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Abstract Recently, structured overlay networks such as CAN [29],

Structured peer-to-peer overlays have recently been develop%t&lord [32], Pastry [30], and Tapestry [36] were developed.

with low stretch and overheads that increase with the Iogarithr[n 'erieai%?;\il:lci)rrlzsriﬁrt}fgitZ?ee;(;;i?zlsyc:]r:?yh;refjrniEeorfosfc s}lzgl—

ofthe number of nodes in the system. In this paper we deveI% ges logarithmic in the total network size. They simultane-

a new network-layer routing protocol that leverages the deSi%nusl maintain verv hiah auality routes: the number of hoos a
of these overlays to achieve their desirable scaling and robust- y yhigh g y . P

. e S . message takes through the overlay is logarithmic in the num-
ness properties. The key difficulty in this approach is that the%%r of r?odes and the%nd-to-end d)élay isgtypically in the range
overlays typically assume an underlying network layer tran '

. . .2 — 1.5 times more than the shortest-path delay. However,
port such as IP to provide connectivity between overlay node iese overlavs all relv on some underlving network laver trans-
We solve this problem with a layered approach: tverlay y Y ying Y

S port such as IP to provide transit between overlay nodes. Hence
layer constructs and maintain overlay routes, andutigerlay . .
) these techniques cannot be directly used to route at the network
layer constructs paths between the overlay nodes. This tech-

. N : . . eyel.
nique maintains the desirable scaling properties of a structured’
overlay without reliance on IP transport. In particular, our reThis paper studies the application of structured overlay rout-
sults indicate that (i) overhead and stretch increase with tffed techniques to network routing. We develop a new scalable
logarithm of the number of nodes in the system (ii) these pefouting technique that can complement or completely replace
formance metrics remain stable and the system maintains cdR-routing. Our design uses a layered approach:oterlay

sistency under churn. layer constructs and maintain overlay routes, anduthder-
lay layer constructs paths between the overlay nodes. We use
1 Introduction Pastry at the overlay layer, an AODV-like mechanism at the

) , underlay layer. Instead of relying on AODV’s flooding-based
Routing protocols are used today under a variety of harsh copy e discovery process, joining nodes set up paths by routing
ditions. The Internet's massive size coupled with a large numgg, o gh the existing overlay. We believe that other overlay pro-
ber of simultaneously occurring events cause high load Qs (e.g. Chord) or underlay approaches (e.g. DSR) could be

routers and poor failover times [1]. In addition, ISPs may iNygeq in our design with few changes. The characteristics of our

stitutg policies which worsen rgsilienc_e by fi!tering route_s, adgesign include (1) by maintaining routes only between pairs of
heavier load by performlng online traffic engineering, or 'nﬂat%verlay nodes rather than between all pairs of nodes, we make
pathlengths by making local preferences. Ad-hoc network§ intenance overhead scalable (2) by avoiding flooding, we

_fac_e unstable links due to node mobility and_ bandwidth _"mfnake joining overhead scalable (3) by supporting the overlay,

|tat|0n_s [9]. Suc_h_ networks are often bandwdth-constrame%e can support its API, and hence can support the large class

reducing the ability to propagate up-to-date state. Sensom%tlsapplications developed for structured overlays.

can be extremely massive, and may also need to support appli-,

cations with strong consistency requirements. This paper takes a systems approach to compare the new rout-
. . ing technique with existing routing mechanisms in the Internet

There are several ways to improve scalability under these harghy mobile ad hoc networks. The goal is to provide a prag-

conditions, which all suffer from shortcomings. BGP [34] ¢ view of the pros and cons of the new technique relative

rate-limits updates, slowing convergence and reaction timg, oisting network routing mechanisms. We use simulations in

Reactivead-hoc routing protocols, such as AODV [26] and,q pqc setting and in the hierarchical Internet to evaluate per-

DSR [14], do not set up state between a pair of nodes unfl;\ance We found that our approach scales better, provides

they need to communicate. This limits the types of applicgzgier fajlover when links or routers fail, and is more secure
tions that can be used on top of these networks to ones that .. <t certain attacks.

require low degrees of connectivity between nodes. Reactive ) )
approaches also incur a path setup delay when the first pack@t @pproach suffers from some disadvantages and hence it

is sent between a pair of nodes. DSR stores a fixed-size ro(R&Y b€ inappropriate for certain environments. We do not
cache, which does not change the order of scalability — Ovépalntgln shortest paths between all pairs of nodes and hence
head still increases linearly with the number of nodes in thi1€re is a stretch penalty. However, we found this penalty was
network. Hierarchical [34] and tree-based schemes [31] iiSually less than.5. Next, although we can support a number
crease fate-sharing and limit the potential for load-balancingf POlicies commonly used to route [35], our approach can not
by aggregating traffic onto a small number of links. GLS angupport the entire set of policies used in the Internet today.
GHT [28] [21] use dynamic addressing, and hence are vulneFhat said, we believe our approach enables a new architecture
able to Sybil attacks and require a location service to route. that can lend itself to several interesting applications. For ex-



ample, it is completely self-organizing, since relationships bd-igure 1 shows the path of an example message.
tween nodes are automatically discovered. It mitigates address

shortage problems, since it supports arbitrary length addresses | 12

and nodes can choose their own addresses on startup without enodeld d46atc
relying on centralized address allocation. It does not require a Se [

DNS to route, since our approach can route based on names  id46a
rather than nodeids. It provides seamless mobility support, as 6alc

a node’s address is assigned independently of that of its neigh-
bors in the topology.

Moreover, we believe that our approach can provide network
level support for several applications which have tradionally

solved using overlay or application layer networks. For exanffigure 1: Routing a message from the node with nodeld 65alfc

ple, it may be possible to provide the functionality oBeal- to key d46alc. The dots depict the nodelds of live nodes in
able RON Since our solution is at the network layer, we Carbastry's circular namespace

acquire real-time statistics about congestion at router interfaces
without requiring probing. Since fewer paths are maintained

between nodes, we can aggregate this information to det@rfach Pastry node maintains a set of neighbouring nodes in
mine end-to-end path characteristics at faster rates. Appligie nodeld space (called the Leafset), both to ensure reliable
tions may then choose between paths based on their characigessage delivery, and to store replicas of objects for fault
istics. Alternatively, applications can insert triggers at intermep|erance. The expected number of routing hops is less than
diate nodes to cause reroutes when path characteristics chap@gb N. The Pastry overlay construction observes proximity
beyond a threshold. in the underlying Internet. Each routing table entry is chosen
Roadmap:Section 2 describes Pastry, the structured overldg refer to a node with low network delay, among all nodes
we use as a basis for our design. Section 3 gives an overviith an appropriate nodeld prefix. As a result, one can show
of our approach. We discuss the details of how state is maithat Pastry routes have a low delay penalty: the average de-
tained in the presence of failures in Section 4. Section 5 déy of Pastry messages is less than twice the IP delay between
scribes optimizations we use and the desireable properties trggurce and destination [10]. Similarly, one can show the local
allow us to achieve. Section 7 describes experimental setup aiedite convergence of Pastry routes: the routes of messages sent
results, Section 8 overviews related work, and we conclude ta the same key from nearby nodes in the underlying Internet

Section 9. tend to converge at a nearby intermediate node. Both of these
properties are important for the construction of efficient multi-
2 Pastry cast trees, described below. A full description of Pastry can be

Pastry [30] is a scalable, self-organizing structured peer—t(gc—)und in [30][4]

peer qverlay network we use as the basis for our design. Pasly Base technique

is similar to CAN [29], Chord [32], and Tapestry [36]. In Pas-

try, nodes and objects are assigned random identifiers (calltthis section we first give an overview of our approach. Next,
nodelds and keys, respectively) from a large id space. Nodelg¢ describe the state kept at routers and how we use the state to
and keys are 128 bits long and can be thought of as a sequefi@avard packets. Then, we show how nodes join an already ex-
of digits in base2® (b is a configuration parameter with a typi- isting network. Finally, we describe how to maintain network
cal value of 3 or 4). Given a message and a key, Pastry routgfgte in the presence of failures.

the message to the node with the nodeld that is numerical:l‘?/ .

closest to the key, which is called the key's root. This sims-1 Architecture

ple capability can be used to build higher-level services lik

a distributed hash table (DHT) or an application-level group Ny o0 e
communication system like Scribe [6]. Overlaye. -7 o
In order to route messages, each node maintains a routing taple 300 gre==r r——
and a leaf set. A node’s routing table has aldopt., NV rows
and2® columns. The entries in rowof the routing table refer derlly o2
to nodes whose nodelds share the firsligits with the local 3 ‘

node’s nodeld. Thér + 1)th nodeld digit of a node in column
c of row r equalsc. The column in row corresponding to the
value of the(r + 1)¢h digit of the local node’s nodeld remains
empty. At each routing step, a node normally forwards the mes-

sage to a node whose nodeld shares with the key a prefix thajg, oq4) is to leverage the design of structured overlay net-

at least one digit longer than the prefix that the key shares WiWorks to perform efficient routing, without relying on a net-

the presentnode’s id. If no such node is known, the message iy |ayer. Our approach involves developing a replacement

forwarded to a node whose nodeld shares a prefix with the kgyori jayer that cooperates with an overlay operating above
as long as the current node’s nodeld but is numerically Closgyy, maintain efficient routes between pairs of overlay nodes.

Figure 2: Our two-layer approach.



We use a two level approach, as shown in Figure 2. At tha&lgorithm 2 Route(nsg, final_key, next_overlay_hop, current_hop)
overlaylayer we use Pastry, which maintains pointers to nodes.: if (current_hop == final_dest)

based on the relative location of the node in the namespac@: deliver packet to application
At this level we maintain Pastry’s Routing Table and Leafset,3: if (current_hop == next overlay-hop)
which contain nodes that act as next overlay hops. Authe 4 consult Leafset and Routing Table to update

derlay layer, we embed state at intermediate routers to allow "ext-overlay-hop _

communication between overlay nodes. For example, if nod@:  consult forwarding table to findext_underlay-hop that can
000 is in 100's Routing Table or Leafset, then we will main- _ t;e used to reachext-overlay-hop

tain apaththrough the underlay from 100 to 000. To simplify_&_foward(msgpeat.-underiay-hop)

the discussion, we assume every node participates in both the

underlay and the overlay. A path consists of a set of hops, eaFuhn the Pastry routing algorithm to determine the next overla
of which maintains aeference pointeto the next hop that can y galg Y

; . . to take. We then consult our forwarding table to find the
be used to reach the last hop in the path. This path state is kQSQt network level hop to take towards the next overlay hop.

in a Forwarding Table at each hop along the path, which ma 5 . .
from destination address to next network hop. ‘Fn practice, we do not carry the next-overlay-hop in the packet,

) but instead use the optimization discussed in Section 5 to re-
Table £ contrasts properties of the overlay and underlay. Th€ompute it at each hop.

goal of routing at the overlay is to maximize the progress made

through the Pastry namespace. This is done with the PasBy3 Join procedure

routmg protocol, based on the contepts of thg Lgafset and ROLFﬁe goal of a Join is to embed state at the joining node J such
ing Table. The goal at the underlay is to maximize the progrs\fr?at on completion. the ioinina node can route to anv other
made through the topology towards the next overlay hop. We P ' J 9 y

do this by embedding reference pointers along short paths connqde’ and any other node can route to the joining node. Our

necting pairs of overlay nodes. Packets then follow this traﬁpproach consists of three stepddress assignmeruverlay-

of pointers to reach the next overlay hop. These pointers a?ger discoveryandunderlay-path establishment

stored in the Forwarding Table. An end-to-end route is confddress assignment: First, J is assigned a random address.
posed ofa sequence of Over|ay hops chosen by the pastry roUﬂ.lS address is static, and will hence not be eXChanged with

ing algorithm, each of which is composed of a sequence 8ther nodes nor changed after joining the network. The bene-
underlay hops. fit of static addressing is that a certification authority can sign

nodelds thereby avoiding Sybil attacks, as described in [3].

3.2 Routing

Routing is performed by routing through the Pastry overlay. 314
To reach the next overlay hop, we use the reference pointers 312 ’@
embedded in the underlay to reach the next overlay hop. If this M 301 v@.

state is maintained properly, any node can route to any other 315 213 ,@

node in the network, since we will always be able to make

progress in the namespace at the overlay level and always able o
to make progress towards the next overlay hop at the underlay
level.

The packet header contains five key fielfiisal-key proxy-id, Figure 3: Overlay-peer discovery.
pathsetuplast-underlay-hopandhopcount The goal of rout-

ing is to deliver the packet to the node whose nodeid mo$ erlav-peer discovery Next. we pobulate the node’s Leafset
closely matches final-key. If the proxy-id field is set, the packe verlay-p IScovery INext, we popu

and Routing Table. We use a procedure similar to a join in

will first be routed to the node whose nodeld most closel}s Stry 1o do this. There are two problems with using Pastrv’s
matches that value. The other three fields are useful in settin y o . P 9 y
n protocol directly. First, J has no way to route to other nodes

up forwarding state. If the pathsetup field is set, this packé the network aside from its neighbours. Second, nodes inside
causes a reference pointer to be inserted in the Forwarding £ : '

s . e network have no way to route back to J, since we have not
ble pointing to last-underlay-hop with hopcount as an associ- : ' .
poIning u y-nopwi peou 3'/et set up any paths to J. We solve this problem by allowing J to

) ) ~use an already-joined neighbor as a bootstrap to route through.
We use Algorithm 2 to route: The algorithm works by usingn particular, J injects join messages through a bootstrap, and
Pastry to find the sequence of overlay hops necessary to regher nodes respond to J by routing back through B.

final_dest, where final_dest is set to eitherfinal_key or . - - .
roxy-id. It uses the forwarding state maintained in the undeAn example is shown in Figure 3. The joining node J queries
proxy-e. g {he network to determine a suitable list of candidates for its

lay to reach the next overlay hop. In particular, at each hop, we . . .

first check to see if we have reached an overlay hop. If so, :’I\%aeafset and R_outmg Table. It br_oadcasts a query to Its _n_elgh—
ours, and neighbours respond if they have finished the joining

!In general, the pathlength in the underlay is the averadge.ofd) ~ procedure. J then injects message M into the network using one
(from [5]) over all levels of the routing table. There is also a factor thaof its joined neighbours B as a bootstrap. M is routed towards
increases with churn, but this factor can be eliminated with Routing’s nodeld. At each overlay hop nodes determine the level to

Table repair. which their nodeld matches J's nodeld, and insert that level of

P

ated pathcost.




Table 1: Properties of the overlay and underlay layers for a network of size N and diameter d.

Attribute

Overlay

Underlay

Routing algorithm

Pastry-routing

Underlay-routing

Routing metric

namespace-distance

topological-distance

Data structures

Leafset, Routing Table

Forwarding Table

Average path length

O(logN)

O(d)

their Routing Table into the message. Eventually M reaches tleensists of three phases. The first phasedistaction and tear-
root R of J’'s address, and R inserts its Leafset into the messagewn phase that removes all state associated with the failed
R then returns the message by routing through the overlay toede. The next phase israpair phasethat repairs the con-
wards B, which in turn forwards it to J. tents of Leafset. We do not explicitly repair the Routing Table.
Underlay-path establishment J now knows its peers at the The final phase is aart?tion recoveryprotocol that detects and
overlay level (its Leafset and Routing Table), but has no way {&'€r9€s network partitions.

send packets to them. _In this stage, paths are built b_etwe_er_l ﬁ‘ﬁ Failure detection and teardown

node and elements in its overlay peers. This stage is split into

two phases: first, outgoing paths are built from J to all its ovetn this section we present our approach detecting failures of
lay peers. When these paths are completely set up, incomitggological neighbours and for repairing the Forwarding Ta-
paths are built from nodes that have made J one of their ovédates accordingly. Nodes periodically probe their neighbours to
lay peers. The procedure is split into two phases, as otherwisglicate liveness. All probing is done locally, there is no prob-
the joining node may be asked to forward a packet beforeiitg between overlay level peers. When a node X does not re-
can use all of its Leafset and Routing table to route, which careive a probe from a neighbour Y, we can infer that either the
greatly increase the length of the path traversed by the packitk (X,Y) was broken, or Y failed. In either case, X must tear-

If several nodes join at nearly the same time, then path estatewn all paths that traverse the link (X,Y). It does this by se-
lishment messages may be forwarded based on partially fillégcting all entries in its Forwarding Table that use Y as the next
Routing Tables and Leafsets. This can cause very long pathep, sending a teardown message to all forwardpointers and
between overlay nodes. By forcing outgoing paths to be builtackpointers associated with the entry, then deleting the entry.
first, we eliminate this problem. Two key issues arise when using this approach.

A joining node J requests path establishment from a node ¥

with three messages. First, it sends a path request message to el el ey e
Y through one of its neighbour®;, asking Y to route back @ ,,,,,,,,,,,,,,,, g S— g S— ,&( ,,,,,,,,,,, B S— g S— ,@
to one of its neighbourd/s. Y responds with a message that 7 e
has the pathsetup field set, causing each network level hop to
set a next-hop pointer to the previous hop the packet traversed. 'O
When J has filled its routing table, it responds with a path setl @ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >O idD.
message back to . (@ D. count=1)
count=1)

3.3.1 Optimizations

Two optimizations can improve performance. First, we can Figure 4: Example of path teardown.

merge the path establishment and namespace-peer discovery

phases. For example, when the query is routed from J 10 thq first issue that arises involves determining which parts of
root, each overlay hop can request path setups from the roy{a nath to teardown. Consider the path shown in Figure 4, and
ing table entries they insert on behalf of J. This can decreaggppose node Z fails. Nodes between S and Z must remove

overhead, as their routing table entries are likely to be close {Qqi; forwarding state associated with this path, but nodes be-

J. Second, we can trade off between resilience and routé qUglaen 7 and D should not necessarily do the same, since S2

ity when choosing the bootstrap. To maximize route qualityg using part of this path. We solve this problem by using two
we choose the neighbour whose nodeld most closely matchgses of teardownssoftandhard. A hard teardown indicates
the nodeld we're trying to send to. To improve resilience, W4t the path being torndown is no longer available and must
randomly choose from amongst all our neighbours. The formgl, removed from the Forwarding Table. A soft teardown indi-
reduces the number of hops the message travels, but inCregsgas that the node initiating the teardown no longer wishes to

fate-sharing, as typically many underlay paths end up goingse the path. Receipt of a soft teardown causes nodes to delete
through the same neighbour. the appropriate entry from the reference list.

The second issue that arises involves determining which parts
of a path to teardown, when the path contains a loop. Sup-
The routing state of the overlay and underlay must be maifypse the destination D fails in Figure 5. Then we will need to

tained in the presence of failures. The maintenance procedy&@rdown the entire path. Suppose instead that node 201 fails.

4 Maintenance



member is still alive, we need to acquire a new working
path to it. If it has failed, then we need to delete it from
the leafset.

First we describe the original leafset repair mechanism used in
Pastry. Then, we describe modifications we made to make the
mechanism work at the network layer.

We now describe the leafset repair mechanism used in the orig-
inal Pastry design [23], which we use as a basis for our ap-
proach. Pastry updates leafset state when nodes join and leave
Figure 5: Example of loop in forwarding state. the overlay. When a node joins, it is responsible for informing
each of its leafset members about its presence. Each node then
periodically sends keepalives to its neighbors. When a node
In this case, it would be desirable to tear down only the Ioo;lfavs.e the overlay or fa||§, It stops.respondlng to keepe}hves,
. L X causing nodes to delete it from their leafsets. Pastry relies on
since there is still a working path between S and D. We solvc?l . ; . .
) L . ) the invariant that it has at least one live leaf set member on each
this problem by maintaining two types of pointggemaryand . . o . :
) . - __gside. Leafset repair ensures this invariant holds in the presence
secondary The first backpointer and the last forward pointer . .
) . . of very massive failures. When a nodeletects that all mem-
to be inserted are labelled as primary, and all other pointefs = . . . X .
. . . “pbers in one side of its leafset are faulty, it selects the nogkeid
are labelled as secondary. The primary forward pointer poin

to the shortest path to the destination, and the primary bac 1at is numerically closest to’s nodeid on that side from all

ward pointer points to the shortest path towards the source. \gextnes inits Routing Table. It then asksto return the entry in
e
e

R . ) routing table with the nodeid closestsits nodeid that lies
then forward teardowns as follows: if a teardown is receiv

. . . . tweem’s andm’s nodeid. This process is repeated until no

on a primary pointer, forward it out all primary and secondar : . . .

. . . . ore live nodes with closer nodeids can be found. To improve
pointers. If a teardown is received on a secondary interface, | . o
e : : convergence, ahadowleafset is used that maintains the
is ignored. This prevents paths from being torn down unneces- . ; : .

X . nodes in the right leafset of its furthest leaf on the right, and
sarily when failures occur on loops.

thel/2 nodes in the left leafset of its furthest leaf on the left.

Final | Reference list: Pastry’s leafset repair mechanism does not work efficiently
key | | Bouree- | Primary- | Primary- | Backpointer | Nexthop-list when applied directly at the network layer. The reason why
@l | backpoirter | nethep | list: Nethop-id | is the design of Pastry assumes an underlying IP layer, and
iafkpmm' Hedhop-id 2 if a node is working in the network it is reachable through this
gackpmr_ layer. In our problem we do not rely on IP and hence we cannot
2 make this assumption. Suppose X loses Y from its leafset due
to a path failure between X and Y. Pastry would assume that
Sourcs- | . Y has left the network, causing X to delete Y from its leafset
i1 and informing each member of its leafset to do the same. We
: solve this by having X first try to discover whether the event

was a path or a node failure. It does this by routing a message
Figure 6: Contents of a forwarding table entry. to Y using a member of its leafset as a proxy. It repeats this
for each member of its leafset until Y responds. If Y doesn'’t
respond, it is highly likely that Y has failed, since the mem-
The structure of a Forwarding Table entry is shown in Figure §ers of X’s leafset will be widely distributed in the network, so
Each row is associated with a final destination, and a couRtgeletes Y from its leafset. On the other hand, if Y receives
of the number of sources that are using this entry. Associatggk message, it sends back a path setup message to X. In or-
with each source is a list of backpointers, and a list of nextter to reduce stretch, Y does not route the path setup message
hops. Itis necessary to maintain more than one backpointer aﬂ}ﬁiough a leafset member, as the path would then be the length
more than one nexthop for each entry, since loops can ocGftwo leafset hops. Instead, X embeds a topology neighbor in
when setting up this state. Hence, we need to maintain pointgfe message it sends to Y, which Y uses as a proxy to reach
corresponding to the loops so they can be torn down later.  x_\ve describe further methods to reduce overhead of leafset
repair in Appendix I. Finally, all probing is done locally, and
a node receives notification of a failed path by teardown mes-
The goal of leafset repair is to maintain leafset consistency gages originated due to the failed link/node.

the presence of network churn. It is composed of two parts. -
4.3 Partition recovery

4.2 Leafset repair

1. InsertionsWhen a new node is discovered that belongs i
our leafset, we need to inform the other nodes about it
they can insert it in their leafsets as well.

etwork partitions can occur in several ways. First, a router
may fail that comprises the only point of contact between
nodes on either side of it. Or, a group of nodes may move away
2. Repair/Deletion®Vhen a path is lost to a leafset memberfrom the rest of the network. In either case, the routing state of
we need to distinguish between two cases: if the leafs#éie networks will reconverge to two separate rings as shown in



Hence we select the node with the smaller nodeid to perform
this task.

4.3.2 Repair

When node Z detects the partition, it attempts to add X's leafset

into its own. For every element that is inserted, Z requests a
path setup from that element using X as a proxy. Then, Z sends
a reply message to X containing its leafset. X then attempts to
Figure 7: A network partition triggers an overlay partition, 2dd Z's leafset into its own, and requests path setups using Y
as a proxy. By adding the new nodes into X's and Z’s leafset,
we ensure that every node in Z's partition that should be in X’s
leafset is inserted into X's leafset, and vice versa. Furthermore,
Figure 7. Two rings will form for the following reason. Con- these insertions trigger Pastry’s leafset maintenance algorithm
sider a node in the smaller partition. Either it will lose all itsto be invoked_ Th|S causes X to Send a Copy Of |ts |eafset to
Leafset members, in which case it will try to rejoin by boot-eyery member of its leafset, and causes Z to do the same. When

strapping through a neighbour, or, it will have a Leafset mempastry’s leafset maintenance algorithm finishes executing, the
ber in its partition, which it will trigger Leafset repair through. o partitions will have converged.

In either case we will get two rings.

A

When the two networks are once again able to contact one a"‘r—?"3 Analysis

other, we need a way to make them discover one another agdppose there arenodes in the smaller partition aid nodes

to reconverge overlay state to form a single ring. Our approagh the larger partition. The total number of overlay messages
to solving this problem consists of two phases: g&}ection  required to join the two partitions 8(n * (logn + log N)). If

in which two adjacent routers discover that they are part of is much smaller thaiv, the total cost i) (log n + log N).
different network partitions (2epair, in which the two parti-

tions are merged into a single network. Some form of partitio
recovery is necessary for correctness, since certain sequen
of failures could cause our routing state to be partitioned intga
two disjoint networks, even though the underlying network is

connected (although such an occurrence would be quite rardj€Pair: In the worst case, every node in the smaller partition
will be inserted into the leafset of a node in the larger parti-

tion. Each insertion will generate a constant number of overlay
messages, each of which will tak&logn + log N) overlay
Y messages. No more thdn« n insertions can take place in the
@ A Z larger partition, wherd. is the size of the leafset, since each
” node in the smaller partition can only be inserted in to at most
L nodes. Also, each node in a partition only needs a single
message exchange to correctly fill its leafset. This is because
a node’s final leafset will always be a strict subset of the leaf-
Figure 8: Example of partition detection. set of the node with the closest nodeid in the other partition,
unioned with its own leafset. Hence, there can be no more than
L % n insertions in the smaller partition as well, and so repair
takesO(L x n x (logn + log N)), which dominates detection.

Detection:A detection message is routed ovflog n) over-
Pc\%/ hops in the smaller partition an@(log V) hops in the
I‘é aer partition, resulting irO(logn + log N') overlay mes-
ges.

4.3.1 Detection

An arrival of a new node can sometimes indicate that anoth& Optimizations

par:!tlor; h.?s becom((ja _rde?rt]:habli.thA hode dgterz]rl;nlnesdthls We improve upon our base technique through the use of several
routing to 1ts own nodeid through the new neighbor an maifiptimizations. In our simulation results, we only usedpha¢h

ing sure it receives the message back. truncationoptimization when collecting our results.

Suppose the network is partitioned as shown in Figure 8. Wh@fy,, 1,ncation: When routing through the underlay between
anode X acquires a new nglghbourY, X asks Y to route a mesy, flay hops, we may come across a path that allows us to
sage to X, using any outgoing interface except the one attached, . greater progress through the namespace. By choosing

to X This message cont_alns X's Ieafset._ Y_walts until its I‘e""ffhis path instead of proceeding on the current path, we have
setis stable (i.e. all_quenes to elements in its Leafset have begrbreater likelyhood of reaching the destination in fewer hops.
acknowledged or timed out) and forwards the message. If thgyis a10ws us to leverage the path state inserted by other nodes
message resolves at X, a partition is not detected. Otherwsetd short-circuit towards the destination. We do this by search-

the message reaches somelgther ”O‘P'e Z, Z.detects a_part'ﬂﬂﬂ’the forward table at each network level hop, selecting the
and initiates the overlay partition repair algorithm described ig

. . ; tries that match the final-key in the greatest number of dig-
the next section. If desired, X may repeat this procedure seve[é and of these we select the one with the lowest path-cost.

times to mitigate effects of transient instability. To eliminate reHne complication that arises involves routing to a member of

dundant messages, only one of X or Y need initiate deteCtiofhe Leafset when crossing the zero boundary of the ring. For



example, if 996 routes a packet destined to final-key 999 tat the overhead increases logarithmically with the number
a member of its Leafset 000, then we must disable this optf nodes in the system. We also found that the stretch increases
mization to prevent the packet from being redirected to nodésgarithmically (as shown in Figures 9 and 10), and that both of
matching a larger prefix. We use a field in the packet header tivese results remain stable in the presence of churn. Hence, we
disable this optimization in such cases. are able to achieve the logarithmic growth in delay and over-

Lazy updating: Suppose X has a path to destination D on pelead without relying on a network layer transport mechanism

half of some node Y. Suppose another node Z wishes to acquitech as IP-
a path to D, and its request gets forwarded to X. X can then re-
spond to D, without updating the reference counts along the
path. It can wait until both Y and X withdraws the path to up- .
date the reference counts. This reduces overhead.

Localized reactiort When the path is set up, the source regis-
ters the position the destination node fills in the source’s Rout-

stretch
-

ing Table or Leafset. When X detects that a failure has occurred Bt =
on a path traversing it, X may be able to reroute based on this e
information. In particular, it looks at the reasons for all nodes T R T e

number of nodes

that use the path, and reroutes as many as them locally as possi-
ble. For example, if X has a path to final-key ABCD, and nod
Y is using the entry to fill its AB* entry of its routing table,
then X could reroute locally to ABEF if it has a path to it.

%igure 9: Stretch for various network sizes (flat random topol-
ogy).

Local topology discovery Each node can maintain current
state of topology within a certain radius around itself. This

information could be used to short-circuit long routes and to ‘

adjust to very fast-changing metrics (e.g. link congestion) lo-

cally without significantly decreasing scalability by propagat- 15 —_—

ing such information globally. This design is similar to the ap- | i

proach taken in ZRP [15]. Unlike ZRP, which uses proactive E

routing inside the ball and reactive techniques outside of the o bz |

ball, we are able to use a uniformly proactive approach. The in- ' biis —o—

variant that we must make progress in the namespace allows us . b T

to combine a localized flood with Pastry without getting loops. S s

6 Experimental setup Figure 10: Stretch for various network sizes (transit stub topol-

We used two simulators to acquire our results. To investiga?egy)'
how our approach performed in very large networks, we used
the Pastry simulator [37]. We also implemented our approach

in ns-2 [38] to more accurately simulate network effects at
the expense of scalability. We leveraged the CMU Monarch
wireless extensions in ns-2 to compare our approach to AODV,
DSR, and DSDV. We used the same simulation parameters and
attempted to configure the environments in a similar fashion to
ensure that comparisons made across simulators were fair.

All results use the following default parameters unless other-
wise mentioned. The number of domains b=4 and the Leafset L

size I=8. We used the same topology as in [2], with 50 nodes ORI erotrames %
randomly distributed over a 1500x300 meter grid with a radio

range of 250 meters. We set the bandwidths of links to be ifrsigure 11: Overhead for various network sizes (flat random
finite in both simulators to eliminate effects due to congestiotPpology).

and contention. We used the path-truncation optimization dis-

cussed in Section 5, and disabled the other optimizations. We

used the Leafset maintenance algorithm described in [23], apdy  Maintenance

not the algorithm described in Section 10.

stretch

In this section we investigate the ability of our approach to
7 Results maintain up to date state in the presence of churn.

- We found that the overhead caused by a link failure could be
7.1 Scalability greater than logarithmic. This happens since when a link fails,
Figures 11 and 12 show the number of messages requirexkry path that traverses the link must be torn down. We exper-
to perform a join, for varied numbers of nodes. We can seémented with three approaches to reduce overhead:
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Figure 12: Overhead for various network sizes (transit stub Figure 14:Mobility: Overhead for varying pause times.
topology).

1. Next, by storing less specific routes we could reduce the
number of paths. That is, we could store a pointer to A*
(any nodeid starting with A) instead of ABCD (the node
with nodeid ABCD) to fill the A* entry in the routing ta-
ble.

2. Finally, local recovery (rerouting locally around the fail-
ure) could reduce this substantially, since there would be B ——
no need to tear down the entire path. The savings would
be even more if the graph has small world properties (dsigure 15: Comparison of our approach with AODV and DSR.
flat, ad-hoc networks have). If each node communicates with on average 6 or more other

nodes, during some period of time when the network is other-
We implemented local recovery and found it substantially rewise stable, our approach uses less overhead than AODV and
duced overhead in ad-hoc like networks, as 2 or 3-hop reroutBSR.
tend to exist for many links. This made teardown overhead only
10% of what it was before, making join overhead the scaling
bottleneck.

tion: how many pairs of nodes need to communicate before our
Interestingly, with heterogenous churn, the system adapts bBpproach has lower overhead than the reactive approaches?

moving routes away from unstable nodes (ie paths through i@ consider two configurations of our approactow-stretch
ble nodes tend to remain, while paths through unstable nodgsnfiguration that attempts to minimize stretch by maintain-
tend to be torndown and rerouted elsewhere). ing many Leafset members, andbav-overheactonfiguration
73 Mobilit that reduces overhead by reducing the number of Leafset mem-
. Y ) A o
bers it maintains. We vary the average number of destinations
a node communicates to over some period of time. We can see
that even for the low-stretch configuration, if each node sends
packets to on average to 10 or more other nodes, then our ap-
proach generates less overhead than both DSR and AODV. The
crossover point drops to 4 or more other nodes for the low-
overhead configuration, but the small Leafset size increases the
stretch from 1.33to 1.57.

Another benefit: since our approach is proactive, the first

250000

150000
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[ beaks o packet sent to some destination acquires the same amount of

o
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area [square meters) delay as other packets. In the reactive approach, the route is

not constructed until needed, so the first packet sent to a new
destination must wait in the outgoing queue until the route is
built. For applications that require contacting random destina-

Figure 15 compares the overhead of our approach with two ggns for shqrt sessions, this could incur a large penalty that is
not present in our approach.

the current standards for multihop ad-hoc wireless networking:
AODV and DSR. AODV and DSR are referred tomactive DiscussionWe use periodic keepalives for neighbor detection,
protocols, as they do not create routes between a pair of nod@ighout link-layer failure detection. Consistency of forward-

until they are needed. Our approach on the other hamoic-  Ing state is maintained, since 802.11b does explicit ack’ing
tive, in the sense that on startup it sets up state so that any pgfSMA/CA). Because of this, we always know if a packet

of nodes to communicate. Here we attempt to answer the quégached the other side, so we can maintain that pairs of nodes
have consistent forwarding tables. If desired, we believe we

Figure 13:Mobility: Overhead for various network sizes.



could decrease the number of dropped packets further by d®@eerNet restricts the number of paths available to route a
ing random rerouting: if the next hop on the underlay path isnjpacket, inflating pathlengths and increasing fate-sharing. GHT
reachable, choose an alternate working path based on prefigies on GPSR [19] to route packets, inheriting its reliance

match length. on location information. This information can be acquired by
adding a GPS device to each node, which may be prohibitively
8 Related work expensive in environments. Alternatively, it is possible to com-

'%ute virtual coordinates for each node and perform routing in

Many of our techniques are not new and are borrowed fro . .
previous work. For example, our underlay routing and maintethat space [27]. However! this has the_added expense of causing
number of floods that increases with the square root of the

nance i n AODV, and overlay routing i n Pas- ) .
ance is based on AODV, and overlay routing is based o aas mber of nodes in the network. Moreover, it needs a mech-

try. Here we describe some related work to put our approa ism to discover perimeter nodes in the network, which ma:

in context. Routing algorithms may be classified along severg["'S™M to. P . ! y

di o not exist in some topologies. Our approach uses overhead com-
imensions: X .

] ) ~ parable to this approach, but suffers from neither of the above
Proactive/reactive: AODV [26] and DSR [14] are reactive, shortcomings. We see our approach as complementary to UIP.
and. flood a route request when a route to thqt destination dsur approach differs by providing a more complete implemen-
desired. DSDV [25] and TORA [24] are proactive, and workation, a wider exploration of usage scenarios, and by devel-

by maintaining up-to-date state about paths to every other dssing mechanisms for path maintenance and recovering from
tination in the network. Our approach is proactive, but onlyyeray partitions.
proactively maintains routes to the subset of other nodes cho-
sen by Pastry’s routing algorithm. It may be possible to set u® Conclusions
certain paths reactively to lower overhead in networks where . . . .
only few pairs of nodes intercommunicate, but we did not tr)I/n this paper we leverage design techniques developed m_the
to do this. context of structured overlays to develop a new ad-hoc routing
o ) protocol. Our approach maintains both the massive scalability
State localization: Second, routing schemes may be classiyng the high quality routes of structured overlays, without re-
fied by how they limit the amount of control state propagatec.pying on any network layer transport mechanism such as IP.
Tree-scoped schemes such as Span [7] and CEDAR [31] majpyytperforms three of the current standards for ad-hoc multi-
tain a spanning tree covering all nodes. Hierarchically-scopgp routing, even for small networks and networks with mostly
schemes [22] organize nodes into domains that aggregate tORQa| communication. It maintains these characteristics in the
logical state before sharing it with nodes in other domaingresence of churn.

Link/node-scoped ZRP [15] and FSR [12] bound the propa]—

gation of state information based on the distance from the aé} | purpose routing infrastructure based on the techniques dis-
vertisement origin. Athough these tree-based and hierarchicaf- PP 9 q

based schemes decrease overhead, they increase fate Shafiﬁ#a%}%f:e? t:)htI)SeF;:EgIr\./;jhlliirbsrtmv%z ulg r? tfggagﬁrpebe;r?grlris;necse
a large number of paths flow through a small number of IinkS'nder more stressful wo.rkloa(,js w?th high de reespof mobilit
Our approach balances paths across a large number of Iin%s, ; o 9 9 Y

. : and churn. Next, it may be desirable to embed BGP-style poli-
reducing fate-sharing. . . . , . .

. _ . . cies using our technique to perform traffic engineering, route
Static/dynamic nodelds:Finally, addresses may Isgatically filtering, and route selection. In addition, it would be desirable
bound to nodes, or may hiynamicallyreassigned based on thetg achieve fast and stable convergence in the event of changes.
position of the node. We chose to statically assign addressesally, it may be possible to leverage our design to enhance
since it is not clear that dynamically assigned addresses hayg functionality that the network layer can provide, for exam-

better locality properties. Also, static assignment makes certgife to provide service lookup and discovery, and content-based
attacks on the system difficult [8], and eliminates the need fepyting.

a location service.

future work, we are primarily interested in developing a gen-
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Leafset probes, but instead rely on probes between adjacesed to form routes between overlay nodes, and the hopcount
nodes coupled with teardowns to detect failures. is used to select the shortest path when several possibilities are

There are two main ideas behind our approach. First, we assigffSent to make progress toward the final destination. Finally,
responsibility for detecting failure of a node X to the node Ahe blogkshortc_:ut field is used to disable an optimization dis-
immediately to the right of X in the Pastry ring. A then batche§USsed in Section S.

up the requests, determines whether a path to X can be rg; . .
eStainshSd, and then distributes informa{)ion that can be usfc} Appendlx II: Secumy

to recover from the failure. Next, we distinguish between patide show how to secure against three types of attacks:

and node failures by determining if some member of X’s Leaf-

set has a working path to X. If so, the event was path failure, if ¢ A node cannot remove routing state corresponding to
not, the event was most likely node failure. a path that it does not appear on. Nodes sign route-

Leafset recovery is then performed as follows. First, when Setups and route-removes they generate. When a new
node A loses a path to a node X that it is responsible for, it ~forwarding-table entry is created, the signature of the
waits for a timeout. Other members of X’s Leafset send ames- Nnode that generated the route-setup is stored. When a
sage to A if they lose a path to X. Each of these messages route-remove is generated, state is removed only if the
contains the nodeld of the member and a bootstrap node im- Signature in the packet and in the forwarding-table entry
mediately adjacent to the member in the topology. There are match.

two casespathfailures anchodefailures. e A malicious node cannot trigger a resource-consumption

Path failures:If there is some member K of X's Leafset that attack by requesting too much forwarding state: Each
does not send A a message, then the event is a path failure. In  node can limit the amount of state that can be stored due
this case A attempts to recover by sending a message to X using to a particular node’s requests. Identity can be verified
K as a proxy. The message contains a list of all nodes that have through signatures. This reduces the amount of state an
X in their Leafset and their respective bootstraps. If K receives  attacker can introduce 9 (log n) per node= O(n logn)

this message it attempts to initiate paths to every node in the total. This can be reduced further ®©(logn)total by
message, by sending path setup messages to their bootstraps. choosing a policer node to intermediate requests to set up
On failure, A repeats this procedure for every member K that  information, at the cost of increased path setup time.

has a path to X. If this procedure fails, A sends a request to X

up through K. other node, unless the other node is also malicious: Hash

chains [16] can be used to prevent this. As noted this does
not protect against pairs of malicious nodes. The effect
of pairs of collaborating malicious nodes could be signif-
icant and requires further analysis.

Node failuresif all members K of X's Leafset send A a mes-
sage, then we assume a node failure occurred. In this case, A
attempts to recover by instructing each member to shift in a
new member into its Leafset to replace X. In particular, for
each node J in X’s left Leafset, A selects the node | in X’s right e |f nodes can suggest reroutes to other nodes, only nodes
Leafset that should be inserted into J's Leafset to replace X. along the path P can suggest the source change its path
A then sends a message to J, containing I's nodeld and boot- from P. Further, these nodes can only suggest shorter
strap. J then initiates path setup to I, by routing a pathsetup paths: We can prevent nodes along an alternate path from
message to I's proxy containing J's bootstrap. | then sends a changing the path with signatures. Also, the source must
path setup message back to J. Note that for the node J such that only accept an alternate path if it can verify that it is
I=A, we can eliminate a message by setting the pathsetup bit shorter (again using hash chains).

in the message A sends to J.

The packet header is shown in Table 2. The goal of routing2 ~Appendix IlI: Alternate design choices
is to deliver the packet to the node whose nodeld matches
final-key field in the greatest number of bits. If the proxy-i
field is set, the packet will first be routed through the nod
whose nodeld most closely matches proxy-id. If the recipient
is to respond back to the sender, the recipient can route back to
the node that best matches source-id. The source may still be
in the process of joining or failure-recovery, and hence routes
directly to the source may be unstable or unavailable. In this
case the source will place a neighbour into bootstrap-id, and
the recipient will respond back to the source via the node most
closely matching bootstrap-id as a proxy. The hopcountfield is ¢ Detection of asymmetric links We can automatically
set equal the total number of underlay hops the packet has tra- detect asymmetric links during the exchange to use 3 mes-
versed. If the pathsetup bit is set, the message will cause aref- sages if all links are symmetric. Protocol: X starts by trac-
erence pointer to be inserted at each underlay hop, and will set  ing the path to Y. Y knows (from its join) whether there
the hopcount associated with the reference pointer equal to the are any asymmetric links on its path towards X. If not,

hOpCOUﬂt contained in the packet. The reference pointers are vy Comp|etes the two message setup assuming Symmetric

gllﬁere are several other optimizations and design decisions that
gould be made.

Asymmetric links: We need four messages to setup paths
if the path contains an asymmetric link. Protocol: (a) X
traces path to Y, recording hops along the way. Y reflects
the trace back to X, which sets up state at each hop. Y
then repeats this process. This requires 3 RTTS, since two
packets can be sent in parallel.



Table 2: Contents of packet header. Non-bold fields are optional.

Source-id £° bits) | Message type (3 bits) Final-key (2° bits)

Pathsetup (1 bit)

Blockshortcut (1 bit)

Proxy-id @° bits) | Bootstrap-id £° bits) | Last-overlay-hop-id{® bits)

Last-underlay-hop-id{ bits

)

hopcount (16 bits)

links. Otherwise, Y completes the four-message setup as-
suming asymmetric links. (X’s neighbour needs to do the
same procedure when it routes to Y)

Selection of shortest path The joining node can request
forwarding state from several nodes and choose the short-
est. If paths are symmetric, it can trace the forward and re-
verse directions of the overlay path and choose the short-
est.

Caching forwarding state: When the last reference to a
path is removed, the forwarding state is moved to a fixed-
size cache and maintained using a policy like LRU.

Soft vs. hard state Instead of keeping a reference count,
keep a timer. The state must be refreshed periodically, or
it will be deleted after a timeout. Data packets could be
used as implicit refreshes.

Annealing: A node can periodically lookup a random en-
try in its routing table to search for shorter paths.

Seed/bootstrap selectionJoining nodes can vary which

neighbour it chooses to use as a seed. Choosing randomly

reduces fate sharing, but increases pathlength.




