
Dynamically Adapting GUIs to Diverse Input Devices

Scott Carter, Jennifer Mankoff, Jack Li and Nick Molchanoff
University of California, Berkeley

{sacarter,jmankoff,jack,nkm}@cs.berkeley.edu

ABSTRACT
Much past effort has investigated how to adapt a user inter-
face to a different output device or modality. Far less at-
tention has focused on the adaptations needed to handle a
different input device or modality. We present a tool for au-
tomatically modifying a graphical user interface to enable or
improve the use of a variety of input devices for which the
interface was not designed. This can allow someone with a
disability or in a unique environment to use existing applica-
tions that were previously inaccessible.

KEYWORDS: Accessibility, toolkits, interaction techniques

INTRODUCTION
Graphical user interfaces (GUIs) are typically designed for
a specific set of input and output devices: A keyboard, a
mouse, a monitor, and in some cases, speakers. GUIs are
typically built using toolkits that provide generic interactive
elements (interactors), such as buttons and menus, that can
be easily manipulated and seen with those devices. These
toolkits make it easy to create interfaces out of interactors
that are easy to use with a keyboard and mouse, but the re-
sulting applications lack flexibility when a user’s input needs
change.
Input needs may change when someone has a disability, or is
using an application in an off-the-desktop environment [6].
For example, a person with a motor impairment may be con-
strained to single switch input, in which she has no mouse,
and can only control the equivalent of a one-key keyboard.
Or someone interacting with a projected display in a meeting
may have a mouse or pen but no keyboard. How would these
users interact with a web browser? A text editing system? A
sketching program? A form entry application?
The most commonly used approach is to display a special
interface that can translate user input into mouse and key-
board events, or displayed output into audio. The user in-
teracts with that interface, which then sends information to
the application the user wishes to control. For example, a
soft keyboard that turns mouse input into keyboard events
would allow someone to control an interactive projected dis-
play with a pen or mouse. Single switch users typically use
a “scanning interface” that functions similarly to a soft key-
board, but can generate both keyboard and mouse events and
send them to any desktop application. Because they are very

general, these solutions allow a user to control any GUI. But,
because they are very general, they are not optimized for the
specific needs of different GUIs, and as a result may be dif-
ficult or slow to use. For example, a scanning interface may
not have any way to select a menu directly without moving
the mouse cursor pixel by pixel across the screen until it is
over that menu.
We present IAT (Input Adapter Tool), which automatically
modifies a GUI to handle a variety of input devices it was
not designed for. To make an interface accessible, two prob-
lems must be solved. First, the user must be able to select
(navigate to) any of the interactors in the interface. Second,
the user must be able tocontrol the selected interactor. IAT
allows the user to do both navigation and control. Navigation
in IAT is supported globally, either by traversing the interac-
tor hierarchy or by directly selecting an interactor. Control
is supported by dynamically customizing an application with
interactors that are specifically designed to be usable by the
available input device. For example, in Fig. 1(a), a paint ap-
plication (top) has been modified for use with single switch
input (bottom). The user is controlling a drawing canvas in-
teractor and drawing a circle with it. In the switch case (bot-
tom), the interactor has been augmented to support single
switch input by displaying an arrow representing the current
direction that a special drawing token is moving. The switch
can be used to change the direction of the token, or toggle
drawing mode on and off.
IAT currently supports three input configurations: mouse but
no keyboard, keyboard but no mouse, and single switch in-
put. However, our contribution lies not in the specific input
devices we support, but in the approach we take. We sup-
port two kinds of navigation: Direct selection of interactors,
and a hierarchical traversal of the interactor hierarchy. Addi-
tionally, we use a lookup-table to determine if any interactor
substitutions are necessary. When an interactor is replaced,
we keep a copy of it invisibly off screen and pass informa-
tion to it. For example, when the user has a keyboard but no
mouse, we replace a Combobox (a list of items from which
the user selects one) with a text entry plus a display of valid
inputs that is filtered as the user types. When the user types
an item that was in the Combobox, we cause that item to be
selected in the Combobox. This triggers any callbacks to the
application.

Overview

We begin by presenting related work in the domain of GUI
adaptation. Next we describe the implementation of IAT, and
illustrate it with an example. We end with a discussion of the
pros and cons of our approach, and future directions that we
would like to take.



(a) (b) (c)

Figure 1: Adapting applications. (a) : A paint program (top) adapted for switch input (bottom). The drawing canvas has
been augmented with a movable dot and an arrow indicating direction. (b): A form entry program. (c) The same program
adapted for keyboard (only) input. Interactors that have been replaced in (c) have a darker (red) background and tool-tips
showing key-bindings are shown in blue near each interactor. For example, the Departure combo box on the bottom left
of (b) has been replaced with a predictive Textfield in (c). A list of valid inputs, given what the user has typed, is shown
below the Textfield.

RELATED WORK

Adaptation of applications to handle unplanned input and
output needs is an important problem. It can help to meet
the needs of users with disabilities, and it is important in the
ubiquitous computing world, for example in providing access
to standard applications on small screen devices. Some com-
mon commercially available adaptations include soft key-
boards (which let a user click on buttons that generate key-
board events), screen readers (which read the screen out loud,
line by line), speech programs such as DragonDictateTM(which
allows a user to control applications with spoken commands),
and scanning interfaces (which let a user with a switch sim-
ulate mouse and keyboard events). In addition, a variety of
research is being done in making such adaptations more gen-
eral (across applications or devices), or more usable (focus-
ing on a specific problem such as audio access for the blind).
Related work in this area can be broken up into two cate-
gories: Automatic adaptation of an interface to a different
output device or modality, and support for a different input
device or modality.

Output adaptation

Although work in output adaptation focuses on modifying
the interface of a GUI for audio display or to fit on a smaller
screen, this typically also entails providing support for alter-
nate input devices. For example, the Mercator system could
automatically transform any GUI written in XWindows to
audio [2]. Mercator was solving the specific problems faced
by someone with no monitor (or no ability to see a monitor),
and (therefore) no mouse, but full keyboard access. To solve
this problem, Mercator also had to provide keyboard-only ac-
cess to the GUI. It supported hierarchically-based navigation
of a GUI, rendering relevant information to the user with a
mixture of non-speech audio and spoken text. Once the user
navigated to a given interactor, she could invoke it’s func-
tionality with a single key press. Mercator’s solution shares
much with IAT: the user is interacting directly with an appli-
cation, yet the tool that facilitates this is general in the sense
that it can support access to any application.

Several systems have explored transforming Web site inter-
faces designed for desktop machines to be more appropri-
ate for PDA interfaces (see [4] for a summary of this work).
For example the Power Browser system [1] supports Web
page access from a cellphone or Personal Digital Assistant
(PDA). The authors focused their efforts on output. They use
widgets customized for stylus-based input in the PDA, and
do not report on a working input solution for the cellphone.
In the cellphone case, they propose to support navigation by
numbering lines and allowing the user to jump to a line by
pressing the corresponding number. This is similar in spirit
to the second form of navigation we support, direct access
rather than hierarchical.

Input adaptation

Work in input adaptation has most often been inspired by
the world of ubiquitous computing. For example, the Peb-
bles project [5] is an exploration of how a PDA (typically
a PalmPilotTM) can be used to control other devices includ-
ing other PDAs, appliances, and desktop computers. In the
case of desktop computing, Pebbles supports the use of a
PalmPilotTM to interact with specific applications (including
e.g. PowerPointTM) using custom controls, or to control the
mouse and keyboard (and through them any application). In
the latter case, GraffitiTM is used to generate keystrokes, and
the stylus is used to control the mouse. Pebbles is an exam-
ple of an application independent solution that can provide
both general access to a desktop [5], and customized access
to home appliances [7]. However, it is designed with assump-
tions about available input devices (stylus-based input via a
PDA).
The XWeb project provides dynamic adaptation for a variety
of applications, and does it across several different input de-
vices including keyboard and mouse; pen; laser pointers [8];
and speech [9]. XWeb is actually an interface specification
language, and therefore only works with applications writ-
ten using that language. Input device support is handled by
implementing different clients for each set of input devices.
The clients render the application using interactors that are



customized for its input (and output) devices.
In earlier work, we developed web browsing support for peo-
ple with limited input capabilities [4]. Our solution was gen-
eral with respect to web browser and pages, but could not
support other types of applications or input devices. We also
developed an adaptation tool that could handle arbitrary map-
pings between input devices [10]. However it did not adapt
application interfaces to better match the needs of the user’s
input device.

Summary
On both the input and output side, researchers are developing
tools that can support automatic adaptation. Typically these
tools focus on adapting an application to a specific input de-
vice (such as a PDA [5, 1], or switch [4]), output device (such
as audio [2]), or application (such as a web browser [4, 1]).
IAT builds on this past work, but is designed to generalize
across both applications and input devices.

IMPLEMENTATION
IAT is designed to work with any application written using
the Java Swing toolkit. The application developer is not re-
quired to implement any special interfaces or use any special
objects. IAT automatically grabs a handle to the application’s
top-level window, and then traverses the interactor hierarchy
of that window to determine if any adaptations are needed
given the currently available input devices. IAT currently
supports three different input configurations: keyboard (no
mouse), mouse (no keyboard) and switch.
IAT provides two sets of adaptations, described in the next
two subsections: First, IAT finds any interactors that depend
on input devices that are not available. It dynamically re-
places those interactors with interactors that are accessible.
Second, in the absence of mouse input, IAT provides the user
with a way to navigate to any given interactive screen ele-
ment. In combination, this allows the user to navigate to and
control any interactors in the interface.

Interactor substitution
Most GUIs today make use of generic interactors provided
by the interface toolkit they are based on, such as menus,
buttons, text entry areas and so on. Those interactors can
be controlled using either the keyboard, the mouse, or both.
IAT makes applications constructed with standard library el-
ements more accessible, by augmenting them or replacing
them with similar interactors that are customized for the avail-
able input devices.
To identify interactors that require modification, IAT traverses
the interactor hierarchy of a running application, making note
of all of the interactors. It uses a lookup table to determine
when modifications are needed. IAT supports the following
types of modifications:

Replacement: When replacing an interactor, IAT removes
the original interactor from the interface hierarchy, and re-
places it with a modified, accessible interactor that is as
similar as possible to the original. IAT gives the user feed-
back about substitutions by highlighting substituted inter-
actors in light red. For example, in Figure 1(b), IAT substi-
tutes a predictive Textfield, which only requires keyboard
input, for a Combobox, which requires mouse input. When
the user interacts with a substitute, IAT informs the origi-

nal interactor (which is hidden, but still exists) by calling
the methods that would be called were the user able to in-
teract with it directly. This sets off any callbacks or other
connections to the application.

Augmentation: When augmenting an interactor, IAT inter-
cepts events at the top level of the application frame, vi-
sually overlays controls on top of the interactor, and saves
state about those controls (e.g. in Figure 1(a), IAT over-
lays a dot and an arrow on top of the paint canvas). Those
controls then pass events on to the underlying interactors.

By default, IAT makes the following types of substitutions
and augmentations:

Switch Textfields are replaced with menu-based text entry
systems (Comboboxes). We chose to use a Combobox
instead of a soft keyboard because Combobox selection
mapsdirectly onto the switch: up is up and down is down.
We believe this direct mapping could facilitate adoption by
users. Canvases are augmented with a movable dot that can
send mouse events as well an arrow indicating the current
direction of movement (see Figure 1(a)).

Keyboard only Comboboxes are replaced with Predictive
Textfields and augmented with information about the valid
inputs. For example, in Figure 1(c), a Predictive Textfield
has replaced the “Depart” Combobox on the lower left.
When the user types ’A’ ’l’, valid entries beginning with
“Al” are displayed below the interactor (“Albert Lea MN”,
...). Canvases are augmented with a movable dot that can
send mouse events .

Mouse only Textfields are augmented with a soft keyboard.

Note that our approach is flexible, and could handle alterna-
tive substitutions (for example, we could augment a Textfield
with a Graffiti recognizer instead of a soft keyboard without
changing our underlying architecture).
Navigation
Most interfaces have implicit support for navigation (no one
interface element codifies how the interface as a whole is
navigated). Additionally, they expect navigation to be done
with a combination of mouse input and keyboard input (in-
cluding tabbing and mnemonics). Although the mouse easily
supports navigation without modification, most other input
devices are not optimized for selecting an arbitrary screen
location to interact with an interactor.
Thus, navigation cannot be handled with interactor-level sub-
stitutions, but must be dealt with globally. There are two pos-
sible approaches to supporting navigation – a hierarchical in-
terface traversal, such as that supported by Mercator, and a
direct mapping, where each interactive element is accessible
by a unique key, keyword, or other signal from the user. We
support both types of navigation. However, we found that
hierarchical navigation was best used with switch input be-
cause switches can generate so few signals, and direct map-
ping was best used with keyboard input because most inter-
faces have a limited number of interactors. Thus, for switch
input we support a hierarchical interface traversal, and for
keyboard input we support direct mapping.



Our support for hierarchical navigation takes two forms: Where
the user can generate enough unique signals, we support di-
rect tree navigation (one symbol for horizontal motion in the
tree, another to move up or down the hierarchy). Where the
user is limited to a single input signal (as with single switch
input), we generate an ordered, depth-first traversal of the
tree that the user can move through.
Our support for direct mapping makes use of interactor key-
bindings. With the help of the Java accessibility infrastruc-
ture, IAT discovers any existing key-bindings for each inter-
actor. It then creates key-bindings for selecting interactors
that do not conflict with those existing bindings. The user
can cause all key-bindings to be displayed as tool-tips near
the interactor they select by pressing a pre-specified key.
One problem with the direct mapping approach is that there
may be fewer input states than interactors that could get fo-
cus (e.g.there may be more interactors than there are charac-
ters on a keyboard). This would only be the case in the most
complex interfaces. We handle that case by homogeneously
pruning the set of interactors to which to assign tool-tips. We
assume users will navigate to non-tool-tip-assigned interac-
tors from nearby, tool-tip-assigned interactors using standard
navigation techniques (e.g. tabbing).

Summary

In summary, IAT supports four specific adaptations intended
to make applications more accessible to specific input config-
urations: An interactor may bereplacedby one that is more
accessible oraugmentedwith additional graphics or control
characteristics. An interactor may be selected byhierarchi-
cal navigationor by adirect mappingusing key-bindings.

EXAMPLES

This section describes how the adaptations supported by IAT
play out in practice by focusing on two specific cases: Switch
control of a paint program, and Keyboard control of a form
entry application.

Switch control of a paint program

The application shown in Figure 1(a) is a paint program.
Note that a dot and arrow appear overlayed onto the can-
vas interactor. In this case, the dot provides feedback about
the drawing state of the interactor: drawing, moving without
drawing or that some other interactor, such as the file menu,
is being controlled. The arrow provides feedback regarding
the drawing direction. When a user moves the switch to the
down state the arrow begins moving counterclockwise and
stops when the user releases the switch and a timeout occurs.
Then, when the user moves the switch to the up state the dot
and arrow begin to move across the screen, sending appro-
priate mouse events to the component below if the interactor
is currently in the drawing state. When the user releases the
switch again and another timeout occurs the dot and arrow
stop moving and a selection panel appears. The user may use
the selection panel to switch tasks from control to naviga-
tion. For example, when the user is interacting with a draw-
ing canvas, the selection panel allows the user to toggle the
draw state of the drawing canvas, navigate to the next com-
ponent in the ordered traversal or returning to her previous
task.

Keyboard control of form entry
Figure 1(b) shows the original, unmodified form entry ap-
plication. In Figure 1(c), the application has been modified
to work with keyboard (no mouse) input. Note that the menu
has been replaced with a Textfield that automatically displays
a list of possible selections given the current character input.
Other interactors have not been modified. However, the user
can directly navigate to any interactor by pressing its asso-
ciated tool-tip key. When the user toggles tool-tips on, as
they are in this example, a tool-tip key appears just above its
associated interactor.

CONCLUSION AND FUTURE WORK
IAT automatically modifies a graphical interface to enable
or improve the use of a variety of input devices for which
the interface was not designed. Specifically, IAT improves
the accessibility of all of the standard interactors across three
different input types: keyboard (no mouse), mouse (no key-
board) and a switch. These improvements can allow some-
one with a disability or in a unique environment to access ex-
isting applications with input devices that those applications
were not originally designed to handle.
In future work, we plan to expand on the library of substi-
tutions and modifications available in IAT. In particular, we
plan to add support for speech-only input. We also plan to
add support for gesture recognition for mouse-based text en-
try, and word prediction for Textfields. An alternate approach
to non-mouse (e.g.keyboard or switch) drawing that we plan
to support is Kamel’s recursive grid drawing method [3].

REFERENCES
1. O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and

T. Winograd. Power browswer: Efficient web browsing
for pdas. InProc. of CHI 2000, pages 430–437, 2000.

2. W. K. Edwards and E. D. Mynatt. An architecture for
transforming graphical interfaces. InProc. of UIST
1994, pages 39–47, 1994.

3. H. M. Kamel and J. A. Landay. Sketching images eyes-
free: A grid-based dynamic drawing tool for the blind.
In Proc. of ASSETS 2002, pages 33–40, 2002.

4. J. Mankoff, A. K. Dey, U. Batra, and M. Moore. Web
accessibility for low bandwidth input. InProc. of AS-
SETS 2002, pages 17–24, 2002.

5. B. A. Myers. Using hand-held devices and pcs together.
CACM, 44(11):34–41, 2001.

6. A. Newell and P. Gregor. Human computer interaction
for people with disabilities. InHandbook of Human-
Computer Interaction, pages 813–824. Elsevier Sci-
ence Publishers, 1988.

7. J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K.
Harris, R. Rosenfeld, and M. Pignol. Generating re-
mote control interfaces for complex appliances. In
Proc. of UIST’02, pages 161–170, 2002.

8. D. R. Olsen and T. Nielsen. Laser pointer interaction.
In Proc. of CHI 2001, pages 17–22, 2001.

9. D. R. Olsen, Jr., Sean Jefferies, Travis Nielsen, William
Moyes, and Paul Fredrickson. Cross-modal interaction
using xweb. InProc. of UIST 2000, pages 191–200,
2000.

10. J. Wang and J. Mankoff. Theoretical and architec-
tural support for input device adaptation. InProc. of
CUU’03, pages 85–92, 2003.


	INTRODUCTION
	Overview

	RELATED WORK
	Output adaptation
	Input adaptation
	Summary

	IMPLEMENTATION
	Interactor substitution
	Navigation
	Summary

	EXAMPLES
	Switch control of a paint program
	Keyboard control of form entry

	CONCLUSION AND FUTURE WORK

