
Bridging the Gap: Programming Sensor Networks with
Application Specific Virtual Machines

UCB//CSD-04-1343

Philip Levis†, David Gay‡, and David Culler†

{pal,culler}@cs.berkeley.edu, dgay@intel-research.net
†EECS Department ‡Intel Research Berkeley

University of California, Berkeley 2150 Shattuck Avenue
Berkeley, CA 94720 Berkeley, CA 94703

ABSTRACT
We propose application specific virtual machines as a
method to safely and efficiently program sensor networks.
Although sensor networks encompass a wide range of
application domains, any given network supports a sin-
gle one. A VM tailored to a particular deployment can
provide retasking flexibility within its application class
while keeping programs efficient. We present Maté, an
architecture for customizing VMs over a wide range of
sensor network applications. Customizing the instruc-
tion set and triggering events allows for language flex-
ibility, provides very high code density, and enables a
wide range of applications.

We evaluate Mat́e by comparing custom built VMs to
two existing proposals for user-level sensor network pro-
gramming, abstract regions and tree-based aggregation
(TinyDB). We show that a VM implemented in our ar-
chitecture can provide equivalent functionality to the cur-
rent implementations of these proposals while improving
efficiency. Additionally, by decomposing application do-
mains into a set of reusable, fine-grained software com-
ponents, implementing new user-level programming ab-
stractions is greatly simplified.

1. INTRODUCTION
Operating systems research has a long history of de-

signing flexible abstractions. Sensor networks provide a
new set of challenges and opportunities in this area: each
deployment features specific hardware features and pro-
cessing capabilities and, once deployed, networks must
be reprogrammable in response to observed data or evolv-
ing needs. As each deployment targets at a specific ap-
plication domain (e.g., habitat monitoring or tracking),
the system environment can be tailored to the domain’s
needs.

In-situ reprogramming should be efficient and safe. En-
ergy is the limiting resource in a sensor network: in-

stalling new programs and executing them must be en-
ergy efficient. As sensor networks are typically dense
fields of small nodes embedded in the environment, re-
covering from a program-induced crash or failure – through
rebooting, for example – is difficult or impossible. A pro-
gramming system must be able to safely recover from
buggy or badly conceived programs.

The need for higher-level sensor network programming
has led to several proposed programming models. For
example, abstract regions showed how data-parallel op-
erators can concisely represent applications that require
inter-node data aggregation [25], and TinyDB demon-
strated the effectiveness of declarative SQL-like queries
for data collection [18]. While these proposals are steps
in the right direction, they address a limited set of ap-
plication domains, and do not address all of the above
requirements. TinyDB (SQL) is not a very general pro-
gramming model and its query interpretation (i.e., pro-
gram execution) is inefficient. Abstract regions compiles
programs into an full TinyOS image and installs the en-
tire executable (tens of kilobytes); program installation
is inefficient and there is no safety.

Application specific virtual machines provide a way
of capturing application building blocks while allowing
flexible and dynamic composition at the operating sys-
tem level. In this paper, we propose using application
specific virtual machines as an intermediate layer between
an application domain and the mote operating system
(TinyOS). To further this goal, we have built Maté, a gen-
eral architecture for application specific VMs. A user
tailors a Mat́e VM to a specific application domain by
selecting a programming language (in which end-users
will program) and a set of domain-specific extensions
(e.g., support for planar feature detection). The Maté
framework compiles programs to the generated VM’s in-
struction set (bytecodes), and the VM runtime automati-
cally propagates code through the network. Installation-
time code analysis allows a VM to provide race-free and

Figure 1: A layered decomposition of in-situ repro-
gramming.

deadlock-free execution parallelism.
The separation between the three layers – user pro-

gram, in-network representation, and the execution en-
gine – is shown schematically in Figure 1. Using byte-
codes as a transmission layer provides safety; tuning the
level of abstraction (by selecting an appropriate language
and set of extensions) to a particular application’s re-
quirements leads to efficient execution, as overhead can
be minimized; compiling to application-specific bytecodes
makes programs small (tens or a few hundred bytes),
keeping propagation efficient.

Maté is general enough to support existing proposals
for sensor network programming models. We have built
a VM with extensions for region-based operations, in
which typical programs are on the order of seventy bytes
(Section 4.4), a 99.5% reduction in size over the origi-
nally proposed regions implementation. We have built
a VM for performing similar sensor network queries to
TinyDB (Section 4.5), with 11-30% energy savings. We
have implemented two languages on top of Maté, TinyScript,
a simple BASIC-like language, and motlle, a Scheme-
like language, and believe the engine general enough to
support other programming languages, such as TinySQL
(our querying VM’s language is motlle). These increases
in efficiency come from separating the three layers in
Figure 1. Separating the transmission layer from the
execution layer reduces the cost of installing a regions
program; separating the transmission layer from the pro-
gramming layer reduces the cost of query execution.

In earlier work, we proposed a particular virtual ma-
chine as a mechanism to reprogram sensor networks [14],
but it imposed draconian limitations that ultimately made
it unusable. This paper extends the work to a general
framework that supports multiple languages, program-
ming models, and can be applied to a wide range of ap-
plications.

Section 3 covers the design of the Maté architecture.
Section 4 presents and evaluates our VMs in compari-
son to regions (on a pursuer-evader application) and to
TinyDB (on various data collection queries). We con-

module Main {
uses interface StdControl as SubControl;
...

}
module MateEngineM {

provides interface StdControl as Control;
uses interface SendMsg as SendError;
...

}
configuration GenericComm {

provides interface SendMsg[uint8_t id];
...

}
configuration MateTopLevel {

components Main, MateEngineM as Engine;
components GenericComm as Comm;
Main.SubControl -> Engine.Control;
Engine.SendError -> Comm.SendMsg[AM_ERROR];
...

}

Figure 2: nesC Wiring Examples. MateTopLevel
wires together Main, MateEngineM and Generic-
Comm. GenericComm provides SendMsg as a pa-
rameterized interface, where the parameter is the ac-
tive message ID. Wiring Engine.SendError to Generic-
Comm.SendMsg requires specifying the message type.

clude this paper with a discussion of the implications of
these results (Section 5), a survey of related work (Sec-
tion 6) and areas for future work (Section 7).

2. BACKGROUND
TinyOS is a popular sensor network operating system

than runs on a range of limited resource devices (“motes”).
As motes need to be able to operate unattended on small
batteries for the better part of a year, minimizing energy
costs greatly influences their design. Correspondingly,
hardware resources are very limited. Typical TinyOS
motes have a 4-8MHz microcontroller, 4kB of data RAM,
60-128kB or program flash memory, and a radio with
application-level data transmission rates of 1-2kB/s.

Energy limitations force sensor networks operate at
very low utilization. Therefore, although a mote has very
limited resources, for many application domains this is
not a significant limitation. For example, in the Great
Duck Island deployments [20], motes woke up every eight
minutes, warmed up sensors for a second, and transmit-
ted a single data packet with readings. During this sec-
ond, the CPU was essentially idle. The one exception to
this trend of low utilization is RAM. However, RAM lim-
itations seem to be more a result of the market for current
commercial microcontrollers than fundamental technical
issues. Although much larger amounts (i.e., megabytes)
would have significant energy costs, it seems likely fu-
ture motes will feature significantly more data memory.

The nesC language [8], used to implement TinyOS
and its applications, provides two basic abstractions: a
component-based programming model, and a low-overhead,
event-driven concurrency model.Componentsare the
units of program composition. A component has a set
of interfacesit requires, and a set of interfaces it pro-

Figure 3: The Maté architecture.

vides. A programmer builds an application by wiring
interface providers to requirers (see Figure 2). nesC sup-
ports two kinds of components, modules and configura-
tions. A module represents actual program logic (i.e., an
implementation); a configuration is awiring of subcom-
ponents. Configurations allow subsystem encapsulation.
For example, the TinyOS component GenericComm en-
capsulates the entire networking stack (20 or so com-
ponents) and provides just three interfaces, for power
management, packet reception, and packet transmission.
In addition to basic interfaces, nesC has parameterized
interfaces. Essentially, a component can provide many
copies of an interface instead of a single one, and these
copies are distinguished by a parameter value instead of
by name. These parameterized interfaces support run-
time dispatch between a set of components.

TinyOS’s event-driven concurrency model does not al-
low blocking. Hence, calls to long-lasting operations,
such as sending a packet, are typically split-phase: the
call to begin the operation returns immediately, and the
called component signals an event to the caller when the
operation completes.

3. DESIGN
Maté’s principal goal is to define a flexible architecture

for building application-specific sensor network script-
ing environments. An environment has two parts: a pro-
gramming language for sensor network users, and a vir-
tual machine bytecode interpreter on the motes to exe-
cute user programs. Unlike virtual machines such as the
JVM [17], the goal is not to provide a fixed abstraction
boundary, instead the goal is to allow sensor network de-
velopers to define the boundary at a level suitable to a
particular application domain.

Figure 3 shows a functional decomposition of the Maté
VM architecture. Mat́e VMs have three major abstrac-
tions: contexts, operations, and capsules. Contexts are

the units of concurrent execution, operations are the units
of execution functionality, and capsules are the units of
code propagation. A VM’s components fall into two
classes: the components every VM includes (the basic
template), and the components that define the particular
Maté instance, tailored to a particular language and ap-
plication domain.

The basic VM template includes the scheduler, con-
currency manager, and capsule store. The scheduler ex-
ecutes runnable contexts in a FIFO round-robin fashion.
The concurrency manager submits contexts to the sched-
uler based on whether they are ready to run and can safely
access the shared resources they require. Unlike TinyOS,
the scheduler and concurrency manager support blocking
operations. The capsule store manages capsule storage
and loading; it propagates capsules through the network
and notifies higher level components when it receives
new code.

The basic template does not include any data storage
components. These are provided by the selected lan-
guage. Mat́e defines a set of standard types (currently
integer and sensor reading) and a stack used to pass val-
ues to/from functions (see below). It is possible to add
additional types to Maté, though it is currently hard to
do in a language-independent fashion. We expect to add
improved support for type extension.

A specific VM instance wires a set of contexts and op-
erations to the basic template. The set of contexts defines
the events that trigger VM execution. The set of opera-
tions defines the VM instruction set. Every VM bytecode
maps to an operation component, which implements the
corresponding operation through the MateBytecode in-
terface, shown in Figure 4. Choosing a language for
the VM selects a set of operations, known as primitives,
which provide the basic features needed by the language,
such as accessing a variable or arithmetic.

Selecting a set of appropriate contexts and functions
tailors a VM to an application domain. Functions are op-
erations that take their arguments from, and return their
result to, the Mat́e stack and which are generally lan-
guage independent.1 Examples include functions to con-
trol timers or obtain sensor readings. Functions are in-
vocable via their bytecode (if they have one) or by other,
language-specific mechanisms. A context is a language-
independent component which triggers the execution of
a handler in response to some event (e.g., packet recep-
tion). A handler is a sequence of bytecodes stored in a
capsule. The actual mapping from handlers to capsule
code sequences is language-specific.

The rest of this section presents the three core com-
ponents (scheduler, concurrency manager, and capsule
store) and their interaction with the application-specific

1Languages may also include their own functions.

interface MateBytecode {
command result_t execute(uint8_t opcode,

MateContext* context);
}
module MateEngineM {

uses interface MateBytecode as Code[uint8_t code];
....
result_t execute(MateContext* context) {

... fetch the next opcode ...
// and execute it via a parameterized interface
call Bytecode.execute[op](op, context);

}
}
configuration MateTopLevel {

components MateEngineM as VM, OPgetvar4;
components OPadd, OPsend, OPhalt, OPsettimer;

VM.Code[OP_ADD] -> OPadd;
VM.Code[OP_SEND] -> OPsend;
VM.Code[OP_HALT] -> OPhalt;
VM.Code[OP_SETTIMER] -> OPsettimer;
VM.Code[OP_GET] -> OPgetvar4;
VM.Code[OP_GET+1] -> OPgetvar4;
...
VM.Code[OP_GET+7] -> OPgetvar4;

}

Figure 4: Mat é scheduler and interfaces

contexts and operations in greater depth. In particular,
we show how the concurrency manager provides race-
free, deadlock-free execution of contexts that access shared
resources. We conclude with an example of building a
simple VM for region-based programming.

3.1 Scheduler: Execution Model
The core of the Mat́e architecture is a simple FIFO

scheduler. This scheduler maintains a queue of runnable
contexts, and interleaves their execution at a very fine
granularity (every few operations). The scheduler exe-
cutes a context by fetching its next bytecode from the
capsule store, and dispatches to the corresponding oper-
ation component; a typical VM may have a hundred or
so such components. Figure 4 contains nesC code snip-
pets showing this structure, which allows the core of the
VM to be independent of the particular instruction set it
implements.

A component implementing a contextC startsC in re-
sponse to some event by submittingC to the concurrency
manager. Operations that wish to halt or pauseC also
make their requests via the concurrency manager (see be-
low). All requests to add or remove a context from the
run queue come from the concurrency manager.

The ability to pause a context allows functions that
encapsulate a split-phase TinyOS call to present a syn-
chronous interface to the Maté programmer. When such
a function executes, it pauses the current context via the
concurrency manager. When the TinyOS completion event
fires, the function’s component resumes the context via
the concurrency manager, which submits it to the sched-
uler when it decides it can run race free.

3.2 Concurrency Manager: Parallelism
Traditionally, the default behavior for concurrent pro-

gramming environments (e.g., threads, device drivers)
is to allow race conditions, but provide synchronization
primitives for users to protect shared variables. This places
the onus on the programmer to protect shared resources.
In return, the skilled systems programmer can fine tune
the use of the primitives for maximum CPU performance.

Maté takes the opposite approach, because embedded
systems are event driven, more difficult to debug, and
demand greater robustness. When a VM installs a new
capsule, it runs a conservative program analysis to deter-
mine the set of shared resources used by the capsule’s
handlers and, hence, what resources their correspond-
ing contexts will need. The Maté concurrency model is
based on statically named resources, such as shared vari-
ables. Operations specify the shared resources that they
use, but the analysis that determines a handlers complete
resource usage is language-specific. The most conser-
vative form of analysis assumes all handlers share re-
sources – the motlle language takes this approach. How-
ever, this precludes possible parallelism. Section 4.1 de-
scribes TinyScript’s resource model and analysis.

In the simplest instantiation of the model, a context
acquires all of its resources when it begins and releases
all of them when it ends. When the concurrency man-
ager receives a request to run a context, it checks if the
resources the context will require are available. If so,
it submits the context to the scheduler. If not, it places
the context on a wait queue. When a context releases re-
sources, the concurrency manager checks the wait queue
and submits any now-runnable contexts to the scheduler.
As sensor network applications typically have low uti-
lization, starvation is not an issue.

Handlers can usescheduling pointsto improve paral-
lelism. Certain VM operations, such as the yield function
or functions that pause contexts, are scheduling points.
A scheduling point has a set of resourcesRs it releases
and a set of resourcesAs it acquires;As must be a sub-
set of Rs. By default,Rs = ∅, As = ∅. A handler
can temporarily relinquish a resource for the duration of
a scheduling point by adding it to bothRs andAs. It
can permanently relinquish a resource by adding it toRs

only. Currently, neither TinyScript nor motlle support
using scheduling points, but we have written assembly
programs that use this functionality.

The inequalityAs ⊆ Rs is sufficient for building a
deadlock- and data-race- free scheduler, assuming that
a user does not temporarily relinquish a resource at a
scheduling point when it needs atomic access across that
scheduling point. Race-free behavior is very simple: a
context cannot access resources it does not hold, and two
handlers that may access a resource cannot run concur-
rently. We include the proof of deadlock-freeness in the
Appendix.

Dynamic code updates complicate race-free execution.

Figure 5: State diagram for Maté capsule propaga-
tion.

Terminating a context because new new code has arrived
could leave data in an inconsistent state. However. wait-
ing for it to complete may not be an option if the old ver-
sion has an infinite loop. Therefore, when a new capsule
arrives, the VM reboots, clearing out existing state. Ap-
plications that require persistent state can include func-
tions that atomically store and load this state.

3.3 Capsule Store: Propagation
The initial Mat́e VM forwarded programs with an im-

perativeforw instruction, which would broadcast code
fragments. A single copy of a self-forwarding program
would autonomously reprogram the network. However,
this imperative forwarding had three major limitations.
First, it was inefficient. Every node continued to transmit
code even when the network was reprogrammed. Sec-
ond, it could easily saturate the network. Without some
sort of feedback or density estimation, a dense cluster
of nodes would consume a lot of bandwidth endlessly
broadcasting many copies of the same code. Finally, it
tied propagation to execution. Handlers that ran rarely
could not quickly forward themselves, and had to rely on
others to do so.

The current Mat́e architecture solves these problems
using the Trickle algorithm [16]. Trickle uses broadcast-
based suppressions to quickly propagate new data but
minimize overhead when nodes share data. Just as with
explicit forwarding, once a user installs a single copy of
a program in the network, Maté installs it on every mote.
Pushing propagation into the VM runtime as a basic ser-
vice means that users are not responsible for fine-tuning
its performance, although a particular VM could include
functions to manipulate propagation policies if an appli-
cation required it.

Code propagation uses an epidemic-like approach: a
node that has newer code will broadcast it to local neigh-
bors. The Trickle algorithm is used to efficiently broad-
cast three entities: version packets, which contain the 32-
bit version numbers of all installed capsules, capsule sta-
tus packets which describes fragments of a capsule that
a mote needs (essentially, a bitmask), and capsule frag-
ments that are short segments of a capsule. Figure 5 con-
tains the state diagram used by motes for code propa-

gation. A mote can be in one of three states: maintain
(exchanging version packets), request (sending capsule
status packets), or respond (sending fragments). Nodes
start in the maintain state. They enter the request state if
they hear something that indicates someone has a newer
capsule, whether it be a version, capsule status, or frag-
ment packet. A requesting node returns to the maintain
state once it receives the entire capsule. A node enters
the respond state if it is in the maintain state and hears
that someone has an older capsule (through a version
packet), or needs part of its current capsule (through a
capsule status packet). These state transitions mean that
nodes prefer requesting over responding; a node will de-
fer forwarding capsules until it thinks it is completely up
to date.

Trickle’s suppression operates on each type of packet
(version, capsule status, and capsule fragment) individu-
ally. That is, a capsule fragment transmission will sup-
press all other fragment transmissions, but will not sup-
press version packets. This allows meta-data exchanges
during propagation: sending a fragment will not cause
someone to suppress a message saying what fragments it
needs. Trickling fragments means that code propagates
in a slow and controlled fashion, instead of as quickly
as possible. This is unlikely to significantly disrupt any
existing traffic, and prevents network overload. We show
in Section 4.3 that because Maté programs are small (tens
or a hundred bytes), code can still propagate rapidly across
large multi-hop networks (tens of seconds).

3.3.1 Propagation and Security

Self-replicating code poses network security risks. Specif-
ically, if an adversary can introduce a single copy of a
malicious program, he can take control of the entire net-
work. Mat́e’s version numbers are finite; installing one
with the highest possible version number would prevent
reprogramming.

A Maté VM can provide two additional levels of se-
curity, both of which assume a trusted PC where users
write scripts. In the first, motes are physically secure.
Private key cryptography can compute packet checksums
(authentication codes), with TinySec [12] or similar pro-
tocols. The private key is installed as part of the Maté
VM.

If some motes can be physically compromised, the PC
computes digital signatures using a variant of the BiBA
algorithm [22], which provides signatures that are com-
putationally intensive to produce, but inexpensive to ver-
ify. Motes maintain one-way hash chains (stored in EEP-
ROM) for validating signatures, which allow them to ver-
ify whether the PC generated a given program. This
scheme can be attacked by isolating some nodes from
the network and observing the hash chains of the rest of
the network. However, unisolated nodes will reject the

<VM NAME="KNearRegions" DIR="apps/RegionsVM">

<LANGUAGE NAME="tscript">

<FUNCTION NAME="send">
<FUNCTION NAME="mag">
<FUNCTION NAME="cast">
<FUNCTION NAME="id">
<FUNCTION NAME="sleep">
<FUNCTION NAME="KNearCreate">
<FUNCTION NAME="KNearGetVar">
<FUNCTION NAME="KNearPutVar">
<FUNCTION NAME="KNearReduceAdd">
<FUNCTION NAME="KNearReduceMaxID">
<FUNCTION NAME="locx">
<FUNCTION NAME="locy">

<CONTEXT NAME="Boot">

Figure 6: Minimal description file for the regions VM
shown in Figure 12.

malicious program, as it would use expired hash values.
We have incorporated this level of security in Maté as
a proof of concept, but it is not part of the distribution:
this degree of security is not a pressing requirement in
current deployments.

3.4 Building a Maté VM
To build a VM and scripting environment, a user spec-

ifies three things: a language, a set of functions, and a set
of contexts. From this specification, the Maté toolchain
generates a TinyOS component implementing the VM
and a Java classes for the assembler. Figure 6 shows
the description file for a minimalist abstract regions VM,
which we discuss further in Section 4.4.

A Maté supported language supplies the set of primi-
tives it needs to the Maté toolchain. For example, motlle
includes primitives to build closures and read local vari-
ables, while TinyScript has primitives that read named
shared variables. Generating an assembler separates lan-
guage compilation from the framework. For example,
the TinyScript compiler invokes the Maté assembler to
produce VM-specific opcodes. Two different VMs that
provide the same language may have different instruc-
tion to opcode mappings.

3.4.1 Customizing a VM to an application domain

The current Mat́e framework comes with a collection
of 14 contexts (e.g., timers) and 80 functions (e.g., sen-
sor access). These are fairly small, they range in size
from 20 to 140 lines of nesC. Each context and func-
tion is accompanied by an XML-like specification pro-
viding additional information to the Maté toolchain, such
as number of arguments to functions and user documen-
tation. A user building a VM can add new contexts and
functions by writing additional nesC components imple-
menting the appropriate interfaces (Bytecode from Fig-
ure 4 for functions, and an interface to the concurrency
manager for contexts).

buffer packet;

call bclear(packet);

packet[0] = call light();

call send(packet);

(a) TinyScript

bpush 3
bclear
light
pushc6 0
bpush 3
bwrite
bpush 3
send

(b) Mat́e Bytecodes

Figure 7: TinyScript function invocation on a simple
sense and send loop.The operand stack passes param-
eters to functions. In this example, the scripting en-
vironment has mapped the variable “packet” to buffer
three. The compiled program is nine bytes long.

4. EVALUATION
We briefly present TinyScript and motlle the two lan-

guages Mat́e currently supports (Section 4.1), measure
the basic overheads of interpretation and concurrency (Sec-
tion 4.2), and verify the effectiveness of code propaga-
tion (Section 4.3).

We then evaluate the effectiveness of Maté-based VMs
versus the two previous implementation of high-level sen-
sor network programming models, abstract regions (Sec-
tion 4.4) and TinyDB (Section 4.5).

4.1 Languages
Maté currently supports two languages, TinyScript and

motlle. TinyScript is a BASIC-like imperative language
with dynamic typing and a simple data buffer abstrac-
tion. Everything is statically named: it has neither data
nor function pointers. This makes the resource analy-
sis for concurrency straightforward: the resources ac-
cessed by a handler are simply the union of all resources
accessed by its operations. Static naming allows easy
incremental code updates: TinyScript has a one to one
mapping between handlers and capsules. TinyScript rep-
resents a bare-bones language that provides minimalist
data abstractions and control structures that can be com-
piled to very concise code. Figures 7, 14 and 15 contain
TinyScript samples.

The full TinyScript primitive set contains 39 opera-
tions, and leaves space in the opcode set for up to one
hundred functions. The simplest TinyScript VM (a single
context and no functions) uses 1.2kB of RAM and 26kB
of code; this includes the TinyOS networking stack, which
is used to propagate code.

Motlle (MOTe Language for Little Extensions) is a
dynamically-typed, Scheme-inspired language with a C-
like syntax. Examples of mottle code are shown in Fig-
ures 17, 18 and 19, these are heavily commented to in-
troduce motlle’s features by example. The main prac-

Monolithic Decomposed Overhead
Operations/sec 10173 9583 6%

Figure 8: Instruction Issue Rates for Maté. The cus-
tomizability and race condition safety of decomposed
VMs imposes a 6% execution overhead.

Operation Cycles Time (µs)

Lock 32 8
Unlock 39 10
Check Runnability 929 232
Run 1077 269
Resume 2038 510
Analysis 15158 3790

Figure 9: Synchronization Overhead.Times assume a
4MHz clock.

tical difference with TinyScript is a much richer data
model: motlle supports vectors, lists, strings and first-
class functions. This allows significantly more compli-
cated algorithms to be expressed within the VM, but the
price is that accurate data analysis is no longer feasible
on a mote. To preserve safety, motlle serializes the ex-
ecution of all event handlers by reporting to the concur-
rency manager that all contexts access the same shared
resource. Thus motlle is not appropriate for applica-
tions with bursty processing requirements or which re-
quire very rapid response to events. Motlle code is trans-
mitted in a single capsule which contains all handlers;
it does not support incremental changes to running pro-
grams.

A basic motlle VM, including functions to manipulate
lists, strings and vectors takes 29kB of code and 1.9kB
of RAM (of which 1kB is available to user programs).

4.2 CPU Overhead
We measured the bytecode interpretation overhead Maté

imposes by writing a tight loop and counting how many
times it ran in five seconds. Figure 8 shows the results.
The loop accessed shared variables (which involve lock
checks through the concurrency manager). Maté can is-
sue just under ten thousand instructions per second. This
is only 6% slower than the previous published, non-configurable
monolithic version.

The nature of Mat́e operations, especially functions,
makes this overhead fairly minor. For example, a func-
tion that sends a packet imposes approximately 600 clock
cycles of CPU overhead over an operation that consumes
20,000 clock cycles. We believe that VMs will often have
even higher level functions, reducing the overhead fur-
ther. For example, in the RegionsVM described below,
creating a region – which transmits several packets and
receives many – is a single opcode. Clearly, implement-
ing complex mathematical codes in Maté is inefficient;
if an application domain needs significant processing, it
should include them as functions.

Figure 10: Mote network layout in Soda Hall.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

5 25 45 65 85 105 125+

Time (seconds)

M
o
te

s
Pr

o
g
ra

m
m

ed

Figure 11: Reprogramming time distribution for a
one hundred byte capsule in the Soda Hall network.

We measured the computation overhead of Maté syn-
chronization operations. We measured these using the
cycle counter of our mote platforms. Our results are
summarized in Figure 9. All values are averaged over
fifty samples. These measurements were on a VM with
twenty-four shared resources and 128 byte long programs.

Check Runnability is the cost of checking whether the
locks a context requires, seeing if each of them is either
already held or can be obtained. Running is the cost of
obtaining all of a context’s unheld locks and posting a
TinyOS task to begin execution. Resuming is the cost
incurred when a context is triggered to run by an event
– this involves checking if the task is runnable (it has or
can obtain all of its locks), and if so, running. In this
experiment, the context could always run (there was no
parallelism), therefore is effectively the sum of Check
if runnable and Running with some additional overhead.
Installing is the cost of installing a new TinyScript cap-
sule on the mote, which necessitates a full program anal-
ysis.

4.3 Propagation
To measure the Maté’s code propagation rate, we de-

ployed a simple VM on a 75 mote testbed on the fourth
floor of Soda Hall at UC Berkeley. Figure 10 shows the
physical topology; the network topology was approxi-
mately eight hops across, with four hops being the av-
erage node distance. We used the standard Maté pa-

rameters for Trickle. Status and version packets have a
τ range of one second to twenty minutes, and a redun-
dancy constant of 2. Fragments use Trickle for suppres-
sion, but operate with a fixed window size of one second.
The request timeout was five seconds. We injected a one
hundred byte (four fragment) program into a single node
over a wired link, then measured the time to reception
for all of the nodes in the network. We repeated this ex-
periment twenty times, letting the trickles settle between
tests. Figure 11 shows the aggregate results.

Forty-five percent of the nodes received the capsule
within five seconds, and ninety percent within one minute.
The long tail (8% took over two minutes) of the distri-
bution is characteristic of Trickle; because it transmits
so few packets to keep the average case inexpensive, a
small number of nodes are left behind. However, as the
VM continues to trickle the code indefinitely, these nodes
will eventually reprogram: after four minutes, on aver-
age only four percent (three nodes) still required the pro-
gram. However, with the parameters described above, a
stable node sends at most three packets/hour.

4.4 Regions
We evaluate Mat́e and abstract regions using a pursuer-

evader tracking application. We compare this application
implemented in native regions code, in a VM extended
with region primitives (RegionsVM) and in a VM cus-
tomized for pursuer-evader tracking (PegVM).

4.4.1 Pursuer-Evader Tracking

In the Pursuer-Evader Game demo (PEG), a dense field
of motes poll their magnetometers several times a second
to detect an evader robot. Nodes smooth the readings
with an exponentially weighted moving average to fil-
ter out transient noise. When a mote detects the evader
move by (the filtered reading goes over a threshold), it
broadcasts the reading. Because the field is dense, nearby
nodes will also detect the evader and broadcast their read-
ings. These broadcasts are an implicit leader election al-
gorithm: the leader is the mote with the highest read-
ing. After broadcasting, a mote waits a short time be-
fore deciding whether it is the leader (it did not hear a
reading higher than its own). The leader aggregates all
of the readings it heard into a single packet and sends it
to a waypoint for forwarding to a moving pursuer robot.
All in all, the nesC version of the PEG demo took a half
dozen students and staff on the order of a month, working
full time, to implement and deploy.

4.4.2 RegionsVM

Regions based programming is a recent proposal to
simplify sensor network programming [25]. In this model,
nodes operate on region-based shared tuple spaces, where
regions can be based on geographic proximity, network

connectivity, or other node properties. In the proposed
programming model, TinyOS provides a single synchronous
execution context (a “fiber”), which supports blocking
operations. Users compile a full TinyOS image for each
regions program, and install the binary image in the net-
work.

Building a RegionsVM (Figure 6) to provide support
for regions-based programming is fairly simple: all it re-
quires is writing components that present the regions ab-
stractions as VM functions. Doing so is approximately
400 lines of nesC code per region type. By moving re-
gions into the Mat́e framework, the user is no longer con-
strained to a single execution context, as is the case in
the proposed regions fiber model: RegionsVM can re-
spond to any execution event for which a Maté context
exists. Additionally, instead of retasking by installing a
new TinyOS image, the user installs a single image and
injects small VM programs.

Figure 12 shows regions pseudocode for the PEG ap-
plication from the publication by Welsh and Mainland,
with corresponding TinyScript code alongside it. The
major distinctions stem from the TinyScript data model:
it does not support structures or object-oriented style func-
tions. Additionally, the parameter to the creation func-
tion is a compile-time constant in the regions compiler.
The Mat́e implementation is seventy-one bytes long.

Figure 13 shows the relative sizes of the two TinyOS
images.2 Maté doubles the size of the executable and
adds seven hundred and fifty bytes of data storage. The
breakdown of the data storage costs is shown in Fig-
ure 13. Buffers and variables are responsible for approx-
imately a third of the storage. The three costs that scale
with the number of contexts are Capsule Store (needs
space to store programs), Contexts (need to allocate a
context), and Variables (each context has a set of private
variables).

Maté doubles the size of the TinyOS image, but this
becomes a one-time cost for a wide range of regions pro-
grams. Instead of sending tens of kilobytes of data into
a network to retask it, the user can send on the order of
a hundred bytes, a 99% reduction. Of course, the user
is also free to install a new VM on the network if a new
level of abstraction is needed. Additionally, Maté pro-
grams run in the sandboxed VM environment, so buggy
code cannot crash the network.

4.4.3 PegVM

The PegVM is a Mat́e VM with functions for sens-

2To compile these applications, we modified many of the
standard allocation constants; the default regions settings pre-
cluded us from installing it on a mote (it was designed
for TOSSIM [15]). Specifically, we set REQQUEUE LEN
from 10 to 4, TUPLESPACEMAX KEY from 32 to 16,
ROUTE TABLE SIZE from 16 to 8, MHOPQUEUE SIZE
from 8 to 4, and SENDQUEUE SIZE from 32 to 12.

location = get location();
/* Get 8 nearest neighbors */
region = k nearest region create(8);

while(true) {
reading = get sensor reading();

/* Store local data as shared variables */
region.putvar(reading key, reading);
region.putvar(reg x key, reading * location.x);
region.putvar(reg y key, reading * location.y);

if (reading > threshold) {
/* ID of the node with the max value */
max id = region.reduce(OP MAXID, reading key);

/* If I am the leader node... */
if (max id == my id) {

sum = region.reduce(OP SUM, reading key);
sum x = region.reduce(OP SUM, reg x key);
sum y = region.reduce(OP SUM, reg y key);
centroid.x = sum x / sum;
centroid.y = sum y / sum;
send to basestation(centroid);

}
}
sleep(periodic delay);

}

(a) Regions Pseudocode

!! Create nearest neighbor region
call KNearCreate();

for i = 1 until 0
reading = call cast(call mag());

!! Store local data as shared variables
call KNearPutVar(0, reading);
call KNearPutVar(1, reading * call LocX());
call KNearPutVar(2, reading * call LocY());

if (reading > threshold) then
!! ID of the node with the max value
max id = call KNearReduceMaxID(0);

!! If I am the leader node
if (max id = my id) then

sum = call KNearReduceAdd(0);
sum x = call KNearReduceAdd(1);
sum y = call KNearReduceAdd(2);
buffer[0] = sum x / sum;
buffer[1] = sum y / sum;
call send(buffer);

end if
end if
call sleep(periodic delay);

next i

(b) TinyScript Code

Figure 12: Regions Pseudocode and Corresponding TinyScript.The pseudocode is from “Programming Sensor
Networks Using Abstract Regions.” The TinyScript program on the right is 71 bytes long.

buffer bcastBuf;
shared reading;
private curr;

!! Read the magnetometer sensor
curr = call cast(call mag());
!! Filter the reading with an EWMA
reading = (reading * 7) / 8;
reading = reading + curr / 8;
!! If we have detected a vehicle
if (reading/100) > 200 then
!! Broadcast our ID and reading

bcastBuf[0] = call id();
bcastBuf[1] = reading;
call bcast(bBuf);
!! Fire Timer1 in 500ms
call settimer1(500);

end if

(a) Timer0 (32 bytes)

buffer sendBuf;
shared reading;
shared high;

!! Stop Timer1
call settimer1(0);
!! Are we are leader?
if reading > high then
!! If buffer full, use head

if call bfull(sBuf) then
sendBuf[0] = call id();
sendBuf[1] = reading;

!! Otherwise just append
else

sendBuf[] = call id();
sendBuf[] = reading;

end if
call send(sendBuf);

end if
!! Clear state for next aggregation
call bclear(sendBuf);
high = 0;

(b) Timer1 (34 bytes)

buffer recvBuf;
buffer sendBuf;
shared high;

!! Get received data
recvBuf = call received();
!! Higher than current high?
if (recvBuf[1] > high) then

high = recvBuf[1];
end if
!! Add reading to buffer
if (!call bfull(sendBuf) then

sendBuf[] = recvBuf[0];
sendBuf[] = recvBuf[1];

end if

(c) Receive BCast (52 bytes)

Figure 14: An example PEG implementation in Mat́e. Timer0 fires periodically and samples the magnetometer
sensor, using an exponentially weighted moving average to smooth out transient noise. If it detects a spike in the
reading, it marks that it sensed something, broadcasts a message to local neighbors, and schedules the aggregation
timer (Timer1) to fire in 500ms. When a node hears a broadcast, it puts the heard value into its send buffer and
keeps track of the highest reading heard. Timer1 stops itself (it’s a one-shot timer) and checks if it has sensed the
highest reading in its neighborhood (is the leader). If so, it routes the aggregate buffer to the pursuer with the
send() function.

Static Mat é

Program (Flash) 19K 39K
Application 1.1K 21K
Regions 5.1K 5.1K
Network Stack 8.5K 8.5K
Timers 1.9K 1.9K
Other 2.5K 2.5K

Data (RAM) 2255 3017
Application 87 741
Regions 1292 1292
Network Stack 572 572
Timers 120 160
Other 194 252

Component Data

Buffers 176
Capsule Store 211
Variables 96
Contexts 89
Scheduler 56
Locks 48
Other 73
Total 741

Figure 13: Resource utilization of static and Mat́e
TinyOS regions images in bytes.

buffer bBuf;
shared reading;
private curr;
curr = call cast(call mag());
avg = (avg * 7) / 8;
avg = avg + curr;
if (avg / 100) > 200 then
bBuf[0] = call id();
bBuf[1] = avg;
call bcast(bBuf);
call settimer1(1);
end if

(a) Timer0 (32 bytes)

buffer bBuf;
shared reading;

reading = call msense();
bBuf[0] = call id();
bBuf[1] = reading;
call bcast(bBuf);
call settimer1(1);

(b) MagSense (14
bytes)

Figure 15: Moving the PEG Event Boundary.Timer0
polls the sensor, while MagSense runs when an under-
lying TinyOS detection implementation fires an event.

ing, and local and multi-hop communication, designed
to support pursuer-evader tracking. Figure 14 shows the
corresponding PEG implementation. PegVM could also
be more specialized, e.g., averaging and detecting the
magnetometer pulses could be an event, as shown in Fig-
ure 15. Factoring out the sampling logic makes the code
simpler and shorter.

4.4.4 Comparison

To evaluate how accurately the PegVM and the Re-
gionsVM implementations estimate the position of a pur-
suer, we set up a TOSSIM environment with a configura-
tion similar to the PEG deployment. We arranged nodes
in a 10x10 grid, with a spacing of two feet, with packet
loss rates drawn from TOSSIM’s empirical model3. We
used a TOSSIM packet-level simulation which models
media access and collisions, with a maximum commu-
nication rate of 40 packets/second (approximately what
current motes are capable of).

In the real PEG deployment, the sensing threshold range
was just under one grid spacing, so we modeled the pur-
suer as a point sensor data source with quadratic strength
3The real PEG deployment had a spacing of two yards, not
feet. We chose two feet so the overall network density would be
identical to the simulation results Welsh and Mainland reported
for their regions implementation.

Packets/event Estimation error
PegVM 4.5 0.6
RegionsVM (10x bandwidth) 37.5 large
RegionsVM (100x bandwidth) 37.5 0.25

Figure 16: Maté PEG implementation

dropoff over distance, where the threshold was just under
two feet. We placed the pursuer at random points within
the grid and compared the center of mass estimation from
the aggregated readings with the actual position.

Figure 16 shows the results. The PegVM implemen-
tation estimated the point source to within six tenths of
a foot (a quarter of a grid space), with a average cost of
four and a half transmissions per detection event.

Initial attempts to run PEG in RegionsVM failed. A
reduction operation requires approximately 40 transmis-
sions. Each node sensing the pursuer performs one re-
duction, and the leader performs four. With a sampling
rate of 2Hz, this is approximately ten times the available
network bandwidth. This behavior precluded us from
evaluating RegionsVM empirically. Increasing the avail-
able bandwidth ten-fold, we observed very large errors
(roughly eight feet, sometimes as much as twenty). This
was due to the formulation of the program; as each re-
duction is separate, losses are independent and can skew
results. For example, if the request for a large reading
is lost in the sum reduction, but not the X or Y coordi-
nate reductions, the divisor will be low when computing
the centroid; the formulation of the program ignores this
data dependency. A multi-value reduction would remove
the possibility of this error, but the current regions library
does not support this operation.

We increased bandwidth another ten-fold (to 4,000 pack-
ets/second). RegionsVM was able to compute the cen-
troid very accurately, within 0.25 feet. This increased ac-
curacy comes directly from the regions implementation’s
increased communication. The PegVM implementation,
like the actual deployment, only aggregates across values
over the threshold. In contrast, the RegionsVM aggre-
gates across all values, but only nodes over the threshold
perform the aggregation. Using a push-based instead of
a pull-based tuple space implementation would probably
significantly reduce the bandwidth required.

4.5 TinyDB
TinyDB [18] is a complex mote application that allows

a mote-based sensor network to be treated as a streaming
database. This database can be queried using a SQL-like
language, TinySQL, whose main extension over SQL is
the specification of a ‘sample period’ at which the query
is repeated. For instance, “SELECT nodeid, light SAM-
PLE PERIOD 60s” will collect the identity and light sen-
sor reading from all nodes in a sensor network every
minute. TinySQL supports both simple data collection as

/* equivalent TinyDB query:
SELECT nodeid, parent, light SAMPLE PERIOD 60s */

settimer0(600); // Fire Timer0 every epoch (60s)
mhop_set_update(120); // Update multihop route every 2min

// We define the Timer0 handler by assigning a function
// to global variable ’timer0_handler’
timer0_handler = fn ()

// ’mhop_send’ sends a message (string) over the multihop
// network
// ’encode’ encodes the contents of a vector as a string
// ’next_epoch’ advances to the next epoch (except if
// snoop_epoch made us advance since the last call)
mhop_send(encode(vector(next_epoch(), id(), parent(),

light())));

// The Intercept and Snoop handlers are run when a multihop
// message passes through (intercept_handler) or is overhead
// (snoop_handler) by this mote. If the message is from a
// future epoch, we advance our own epoch.
mhop_snoop_handler = fn () heard(snoop_msg());
mhop_intercept_handler = fn () heard(intercept_msg());
heard = fn (msg)

{
// ’decode’ decodes a string into the argument vector
// In this case, the first 2 bytes of the string are
// decoded into an integer.
vector v = decode(msg, vector(2));

// ’snoop_epoch’ advances to epoch v[0] if it’s beyond ours
// This makes the network converge on a consistent epoch.
snoop_epoch(v[0]);

};

Figure 17: “Simple”: Simple Data Collection Query
in Motlle

in the previous example, and aggregate queries such as
“SELECT AVG(temperature) SAMPLE PERIOD 60s”
to measure the average temperature of the network. The
computation of aggregate queries is performed in the net-
work, as data is being collected and routed [19].

We have built a custom VM (QueryVM) based on motlle
to perform similar data collection tasks. We designed
the extensions in QueryVM with the idea that the motlle
code should be responsible for what data to collect when,
and for message layouts. The VM extensions are respon-
sible for communication, and abstract common patterns
necessary to perform TinyDB-like operations. This led to
has extensions in three areas (rather than list the primi-
tives and handlers for these extensions in detail, we com-
ment their use in the examples below):

• Multi-hop communication: we provide primitives
and handlers to access the same tree-based multi-
hop communication layer used by TinyDB [26].

• Epoch handling: TinyDB query results abstract the
notion of time into an “epoch”. The first result of
a query happens in epoch 1, the second in epoch 2,
etc. Epoch numbers are included in query results
and help support aggregation. To ensure consis-
tent epoch numbers are maximized across the net-
work by snooping on query results. We add epoch-
handling primitives to the VM to avoid replicating
epoch-handling logic in every program.

• Aggregation: we add primitives to perform the logic

/* TinyDB:
SELECT nodeid, expavg(temp, 14) WHERE light > 920

GROUP BY nodeid SAMPLE PERIOD 60s
*/
settimer0(600); // Fire Timer0 every epoch (60s)
mhop_set_update(120); // Update multihop route every 2min

// ’expdecay(f, b)’ builds a function which on every invocation
// evaluates f() and returns its exponentially decaying average
// (with constant 1-2ˆ-b)
expdecay = fn (function attr, int bits)

{
int running = 0; // maintains the running total

// Return a function that samples and decays attr()
fn ()

running = running - (running >> bits) + (attr() >> bits)
};

decaytemp = expdecay(temp, 2);

timer0_handler = fn ()
{

next_epoch();
if (light() > 100)

mhopsend(vector(epoch(), nodeid(), decaytemp()));
};

// decode messages heard and update epoch if necessary
snoop_handler = fn () heard(snoop_msg());
intercept_handler = fn () heard(intercept_msg());
heard = fn (msg)

snoop_epoch(decode_message(msg, 2)[0]);
decode_message = fn (msg)

decode(msg, vector(2, 2, 2));

Figure 18: “Conditional”: Conditional, time-
averaged query in Motlle

necessary for spatial aggregation. We chose to im-
plement time-based aggregates (such as exponen-
tial decay) directly in motlle (see Figure 18).

Figure 17 shows the motlle code for the TinyDB “SE-
LECT nodeid, parent, light SAMPLE PERIOD 60s” query.
The core of this code is the single linemhop send(...)
which advances the epoch, collects data and sends it over
the multi-hop network. The QueryVM application takes
38kB of code and 3.0kB of RAM (of which 1kB is for
user programs), while TinyDB uses 59kB of code and
2.9kB of RAM.

We evaluate QueryVM by comparing its performance
to TinyDB on three queries: “Simple”, a simple data col-
lection query (Figure 17), “Conditional”, a conditional,
time-averaged query (Figure 18) and “SpatialAvg”, a spatially-
averaged query (Figure 19). Our main metric is average
power consumption, as this controls the lifetime of a sen-
sor network. We also report encoded-query (TinyDB) vs
program (QueryVM) size.4 We ran these queries on a
network of 22 mica2 motes spread across the Intel Berke-
ley lab, with the standard mica sensor board. TinyDB
and QueryVM used the same multi-hop routing layer and
“low-power listening” radio stack [10]. We measured
the power consumption of a non-routing mote physically
close to the root of the multi-hop network. Its power thus
reflects a mote which overhears most traffic but which
4We count each message used in to send a TinyDB query as 31
bytes.

TinyDB QueryVM
Query (size) (mW) (sizes) (mW)
Simple 93 3.0 91 2.7
Conditional 155 * 155 2.1
SpatialAvg 62 3.0 223 2.3

Table 1: Query size and power consumption in
TinyDB and QueryVM

sends relatively few messages.
Table 1 presents the results from these experiments.

The results from “Conditional” with TinyDB were incor-
rect (all nodes reporting a result in a given epoch report
the an identical value), so we do not include that result.
The QueryVM queries were 11% to 30% more energy
efficient. For the simple data collection, we estimate that
this difference (0.3mW) is due to the larger data packets
used by TinyDB. Spatial averaging has at most the same
communication cost as simple data collection, so at least
0.4mW of the energy difference must be due to higher
computational cost in TinyDB.

It is clear from these examples that a TinyDB query
is more concise and easier to write than the correspond-
ing QueryVM code. However, QueryVM is more ex-
pressive: it is possible (Figure 18) to measure an expo-
nentially decaying average within QueryVM, something
that is only possible with TinyDB if it was provided when
TinyDB itself was compiled. Similarly, we debugged our
spatial averaging by writing the code in motlle, at the ex-
pense of a larger program (533 vs 223 bytes) and 10%
more power consumption (2.5 vs 2.3mW). Ultimately,
the choice of the appropriate programming abstraction
must depend on the needs of the application. Our results
show that the functionality of TinyDB can be provided
within Maté with comparable cost.

At a power consumption of 2.7mW, a pair of AA bat-
teries (2700mAh, of which approximately 2/3rds is us-
able by a mote) would last more nearly three months. By
lowering the sample rate and other optimizations, we be-
lieve that lifetimes of three months or more are readily
achievable. This shows that Maté is a realistic option for
long term, low-duty-cycle sensor net deployments.

5. DISCUSSION
In the Mat́e model, user programs have three distinct

representations, shown in Figure 1. First is the user rep-
resentation, where programs are high-level scripts. Maté
meets the needs of this level, programming ease and ab-
straction, by supporting multiple languages. A compiler
transforms the user representation into the bytecodes of
the transmission representation. These bytecodes are de-
signed for conciseness and safety, allowing networks to
freely propagate and install them. Although currently
Maté merely interprets the in-network representation, there
is no reason it could not use just-in-time compilation
techniques to generate native code.

/* TinyDB: SELECT avg(temp) SAMPLE PERIOD 60s */
settimer0(600); // Fire Timer0 every epoch (60s)
mhop_set_update(120); // Update multihop route every 2min

// ’spatialavg(f)’ returns an "object" with methods for
// performing spatial averaging of f. The methods are:
// spatial_sample: measure f locally
// spatial_agg: include results from a child
// spatial_get: get completed results for this subtree
// (as a string of length spatialavg_length, ready for
// transmission)
// An "object" is a vector with functions as elements.
spatialavg = fn (function attr) {

any sstate = spatialavg_make(attr);
epoch_change = fn() spatialavg_epoch_update(sstate);
vector(fn (data) spatialavg_intercept(sstate, data),

fn () spatialavg_sample(sstate, sstate[0]()),
fn () spatialavg_get(sstate))

};

avgtemp = spatialavg(temp);

timer0_handler = fn () {
any summary;
// the root (id 0) does only aggregation
if (id()) {

next_epoch();
avgtemp[spatial_sample]();

};
summary = avgtemp[spatial_get]();
if (summary)

mhopsend(encode(vector(epoch(), summary)));
};

// decode messages heard, update epoch if necessary,
// add child summaries to our summary
snoop_handler = fn ()

snoop_epoch(decode_message(snoop_msg())[0]);

intercept_handler = fn () {
vector fields = decode_message(intercept_msg());
snoop_epoch(fields[0]);
avgtemp[spatial_agg](fields[1]);

};

decode_message = fn (msg)
decode(msg, vector(2, make_string(spatialavg_length)));

Figure 19: “SpatialAvg”: Spatially averaged Query
in Motlle

In Section 4, we showed how the Maté architecture can
be used to generate VMs that provide proposed regions-
based or query-based programming models; these VMs
are more efficient than the monolithic implementations
they emulate. This improved efficiency comes from how
Maté decomposes in-situ programming into three layers.
Certainly, an optimized, fully integrated implementation
of these models could be made more efficient than one
implemented in Mat́e; however, our results suggest that
such implementations would benefit from following a
similar layering. Additionally, by decomposing an envi-
ronment into a set of reusable and robust building blocks,
the architecture greatly simplifies the process of develop-
ing programming models for new applications.

Sensor networks, TinyOS networks in particular, are
notoriously difficult to program. At the level of an in-
dividual mote, software is a mix of embedded system
and kernel code, with all of the resulting complexities.
Current mote hardware does not support traditional pro-
tection boundaries, and it is an open question whether fu-
ture platforms will, for a variety of design considerations,
such as stack memory usage. Maté provides the equiv-

alent of a user-land programming environment through
an intermediate representation. In this light, building a
VM is similar to building a customized OS kernel: prim-
itives and functions are the system calls. Additionally,
by tailoring the representation to a particular application
domain, Mat́e can encode programs more concisely than
native code, making propagation more efficient and con-
serving RAM.

6. RELATED WORK
Extensible abstraction boundaries have a long history

in operating systems. Proposals such as scheduler acti-
vations [2], ACPM [9] and U-Net [24] show that having
richer boundaries that allow application-OS cooperation
can greatly improve application performance. Operat-
ing systems such as exokernel [11] and SPIN [3] take
a more aggressive approach, using software structure or
language safety to allow flexible OS service composi-
tion. Instead of providing a fixed interface, they allow
users to write the interface, and improve performance
through increased control.

Maté uses similar techniques to make adding exten-
sions easy, but execution performance is not the driv-
ing goal behind the architecture’s extensibility. Enabling
users to easily compose VMs tailored to a specific appli-
cation results in simple programs and very concise code;
this conciseness minimizes overhead. Similar to OS-
Kit [7], defining system boundaries makes these compo-
sitions simple and easy. Additionally, making the system
building blocks self-contained components is good soft-
ware engineering practice, as it can localize faults and
make bugs much easier to track down; microkernel ef-
forts such as Mach [23] had similar benefits, although,
again, for different goals.

Virtual machines such as the UCSD p-System [21], the
Java Virtual Machine [17], and Microsoft’s CLR [1] pro-
vide common abstractions across a wide range of plat-
forms, supporting one or more languages. This contrasts
strongly with Mat́e’s goal of providing a virtual machine
for a particular deployment. These systems share the ad-
vantage of smaller-than-native code with Maté, though
we believe that Mat́e VMs can take advantage of their
application-specific nature to provide even more compact
code (as the examples from Section 4 where we special-
ize an existing VM show).

Vmgen[5] is another tool for building interpreters, but
with a rather different focus than Maté. Its main goals are
to simplify the specification of an interpreter’s instruc-
tions (e.g., addition, pushing constants on a stack, etc)
and increase interpreter execution efficiency. In contrast,
Maté aims to simplify extending core functionality pro-
vided by some language with application-specific exten-
sions, and to provide core system services such as con-
currency management and code propagation. The tech-

niques proposed byVmgencould be used to improve the
performance of Mat́e VMs. A number of techniques [13,
6, 4] have been proposed to reduce code size for in-
terpreters and regular processors. These optimizations
could be applied to further reduce the size of Maté pro-
grams.

7. CONCLUSION
We argue that application specific virtual machines are

an effective solution to safe and efficient mote network
programming. A VM takes the role of a traditional OS
kernel. Instead of system calls, it provides a set of prim-
itives. The VM schedules concurrent VM-level threads,
manages shared resources, and enforces protection bound-
aries. As VMs are application specific, they provide a
set of primitives particular to what a user needs, making
programs short and simple: high level application logic
can be encoded in a few hundred bytes. Because byte-
codes sit above high-level operations, the interpretation
overhead is small. Additionally, virtualization gives all
of its traditional benefits, such as handling platform het-
erogeneity.

At the same time, several research challenges remain.
The framework could provide better mechanisms for type
extensions, and benefit from a resource analysis frame-
work capable of supporting languages with more dynamic
memory allocation. Power efficiency is an important part
of sensor network applications; although Maté addresses
the cost of propagation and execution, it should also man-
age hardware resources such as sensors; a combination
of static analysis (like for concurrency) and dynamic re-
source tracking could automatically enable and disable
hardware devices as needed.

Placing clear divisions between the three program lay-
ers allows each to be individually optimized for its sepa-
rate goals. A variety of proposals exist for high level pro-
gramming models, but sensor network operating systems
are highly optimized embedded systems. By providing
a architecture to bridge the gap between them, Maté al-
lows users to efficiently and safely reprogram sensor net-
works.

Acknowledgements
This work was supported, in part, by the Defense Depart-
ment Advanced Research Projects Agency (grants F33615-
01-C-1895 and N6601-99-2-8913), the National Science
Foundation (grants No. 0122599 and NSF IIS-033017),
California MICRO program, and Intel Corporation. Re-
search infrastructure was provided by the National Sci-
ence Foundation (grant EIA-9802069).

8. REFERENCES
[1] TC39/TG2. Common Language Infrastructure (CLI). Technical

Report ECMA-334, 2001.
[2] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler

activations: Effective kernel support for the user-level
management of parallelism.ACM Transactions on Computer
Systems, 10(1):53–79, February 1992.

[3] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating system. InProceedings
of the 15th ACM Symposium on Operating Systems Principles
(SOSP-15), 1995.

[4] J. Ernst, W. S. Evans, C. W. Fraser, S. Lucco, and T. A.
Proebsting. Code compression. InSIGPLAN Conference on
Programming Language Design and Implementation, pages
358–365, 1997.

[5] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. Vmgen — A
Generator of Efficient Virtual Machine Interpreters.Software
Practice and Experience, 32(3):265–294, 2002.

[6] W. S. Evans and C. W. Fraser. Bytecode compression via profiled
grammar rewriting. InSIGPLAN Conference on Programming
Language Design and Implementation, pages 148–155, 2001.

[7] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The flux OSKit: A substrate for kernel and language research. In
Symposium on Operating Systems Principles, pages 38–51,
1997.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to networked
embedded systems. InSIGPLAN Conference on Programming
Language Design and Implementation (PLDI’03), June 2003.

[9] K. Harty and D. Cheriton. Application controlled physical
memory using external page cache management, October 1992.

[10] J. Hill and D. Culler. Mica: a wireless platform for deeply
embedded networks.IEEE Micro, 22(6):12–24,
November/December 2002.

[11] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,
R. Hunt, D. Mazìeres, T. Pinckney, R. Grimm, J. Jannotti, and
K. Mackenzie. Application performance and flexibility on
Exokernel systems. InProceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP ’97), October 1997.

[12] C. Karlof, N. Sastry, and D. Wagner. TinySec: Security for
TinyOS, 2002. Presentation given at NEST group meeting,
11/21/2002.

[13] M. Latendresse and M. Feeley. Generation of fast interpreters for
huffman compressed bytecode. InProceedings of the ACM
SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and
Emulators, 2003.

[14] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for Sensor
Networks. InInternational Conference on Architectural Support
for Programming Languages and Operating Systems, San Jose,
CA, USA, Oct. 2002.

[15] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Simulating
large wireless sensor networks of tinyos motes. InProceedings
of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003), 2003.

[16] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code maintenance and propagation
in wireless sensor networks. InFirst USENIX/ACM Symposium
on Network Systems Design and Implementation (NSDI), 2004.

[17] T. Lindholm and F. Yellin.The Java Virtual Machine
Specification. Addison-Wesley, Second edition, 1999.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks.
In Proceedings of the 2003 ACM SIGMOD international
conference on on Management of data, pages 491–502. ACM
Press, 2003.

[19] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In Proceedings of the ACM Symposium on Operating System
Design and Implementation (OSDI), Dec. 2002.

[20] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless Sensor Networks for Habitat Monitoring.
In Proceedings of the ACM International Workshop on Wireless
Sensor Networks and Applications, Sept. 2002.

[21] S. Pemberton and M. C. Daniels.Pascal Implementation, The P4
Compiler. Ellis Horwood, 1982.

[22] A. Perrig. The biba one-time signature and broadcast
authentication protocol. InACM Conference on Computer and
Communications Security, pages 28–37, 2001.

[23] R. Rashid, R. Baron, A. Forin, M. J. David Golub, D. Julin,
D. Orr, and R. Sanzi. Mach: A foundation for open systems. In
Proceedings of the Second Workshop on Workstation Operating
Systems(WWOS2).

[24] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
user-level network interface for parallel and distributed
computing. InProceedings of the 15th Annual ACM Symposium
on Operating Systems Principles, December 1995.

[25] M. Welsh and G. Mainland. Programming sensor networks with
abstract regions. InFirst USENIX/ACM Symposium on Network
Systems Design and Implementation (NSDI), 2004.

[26] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In
Proceedings of the first international conference on Embedded
networked sensor systems, pages 14–27. ACM Press, 2003.

Appendix: Deadlock-free Proof
The follow proof shows that Maté’s concurrency model
is deadlock-free.

Proof by contradiction: assume deadlock exists. Rep-
resent the invocations as a traditional lock dependency
graph, where each context is vertex. For all verticesCa

in the suspended or waiting state, we record the timeta
at whichCa suspended (for newly created invocations,
ta is the invocation creation time). There is a directed
edge fromCa to Cb if Ca is waiting on a resource that
Cb holds.

An edge represents one of two situations. First,Ca

may be a newly created invocation waiting to begin ex-
ecution. Second,Cb may be holding resources thatCa

released after suspending at timeta but wants to reac-
quire. Because resources sets are atomically acquired at
the end of a scheduling point, it follows thatCb resumed
execution afterCa was suspended. Therefore, ifCb sus-
pends at timetb, we can conclude thattb > ta. Contexts
acquire resource sets atomically, so a context which is
waiting to start execution does not hold any resources.

For deadlock, there must be a cycleC1, . . . , Cn in the
graph. Every context in the cycle must be in the wait-
ing state. A contextCk from the cycle cannot be at its
start vertex as it has an incoming edge, therefore the in-
vocationCj afterCk in the cycle must havetk > tj . By
induction, it follows thatt1 > t1, a contradiction.

	Introduction
	Background
	Design
	Scheduler: Execution Model
	Concurrency Manager: Parallelism
	Capsule Store: Propagation
	Propagation and Security

	Building a Maté VM
	Customizing a VM to an application domain

	Evaluation
	Languages
	CPU Overhead
	Propagation
	Regions
	Pursuer-Evader Tracking
	RegionsVM
	PegVM
	Comparison

	TinyDB

	Discussion
	Related Work
	Conclusion
	REFERENCES -3pt

