
Reconciling Cooperation with Confidentiality in
Multi-Provider Distributed Systems

Sridhar Machiraju and Randy H. Katz
EECS Department, University of California, Berkeley

Report No. UCB/CSD-4-1345

August 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Reconciling Cooperation with Confidentiality in
Multi-Provider Distributed Systems

Sridhar Machiraju, Randy H. Katz
EECS Department, University of California, Berkeley

Technical Report UCB//CSD-04-1345

Cooperation and competition are opposing forces in Multi-Provider Distributed Systems (MPDSs) such as the Inter-
net routing infrastructure. Often, competitive needs cause providers to keep certain information confidential thereby
hindering cooperation and leading to undesirable behavior. For instance, recent work has shown that lack of inter-
domain cooperation in performing intra-domain routing changes may cause more congestion. We argue that MPDSs
should be designed with mechanisms that enable cooperation without violating confidentiality requirements. We
illustrate this design principle by developing such mechanisms to solve well-known problems in the most successful
MPDS, inter-domain routing. We also briefly discuss the need for such mechanisms in MPDSs for content distribu-
tion and policy-based resource allocation. Our mechanisms leverage secure multi-party computation primitives.

1 Introduction

Since the Internet was commercialized in 1994-1995, its routing infrastructure has evolved into a multi-provider
distributed system (MPDS). The protocol used to exchange routing information in this MPDS is BGP[33] (Border
Gateway Protocol), a hop-by-hop policy-aware path vector protocol. For scalability reasons, BGP hides details about
a provider’s network (called an AS, short for Autonomous System) as much as possible[12]. Over the years, this
property has allowed AS operators to preserve the confidentiality of their policies, topology, operational status and
other intra-domain information.

The opaqueness of BGP is the cause of many problems. For instance, lack of knowledge about congestion in neigh-
boring ASs makes it hard for one AS to choose uncongested end-to-end paths [43, 14]. Worse still, conflicting AS
policies can cause BGP to diverge [41]. Also, path quality is not available for ASs to use in path selection [6, 27].
Since most intra-domain information is considered confidential, the above and similar problems cannot be solved
by requiring ASs to reveal their intra-domain information. In this paper, we develop techniques that show how con-
fidential information such as link qualities and policies may be shared. We also briefly discuss the potential use of
such techniques in MPDSs other than inter-domain routing such as caching [5], computing [16, 18], storage [25] and
p2p networks/overlay routing[35].

The goal in the area of Distributed Algorithmic Mechanism Design (DAMD) is to remove the rationale for keeping
certain inputs private by designing mechanisms in which it can be proven that lying does a participant no good.
Our work is based on the belief that this assumption is not appropriate for MPDSs. To quote Feigenbaum et al.
[15] on the applicability of DAMD to inter-domain routing, The premise of the (DAMD) approach is that agents
will voluntarily reveal their private information if it can be proven that lying does them no good in the situation
(being) addressed . . . Revelation of private information may be an agent’s best possible strategy for the particular
situation at hand but it may be unacceptable in the broader context. As they further state in their paper, the goal
is to compute a global optimum based on certain private inputs, which is what techniques developed for Secure
Multi-Party Computations (SMPC, in short; see [1] for a list of important papers) do. Indeed, many of our proposed
techniques borrow ideas developed by the cryptography community for SMPC. However, we use techniques to solve
specific problems whereas the traditional emphasis has been on developing a generic way to evaluate any function
securely.

1

We use BGP 1 to illustrate how cooperation and confidentiality can be reconciled in MPDSs. Two of our protocols
enable an AS to perform traffic engineering while considering network conditions in a neighboring AS. We also
develop a protocol that shows how confidential AS policies may be used in algorithms to detect potential routing
divergence. Apart from extending previous work [10] on solving a linear programming (LP) problem, we also use
homomorphic encryption schemes and commutative encryption schemes. Our designs reflect two key characteristics
of MPDSs, the presence of an out-of-band relationship which can be leveraged to prevent certain kinds of mali-
cious behavior such as abnormal protocol termination, and the need to consider information leakage over multiple
instances of the protocol.

The organization of this paper is as follows. In Section 2, we provide a brief overview of BGP. We then state our
goals, assumptions and threat model using BGP as an illustrative MPDS. In Section 3, we discuss basic crypto-
graphic primitives that we use in our protocols. In Section 4, we consider problems in BGP that occur due to lack
of information on operational conditions in ASs and develop protocols that solve these problems without violating
confidentiality. In Section 5, we show the need for sharing policy information and develop protocols that enable this
without violating confidentiality requirements. In Section 6, we discuss other potential applications of SMPC to en-
able sharing of information on operational conditions and policies in inter-domain routing, CDNs and policy-based
resource allocation. We present some preliminary results in these areas and discuss open questions in these areas.
We conclude in Section 7. For ease of exposition, we do not use a separate section describing related work; Instead,
we mention it whenever necessary.

2 Overview of MPDSs

In this section, we provide a brief overview of BGP and identify information that is considered confidential by
network operators. Using inter-domain routing as an example MPDS, we specify our goals, assumptions and threat
model in MPDSs.

2.1 Inter-domain Routing and BGP

The Internet consists of multiple Autonomous Systems (ASs) which use an inter-domain routing protocol, Border
Gateway Protocol (BGP) [33], to route packets across ASs. Reachability information is exchanged on a per-prefix
(not per-address) basis. Each AS advertises destination prefixes that belong within it to its neighbors. ASs also
propagate routes advertised by a neighbor to other neighbors. ASs use BGP path selection rules to select from
the various routes advertised to a destination prefix. BGP is also a policy-aware protocol because each step of the
protocol can be modified by policies set by the network operators. For instance, policy could be used to decide which
advertisements are preferred. Adjacent ASs are said to peer with each other. They may do so at multiple peering
locations. Such BGP peering relationships also involve various agreements that indicate the amount of traffic that
may be exchanged at peering points, the cost of sending/receiving traffic etc.

A large spectrum of intra-domain information is considered confidential by network operators because of commercial
reasons and also for purposes of preventing attacks on the weaker parts of the network. Efforts to deduce intra-
domain information of ASs such as topology [37], link characteristics [26],operational conditions [4], policies [36],
AS relationships [38] and BGP configuration [42] have achieved varying degrees of success. Nevertheless, most
intra-domain information is considered confidential.

2.2 Goals, Assumptions and Threat Model

Our goal in this paper is to explore instances of undesirable behavior in MPDSs on account of unavailability of
confidential information of individual providers and to develop mechanisms that would enable such confidential
information to be used. To understand how such undesirable behavior may occur, we use Figure 1. Flow f can exit
A at either of the two peering points. Considering the available bandwidth of the path to these two peering points
in A, peering point 1 is better. However, if A had knowledge of routes in B and available bandwidths on them, the

1For brevity, we refer to BGP and “inter-domain routing” interchangeably.

2

conclusion would be exactly opposite. In this case, internal topology and operational conditions of B are hidden
from A and hence, A chooses the wrong route.

Network BNetwork A

of flow f of flow f

55 Mbps

20 Mbps60 Mbps

50 Mbps

Peering
Point 1

Peering
Point 2

Source Destination

Figure 1: Peering point 2 provides the better route in A whereas Peering point 1 provides the better overall route,
considering available bandwidth in A and B.

The outcome of a secure mechanism could reveal some information on the private inputs of other providers. Hence,
as is typically done when evaluating SMPC, we deem a technique successful if it does not leak any more information
than is deducible from the outcome. This goal must be qualified, though. A decision to use a successful technique in
MPDSs must also consider information leakage from multiple invocations of the technique too. For instance, a single
comparison operation may only indicate the possible range of a number; However, the exact value of a number can
easily be deduced in O(log(n)) comparison operations.

The most important characteristic of the threat model of MPDSs is the existence of an out-of-band relationship (e.g.,
BGP peering agreements). Economic penalties specified in these relationships can be used to prevent misbehavior
such as abnormal protocol termination. Hence, unfairness (one participant knowing more than the other) is not
a concern in MPDSs. Failures should not be classified as abnormal terminations. Hence, participants using our
protocols need to save all relevant state until it is completed so that a protocol that terminates due to failures can be
continued afterwards.

The out-of-band relationship is similar, in principle, to the third party in the optimistic model for secure computation
[8]. In cases that require more than 2 participants, we assume the presence of a connected graph of bilateral rela-
tionships. We assume that this can be achieved using protocols outside of BGP or in architectures similar to those
discussed in [2] and [20].

We assume secure channels between the participants of an MPDS, i.e., no adversary can snoop, inject or modify traf-
fic sent by the participants in the MPDS. We only analyze possible information leakage from using our techniques.
Hence, adversarial behavior is restricted to participants in the protocol. Adversaries are assumed to be able to col-
lude and provide inconsistent inputs only under three conditions. Such misbehavior should allow the adversaries
to determine the inputs of honest participants, improve their own system or degrade the system of honest partici-
pants. Finally, malicious behavior that has a high probability of detection can be discounted since the out-of-band
relationship can be used to impose penalties.

3 Cryptographic Primitives

In this section, we briefly describe related work in cryptographic literature relevant to our solutions including SMPC.
One commonly used property of cryptosystems in SMPC is the homomorphic property, i.e., if E represents the en-
cryption operation, then E(m1)E(m2) = E(m1 ∗ m2) where ∗ is either the addition or multiplication operation.
In the case of the former, E is said to possess additive homomorphism and in the case of the latter, E is said to
possess multiplicative homomorphism. For instance, El Gamal[11] and Paillier’s [29] are multiplicative and additive
respectively. Appendix A.1 provides a brief overview of these cryptosystems. Unless stated otherwise, we use addi-
tive homomorphic cryptosystems in this paper. Below, we state important properties of these cryptosystems useful
to us:

• E(m1) · E(m2) = E(m1 + m2), the additive homomorphic property. Also, E(m1) · f(m2) = E(m1 + m2)
where f() has much lesser complexity than E. With Paillier’s, f(m2) = gm2 .

3

• E(m)k = E(mk) ∀ k. A special case is the calculation of E(−m).

• The ciphertexts before and after performing one or more of the above operations can be used to deduce the
operation. For instance, upon calculating E(−m), E(m) = E(−m)−1. In such cases, E(−m) can be blinded
so that the operation cannot be deduced. With Paillier’s, this can be done by multiplying E(−m) with r ′n

where r′ is a random number. Note that such blinding factors can be precomputed.

Threshold cryptography refers to n entities sharing a decryption key. With these schemes, encryption can be done
with knowledge of the public key while decryption requires contributions from at least t of these entities. Threshold
variants have been proposed for many cryptosystems. For instance, [17, 9] are threshold variants of Paillier’s cryp-
tosystem. Note that, the shares of the decryption key may be computed by a third party or by the participants in a
distributed manner. Unless specified otherwise, we assume that t = n in threshold cryptosystems, i.e., all shares of a
secret key are required for the decryption operation. We describe cryptographic primitives that we use in Appendix
A.

4 Sharing Operational Conditions in BGP

Lack of knowledge on operational conditions within other ASs makes intra-domain route selection hard. In this
section, we develop two protocols that enable neighboring ASs to share information about internal congestion con-
ditions which can be used to determine how traffic is exchanged between them. Though the scenarios we consider
are motivated by those considered in BGP-related literature, our protocols are broad enough to be useful in any
inter-domain routing system (including overlay networks).

4.1 Safe Traffic Engineering

As pointed out in [43, 14], coordinating traffic engineering with neighboring ASs is desirable due to cases similar to
those shown in Figure 1. To develop techniques for enabling such cooperation, we consider the problem first posed
in [43]. AS A and B peer with each other at multiple peering locations. For various reasons, the operator of A wants
to change her intra-domain routes. This affects the traffic matrix from A to B. For instance, traffic to a destination
could ingress B at a different peering point than before. The goal is for the operator of A to make traffic matrix
changes such that the quality of the new routes through B is good. The two naive ways of doing this are either
for A to know Bs topology and link characteristics or for B to know link characteristics in A. Both of these are
undesirable since these require an AS to reveal confidential information. The best solution known [43] lets B get
some knowledge on proposed changes to the traffic patterns from A and A some knowledge of Bs topology and
does not consider adversarial behavior.

We now develop a technique that allows A to determine if a traffic matrix change is acceptable to B or not, i.e.,
does not saturate links in B, without violating the confidentiality requirements of the ASs. Table 1 lists the various
variables we use to explain our technique. A’s goal is to determine if the traffic matrix change, ~∆, will saturate
no link in B. Define sl to be the difference between available bandwidth and requested bandwidth on link el. The
following must be true for ~∆ to be accepted.

~B ≥
∑

(i,j)

δi,j
~Ui,j (1)

=⇒ sl = bl −
∑

(i,j)

δi,jui,j,l ≥ 0 ∀l. (2)

The following protocol implements the above computation securely. A is assumed to use an asymmetric key pair;
EA, DA denote the encryption, decryption operations with this pair. The complexity of the protocol is a function of
the total number of destinations, D, the number of peering points between the two ASs, P and the total number of
bottleneck links in B, N .

Protocol Description:

4

Table 1: Notation used for Safe Traffic Engineering Scenarios. The second half of the table is used only in Section
4.2

Variable Description Private
to

{di}1 ≤ i ≤ D Unique destination prefixes None
{pj}1 ≤ j ≤ P Peering points between None

A and B
{el}1 ≤ l ≤ N Potential bottleneck B

links in B
ui,j,l; 1 if route to dest. di B
~Ui,j = ({ui,j,l}l) from pj uses link el,

0 otherwise
bl; available bandwidth B
~B = (b1, . . . bN) on link el of B
δi,j ; Proposed change in traffic A
~∆ = ({δi,j}i,j) to di entering B at pj

{fh}1 ≤ h ≤ F “Heavy-hitter” flows None
ch Capacity of flow f h None
xhj Amount of flow f h None

through pj

{ek}1 ≤ k ≤ M Potential bottleneck A
links in A

ak; available bandwidth A
~A = (a1, . . . aM) on link ek of A
αhjk∀h, j, k 1 if link ek is used when A

fh exits A at pj

βhjl∀h, j, l 1 if link el is used when A
fh exits B at pj

• A calculates EA(−δi,j) ∀ (i, j) and sends them to B. This requires O(DP) encryptions and causes commu-
nication overhead of O(DP).

• For each link el, B calculates EA(sl). It can do this by computing EA(bl), EA(−δi,j) and the homomorphic
property. The computation complexity is O(N) encryptions and O(DPR) multiplications where R is the
average number of non-zero ui,j,l values of a link el. This is equal to the average number of bottleneck links
on a path. We assume this to be 10.

• The proposed changes are acceptable to B if no sl is negative. The protocol discussed in Appendix A.3.1 is
used to determine this. To prevent A from knowing the signs of each sl, B calculates slrl where rl is ±1 with
equal probability. A few dummy values may also be used by B to prevent A from knowing the exact number of
bottleneck links. The computation complexity is O(N) decryptions and communication complexity is O(N).

• A sends EA(1) if slrl is positive and EA(−1) otherwise. The communication complexity is O(N). Since A
can precompute EA(±1), there is no encryption complexity. Zero-knowledge proofs such as those in [9] may
be used here by B to verify that the received numbers encrypt ±1.

• B multiplies EA(sign(slrl)) with rl to generate an encrypted vector containing a −1 iff the corresponding
bottleneck link would get congested and 1 otherwise. The primitive described in Section A.3.2 can be used
by A to determine if there is a −1, i.e., if there is a link that might get saturated. O(N) multiplications are
required here.

5

Typical values of D, P are about 200 and 10 [30]. We assume N to be 50 . Assuming that specialized hardware can
perform encryption/decryption operations in a few hundred microseconds and multiplication in a few microseconds,
the above protocol can be easily executed in less than a minute. This is reasonable considering that traffic engineering
changes need not be done more than once an hour[40]. If the participants follow the protocol, the above protocol is
secure because of two reasons. The first is that B cannot determine the value of any encrypted value. Thus, it gets
to know only the outcome, from A. The second reason is that A knows nothing about the signs of sls because of the
rls. Hence, A knows only the outcome.

Wrong inputs may be provided to cause two kinds of wrong outcomes. They could cause unacceptable changes to be
accepted in which case the resulting congestion will be observed by the other AS. Out-of-band mechanisms could be
used to “replay” the protocol and determine the malicious AS. But, if an acceptable change is rejected, this protocol
has to be retried. A malicious A or B could obtain information about the other AS using multiple tries. This is a
fundamental limitation of this protocol. Next, we develop a protocol that does not suffer from this limitation.

4.2 Optimal Exit Points

We now consider a generalization of the goals of the above protocol using a linear programming formulation. As-
suming that the paths from ingress to egress in A and egress to ingress in B are fixed, how can A and B cooperatively
determine the best exit point (from A to B) for flows. This determination must be done without either AS revealing its
confidential bandwidth constraints. Other issues such as bidirectional traffic, minimization of the traffic asymmetry
at peering points, minimization of path inflation and other goals may also have to be considered, in reality.

Using the notations introduced in Table 1, our goal is to determine xhj ≥ 0, the amount of flow fh exiting at peering
point pj . The linear programming problem for the corresponding max-flow problem can be written using the flow
conservation and bandwidth constraints of A and B as:

maximize
∑

h,j

xhj given that (3)

P
∑

j=1

xhj ≤ ch ∀ h. (4)

F
∑

h=1

P
∑

j=1

αhjkxhj ≤ ak ∀ k. (5)

F
∑

h=1

P
∑

j=1

βhjlxhj ≤ bl ∀ l. (6)

Using Xt = (x11, . . . , x1P , . . . , xFP), this is equivalent to maximizing cT X , where c is a column vector of size FP
all of whose entries are 1, given (V X ≤ W) (see Figure 4.2).

A method to solve linear programming problems securely was presented in [10]. This cannot be used directly by us
since V and G are not arbitrary matrices over a field (both are integral, for instance). We use a modified version of
their technique in our protocol and also provide a proof why this protocol is secure.

The basic observation in [10] that we leverage is that X , the solution of the above linear program also satis-
fies X = QX ′ where X ′ (a non-negative vector) maximizes c′T X ′ = (cT Q)X ′ given constraints V ′X ′ =
(PV Q)(Q−1X) ≤ PW = W ′. Here P, Q−1 are arbitrary invertible matrices consisting of positive entries (be-
cause, multiplying a constraint with −1 reverses the inequality). To eliminate the requirement of positive entries,
we augment each constraint with a dummy variable (which must also be non-negative) and make the inequality
into an equality. For convenience, we abuse notation and refer to the system of equalities as V X = W . Under the
same objective function, the solution to this equality is the same as the original set of inequalities. In this system of
equalities, V has r = F + M + N rows and c = FP + F + M + N columns.

6

Figure 2: The LP problem V X ≤ W for determining optimal exits of flows from A to B.

































x11 . . . x1P . . . xFP

1 . . . 1 . . . 0
0 . . . 0 . . . 0

.
0 . . . 0 . . . 1

α111 . . . α1P1 . . . αFP1

.
α11M . . . α1PM . . . αFPM

β111 . . . β1P1 . . . βFP1

.
β11N . . . β1PN . . . βFPN

































X ≤





























c1

. . .
cF

a1

. . .
aM

b1

. . .
bN





























Our protocol uses the above observation to have AS B calculate a new system of equalities with V ′ = PV Q,
W ′ = PW , c′T = cT Q where P, Q are arbitrary invertible rational matrices chosen by B. B calculates this new
system using homomorphic operations on (encrypted) entries sent by A. The new system is decrypted by A which
calculates X ′, the solution to the new system. X = QX ′ is then calculated by B. Only the outcome, the plaintext
version of X , is revealed to B. Hence, if the cryptosystem is secure, then B cannot deduce anything other than
from the outcome. However, A gets the plaintext versions of V ′, W ′, c′, X ′ and X . The following theorem states the
conditions under which these do not provide any information to A.

Q’’ P’’

V’’

V’
Q

c

Q
c

Q
r

Qr
V1 = V4 =

V3 =V2 =

Figure 3: Vector Space Transformation of V X = W . Qd denotes a vector space over rationals of dimension d.
V ′, V ′′ are rational matrices of rank r with r rows and c columns (r > c). P ′′ and Q′′ are invertible matrices with r
and c rows/columns respectively. Given V ′, simple diagram chasing using the bases of the vector spaces ensures the
existence of P ′′ and Q′′ for all V ′′.

Theorem: Given V ′, W ′, c′, X ′, X , A can obtain no information about V, W if there exist rational P ′′, Q′′ for all
V ′′, W ′′, c′′ such that P ′′V ′′Q′′ = V ′, P ′′W ′′ = W ′, c′ = Q′′T c′′ and X = Q′′X ′. P ′′, Q′′ exist if (1) V ′ and V ′′

are both rational matrices of rank r (2) c′′ and X ′ are linearly independent, and (3) W ′′ is linearly dependent on
V ′′X, V ′′c′.

Proof: A rational matrix (with x rows and y columns) of rank t ≤ min(x, y) represents a vector space transformation
from a vector space of dimension y to a vector space of dimension x where the null space is of dimension y − t.
Invertible matrices with x rows and columns have rank x. Both left and right multiplication of matrices compose
two vector space transformations to generate a new vector space transformation. In our case, the composition of
transformations P ′′V ′′Q′′ = W ′ is shown in Figure 3. Here, Qd represents a vector space of dimension d over the
field of rationals.

Given V ′ and V ′′ in Figure 3 it is easy to construct P ′′ and Q′′ such that P ′′V ′′Q′′ = V ′: Choose the same basis for
V1 and V2 and take arbitrary Q′′ such that the null space of V ′ maps to the null space of V ′′. V ′ and V ′′ map the rest

7

of the bases to bases in V3 and V4 respectively. Now, ensuring that the basis element ~v1 of V1 maps onto the V ′(~v1)
under P ′′V ′′Q′′ implies that P ′′ maps V ′′Q′′(~v1) to V ′(~v1). Note that, such consistency requires that V ′ and V ′′ have
the same rank. A knows W ′, c′, X ′ and X too. Any candidate set V ′′, W ′′, c′′ (and X ′′) impose additional constraints
on P ′′ and Q′′. Since c′ = Q′′c′′ and X ′′ = Q′′X ′ represent requirements of Q′′ which was arbitrary in the above
construction, they can be accommodated unless c′′ and X ′ are not linearly independent. Also, W ′ = P ′′W ′′ specifies
the action of P ′′ on one vector which would not contradict Q′′ unless W ′′ is linearly dependent on V ′′X, V ′′c′.

The above proof motivates the design of our protocol. B first converts the system of inequalities into a system
of equalities. Small random noise is added to V, W, c so that V is of rank r with high probability. The noise also
ensures that there is negligible probability of either of the two dependence conditions mentioned above. Hence, the
conditions of the above theorem are satisfied with high probability. B then chooses arbitrary invertible P and Q to
generate a new linear programming problem which A solves. B uses a homomorphic encryption scheme to generate
the new LP problem and hence, knows nothing about As inputs. The new system does not reveal any information
on Bs inputs to A since it could be generated from any original system that satisfies the conditions of the above
Theorem. Note that the addition of random noise to the constraints should not have significant effect on X . There
is evidence for this; Roughan et al. [34] showed that the estimated traffic matrices (which contain small estimation
errors, akin to random noise) produce good enough results in (intra-domain) traffic engineering.

Our protocol is based on the above observations and homomorphic encryptions to construct V ′, W ′, c′. Note that
the method to construct V ′, W ′, c′ proposed in [10] cannot be used here since V and W satisfy special properties
(they have only boolean entries, for instance).

Protocol Description:

• A transfers to B, the rows of V and W that are known only to it by encrypting them with its public key.

• B creates the matrix V and W with A’s encrypted entries and its unencrypted constraints. The entries of these
matrices are scaled randomly (rows or columns at a time, to preserve the equality constraints) and random
noise (small integers) added to convert V into a matrix of rank r.

• For the proof of security to be valid, random invertible rational P and Q are chosen. V ′, W ′, c′ can all be
calculated using homomorphic encryption since the only arithmetic operations required are multiplication
by known factors and addition of ciphertexts which can be done with homomorphic cryptosystems. Observe
that, since only integers (not rationals) can be encrypted, operations with rationals might be performed by
remembering the plaintext denominator or by randomly scaling P, Q so that they are integral.

• V ′, W ′, c′ are transferred to A which solves the system of equalities and sends X ′ to B. B uses X = Q−1X ′

to A.

Compared to solving the original set of inequalities, the above protocol has extra complexity due to two factors.
First, by converting the inequalities into equalities, we increase the size of the LP problem. Second, the processing
of encrypted data by B to generate V ′, W ′, c′ also increase the complexity. The former can be alleviated by using
fast LP problem solvers. For the latter, all inputs of A are used to calculate every entry of the V ′. Thus O(FPM)
entries need to be multiplied O((FP + M + N)(M + N)) times. The numbers specified earlier indicate this to
take millions of operations, at least for large tier-1 ISPs. Hence, in such cases, flows may have to be restricted to
certain peering points thereby reducing P , M and F . Subsets of flows would then have to be solved independently.
Investigation of the impact of such techniques on optimality is a subject of future work to us. We end this section by
noting that the above method can be applied to solve other LP problems provided that these are not sensitive to the
random noise that needs to be added to achieve confidentiality.

8

5 Sharing Policy Information in BGP

In this section, we illustrate the need for sharing routing policies between ASs using the well-known problem of
divergent routing caused by conflicting policies of ASs [41, 24] and propose a protocol that determine if divergence
is present in the context of confidential policies.

A

C

B
d

Figure 4: Divergence-causing AS topology when A prefers B, B prefers C, C prefers A to reach destination d.

Oscillations that occur due to unintended interaction of BGP policies was first shown in [41]. Figure 4 shows a
simple AS topology that can cause divergent routing. This is because, each A prefers B, B prefers C and C prefers
A to reach destination d. A more thorough analysis of policy-induced divergence properties was done in [24]. One
approach proposed to remedy this situation [21] is to have routing registries where all the routing policies are re-
vealed and static analysis is done to verify safety. The set of guidelines proposed in [19] gives a way to constrain
local policies so as to make BGP policies safe although the use of backup routing does require some global coor-
dination. Another way of guaranteeing safety is by enabling run-time detection of divergence using route histories,
extensions to BGP, as proposed in [22]. However, route histories leak information on local policies [13]. A proposal
to anonymize route histories is provided in [22] but its efficacy is unclear. Currently, it is hoped that such divergence
will not happen because ASs use the constrained local policies described in [19].

Static analysis of AS policies to check for divergence is impractical because many ASs are unwilling to reveal their
internal policies. Another reason why it is impractical is that this problem is NP-complete [24]. We take such a
scheme proposed in [23] and show how it can be implemented without requiring ASs to reveal their policies. While
we do not solve the computational inefficiency of the solution, our aim is to demonstrate that the only barrier to
static analysis is the development of policy specifications (for BGP and other policy-aware MPDSs that could expe-
rience policy-induced anomalies) that can be efficiently analyzed without being as constraining as those proposed in
[19]. Additionally, our protocol could be used to analyze the presence of a dispute wheel for continuously flapping
prefixes, i.e., prefixes that exhibit dispute wheel-like behavior.

The scheme for static analysis that we use was proposed by Griffin et al. in [23]. They show that the absence
of dispute wheels is a sufficient condition for BGP convergence. They define a dispute wheel for a destination
d as a set Π = (U, Q, R) of size k, where U = (u0, ...uk−1) is a sequence of nodes, Q = (Q0, ...Qk−1) and
R = (R0, . . . Rk−1) are sequences of paths such that ∀i, 0 ≤ i ≤ k − 1, (1) Ri is a path from ui to ui+1. (2) Qi a
path permitted by the policy of node ui to destination d. (3) RiQi+1 is also a path permitted by the policy of node
ui. (4) Node ui prefers the path RiQi+1 over Qi. We now describe a protocol that can use confidential policies to
check if a given candidate dispute wheel, Π is a dispute wheel or not.

Protocol Description: Each AS ui in this candidate dispute wheel sets its input ai to be 0 if all 4 conditions above
are true and to 1 otherwise. The candidate dispute wheel is a dispute wheel if all ais are 0. This can be achieved
using a threshold cryptosystem in which the key shares can be computed using an out-of-band mechanism. A random
ui initiates the protocol by sending E(ai) to ui+1. Any subsequent AS uj blinds the received value if aj is 0 and
replaces it with E(1) if not. Thus, the final value E(AΠ) encrypts 0 iff Π is a dispute wheel. This value is decrypted

9

collectively. A decrypted value of 0 indicates that Π is a dispute wheel. The number of outcomes can be reduced by
determining the existence of a dispute wheel among n > 1 candidates Πj . This can be done by multiplying E(AΠj

)
and decrypting the result to get

∑

j AΠj
. If this is not n, then there exists a dispute wheel. Note that, this process

essentially computes the “OR” of the “AND” of boolean variables. On determining the presence of a dispute wheel,
the ASs involved would modify only the relevant policies to make them locally constrained as specified in [19].

Any one participant could misbehave to falsely indicate the presence or absence of a dispute wheel. This could
simply be done by providing wrong inputs (especially to indicate the lack of conflict). As mentioned in Section
2.2, we believe that such misbehavior is not realistic since no provider would willfully cause divergence of a shared
infrastructure.

6 Potential Applications

In this Section, we illustrate how sharing both operational conditions and policy information can solve problems that
arise in inter-domain routing and MPDSs such as CDNs and policy-based resource allocation. These represent broad
areas of future work for us. Where applicable, we discuss our preliminary solutions.

6.1 Peering among Content Distribution Networks (CDNs)

In [5], the authors propose mechanisms to allow a CDN A to offload client workload to peer CDNs, such that the
Service Level Agreement (SLA) of each client is satisfied and the costs of doing so are minimized. In this case, since
the redirection policies of CDNs are confidential, whether a peer CDN can satisfy the SLA (maximum server-client
delay) is not known. In [5], the solution proposed is to deduce this information using measurements. A disadvantage
of this approach is that there is a cost associated to wrongly determining if a peer CDN can satisfy a set of clients.
In Appendix B, we describe an SMPC technique by converting the problem to be one of linear programming.

6.2 Inter-domain Path Selection

Choosing a path of good quality from a source to destination is a problem that arises repeatedly in networks. Prim-
itives involving path quality may be used by the infrastructure (e.g., to construct QoS routing tables) or by users
(e.g., multi-homed endhosts who need to choose the best outgoing interface for traffic). End-to-end measurement
techniques may suffice for the latter, at least in the near future since there is not much demand for per-flow path
setup. However, there is a great need for better path selection mechanisms at the AS level [6, 27].

Since most paths in the Internet traverse multiple domains and the quality of intra-domain links is considered confi-
dential, SMPC-based mechanisms could be extremely useful for path selection. Comparing two paths or determining
if a path can support a desired level of quality are two useful primitives for path selection. Path quality itself might
be measured using additive metrics such as (logarithm of) loss, delay, jitter or minimum/maximum metrics such as
available bandwidth. Determining if the sum/minimum/maximum of the inputs from different entities is larger than
another value, without revealing the inputs, would be of great use in considering path quality in inter-domain routing.
For instance, each step of Bellman-Ford algorithm for shortest path computation essentially compares the “length”
of two paths in the graph. Since typical AS paths are 3 − 4 hops long, the outcome of such comparisons (over the
whole execution of Bellman-Ford) might leak more information than desirable. Eliminating such leaks is a subject
of future work for us.

6.3 Policy-driven MPDSs for Computational Resources

Recent research [16, 18, 25] has focused on large-scale distributed infrastructures offering resources such as com-
puting, storage etc. The notion of utility computing, large-scale sharing of computing resources, has received a lot
of attention from industry. Resource allocation in these systems, which are likely to have multiple providers (the
various universities of Planetlab [31] could be considered as providers), is very important and must consider the
policies (i.e., preferences) of these providers. To our knowledge, how confidentiality of resource allocation policies
may be enforced while ensuring that resource allocation be efficient and near-optimal, has not been dealt with in
prior research.

10

7 Conclusions and Future Work

Many large scale distributed systems involve multiple providers. Managing, optimizing and troubleshooting these
systems requires the use of confidential information from different providers. In this paper, we provide SMPC-
based techniques that allow such cooperation in inter-domain routing without requiring that such information be
made public. We propose two techniques to illustrate the sharing of a network’s operational conditions for better
traffic engineering. We also show that determining policy-induced routing divergence does not require that policies
be revealed. In designing our techniques, we leverage key characteristics of MPDSs. The out-of-band relationship
between providers removes the need to consider unfairness due to abnormal protocol termination. Since all providers
have reason to keep the system healthy makes many adversarial models unrealistic. However, adversarial behavior
to determine private information of other providers is certainly possible and must be guarded against. We also
discuss potential applications of SMPC-based techniques and preliminary solutions for a host of other problems
including path selection in routing, client redirection in CDNs and policy-based resource allocation. These are areas
of future work to us. MPDSs pose challenges that can be solved using SMPC-based techniques. We hope that our
work encourages future MPDS designs to use such mechanisms instead of making them opaque and hence, prone to
inefficiencies and failures.

References
[1] Secure Multiparty Computations. http://www.tcs.hut.fi/˜helger/crypto/link/mpc/.
[2] S. Agarwal, C.-N. Chuah, and R. H. Katz. OPCA: Robust Interdomain Policy Routing and Traffic Control. In Proc. of

IEEE OpenArch, 2003.
[3] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private databases. In Proc. of ACM SIGMOD,

2003.
[4] D. ”Allen B. Using Pathchar to Estimate Internet Link Characteristics. In Proc. of ACM SIGCOMM, 1999.
[5] L. Amini, A. Shaikh, and H. Schulzrinne. Effective Peering for Multi-provider Content Delivery Services. In Proc. of

IEEE INFOCOM, 2004.
[6] O. Bonaventure, B. Quotin, and S. Uhlig. Beyond Inter-domain Reachability. In Proc. of Workshop on Internet Routing

Evolution and Design (WIRED), 2003.
[7] C. Cachin. Efficient Private Bidding and Auctions with an Oblivious Third Party. In Proc. of ACM Conference on

Computer and Communications Security (CCS), 1999.
[8] C. Cachin and J. Camenisch. Optimistic Fair Secure Computation (Extended Abstract). In Proc. of Advances in Cryptol-

ogy (CRYPTO), 2000.
[9] I. Damgard, M. Jurik, and J. B. Nielsen. A Generalization of Paillier’s Public-Key System with Applications to Electronic

Voting, 2003. Unpublished Report.
[10] W. Du. A Study of Several Specific Secure Two-party Computation Problems. PhD thesis, Purdue University, West

Lafayette, Indiana, 2001.
[11] T. El Gamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. In Proc. of Advances

in Cryptology (CRYPTO), 1984.
[12] D. Estrin, Y. Rekhter, and S. Hotz. RFC 1322 - A Unified Approach to Inter-domain Routing, May 1992.
[13] N. Feamster and H. Balakrishnan. Towards a Logic for Wide-Area Internet Routing. In Proc. of ACM SIGCOMM

Workshop on Future Directions in Network Architecture (FDNA), August 2003.
[14] N. Feamster, J. Borkenhagen, and J. Rexford. Guidelines for Interdomain Traffic Engineering. ACM SIGCOMM Computer

Communications Review (CCR), October 2003.
[15] J. Feigenbaum, N. Nisan, V. Ramachandran, R. Sami, and S. Shenker. Agents’ Privacy in Distributed Algorithmic Mech-

anisms, 2002.
[16] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Lecture Notes

in Computer Science, 2001.
[17] P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting or lotteries. Lecture Notes in Computer

Science, 1962, 2001.
[18] Y. Fu et al. SHARP: An Architecture for Secure Resource Peering. In Proc. of ACM Symposium on Operating Systems

Principles(SOSP), 2003.
[19] L. Gao and J. Rexford. Stable Internet Routing without Global Coordination. In Proc. of ACM SIGMETRICS, June 2000.
[20] G. Goodell et al. Working Around BGP: An Incremental Approach to Improving Security and Accuracy of Interdomain

Routing. In Proc. of Network and Distributed System Security (NDSS) Symposium, San Diego, CA, February 2003.
[21] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Kumar, and W. Lee. An Architecture for Stable, Analyzable

Internet Routing. IEEE Network Magazine, January/February 1999.
[22] T. Griffin and G. T. Wilfong. A Safe Path Vector Protocol. In Proc. of IEEE INFOCOM, March 2000.

11

[23] T. G. Griffin, F. B. Sheperd, and G. Wilfong. The Stable Paths Problem and Interdomain Routing. IEEE/ACM Transactions
on Networking, 10(2), April 2002.

[24] T. G. Griffin and G. Wilfong. An Analysis of BGP Convergence Properties. In Proc. of ACM SIGCOMM, 1999.
[25] J. Kubiatowicz et al. OceanStore: An Architecture for Global-Scale Persistent Storage. In Proc. of Architectural Support

for Programming Languages and Operating Systems (ASPLOS), November 2000.
[26] K. Lai and M. Baker. Measuring Link Bandwidths Using a Deterministic Model of Packet Delay. In Proc. of ACM

SIGCOMM, 2000.
[27] R. Mahajan. Negotiation-based Routing. In Proc. of Workshop on Internet Routing Evolution and Design (WIRED), 2003.
[28] M. Mitzenmacher. Compressed Bloom Filters. In Proc. of ACM Symposium on Principles of Distributed Computing

(PODC), 2001.
[29] P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithms Residues. In Proc. of Eurocrypt, 1999.
[30] K. Papagiannaki, N. Taft, and C. Diot. Impact of Flow Dynamics on Traffic Engineering Design Principles. In Proc. of

IEEE INFOCOM, March 2004.
[31] PlanetLab, 2004. http://www.planet-lab.org.
[32] Professional Projects Company, 2003. http://www.proproco.co.uk/million.html.
[33] Y. Rekhter and T. Li. RFC 1771 - A Border Gateway Protocol 4(BGP-4), March 1995.
[34] M. Roughan, M. Thorup, and Y. Zhang. Traffic Engineering with Estimated Traffic Matrices. In Proc. of Internet

Measurement Conference(IMC), 2003.
[35] S. Singh et al. The Case for Service Provider Deployment of Super-Peers In Peer-To-Peer Networks. In Proc. of Interna-

tional Workshop of Economics of Peer-To-Peer Systems, 2003.
[36] N. Spring, R. Mahajan, and T. Anderson. Quantifying the Causes of Path Inflation. In Proc. of ACM SIGCOMM, August

2003.
[37] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with Rocketfuel. In Proc. of ACM SIGCOMM, 2002.
[38] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz. Characterizing the Internet Hierarchy from Multiple Vantage

Points. In Proc. of IEEE INFOCOM, 2002.
[39] E. Teske. Square-root Algorithms for the Discrete Logarithm Problem, 2001.
[40] S. Uhlig, V. Magnin, O. Bonaventure, C. Rapier, and L. Deri. Implications of the Topological Properties of Internet Traffic

on Traffic Engineering. In Proc. of ACM Symposium on Applied Computing(SAC), Special Track on Computer Networks,
March 2004.

[41] K. Varadhan, R. Govindan, and D. Estrin. Persistent Route Oscillations in Inter-Domain Routing. Computer Networks,
March 2000.

[42] F. Wang and L. Gao. On Inferring and Characterizing Internet Routing Policies. In Proc. of Internet Measurement
Conference (IMC), October 2003.

[43] J. Winick, S. Jamin, and J. Rexford. Traffic Engineering between Neighboring Domains, July 2002. http://www.
research.att.com/˜jrex/papers/interAS.pdf.

[44] A. C. Yao. Protocols for Secure Computations. In Proc. of Foundations of Computer Science (FOCS), 1982.

APPENDIX

A Cryptography

A.1 Details of Homomorphic Encryption Schemes

Table 2 provides a brief overview of El Gamal and Paillier’s cryptosystems. As can be seen, the former is multiplica-
tive homomorphic while the latter is additive homomorphic.

For small x, determining discrete logarithm is not hard, i.e., given g, gx x can be determined using the “baby-step
giant-step” algorithm which trades off memory for time. A survey of such methods is provided in [39]. Hence by
modifying El Gamal to encrypt gm instead of m, and requiring the additional discrete logarithm step for decryption,
El Gamal can be additive homomorphic, under the assumption of small plaintexts only.

A.2 Commutative Encryption

Our primitive uses commutative encryption [3]. Two encryption functions f1, f2 are commutative if f1(f2(x)) =
f2(f1(x)). For suitably chosen prime p, any two discrete-log based encryptions [11] defined as fy(x) = xy(mod)n
satisfy this property because (xy1)y2mod(p) = (xy2)y1(mod)p.

12

Table 2: Encryption Techniques
Name El Gamal Paillier
Group Zp where Zn2 , n as
Used p is a large in RSA

prime
Public (p, g, y = gx) (n, g) s.t.
Key g a generator order(g) = nα

1 < x < p 1 < α < λ =
is random LCM(p − 1, q − 1)

Private x (p, q)
Key
Ciphertext c c = (a, b) = c = gmrn

of plaintext (myk, gk), k 0 < r < n is
m is random random

Plaintext m m = ab−x m = L(cλ)
L(gλ)

of ciphertext where L(u) =
c (u − 1)/n
Security Hardness of Hardness of
Assumption discrete computing

logarithm the order
Encryption/ O(log(k))/ O(log(n))/
Decryption O(log(x)) O(log(λ))
Complexity

A.3 Useful Primitives for Multi-Party Computations

In this subsection, we construct simple cryptographic primitives that we use in the paper. We would like to emphasize
that our constructions, while reasonably efficient are not the best that can be done. More efficient constructions
should be possible.

A.3.1 Comparing Two Scalars

The first primitive that we develop is for A to know the bigger of two scalars a and b private to two parties A and
B respectively under the assumption that x = (a − b) such that |x| ≤ xmax. This problem is a special case of the
Yao’s millionaires’ problem [44] without fairness requirements (unlike [7]) and our solution is more efficient than
the solution in [32].

The basic idea behind our solution is for A to verify the membership of x = (a − b) in the set of integers from
[0, xmax] securely. This is done as follows:

1. A sends EA(a) to B, where EA denotes encryption with As public key.

2. B calculates EA(a − b + r) for some random r using the homomorphic property and sends it to A.

3. A and B each choose encryption functions fA and fB respectively that commute with each other (see Section
A.2. B calcuates the set PosB = (fB(r), fB(r + 1), . . . , fB(r + xmax)) and sends a randomly permuted
PosB to A.

4. A decrypts x′ = (a − b + r) and sends fA(x′) to B.

5. B calculates fA ◦ fB(x′) and sends it to A.

6. A checks if it belongs to the set Pos = (fA ◦ fB(r), . . . , fA ◦ fB(r + xmax)).

13

If the above protocol is followed, then B cannot determine a since EA is secure. A knows x′ but the random r
prevents it from knowing anything about x or b. B knows fA(x′); it is computationally hard for B to calculate x′

(and hence, a) from fA(x′). Similarly, the hardness of discrete logarithm prevents A from knowing the value of r
from PosB . To prevent either party from using previous comparison operations (for instance, the same fA(x′) in
two operations would imply that the difference in the a values of the two operations is the difference between the b
values), A and B should choose a different set of commutative encryption functions for each comparison.

The above protocol can be made more efficient since A knows the inverse of fA, f−1
A (z) = z(y−1

A
) which satisfies

f−1
A ◦ fB ◦ fA(z) = fB(z). This allows A to calculate fB(x′) which can directly be compared with PosB . Also,

B can pre-compute PosB and use efficient compression tools such as compressed Bloom filters [28] to send the
membership vector to A. Thus, the whole comparison requires one encryption and decryption, three exponentiations.

A.3.2 False Component of a Boolean Vector

This primitive is for two parties, A and B, to determine if a boolean (i.e., consists of 1’s and 0’s only) set
V =(v1, . . . vn) contains at least one 0. V is assumed to be encrypted with A’s public key and calculated by B
using As private inputs. This can easily be done by having B calculate EA(

∑

i vi − n) = EA(x). The vector con-
tains a 0 iff x is negative. The sign of x can be determined using the comparison primitive discussed in Section A.3.1.
This primitive can also be used to determine if a vector with only 1’s and −1’s has any −1’s. Note that, a malicious
B can provide any value it chooses for decryption to A. Thus, it can determine the sign of exactly one combination
of As private inputs.

B CDNs

Now, we describe a technique that allows a CDN to calculate optimal redirection criteria using the private inputs of
peer CDNs. We assume that there are C client sets ci and S server sets sj . mi denotes the maximum workload of
client set ci and uj denotes the cost per unit workload of server set sj . The quantities to be determined are xij , the
workload of ci that will be offloaded to sj . The confidential inputs of a server set are the remaining capacity of a
server, Cj and Dij , which is 0 if server sj cannot satisfy the SLA for client ci and 1 otherwise. The assignment of
clients to servers is obtained by calculating xij under the constraints of the following linear programming problem:

minimize
∑

j

uj

∑

i

xij (7)

for the maximum
∑

i,j

xij such that (8)

∑

j

xij ≤ mi (9)

∑

i

xij ≤ Cj (10)

∑

i

(1 − Dij)xij ≤ 0 (11)

The objective function is to minimize the cost, when the maximum number of clients are serviced. The constraints
are concerning the maximum workload per client, capacity of a server set and the inability of the server set to service
some client sets.

We can adapt the technique in Section 4.2 for use with multiple participants. The basic idea is that each CDN Sj

involved would choose an arbitrary Pj and Qj . Denoting the above LP problem to be V X = W , the CDNs would
collectively calcute V ′ = (

∑

j Pj)V (
∑

j Qj), W ′ = (
∑

j Pj)W (the objective functions are similarly transformed).
To calculate V ′, each CDN must first advertise PjV , calculate (

∑

j Pj)V and multiply it with Qj and finally adver-
tise this matrix. These advertised matrices, when added up, give an encrypted version of V ′. Threshold variants of
homomorphic schemes such as Paillier’s [9, 17] are used to work with encrypted matrices.

14

The amount of encrypted arithmetic to be performed by each CDN is comparable to the scheme in Section 4.2.
However, the use of threshold cryptography etc. increase the communication complexity of this approach. It is an
open issue if the complexity can be reduced to manageable levels. A misbehaving CDN could cause the wrong
solution to be reached to obtin more clients. A wrong solution that does not satisfy constraints of honest CDN(s)
is detectable, though. Characterizing the probability of detecting misbehavior and developing techniques (maybe,
zero-knowledge proofs) to catch the misbehaving CDN are the subject of future work.

15

