. Perkins. Ad hoc on demand distance vector (aodv) routing,
1997.

[25] L. Pond and V. Li. A distributed time-slot assignment proto-
col for mobile multi-hop broadcast packet radio networks. In
MILCOM, 1999.

[26] K. Romer. Time synchronization in ad hoc networks. InPro-
ceedings of the 2nd ACM international symposium on Mobile
ad hoc networking & computing, pages 173–182. ACM Press,
2001.

[27] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. Op-
portunistic media access for multirate ad hoc networks, 2002.

[28] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. Op-
portunistic media access for multirate ad hoc networks. In
Proc. of ACM Mobicom 2002, Sep. 2002.

[29] U. Schmid and K. Schossmaier. Interval-based clock syn-
chronization.Real-Time Systems, 12(2):173–228, 1997.

[30] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. InProceedings of ACM
SIGCOMM 2002, August 2002.

[31] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. InOper-
ating Systems Design and Implementation, pages 1–11, 1994.

15

