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Abstract

A decentralized object location and routing data structure (or DOLR) locates copies of objects in
peer-to-peer networks. An eÆcient DOLR �nds nearby copies of objects when possible. The measure
of eÆciency is stretch, the ratio of the distance traveled to �nd an object to the distance to the closest
copy. Previous empirical work has shown that achieving low stretch is more diÆcult when objects are
nearby, and here we give one reason why this is the case.

Second, one of the important primitives for building a DOLR is �nding a nearby peer in the peer-to-
peer network. We compare two techniques for �nding the nearest neighbor in a peer-to-peer network.

1 Introduction

A peer-to-peer object location system is an evolving set of computers cooperating to store objects. In this

technical report, we analyze the stretch in such a system. Stretch is the ratio of the distance traveled in the

system to �nd a copy of the object to the direct distance to the closest copy. We describe a simple network

with low overall stretch (i.e., the average stretch over all pairs) but high stretch between nearby pairs, and

then show via simulation that the simple example is relevant to real networks. Building a low-stretch network

requires �nding a nearby neighbor as a primitive. In a second section, we show that a system's ability to do

this well depends on the underlying network.
Performance in the local area is particularly important when many paths can stay entirely within the

local area. This occurs when searching for a popular object in a system that publishes pointers rather

than objects (i.e., a DOLR rather than a DHT [DZD+03]) when objects are placed near their points of

access. (That is, the Berkeley room-reservation list is placed in the Berkeley subnet.) In the case of some

data types (like music), some objects are much more popular than others. For the popular �les, there are

usually nearby peers sharing the �le. Focusing on local area performance is also important when the objects

represent services rather than �les, since it may be important to �nd a nearby instance of the desired service.
In particular, large distances between nearby nodes often indicate an object location query path that

leaves the local area unnecessarily. Such paths not only present performance problems revealed by stretch

measurements, but will also consume limited and expensive wide area bandwidth, and the traÆc will be

more likely to su�er from router queuing e�ects and dropped packets. Thus, keeping a query in the local

area can greatly increase overall performance.
Two properties have been used to quantify performance in the local area. One such measure is stretch,

de�ned above as the ratio of the distance traveled in the system to �nd a copy of the object to the direct

distance to the closest copy. A second property is local convergence. A system is said to have local convergence

when search paths for a given object tend to meet up quickly. (That is, if A and B are nearby, and they

search for the same item, most of the search path should be the same.) Low stretch at every distance implies

local convergence, but not vice-versa.
In the following sections, we present an example showing that the e�ectiveness of techniques for low

stretch depend to on the structure of the underlying network.

2 Stretch at Short Distances

In this section, we show in a simple (and unrealistic) example that the overall stretch (i.e., the average

stretch over all pairs) is essentially unrelated to stretch between close pairs. Second, we present simulation

results showing that this simple example is saying something about the real system.
Place n overlay nodes at the integers on the number line, from 1 to n, such that adjacent nodes are

separated by a distance of one. (We assume that n is a power of 2.) A particular object ID and the routes

taken to that ID through the overlay create a logical tree on these nodes. Speci�cally, in a base-2 Tapestry

tree, roughly one-half of the nodes are in the bottom level in the tree, one-quarter are in the next level, etc.

Suppose the tree is \perfect", meaning that exactly every other node is a leaf, and consider the pair of nodes
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Figure 1: A perfect base-2 Tapestry tree, with hypothetical average parents.. A sample object location query
with an stretch of three is shown.

(2k�1; 2k), for some k > 0. If 2k is a leaf, then 2k's distance to its parent 2k�1 is one, and 2k�1's distance

to its parent (itself) is zero; the average distance from a node to its parent is 1

2
. To simplify the calculation,

imagine a hypothetical average parent located at a distance of 1
2
from both nodes, at 2k� 1

2
. These are not

physical nodes; rather, they represent the average length of the �rst hop of a route. We repeat this process

at each level of the logical routing tree (see Figure 1).
In Tapestry, objects are published by placing pointers to them at each node along the path from the

publisher to the root, and object location proceeds by checking for pointers along the path from the query

source to the root. The stretch is determined by where the publish and search path �rst intersect, or in

other words, the least common ancestor of the publisher and the query source.
We now calculate the average location stretch when the publisher and searcher are at distance one from

each other. Half of such pairs of nearby nodes share the same parent, and so have location stretch of one,

since the request need only travel a distance of one to reach the publisher. One quarter of the pairs share

the same grandparent, but not the same parent; for these nodes, the stretch is three (see Figure 1 for an

example). In general, if i = log2 n, for any positive j � i there are 2i�j pairs with location stretch 2j � 1.

The average stretch is then 1

n

Pi

j=1 2
i�j(2j � 1), or i �

Pi

j=1
1

2j
, which is less than or equal to logn � 1.

Thus, the average stretch is O(log n). A similar argument shows that for pairs at distance f , the average

stretch is O(dlog(n=f)e). Thus, for pairs at distance at least n=2, the stretch is constant. Since there are a

large number of pairs at distance n=2, the e�ect of these far away pairs e�ectively drowns out the stretch at

shorter distances.
The intuition behind the math is that a given point k needs to be able to route quickly to both k + 1

and k� 1, and a binary tree only allows it to share a parent with one or the other, forcing it to pay more to

reach the other nearby node. This choice happens at all levels of the tree.

Claim 1 Realistic topologies that have short stretch at long distances may still long stretch between nearby

pairs.

The argument for the line can be extended to networks that are based on d-dimensional grids. In fact,

this problem becomes greater, since in a d-dimensional grid a point is \closer" to more points, and may have

to choose among many more di�erent directions than two. (In fact, building structures like this is related

to �nding HSTs [Bar96,FRT03], for which there is a known lower bound.) To reduce stretch, objects could

be published to more than one \close" peer, (by having two parents, for example). However, the number

of such additional parents could be quite large{and in the extreme case, may include the whole network.

It may be that networks force a certain space-stretch trade o�, at least for networks that spread the load

equally among participants.1

Given the simplicity of the thought experiment above, it may be surprising that the simulation results

presented in Figure 2 con�rm that this indeed a problem for more realistic topologies. On the left, it shows

that the 90th percentile stretch goes down as the distance between the source and destination go up. (The

same is true of the mean and median stretch.) The histogram on the right plots the stretch for nearby pairs.

(See [SHK03] for more details.)

1It may be possible to make the preceding statement formal using techniques similar to those in [KL04].
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Figure 2: Tapestry stretch in a simulated transit-stub topology of 1092 nodes. The left shows the average
stretch as a function of the distance between the pairs. The right looks only at pairs within 25 ms and gives
the distribution of location stretch in buckets of exponentially-increasing size. The height of each bucket
represents the number of queries between such nodes with a stretch of corresponding magnitude.

This histogram shows that although the location stretch of most queries between nearby nodes is small,

for some queries it is very large. In fact, this is what our thought experiment predicts: since the stretch

experienced by a pair of nodes depends on their least common ancestor in the tree, we would expect the

number of pairs with a least common ancestor at level k to decrease exponentially in k, while the stretch

experienced should increase exponentially. Note also that there is nearly a factor of two di�erence between

the mean and median (and more than a factor of four between the median and the 90th percentile), suggesting

that the local area stretch measurements experienced by lookups varies widely{again a prediction from the

simple case. The overall mean stretch for queries between any two nodes is just 3.01 (less than half of the

mean stretch for close objects), demonstrating that overall measurements obscure information about the

stretch between nearby nodes.

3 PNS(k) and network structure

A peer-to-peer network with Proximity Neighbor Selection [GGG+03] attempts to use nearby neighbors

when possible. It is, however, not at all obvious how to �nd nearby neighbors in a peer-to-peer network.

Gummadi et al. [GGG+03] propose a technique called PNS(k). It picks k possible neighbors uniformly at

random from the entire network, and then chooses the closest of these k samples to be the chosen neighbor.

Gummadi et al. [GGG+03] show that, in practice, this algorithm performs nearly as well as perfect neighbor

selection algorithms.
However, they also show that the performance depends on the size of k relative to the the desired

\closeness". Gummadi et al. [GGG+03] depend on this implicitly when they simulate a system of 65536

nodes that contains a stub domain of m nodes. Their Figure 11 plots the local convergence of routing

paths for some neighbor selection algorithms as m varies. In their simpli�ed model of the network, local

convergence is measured by whether or not paths for the same object meet before leaving the stub. But the

local convergence of the PNS(16)+PRS scheme depends on m; by looking at the �gure, one can see that

the turning point is roughly when m � 65536=16 = 4096. This is exactly what one might expect{when 16

samples are taken, one will likely be within the stub, and two paths for the same object converge within the

stub.
In this technical report, we look a little deeper at the performance of PNS(k). We use inter-node latency

measurements gathered for 2051 nodes by Dabek and Li using the method from [GSG02].2 We call this the

King data set. Figure 3 shows the performance of PNS(k) on this data set. This suggests that PNS(k) may

need many samples to perform well.
We compare this technique to the backward routing technique described by Castro et al. [CDHR02]

and Hildrum et al. [HKRZ02]. (The algorithm described by the two sets of authors di�er somewhat in the

details.) They use the routing structure as follows. Starting with some peer A in the network, consider all

2http://www.pdos.lcs.mit.edu/p2psim/kingdata/
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stretch
k mean median
1 85.8 70
2 59.7 56
4 40.3 32.5
8 28.1 23
16 21.2 17
32 14.8 12
64 9.7 6
128 6.0 3

Figure 3: PNS(k) performance on the King data set. Notice that k must be quite large get a stretch less
than 10. This makes sense, as only 1-5% of the nodes are within distance 10 or 20 of a given peer.
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Figure 4: Comparison of Tapestry with digit sizes of 2 and 16 to PNS(k). When the digit size is 2, PNS(k)
compares favorably with the Tapestry technique. When the digit size is 16, Tapestry is better than PNS(k).
The x-axis shows the number of nodes kept per level in the algorithm.

the nodes that use could use A as a next hop. From those, pick the closest l to the querying node. Then, look

at all the nodes that could use that as a next hop, and repeat. We call this \backwards-routing" because

they use the routing mesh backwards. This algorithm is naturally parameterized in terms of l, the number

of nodes kept at each level. Because of the locality-preserving structure of the Pastry and Tapestry trees,

this is di�erent than selecting some random peers in the network. There are proofs of correctness for a more

complicated version of this algorithm [HKRZ03,HKMR04,HKR03].
We then compare the backwards routing algorithm to PNS(k), as follows. For every test point, we run

the Tapestry algorithm, counting the number of distance queries. We then allow PNS(k) to make exactly

the same number of queries. The results of this comparison are shown in Figure 4.
When the Tapestry digit size is two, these two algorithms are close in performance. Given the simplicity

of PNS(k), this suggests that PNS(k) is the right choice. When the digit size is 16, the di�erence between

the Tapestry search algorithm and PNS(k) is larger, but di�erence is not great enough to make the Tapestry

technique a clear win.
To check the consistency of the results, we ran the same test on a 50,000 node network in Euclidean

space. Figure 5 shows that the Tapestry neighbor search algorithm is clearly better in this context. Notice

that even when the algorithm keeps only one per level, the median Tapestry stretch is 1, which means at

least half the queries return the exactly correct answer! On the other hand, the comparable PNS(k) returns

an answer with a much higher stretch. Thus, the network model matters a great deal.
This di�erence could be due to peculiarities of the King data set. In particular, the King data contains

surprisingly large violations of the triangle inequality; it is not clear whether this is the e�ect of the data

collection method or really represents the Internet structure. However, some related works suggests that the

King data set may be representative. Rhea et al. [RGRK,RGRK03] examine at the performance of nearest

neighbor techniques as part of a DHT in a dynamic network, and in their case, the performance of the

4



 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14  16(d
is

t t
o 

fo
un

d 
ne

ig
hb

or
)/

(d
is

t t
o 

cl
os

es
t)

number kept per level

Nearest-neighbor in Euclidean Space

Comparable PNS(k), mean
Comparable PNS(k), median

Tapestry, mean
Tapestry, median

Figure 5: Tapestry neighbor search vs. PNS(k) in Euclidean Space.A comparison of the neighbor search
algorithm of Tapestry and the comparable PNS(k). The network contains 50,000 nodes, and the search was
run from 1000 random points.

Tapestry neighbor algorithm is essentially equivalent, and perhaps slightly worse, than the performance of

PNS(k). The fact that they get similar results using a di�erent network model (it uses ModelNet [VYW+02])

suggests that the mediocre performance of the Tapestry neighbor algorithm compared to PNS(k) cannot be

blamed on the King data set. However, both the results of [RGRK,GGG+03] and the King results presented

here used networks in the thousands,3 so scale may be partial explanation.
The main disadvantage of the backward-routing techniques is the high number of pings, even when only

one node is kept per level. It may be possible to eliminate this problem with the use of synthetic coordinates

(as in [CDK+03], for example), which allow approximate distance measurements without network traÆc.
While this technique has been analyzed in terms of PRR-like networks, the same backward routing

technique may be applicable in other proximity-aware networks (such as a ring with PNS [GGG+03]) to get

a structure that could be used to achieve similar performance.

4 Conclusion

This paper provides two examples of ways in which the locality properties of peer-to-peer networks depend on

the underlying network con�guration. First, we show using a simple example that stretch at short distances

may be unreasonably high even when overall stretch is quite low. Though the line example seems to be quite

di�erent from a real network, it does predict the results from an experiment on a transit-stub network.
Second, we argue that PNS(k) is probably not the right method to �nd nearby neighbors in locality-aware

networks. We present data that shows a long-standing technique performing better given the same number

of distance measurements.
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