Technical Report: Randomized Rumor Spreading with
Fewer Phone Calls*

Kirsten Hildrum Sean Ma Satish Rao
Unwversity of California, Berkeley
{hildrum@cs, seanma@hkn.eecs, satishr@cs}.berkeley. edu

Report No. UCB//CSD-04-1329
June 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

* Kirsten Hildrum supported by NSF career award ANI-9985250,
NFS ITR award CCR-0085899, and California MICRO award 00-049.
Satish Rao supported in part by NSF grant CCR-0105533

Abstract

Rumor spreading algorithms are a useful way to dis-
seminate information to a group of players in the
presence of faults. Rumors are either spread by push-
ing, in which the players knowing the rumor call
other players at random and spread the rumor, or by
pulling, where players who do not know the rumor
call other players and ask for any new rumors.

The efficiency of the algorithms is often measured
in the number of transmissions (the number of times
the rumor is shared), but could also be measured in
phone calls (the number of connections that need to
be made between players.)

In this technical report, we make two observations
to reduce the number of phone calls. The first idea
spreads the rumor in a randomized way and then uses
a fixed-connection network (such as a tree) to finish
sharing. This uses many fewer phone calls than pure
rumor spreading, though some nodes may not be no-
tified. Second, we observe that using both push and
pull but pulling infrequently can reduce the number
of phone calls if rumors enter the network at a slow
rate.

1 Introduction

Suppose a node has an update that it would like to
send to n — 1 other nodes. The node with the update
could send the message to every other node directly,
but this takes 6(n) steps. Another option is to build a
fixed-connection network (e.g., a phone tree). Then,
a node with an update sends the update to its parent
and its children, and the nodes that receive it send
it on in a similar way. The update reaches every-
one in O(logn) steps, and each node—including the
node initiating the rumor—only does constant work.
Further, the total number of messages and the to-
tal number of phone calls is optimal, n — 1. But if
one node in the tree fails, a large subtree becomes
unreachable.

One solution to this problem is the use of rumor
spreading algorithms. These algorithms have two ba-
sic operations: push and pull. In a push, a node
that has the update and randomly sends the rumor
to another participant. In a pull, a node without the
rumor asks a random node for any new rumors.

We consider two measures of efficiency for rumor
spreading algorithms. The first is the number of con-
nections (or phone calls) made. The second measure
is the number of times the rumor is transmitted. If
two nodes connect but neither of them know the ru-
mor, a phone call may not result in a transmission.
If the cost of the phone calls is amortized over many

rumors, it makes sense to count transmissions rather
than phone calls, but if rumors are rare, the number
of phone calls may be more important. (Also impor-
tant is the number of rounds, or steps, but we do not
consider that here.)

Among the first to use epidemic algorithms is De-
mers et. al. [DGH"87], in the context of maintain-
ing loose consistency among replicated databases.
Since then, many research have improved on vari-
ous properties of these algorithms. See, for exam-
ple, [AH96], which relaxes the assumption that all
nodes know the other nodes, or [CK02, EGH'03,
GP96, MMR99, Kel99, MS03] which are more robust
to faults. Rabinovich, Gehani and Kononov [RGK96]
makes determining whether a transmission is needed
more efficient. Rumor spreading protocols have
been used to maintain data structures in Peer-to-
Peer systems [RGRK, RGRK03, ACMD*03, DHA03],
and locate objects in networks [KKDO01]. Kempe
and Kleinberg presented some impossibility results
in [KKO02]. Broadcasting itself (without necessar-
ily rumor spreading) is a well-studied problem, see
for example [HKMP96, HHL88]| for a survey of tech-
niques. The effects of faults on broadcasting has also
been well studied; see for example, [LMS98], which
examines the fault-tolerance of fixed connection net-
works.

The observations here draw most from two pa-
pers. Karp et al. [KSSV00] takes a theoretical ap-
proach and give an algorithm that distributes a ru-
mor in O(logn) rounds, transmitting the message
O(nloglogn) times, and uses O(nlogn) phone calls.
Birman et al. [BHOT99] uses epidemic propagation
in addition to a fixed connection network for a more
reliable multicast.

First, we suggest that using a little bit of ru-
mor spreading with a fixed connection network can
give some fault-tolerance benefits of randomize rumor
spreading with the efficiency of a fixed-connection
network. Note that in a fixed connection network,
the number of transmissions is O(n). Birman et
al. [BHOT99] also combine rumor spreading with a
fixed connection network to make a more reliable mul-
ticast.

Second, we describe a minor modification of Karp
et. al’s algorithm that reduce the rate of the pull
steps so as to use only f(nloglogn) phones calls as
compared to their 6(nlogn). Datta, Hauswirth, and
Aberer [DHAO03] do something similar, using pull only
when nodes wake up or have not heard news recently.

Rumor spreading protocols have found applications
to many areas, and many variations of them have
been considered. For example, Kempe, Kleinberg,
and Demers in [KKDO01] introduced the notion of spa-

% failed tree push push+tree
0 100 88 100

10 2 63 88

20 0 30 60

30 0 10 27

40 0 3 8

50 0 1 1

Figure 1: The failure rate of a tree alone, push for
the same number of rounds, and the combination of
the two. The simulation used 1048576 nodes and the
results are averaged over ten runs.

tial gossip, in which nearby nodes are more likely to
contacted than distant nodes.

The Karp et. al. algorithm proceeds by pushing
and pulling messages for logn + O(loglogn) steps.
In the beginning, the process essentially doubles the
number of players who know the message. (Pushing
and pulling triples the number of messages at each
step.) This geometric increase means that up un-
til this point, only O(n) transmissions had occurred.
However, nlogn phone calls have been made, due to
the pulling. Most of the pull connections are between
nodes that do not have the rumor, so the count of
transmissions is unaffected by this.

Both our extensions make use of what we will call
a push phase—that is, logy n rounds of simple push
communication. In this phase, a rumor starts with a
birthday of zero. With each round, every node with
the rumor pushes it to a random node, and increases
the age of the rumor by one. Once the age is log, n,
we stop. Up until this time, there are no pull requests,
so only O(n) phone calls and transmissions have been
made.

2 Push-ttree

First we perform the push phase described above.
This gets around many of the faults in the fixed con-
nection network. Second, we perform a second phase
using a fixed connection network. The push phase
and the fixed-connection network each use only a lin-
ear number of messages, so the total number of mes-
sages is linear. We use this technique with two net-
works. The first is a tree, chosen because it is very
simple to construct and update, and very vulnerable
to faults, and so may be the worst case. The second
is a low-degree random graph.

To test the usefulness of the push+tree scheme, we
used simulation. Our simulations used a tree that
was as close to balanced as possible. We present two
results. First, Figure 1 shows how the failure rate

phone calls transmissions
n push+tree push&pull push&pull
16384 2.2 15.3 5.2
64436 2.1 174 5.9
262144 2.0 19.6 6.3
1048576 2.0 22.0 6.7
4194304 2.0 23.4 7.0

Figure 2: The number of messages sent for push+tree
and push&pull. There are n nodes in the network,
and 10% are dead. The push&pull alogrithm is run
until all nodes know the rumor. (Neither push nor
pull alone performed as well as push & pull.)

% failed random random-+push
0 100 100

10 100 100

20 98 99

30 92 93

40 42 72

50 0 15

Figure 3: Success rate of message dissemination using
a random degree-three graph.

of the networks affects the number of nodes left in-
formed by the push+tree scheme of Section 2. With
the tree alone, even a few failures in the network pre-
vent the message from reaching most of the nodes. In
contrast, an initial push phase significantly increases
the percentage of nodes that receive the message, and
using a tree is more effective than adding additional
rounds of push communication.

In Figure 2, we compare the number of phone
calls and the number of transmissions to those of the
push+tree scheme. (Recall that a phone calls occurs
whenever two nodes connect; a transmission occurs
when at least one of them knows the rumor.) Note
that for the push+tree scheme, the number of trans-
missions and the number of phone calls is essentially
equal.

As we noted above, a tree is a ineffective structure
for dissemination in a faulty environment, since one
failure disconnects a tree. For comparison, we built
a low-degree random graph and ran the same set of
tests. The random graph in this case is the union of
three random matchings. The simulation results in
Figure 3 show that at low failure rates, most nodes
in the random graph are notified, even without the
push phase. However, at the higher failure rates, the
push scheme does help some.

3 A slower pull

Once at least half the nodes are informed, pull com-
munication requires very few rounds and very few
messages to reach the rest of the nodes, since it
roughly squares the fraction of uninformed nodes at
each step [DGH'87,KSSV00]. Once half the nodes in
the network know the rumor, only O(loglogn) rounds
of pulling are needed before all the rest know.

But during the O(log n) rounds to inform that half,
every node makes a pull phone call. Most of those
phone calls are wasted, since neither node knows the
rumor, and no transmission can occur. In this sec-
tion, we seek to limit these wasted phone calls.

If we had a global counter measuring the age of the
rumor, we could have nodes with the rumor push for
logy 1 steps, and then cease pushing. The nodes that
do not have the rumor then start to pull, and pull for
O(loglogn) steps. This would result in O(nloglogn)
phone calls, which is optimal. However, this makes
the unreasonable assumption that all nodes know
when to start pulling. We make the following ob-
servation:

Observation 1 Push and pull need not happen at
the same rate. If rumors are pushed for logyan steps,
while pulling occurs every O(logn/loglogn) steps,
then rumors will arrive at all the nodes in O(logn)
steps with O(nloglogn) phone calls.

Thus, a two-phase algorithm can reduce the num-
ber of wasted phone calls. The first phase is a push
phase lasting log, n steps. (The rumor comes with
a time-to-live of log, n that decreases by one at each
step. Once the time-to-live is zero, nodes stop push-
ing it.)

Simultaneously, each node pulls once every
O(logn/loglogn) time steps. Between two pulls by
the same node, every other node will have performed
one pull, so this acts as a slowed-down version of the
pull phase described above. Emulating one pull phase
of the above paragraph takes time O(loglogn) pulls,
or O(logn/(loglogn)) - loglogn = O(logn) rounds.
A rumor spends log, n rounds being pushed (and is
transmitted O(n) times during that phase), and then,
and another O(log, n) being rounds being pulled to
the remaining nodes, but the total number of connec-
tions needed is only O(nloglogn).

Wasted phone calls and the rumor rate
Whether this technique saves phone calls or not de-
pends on how many rumors are in the network. Re-
gardless of how many rumors are in the network, each
node still pulls once every O(logn/loglogn) steps.
As with the original scheme, if the number rumors

is very low, the pull phone calls occur when there is
no rumor currently spreading in the network, and so
are wasted. For example, if there are no rumors in
the network, every pull phone call is wasted. But if
rumors arrive approximate O(logn) steps, and pulls
occur approximately O(logn/loglogn) steps, then
most pulls occur at a time when there is a rumor
currently spreading in the network. The disadvan-
tage of the slower pull is that it increases the time
until all players know the rumor.

On the other hand, if the rumor rate is high, then
even pulling at every step results in the transmission
of some rumor, and so there are no “wasted” phone
calls, making the slower pull unnecessary. Thus,
when many rumors are spreading, the slower pull de-
scribed gives no benefits while delaying the time at
which all nodes know the rumor.

To minimize the number of wasted phone calls, the
pull rate should depend on the rumor rate. When
there are many rumors in the network, the pulls
should be frequent. When rumors are rare, the pull
rate should be slowed to match.

References

[ACMD™03] Karl Aberer, Philippe Cudré-Mauroux,
Anwitaman Datta, Zoran Despo-
tovic, Manfred Hauswirth, Magdalena
Punceva, and Roman Schmidt. P-grid:

a self-organizing structured p2p system.
SIGMOD Rec., 32(3):29-33, 2003.

[AH96] James Aspnes and William Hurwood.
Spreading rumors rapidly despite an ad-
versary. In Proceedings of the fifteenth
annual ACM symposium on Principles
of distributed computing, pages 143—
151. ACM Press, 1996. One caller per

step.

[BHOT99] Kenneth P. Birman, Mark Hayden,
Oznur Ozkasap, Zhen Xiao, Mihai
Budiu, and Yaron Minsky. Bimodal
multicast. ACM Trans. Comput. Syst.,

17(2):41-88, 1999.

[CKO02] Bogdan S. Chlebus and Dariusz R.
Kowalski. Gossiping to reach consensus.
In Proceedings of the fourteenth annual
ACM symposium on Parallel algorithms

and architectures, pages 220-229, 2002.

[DGH'87] Alan Demers, Dan Greene, Carl
Hauser, Wes Irish, and John Lar-

son. Epidemic algorithms for replicated

[DHA03]

[EGH*03)]

[GPY6]

[HHLSS]

[HKMP96]

[Kel99]

[KKO02]

[KKDOL]

[KSSV00]

database maintenance. In Proc. of the
sizth annual ACM Symp. on Principles
of distributed computing, pages 1-12,
1987.

Anwitaman Datta, Manfred Hauswirth,
and Karl Aberer. Updates in highly
unreliable, replicated peer-to-peer sys-
tems. In Proceedings of the 23rd In-
ternational Conference on Distributed
Computing Systems, page 76. IEEE
Computer Society, 2003.

P. Th. Eugster, R. Guerraoui, S. B.
Handurukande, P. Kouznetsov, and A .-
M. Kermarrec. Lightweight probabilis-
tic broadcast. ACM Trans. Comput.
Syst., 21(4):341-374, 2003.

L. Gasieniec and A. Pelc. Adaptive
broadcasting with faulty nodes. Parallel
Computing, 22:903-912, 1996.

S.M. Hedetniemi, S.T. Hedetniemi, and
A.L. Liestman. Survey of gossiping and
communication networks. Networks,
18(4):319-349, 1988.

J. Hromkovic, R. Klasing, B. Monien,
and R. Peine. Dissemination of In-
formation in Interconnection Networks

(Broadcasting €& Gossiping). Kluwer
Academic Publishers, 1996.

Peter J. Keleher. Decentralized
replicated-object protocols. In Pro-

ceedings of the eighteenth annual ACM
symposium on Principles of distributed
computing, pages 143-151, 1999.

David Kempe and Jon Kleinberg. Pro-
tocols and impossibility results for
gossip-based communication mecha-
nisms. In IEEFE Symposium on Founda-
tions of Computer Science, pages 471—
480, 2002.

David Kempe, Jon Kleinberg, and Alan
Demers. Spatial gossip and resource lo-
cation protocols. In Proceedings of the
thirty-third annual ACM symposium on
Theory of computing, pages 163-172,
2001.

Richard M. Karp, Christian Schindel-
hauer, Scott Shenker, and Berthold
Vocking. Randomized rumor spreading.

[LMS98]

[MMR99]

[MS03]

[RGK96]

[RGRK]

[RGRKO3]

In IEEE Symp. on Foundations of Com-
puter Science, pages 565574, 2000.

F. Thomson Leighton, Bruce M. Maggs,
and Ramesh K. Sitaraman. On the fault
tolerance of some popular bounded-
degree networks. SIAM Journal on
Computing, 27(5):1303-1333, 1998.

Dahlia Malkhi, Yishay Mansour, and
Michael K. Reiter. On diffusing updates
in a byzantine environment. In Proceed-
ings of the 18th IEEE Symposium on
Reliable Distributed Systems, page 134.
IEEE Computer Society, 1999.

Yaron M. Minsky and Fred B. Schnei-
der. Tolerating malicious gossip. Dis-
tributed Computing, 16(1):49-68, 2003.

Michael Rabinovich, Narain H. Gehani,
and Alex Kononov. Scalable up-
date propagation in epidemic replicated
databases. In Proceedings of the 5th
International Conference on Extending
Database Technology, pages 207222,
1996.

Sean Rhea, Dennis Geels, Timothy
Roscoe, and John Kubiatowicz. Han-
dling churn in a DHT. To appear in
USENIX 04 Annual Technical Confer-

ence.

Sean Rhea, Dennis Geels, Timothy
Roscoe, and John Kubiatowicz. Han-
dling churn in a DHT. Technical Re-
port UCB//CSD-03-1299, UC Berkeley,
2003.

