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Abstract
Structured peer-to-peer overlays have recently been developed
with low stretch and overheads that increase with the logarithm
of the number of nodes in the system. In this paper we develop
a new network-layer routing protocol that leverages the design
of these overlays to achieve their desirable scaling and robust-
ness properties. The key difficulty in this approach is that these
overlays typically assume an underlying network layer trans-
port such as IP to provide connectivity between overlay nodes.
We solve this problem with a layered approach: theoverlay
layer constructs and maintain overlay routes, and theunderlay
layer constructs paths between the overlay nodes. This tech-
nique maintains the desirable scaling properties of a structured
overlay without reliance on IP transport. In particular, our re-
sults indicate that (i) overhead and stretch increase with the
logarithm of the number of nodes in the system (ii) these per-
formance metrics remain stable and the system maintains con-
sistency under churn.

1 Introduction
Routing protocols are used today under a variety of harsh con-
ditions. The Internet’s massive size coupled with a large num-
ber of simultaneously occurring events cause high load on
routers and poor failover times [1]. In addition, ISPs may in-
stitute policies which worsen resilience by filtering routes, add
heavier load by performing online traffic engineering, or inflate
pathlengths by making local preferences. Ad-hoc networks
face unstable links due to node mobility and bandwidth lim-
itations [9]. Such networks are often bandwidth-constrained,
reducing the ability to propagate up-to-date state. Sensornets
can be extremely massive, and may also need to support appli-
cations with strong consistency requirements.

There are several ways to improve scalability under these harsh
conditions, which all suffer from shortcomings. BGP [34]
rate-limits updates, slowing convergence and reaction time.
Reactivead-hoc routing protocols, such as AODV [26] and
DSR [14], do not set up state between a pair of nodes until
they need to communicate. This limits the types of applica-
tions that can be used on top of these networks to ones that
require low degrees of connectivity between nodes. Reactive
approaches also incur a path setup delay when the first packet
is sent between a pair of nodes. DSR stores a fixed-size route
cache, which does not change the order of scalability – over-
head still increases linearly with the number of nodes in the
network. Hierarchical [34] and tree-based schemes [31] in-
crease fate-sharing and limit the potential for load-balancing
by aggregating traffic onto a small number of links. GLS and
GHT [28] [21] use dynamic addressing, and hence are vulner-
able to Sybil attacks and require a location service to route.

Recently, structured overlay networks such as CAN [29],
Chord [32], Pastry [30], and Tapestry [36] were developed.
These networks achieve an extremely high degree of scalabil-
ity: maintaining routing state requires only a number of mes-
sages logarithmic in the total network size. They simultane-
ously maintain very high quality routes: the number of hops a
message takes through the overlay is logarithmic in the num-
ber of nodes, and the end-to-end delay is typically in the range
1.2 − 1.5 times more than the shortest-path delay. However,
these overlays all rely on some underlying network layer trans-
port such as IP to provide transit between overlay nodes. Hence
these techniques cannot be directly used to route at the network
level.

This paper studies the application of structured overlay rout-
ing techniques to network routing. We develop a new scalable
routing technique that can complement or completely replace
IP routing. Our design uses a layered approach: theoverlay
layer constructs and maintain overlay routes, and theunder-
lay layer constructs paths between the overlay nodes. We use
Pastry at the overlay layer, an AODV-like mechanism at the
underlay layer. Instead of relying on AODV’s flooding-based
route discovery process, joining nodes set up paths by routing
through the existing overlay. We believe that other overlay pro-
tocols (e.g. Chord) or underlay approaches (e.g. DSR) could be
used in our design with few changes. The characteristics of our
design include (1) by maintaining routes only between pairs of
overlay nodes rather than between all pairs of nodes, we make
maintenance overhead scalable (2) by avoiding flooding, we
make joining overhead scalable (3) by supporting the overlay,
we can support its API, and hence can support the large class
of applications developed for structured overlays.

This paper takes a systems approach to compare the new rout-
ing technique with existing routing mechanisms in the Internet
and mobile ad hoc networks. The goal is to provide a prag-
matic view of the pros and cons of the new technique relative
to existing network routing mechanisms. We use simulations in
ad-hoc setting and in the hierarchical Internet to evaluate per-
formance. We found that our approach scales better, provides
faster failover when links or routers fail, and is more secure
against certain attacks.

Our approach suffers from some disadvantages and hence it
may be inappropriate for certain environments. We do not
maintain shortest paths between all pairs of nodes and hence
there is a stretch penalty. However, we found this penalty was
usually less than1.5. Next, although we can support a number
of policies commonly used to route [35], our approach can not
support the entire set of policies used in the Internet today.

That said, we believe our approach enables a new architecture
that can lend itself to several interesting applications. For ex-



ample, it is completely self-organizing, since relationships be-
tween nodes are automatically discovered. It mitigates address
shortage problems, since it supports arbitrary length addresses
and nodes can choose their own addresses on startup without
relying on centralized address allocation. It does not require a
DNS to route, since our approach can route based on names
rather than nodeids. It provides seamless mobility support, as
a node’s address is assigned independently of that of its neigh-
bors in the topology.

Moreover, we believe that our approach can provide network
level support for several applications which have tradionally
solved using overlay or application layer networks. For exam-
ple, it may be possible to provide the functionality of aScal-
able RON. Since our solution is at the network layer, we can
acquire real-time statistics about congestion at router interfaces
without requiring probing. Since fewer paths are maintained
between nodes, we can aggregate this information to deter-
mine end-to-end path characteristics at faster rates. Applica-
tions may then choose between paths based on their character-
istics. Alternatively, applications can insert triggers at interme-
diate nodes to cause reroutes when path characteristics change
beyond a threshold.

Roadmap:Section 2 describes Pastry, the structured overlay
we use as a basis for our design. Section 3 gives an overview
of our approach. We discuss the details of how state is main-
tained in the presence of failures in Section 4. Section 5 de-
scribes optimizations we use and the desireable properties they
allow us to achieve. Section 7 describes experimental setup and
results, Section 8 overviews related work, and we conclude in
Section 9.

2 Pastry
Pastry [30] is a scalable, self-organizing structured peer-to-
peer overlay network we use as the basis for our design. Pastry
is similar to CAN [29], Chord [32], and Tapestry [36]. In Pas-
try, nodes and objects are assigned random identifiers (called
nodeIds and keys, respectively) from a large id space. NodeIds
and keys are 128 bits long and can be thought of as a sequence
of digits in base2b (b is a configuration parameter with a typi-
cal value of 3 or 4). Given a message and a key, Pastry routes
the message to the node with the nodeId that is numerically
closest to the key, which is called the key’s root. This sim-
ple capability can be used to build higher-level services like
a distributed hash table (DHT) or an application-level group
communication system like Scribe [6].

In order to route messages, each node maintains a routing table
and a leaf set. A node’s routing table has aboutlog2b N rows
and2b columns. The entries in rowr of the routing table refer
to nodes whose nodeIds share the firstr digits with the local
node’s nodeId. The(r + 1)th nodeId digit of a node in column
c of row r equalsc. The column in rowr corresponding to the
value of the(r + 1)th digit of the local node’s nodeId remains
empty. At each routing step, a node normally forwards the mes-
sage to a node whose nodeId shares with the key a prefix that is
at least one digit longer than the prefix that the key shares with
the present node’s id. If no such node is known, the message is
forwarded to a node whose nodeId shares a prefix with the key
as long as the current node’s nodeId but is numerically closer.

Figure 1 shows the path of an example message.
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Figure 1: Routing a message from the node with nodeId 65a1fc
to key d46a1c. The dots depict the nodeIds of live nodes in
Pastry’s circular namespace.

Each Pastry node maintains a set of neighbouring nodes in
the nodeId space (called the Leafset), both to ensure reliable
message delivery, and to store replicas of objects for fault
tolerance. The expected number of routing hops is less than
log2b N . The Pastry overlay construction observes proximity
in the underlying Internet. Each routing table entry is chosen
to refer to a node with low network delay, among all nodes
with an appropriate nodeId prefix. As a result, one can show
that Pastry routes have a low delay penalty: the average de-
lay of Pastry messages is less than twice the IP delay between
source and destination [10]. Similarly, one can show the local
route convergence of Pastry routes: the routes of messages sent
to the same key from nearby nodes in the underlying Internet
tend to converge at a nearby intermediate node. Both of these
properties are important for the construction of efficient multi-
cast trees, described below. A full description of Pastry can be
found in [30][4].

3 Base technique
In this section we first give an overview of our approach. Next,
we describe the state kept at routers and how we use the state to
forward packets. Then, we show how nodes join an already ex-
isting network. Finally, we describe how to maintain network
state in the presence of failures.

3.1 Architecture

Figure 2: Our two-layer approach.

Our goal is to leverage the design of structured overlay net-
works to perform efficient routing, without relying on a net-
work layer. Our approach involves developing a replacement
network layer that cooperates with an overlay operating above
it to maintain efficient routes between pairs of overlay nodes.



We use a two level approach, as shown in Figure 2. At the
overlaylayer we use Pastry, which maintains pointers to nodes
based on the relative location of the node in the namespace.
At this level we maintain Pastry’s Routing Table and Leafset,
which contain nodes that act as next overlay hops. At theun-
derlay layer, we embed state at intermediate routers to allow
communication between overlay nodes. For example, if node
000 is in 100’s Routing Table or Leafset, then we will main-
tain apath through the underlay from 100 to 000. To simplify
the discussion, we assume every node participates in both the
underlay and the overlay. A path consists of a set of hops, each
of which maintains areference pointerto the next hop that can
be used to reach the last hop in the path. This path state is kept
in a Forwarding Table at each hop along the path, which maps
from destination address to next network hop.

Table 11 contrasts properties of the overlay and underlay. The
goal of routing at the overlay is to maximize the progress made
through the Pastry namespace. This is done with the Pastry
routing protocol, based on the contents of the Leafset and Rout-
ing Table. The goal at the underlay is to maximize the progress
made through the topology towards the next overlay hop. We
do this by embedding reference pointers along short paths con-
necting pairs of overlay nodes. Packets then follow this trail
of pointers to reach the next overlay hop. These pointers are
stored in the Forwarding Table. An end-to-end route is com-
posed of a sequence of overlay hops chosen by the pastry rout-
ing algorithm, each of which is composed of a sequence of
underlay hops.

3.2 Routing

Routing is performed by routing through the Pastry overlay.
To reach the next overlay hop, we use the reference pointers
embedded in the underlay to reach the next overlay hop. If this
state is maintained properly, any node can route to any other
node in the network, since we will always be able to make
progress in the namespace at the overlay level and always able
to make progress towards the next overlay hop at the underlay
level.

The packet header contains five key fields:final-key, proxy-id,
pathsetup, last-underlay-hop, andhopcount. The goal of rout-
ing is to deliver the packet to the node whose nodeid most
closely matches final-key. If the proxy-id field is set, the packet
will first be routed to the node whose nodeId most closely
matches that value. The other three fields are useful in setting
up forwarding state. If the pathsetup field is set, this packet
causes a reference pointer to be inserted in the Forwarding Ta-
ble pointing to last-underlay-hop with hopcount as an associ-
ated pathcost.

We use Algorithm 2 to route: The algorithm works by using
Pastry to find the sequence of overlay hops necessary to reach
final dest, wherefinal dest is set to eitherfinal key or
proxy id. It uses the forwarding state maintained in the under-
lay to reach the next overlay hop. In particular, at each hop, we
first check to see if we have reached an overlay hop. If so, we

1In general, the pathlength in the underlay is the average ofDrt(d)
(from [5]) over all levels of the routing table. There is also a factor that
increases with churn, but this factor can be eliminated with Routing
Table repair.

Algorithm 2 Route(msg, final key, next overlay hop, current hop)
1: if (current hop == final dest)
2: deliver packet to application
3: if (current hop == next overlay hop)
4: consult Leafset and Routing Table to update

next overlay hop
5: consult forwarding table to findnext underlay hop that can

be used to reachnext overlay hop

6: forward(msg,next underlay hop)

run the Pastry routing algorithm to determine the next overlay
hop to take. We then consult our forwarding table to find the
next network level hop to take towards the next overlay hop.
In practice, we do not carry the next-overlay-hop in the packet,
but instead use the optimization discussed in Section 5 to re-
compute it at each hop.

3.3 Join procedure

The goal of a Join is to embed state at the joining node J such
that on completion, the joining node can route to any other
node, and any other node can route to the joining node. Our
approach consists of three steps:address assignment, overlay-
peer discovery, andunderlay-path establishment.

Address assignment: First, J is assigned a random address.
This address is static, and will hence not be exchanged with
other nodes nor changed after joining the network. The bene-
fit of static addressing is that a certification authority can sign
nodeIds thereby avoiding Sybil attacks, as described in [3].

Figure 3: Overlay-peer discovery.

Overlay-peer discovery: Next, we populate the node’s Leafset
and Routing Table. We use a procedure similar to a join in
Pastry to do this. There are two problems with using Pastry’s
join protocol directly. First, J has no way to route to other nodes
in the network aside from its neighbours. Second, nodes inside
the network have no way to route back to J, since we have not
yet set up any paths to J. We solve this problem by allowing J to
use an already-joined neighbor as a bootstrap to route through.
In particular, J injects join messages through a bootstrap, and
other nodes respond to J by routing back through B.

An example is shown in Figure 3. The joining node J queries
the network to determine a suitable list of candidates for its
Leafset and Routing Table. It broadcasts a query to its neigh-
bours, and neighbours respond if they have finished the joining
procedure. J then injects message M into the network using one
of its joined neighbours B as a bootstrap. M is routed towards
J’s nodeId. At each overlay hop nodes determine the level to
which their nodeId matches J’s nodeId, and insert that level of



Table 1: Properties of the overlay and underlay layers for a network of size N and diameter d.

Attribute Overlay Underlay
Routing algorithm Pastry-routing Underlay-routing
Routing metric namespace-distance topological-distance
Data structures Leafset, Routing Table Forwarding Table
Average path length O(logN) O(d)

their Routing Table into the message. Eventually M reaches the
root R of J’s address, and R inserts its Leafset into the message.
R then returns the message by routing through the overlay to-
wards B, which in turn forwards it to J.

Underlay-path establishment: J now knows its peers at the
overlay level (its Leafset and Routing Table), but has no way to
send packets to them. In this stage, paths are built between the
node and elements in its overlay peers. This stage is split into
two phases: first, outgoing paths are built from J to all its over-
lay peers. When these paths are completely set up, incoming
paths are built from nodes that have made J one of their over-
lay peers. The procedure is split into two phases, as otherwise
the joining node may be asked to forward a packet before it
can use all of its Leafset and Routing table to route, which can
greatly increase the length of the path traversed by the packet.
If several nodes join at nearly the same time, then path estab-
lishment messages may be forwarded based on partially filled
Routing Tables and Leafsets. This can cause very long paths
between overlay nodes. By forcing outgoing paths to be built
first, we eliminate this problem.

A joining node J requests path establishment from a node Y
with three messages. First, it sends a path request message to
Y through one of its neighboursN1, asking Y to route back
to one of its neighboursN2. Y responds with a message that
has the pathsetup field set, causing each network level hop to
set a next-hop pointer to the previous hop the packet traversed.
When J has filled its routing table, it responds with a path setup
message back to Y.

3.3.1 Optimizations

Two optimizations can improve performance. First, we can
merge the path establishment and namespace-peer discovery
phases. For example, when the query is routed from J to the
root, each overlay hop can request path setups from the rout-
ing table entries they insert on behalf of J. This can decrease
overhead, as their routing table entries are likely to be close to
J. Second, we can trade off between resilience and route qual-
ity when choosing the bootstrap. To maximize route quality,
we choose the neighbour whose nodeId most closely matches
the nodeId we’re trying to send to. To improve resilience, we
randomly choose from amongst all our neighbours. The former
reduces the number of hops the message travels, but increases
fate-sharing, as typically many underlay paths end up going
through the same neighbour.

4 Maintenance
The routing state of the overlay and underlay must be main-
tained in the presence of failures. The maintenance procedure

consists of three phases. The first phase is adetection and tear-
down phase that removes all state associated with the failed
node. The next phase is arepair phasethat repairs the con-
tents of Leafset. We do not explicitly repair the Routing Table.
The final phase is apartition recoveryprotocol that detects and
merges network partitions.

4.1 Failure detection and teardown

In this section we present our approach detecting failures of
topological neighbours and for repairing the Forwarding Ta-
bles accordingly. Nodes periodically probe their neighbours to
indicate liveness. All probing is done locally, there is no prob-
ing between overlay level peers. When a node X does not re-
ceive a probe from a neighbour Y, we can infer that either the
link (X,Y) was broken, or Y failed. In either case, X must tear-
down all paths that traverse the link (X,Y). It does this by se-
lecting all entries in its Forwarding Table that use Y as the next
hop, sending a teardown message to all forwardpointers and
backpointers associated with the entry, then deleting the entry.
Two key issues arise when using this approach.

Figure 4: Example of path teardown.

The first issue that arises involves determining which parts of
the path to teardown. Consider the path shown in Figure 4, and
suppose node Z fails. Nodes between S and Z must remove
their forwarding state associated with this path, but nodes be-
tween Z and D should not necessarily do the same, since S2
is using part of this path. We solve this problem by using two
types of teardowns,soft andhard. A hard teardown indicates
that the path being torndown is no longer available and must
be removed from the Forwarding Table. A soft teardown indi-
cates that the node initiating the teardown no longer wishes to
use the path. Receipt of a soft teardown causes nodes to delete
the appropriate entry from the reference list.

The second issue that arises involves determining which parts
of a path to teardown, when the path contains a loop. Sup-
pose the destination D fails in Figure 5. Then we will need to
teardown the entire path. Suppose instead that node 201 fails.



Figure 5: Example of loop in forwarding state.

In this case, it would be desirable to tear down only the loop,
since there is still a working path between S and D. We solve
this problem by maintaining two types of pointers,primaryand
secondary. The first backpointer and the last forward pointer
to be inserted are labelled as primary, and all other pointers
are labelled as secondary. The primary forward pointer points
to the shortest path to the destination, and the primary back-
ward pointer points to the shortest path towards the source. We
then forward teardowns as follows: if a teardown is received
on a primary pointer, forward it out all primary and secondary
pointers. If a teardown is received on a secondary interface, it
is ignored. This prevents paths from being torn down unneces-
sarily when failures occur on loops.

Figure 6: Contents of a forwarding table entry.

The structure of a Forwarding Table entry is shown in Figure 6.
Each row is associated with a final destination, and a count
of the number of sources that are using this entry. Associated
with each source is a list of backpointers, and a list of next-
hops. It is necessary to maintain more than one backpointer and
more than one nexthop for each entry, since loops can occur
when setting up this state. Hence, we need to maintain pointers
corresponding to the loops so they can be torn down later.

4.2 Leafset repair

The goal of leafset repair is to maintain leafset consistency in
the presence of network churn. It is composed of two parts.

1. InsertionsWhen a new node is discovered that belongs in
our leafset, we need to inform the other nodes about it so
they can insert it in their leafsets as well.

2. Repair/DeletionsWhen a path is lost to a leafset member,
we need to distinguish between two cases: if the leafset

member is still alive, we need to acquire a new working
path to it. If it has failed, then we need to delete it from
the leafset.

First we describe the original leafset repair mechanism used in
Pastry. Then, we describe modifications we made to make the
mechanism work at the network layer.

We now describe the leafset repair mechanism used in the orig-
inal Pastry design [23], which we use as a basis for our ap-
proach. Pastry updates leafset state when nodes join and leave
the overlay. When a node joins, it is responsible for informing
each of its leafset members about its presence. Each node then
periodically sends keepalives to its neighbors. When a node
leavse the overlay or fails, it stops responding to keepalives,
causing nodes to delete it from their leafsets. Pastry relies on
the invariant that it has at least one live leaf set member on each
side. Leafset repair ensures this invariant holds in the presence
of very massive failures. When a noden detects that all mem-
bers in one side of its leafset are faulty, it selects the nodeidm
that is numerically closest ton’s nodeid on that side from all
entries in its Routing Table. It then asksm to return the entry in
its routing table with the nodeid closest ton’s nodeid that lies
betweenn’s andm’s nodeid. This process is repeated until no
more live nodes with closer nodeids can be found. To improve
convergence, ashadowleafset is used that maintains thel/2
nodes in the right leafset of its furthest leaf on the right, and
thel/2 nodes in the left leafset of its furthest leaf on the left.

Pastry’s leafset repair mechanism does not work efficiently
when applied directly at the network layer. The reason why
is the design of Pastry assumes an underlying IP layer, and
if a node is working in the network it is reachable through this
layer. In our problem we do not rely on IP and hence we cannot
make this assumption. Suppose X loses Y from its leafset due
to a path failure between X and Y. Pastry would assume that
Y has left the network, causing X to delete Y from its leafset
and informing each member of its leafset to do the same. We
solve this by having X first try to discover whether the event
was a path or a node failure. It does this by routing a message
to Y using a member of its leafset as a proxy. It repeats this
for each member of its leafset until Y responds. If Y doesn’t
respond, it is highly likely that Y has failed, since the mem-
bers of X’s leafset will be widely distributed in the network, so
X deletes Y from its leafset. On the other hand, if Y receives
the message, it sends back a path setup message to X. In or-
der to reduce stretch, Y does not route the path setup message
through a leafset member, as the path would then be the length
of two leafset hops. Instead, X embeds a topology neighbor in
the message it sends to Y, which Y uses as a proxy to reach
X. We describe further methods to reduce overhead of leafset
repair in Appendix I. Finally, all probing is done locally, and
a node receives notification of a failed path by teardown mes-
sages originated due to the failed link/node.

4.3 Partition recovery

Network partitions can occur in several ways. First, a router
may fail that comprises the only point of contact between
nodes on either side of it. Or, a group of nodes may move away
from the rest of the network. In either case, the routing state of
the networks will reconverge to two separate rings as shown in



Figure 7: A network partition triggers an overlay partition.

Figure 7. Two rings will form for the following reason. Con-
sider a node in the smaller partition. Either it will lose all its
Leafset members, in which case it will try to rejoin by boot-
strapping through a neighbour, or, it will have a Leafset mem-
ber in its partition, which it will trigger Leafset repair through.
In either case we will get two rings.

When the two networks are once again able to contact one an-
other, we need a way to make them discover one another and
to reconverge overlay state to form a single ring. Our approach
to solving this problem consists of two phases: (1)detection,
in which two adjacent routers discover that they are part of
different network partitions (2)repair, in which the two parti-
tions are merged into a single network. Some form of partition
recovery is necessary for correctness, since certain sequences
of failures could cause our routing state to be partitioned into
two disjoint networks, even though the underlying network is
connected (although such an occurrence would be quite rare).

Figure 8: Example of partition detection.

4.3.1 Detection

An arrival of a new node can sometimes indicate that another
partition has become reachable. A node determines this by
routing to its own nodeid through the new neighbor and mak-
ing sure it receives the message back.

Suppose the network is partitioned as shown in Figure 8. When
a node X acquires a new neighbour Y, X asks Y to route a mes-
sage to X, using any outgoing interface except the one attached
to X. This message contains X’s leafset. Y waits until its Leaf-
set is stable (i.e. all queries to elements in its Leafset have been
acknowledged or timed out) and forwards the message. If the
message resolves at X, a partition is not detected. Otherwise, if
the message reaches some other node Z, Z detects a partition,
and initiates the overlay partition repair algorithm described in
the next section. If desired, X may repeat this procedure several
times to mitigate effects of transient instability. To eliminate re-
dundant messages, only one of X or Y need initiate detection.

Hence we select the node with the smaller nodeid to perform
this task.

4.3.2 Repair

When node Z detects the partition, it attempts to add X’s leafset
into its own. For every element that is inserted, Z requests a
path setup from that element using X as a proxy. Then, Z sends
a reply message to X containing its leafset. X then attempts to
add Z’s leafset into its own, and requests path setups using Y
as a proxy. By adding the new nodes into X’s and Z’s leafset,
we ensure that every node in Z’s partition that should be in X’s
leafset is inserted into X’s leafset, and vice versa. Furthermore,
these insertions trigger Pastry’s leafset maintenance algorithm
to be invoked. This causes X to send a copy of its leafset to
every member of its leafset, and causes Z to do the same. When
Pastry’s leafset maintenance algorithm finishes executing, the
two partitions will have converged.

4.3.3 Analysis

Suppose there aren nodes in the smaller partition andN nodes
in the larger partition. The total number of overlay messages
required to join the two partitions isO(n ∗ (log n + logN)). If
n is much smaller thanN , the total cost isO(log n + log N).

Detection:A detection message is routed overO(log n) over-
lay hops in the smaller partition andO(log N) hops in the
larger partition, resulting inO(log n + log N) overlay mes-
sages.

Repair: In the worst case, every node in the smaller partition
will be inserted into the leafset of a node in the larger parti-
tion. Each insertion will generate a constant number of overlay
messages, each of which will takeO(log n + log N) overlay
messages. No more thanL ∗ n insertions can take place in the
larger partition, whereL is the size of the leafset, since each
node in the smaller partition can only be inserted in to at most
L nodes. Also, each node in a partition only needs a single
message exchange to correctly fill its leafset. This is because
a node’s final leafset will always be a strict subset of the leaf-
set of the node with the closest nodeid in the other partition,
unioned with its own leafset. Hence, there can be no more than
L ∗ n insertions in the smaller partition as well, and so repair
takesO(L ∗ n ∗ (log n + log N)), which dominates detection.

5 Optimizations
We improve upon our base technique through the use of several
optimizations. In our simulation results, we only used thepath
truncationoptimization when collecting our results.

Path truncation: When routing through the underlay between
overlay hops, we may come across a path that allows us to
make greater progress through the namespace. By choosing
this path instead of proceeding on the current path, we have
a greater likelyhood of reaching the destination in fewer hops.
This allows us to leverage the path state inserted by other nodes
to short-circuit towards the destination. We do this by search-
ing the forward table at each network level hop, selecting the
entries that match the final-key in the greatest number of dig-
its, and of these we select the one with the lowest path-cost.
One complication that arises involves routing to a member of
the Leafset when crossing the zero boundary of the ring. For



example, if 996 routes a packet destined to final-key 999 to
a member of its Leafset 000, then we must disable this opti-
mization to prevent the packet from being redirected to nodes
matching a larger prefix. We use a field in the packet header to
disable this optimization in such cases.

Lazy updating: Suppose X has a path to destination D on be-
half of some node Y. Suppose another node Z wishes to acquire
a path to D, and its request gets forwarded to X. X can then re-
spond to D, without updating the reference counts along the
path. It can wait until both Y and X withdraws the path to up-
date the reference counts. This reduces overhead.

Localized reaction: When the path is set up, the source regis-
ters the position the destination node fills in the source’s Rout-
ing Table or Leafset. When X detects that a failure has occurred
on a path traversing it, X may be able to reroute based on this
information. In particular, it looks at the reasons for all nodes
that use the path, and reroutes as many as them locally as possi-
ble. For example, if X has a path to final-key ABCD, and node
Y is using the entry to fill its AB* entry of its routing table,
then X could reroute locally to ABEF if it has a path to it.

Local topology discovery: Each node can maintain current
state of topology within a certain radius around itself. This
information could be used to short-circuit long routes and to
adjust to very fast-changing metrics (e.g. link congestion) lo-
cally without significantly decreasing scalability by propagat-
ing such information globally. This design is similar to the ap-
proach taken in ZRP [15]. Unlike ZRP, which uses proactive
routing inside the ball and reactive techniques outside of the
ball, we are able to use a uniformly proactive approach. The in-
variant that we must make progress in the namespace allows us
to combine a localized flood with Pastry without getting loops.

6 Experimental setup
We used two simulators to acquire our results. To investigate
how our approach performed in very large networks, we used
the Pastry simulator [37]. We also implemented our approach
in ns-2 [38] to more accurately simulate network effects at
the expense of scalability. We leveraged the CMU Monarch
wireless extensions in ns-2 to compare our approach to AODV,
DSR, and DSDV. We used the same simulation parameters and
attempted to configure the environments in a similar fashion to
ensure that comparisons made across simulators were fair.

All results use the following default parameters unless other-
wise mentioned. The number of domains b=4 and the Leafset
size l=8. We used the same topology as in [2], with 50 nodes
randomly distributed over a 1500x300 meter grid with a radio
range of 250 meters. We set the bandwidths of links to be in-
finite in both simulators to eliminate effects due to congestion
and contention. We used the path-truncation optimization dis-
cussed in Section 5, and disabled the other optimizations. We
used the Leafset maintenance algorithm described in [23], and
not the algorithm described in Section 10.

7 Results

7.1 Scalability

Figures 11 and 12 show the number of messages required
to perform a join, for varied numbers of nodes. We can see

that the overhead increases logarithmically with the number
of nodes in the system. We also found that the stretch increases
logarithmically (as shown in Figures 9 and 10), and that both of
these results remain stable in the presence of churn. Hence, we
are able to achieve the logarithmic growth in delay and over-
head without relying on a network layer transport mechanism
such as IP.
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Figure 9: Stretch for various network sizes (flat random topol-
ogy).
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Figure 10: Stretch for various network sizes (transit stub topol-
ogy).
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Figure 11: Overhead for various network sizes (flat random
topology).

7.2 Maintenance

In this section we investigate the ability of our approach to
maintain up to date state in the presence of churn.

We found that the overhead caused by a link failure could be
greater than logarithmic. This happens since when a link fails,
every path that traverses the link must be torn down. We exper-
imented with three approaches to reduce overhead:
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Figure 12: Overhead for various network sizes (transit stub
topology).

1. Next, by storing less specific routes we could reduce the
number of paths. That is, we could store a pointer to A*
(any nodeid starting with A) instead of ABCD (the node
with nodeid ABCD) to fill the A* entry in the routing ta-
ble.

2. Finally, local recovery (rerouting locally around the fail-
ure) could reduce this substantially, since there would be
no need to tear down the entire path. The savings would
be even more if the graph has small world properties (as
flat, ad-hoc networks have).

We implemented local recovery and found it substantially re-
duced overhead in ad-hoc like networks, as 2 or 3-hop reroutes
tend to exist for many links. This made teardown overhead only
10% of what it was before, making join overhead the scaling
bottleneck.

Interestingly, with heterogenous churn, the system adapts by
moving routes away from unstable nodes (ie paths through sta-
ble nodes tend to remain, while paths through unstable nodes
tend to be torndown and rerouted elsewhere).

7.3 Mobility
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Figure 15 compares the overhead of our approach with two of
the current standards for multihop ad-hoc wireless networking:
AODV and DSR. AODV and DSR are referred to asreactive
protocols, as they do not create routes between a pair of nodes
until they are needed. Our approach on the other hand isproac-
tive, in the sense that on startup it sets up state so that any pair
of nodes to communicate. Here we attempt to answer the ques-
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Figure 15: Comparison of our approach with AODV and DSR.
If each node communicates with on average 6 or more other
nodes, during some period of time when the network is other-
wise stable, our approach uses less overhead than AODV and
DSR.

tion: how many pairs of nodes need to communicate before our
approach has lower overhead than the reactive approaches?

We consider two configurations of our approach: alow-stretch
configuration that attempts to minimize stretch by maintain-
ing many Leafset members, and alow-overheadconfiguration
that reduces overhead by reducing the number of Leafset mem-
bers it maintains. We vary the average number of destinations
a node communicates to over some period of time. We can see
that even for the low-stretch configuration, if each node sends
packets to on average to 10 or more other nodes, then our ap-
proach generates less overhead than both DSR and AODV. The
crossover point drops to 4 or more other nodes for the low-
overhead configuration, but the small Leafset size increases the
stretch from 1.33 to 1.57.

Another benefit: since our approach is proactive, the first
packet sent to some destination acquires the same amount of
delay as other packets. In the reactive approach, the route is
not constructed until needed, so the first packet sent to a new
destination must wait in the outgoing queue until the route is
built. For applications that require contacting random destina-
tions for short sessions, this could incur a large penalty that is
not present in our approach.

Discussion:We use periodic keepalives for neighbor detection,
without link-layer failure detection. Consistency of forward-
ing state is maintained, since 802.11b does explicit ack’ing
(CSMA/CA). Because of this, we always know if a packet
reached the other side, so we can maintain that pairs of nodes
have consistent forwarding tables. If desired, we believe we



could decrease the number of dropped packets further by do-
ing random rerouting: if the next hop on the underlay path isn’t
reachable, choose an alternate working path based on prefix-
match length.

8 Related work
Many of our techniques are not new and are borrowed from
previous work. For example, our underlay routing and mainte-
nance is based on AODV, and overlay routing is based on Pas-
try. Here we describe some related work to put our approach
in context. Routing algorithms may be classified along several
dimensions:

Proactive/reactive: AODV [26] and DSR [14] are reactive,
and flood a route request when a route to that destination is
desired. DSDV [25] and TORA [24] are proactive, and work
by maintaining up-to-date state about paths to every other des-
tination in the network. Our approach is proactive, but only
proactively maintains routes to the subset of other nodes cho-
sen by Pastry’s routing algorithm. It may be possible to set up
certain paths reactively to lower overhead in networks where
only few pairs of nodes intercommunicate, but we did not try
to do this.

State localization: Second, routing schemes may be classi-
fied by how they limit the amount of control state propagated.
Tree-scoped schemes such as Span [7] and CEDAR [31] main-
tain a spanning tree covering all nodes. Hierarchically-scoped
schemes [22] organize nodes into domains that aggregate topo-
logical state before sharing it with nodes in other domains.
Link/node-scoped ZRP [15] and FSR [12] bound the propa-
gation of state information based on the distance from the ad-
vertisement origin. Athough these tree-based and hierarchical
based schemes decrease overhead, they increase fate sharing as
a large number of paths flow through a small number of links.
Our approach balances paths across a large number of links,
reducing fate-sharing.

Static/dynamic nodeIds:Finally, addresses may bestatically
bound to nodes, or may bedynamicallyreassigned based on the
position of the node. We chose to statically assign addresses,
since it is not clear that dynamically assigned addresses have
better locality properties. Also, static assignment makes certain
attacks on the system difficult [8], and eliminates the need for
a location service.

Three works that share our goal of replacing the network layer
topology are PeerNet [10], GHT [28], and UIP [11]. We view
our work as complementary to these approaches, as we explore
a different part of the design space. PeerNet and GHT both use
dynamic nodeIds, and hence suffer from two key shortcom-
ings:

1. Since nodes can calculate their own addresses arbitrarily,
they are subject to Sybil and nodeId swap attacks.

2. Since addresses (coordinates) change as nodes move,
these approaches need to maintain a location service to
route queries to fixed nodes. GHT does not use a loca-
tion service, as it assumes objects are small enough to be
migrated as nodes move.

PeerNet restricts the number of paths available to route a
packet, inflating pathlengths and increasing fate-sharing. GHT
relies on GPSR [19] to route packets, inheriting its reliance
on location information. This information can be acquired by
adding a GPS device to each node, which may be prohibitively
expensive in environments. Alternatively, it is possible to com-
pute virtual coordinates for each node and perform routing in
that space [27]. However, this has the added expense of causing
a number of floods that increases with the square root of the
number of nodes in the network. Moreover, it needs a mech-
anism to discover perimeter nodes in the network, which may
not exist in some topologies. Our approach uses overhead com-
parable to this approach, but suffers from neither of the above
shortcomings. We see our approach as complementary to UIP.
Our approach differs by providing a more complete implemen-
tation, a wider exploration of usage scenarios, and by devel-
oping mechanisms for path maintenance and recovering from
overlay partitions.

9 Conclusions
In this paper we leverage design techniques developed in the
context of structured overlays to develop a new ad-hoc routing
protocol. Our approach maintains both the massive scalability
and the high quality routes of structured overlays, without re-
lying on any network layer transport mechanism such as IP.
It outperforms three of the current standards for ad-hoc multi-
hop routing, even for small networks and networks with mostly
local communication. It maintains these characteristics in the
presence of churn.

In future work, we are primarily interested in developing a gen-
eral purpose routing infrastructure based on the techniques dis-
cussed in this paper. This brings up a large number of issues
that need to be resolved. First, we plan to measure performance
under more stressful workloads, with high degrees of mobility
and churn. Next, it may be desirable to embed BGP-style poli-
cies using our technique to perform traffic engineering, route
filtering, and route selection. In addition, it would be desirable
to achieve fast and stable convergence in the event of changes.
Finally, it may be possible to leverage our design to enhance
the functionality that the network layer can provide, for exam-
ple to provide service lookup and discovery, and content-based
routing.
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10 Appendix I: Low overhead leafset repair

Figure 16: Low overhead Leafset repair. The dashed oval con-
tains members of A’s Leafset, and the grey rectange contains
members of the failed node X’s Leafset.

The goal of Leafset repair is to maintain paths to members
of the Leafset, and shift in new members when an element
of the Leafset fails. Pastry performs Leafset repair by piggy-
backing copies of the Leafset on Leafset probes whenever the
contents of the Leafset change [23]. There are two difficulties
that arise when applying this technique directly to our prob-
lem. First, this approach requiresO(L2) messages, which may
be disproportionately large for networks containing few nodes.
Next, failure detection needs to be performed differently than
it would at the overlay layer. The difficulty arises in distin-
guishing link from node failures: when a node Y receives a
teardown message from its path to some node X in its Leafset,
it cannot tell whether X has failed, or some intermediate node
between itself and X has failed. In the former case it should
shift a new Leafset member in to replace X, but in the latter
case it should attempt to acquire another path to X. In this sec-
tion we describe a modification to the Leafset repair algorithm
that addresses both of these issues: it uses only(2.5L+1) mes-
sages and can distinguish between path and node failures with
high probability. Furthermore, we do not require long-distance



Leafset probes, but instead rely on probes between adjacent
nodes coupled with teardowns to detect failures.

There are two main ideas behind our approach. First, we assign
responsibility for detecting failure of a node X to the node A
immediately to the right of X in the Pastry ring. A then batches
up the requests, determines whether a path to X can be re-
established, and then distributes information that can be used
to recover from the failure. Next, we distinguish between path
and node failures by determining if some member of X’s Leaf-
set has a working path to X. If so, the event was path failure, if
not, the event was most likely node failure.

Leafset recovery is then performed as follows. First, when
node A loses a path to a node X that it is responsible for, it
waits for a timeout. Other members of X’s Leafset send a mes-
sage to A if they lose a path to X. Each of these messages
contains the nodeId of the member and a bootstrap node im-
mediately adjacent to the member in the topology. There are
two cases:pathfailures andnodefailures.

Path failures:If there is some member K of X’s Leafset that
does not send A a message, then the event is a path failure. In
this case A attempts to recover by sending a message to X using
K as a proxy. The message contains a list of all nodes that have
X in their Leafset and their respective bootstraps. If K receives
this message it attempts to initiate paths to every node in the
message, by sending path setup messages to their bootstraps.
On failure, A repeats this procedure for every member K that
has a path to X. If this procedure fails, A sends a request to X
through some randomly chosen member K for paths to be set
up through K.

Node failures:If all members K of X’s Leafset send A a mes-
sage, then we assume a node failure occurred. In this case, A
attempts to recover by instructing each member to shift in a
new member into its Leafset to replace X. In particular, for
each node J in X’s left Leafset, A selects the node I in X’s right
Leafset that should be inserted into J’s Leafset to replace X.
A then sends a message to J, containing I’s nodeId and boot-
strap. J then initiates path setup to I, by routing a pathsetup
message to I’s proxy containing J’s bootstrap. I then sends a
path setup message back to J. Note that for the node J such that
I=A, we can eliminate a message by setting the pathsetup bit
in the message A sends to J.

The packet header is shown in Table 2. The goal of routing
is to deliver the packet to the node whose nodeId matches the
final-key field in the greatest number of bits. If the proxy-id
field is set, the packet will first be routed through the node
whose nodeId most closely matches proxy-id. If the recipient
is to respond back to the sender, the recipient can route back to
the node that best matches source-id. The source may still be
in the process of joining or failure-recovery, and hence routes
directly to the source may be unstable or unavailable. In this
case the source will place a neighbour into bootstrap-id, and
the recipient will respond back to the source via the node most
closely matching bootstrap-id as a proxy. The hopcount field is
set equal the total number of underlay hops the packet has tra-
versed. If the pathsetup bit is set, the message will cause a ref-
erence pointer to be inserted at each underlay hop, and will set
the hopcount associated with the reference pointer equal to the
hopcount contained in the packet. The reference pointers are

used to form routes between overlay nodes, and the hopcount
is used to select the shortest path when several possibilities are
present to make progress toward the final destination. Finally,
the blockshortcut field is used to disable an optimization dis-
cussed in Section 5.

11 Appendix II: Security
We show how to secure against three types of attacks:

• A node cannot remove routing state corresponding to
a path that it does not appear on. Nodes sign route-
setups and route-removes they generate. When a new
forwarding-table entry is created, the signature of the
node that generated the route-setup is stored. When a
route-remove is generated, state is removed only if the
signature in the packet and in the forwarding-table entry
match.

• A malicious node cannot trigger a resource-consumption
attack by requesting too much forwarding state: Each
node can limit the amount of state that can be stored due
to a particular node’s requests. Identity can be verified
through signatures. This reduces the amount of state an
attacker can introduce toO(log n) per node= O(n log n)
total. This can be reduced further toO(log n)total by
choosing a policer node to intermediate requests to set up
information, at the cost of increased path setup time.

• A malicious node cannot falsely claim to have a link to an-
other node, unless the other node is also malicious: Hash
chains [16] can be used to prevent this. As noted this does
not protect against pairs of malicious nodes. The effect
of pairs of collaborating malicious nodes could be signif-
icant and requires further analysis.

• If nodes can suggest reroutes to other nodes, only nodes
along the path P can suggest the source change its path
from P. Further, these nodes can only suggest shorter
paths: We can prevent nodes along an alternate path from
changing the path with signatures. Also, the source must
only accept an alternate path if it can verify that it is
shorter (again using hash chains).

12 Appendix III: Alternate design choices
There are several other optimizations and design decisions that
could be made.

• Asymmetric links: We need four messages to setup paths
if the path contains an asymmetric link. Protocol: (a) X
traces path to Y, recording hops along the way. Y reflects
the trace back to X, which sets up state at each hop. Y
then repeats this process. This requires 3 RTTs, since two
packets can be sent in parallel.

• Detection of asymmetric links: We can automatically
detect asymmetric links during the exchange to use 3 mes-
sages if all links are symmetric. Protocol: X starts by trac-
ing the path to Y. Y knows (from its join) whether there
are any asymmetric links on its path towards X. If not,
Y completes the two message setup assuming symmetric



Table 2: Contents of packet header. Non-bold fields are optional.

Source-id (2b bits) Message type (3 bits) Final-key (2b bits) Pathsetup (1 bit) Blockshortcut (1 bit)
Proxy-id (2b bits) Bootstrap-id (2b bits) Last-overlay-hop-id(2b bits) Last-underlay-hop-id(2b bits) hopcount (16 bits)

links. Otherwise, Y completes the four-message setup as-
suming asymmetric links. (X’s neighbour needs to do the
same procedure when it routes to Y)

• Selection of shortest path: The joining node can request
forwarding state from several nodes and choose the short-
est. If paths are symmetric, it can trace the forward and re-
verse directions of the overlay path and choose the short-
est.

• Caching forwarding state: When the last reference to a
path is removed, the forwarding state is moved to a fixed-
size cache and maintained using a policy like LRU.

• Soft vs. hard state: Instead of keeping a reference count,
keep a timer. The state must be refreshed periodically, or
it will be deleted after a timeout. Data packets could be
used as implicit refreshes.

• Annealing: A node can periodically lookup a random en-
try in its routing table to search for shorter paths.

• Seed/bootstrap selection: Joining nodes can vary which
neighbour it chooses to use as a seed. Choosing randomly
reduces fate sharing, but increases pathlength.


