
LAPACK WORKING NOTE 162: THE DESIGN AND
IMPLEMENTATION OF THE MRRR ALGORITHM§

INDERJIT S. DHILLON∗AND BERESFORD N. PARLETT†AND CHRISTOF VÖMEL‡

Technical Report UCB//CSD-04-1346
Computer Science Division

UC Berkeley

Abstract. In the 90s, Dhillon and Parlett devised a new algorithm (Multiple Relatively Robust
Representations, MRRR) for computing numerically orthogonal eigenvectors of a symmetric tridi-
agonal matrix T with O(n2) cost. While previous publications related to MRRR have as focus the
theoretical aspects, a documentation of software issues has been missing. In this paper, we discuss
the design and implementation of the new MRRR version stegr that is going to be included in a
future release of LAPACK. By giving an algorithmic description of MRRR and identifying govern-
ing parameters, we hope to make stegr more easily accessible and suitable for future performance
tuning. Furthermore, this should help users understand design choices and tradeoffs when using the
code.

Key words. Multiple relatively robust representations, LAPACK, numerical software, design,
implementation.

AMS subject classifications. 65F15, 65Y15.

1. Introduction. The MRRR algorithm for the symmetric tridiagonal eigen-
value problem is an important improvement over standard inverse iteration [9] in
that it computes orthogonal eigenvectors without needing Gram-Schmidt orthogonal-
ization. While the theoretical foundation of the MRRR algorithm has already been
described [10, 11, 12, 13, 14], this paper addresses the question of how to translate
the theory into reliable numerical software. Our presentation is based on the design
and implementation stegr, the LAPACK [1] version of the MRRR algorithm.

This paper is structured as follows. In Section 2, we give a brief summary of
the most important principles behind the algorithm of Multiple Relatively Robust
Representations that are necessary for understanding the code design and implemen-
tation. In Section 3, we describe the features of the main LAPACK driver stegr.
The following sections describe the computational routines, the most important ones
being Sections 4 and 5 for computing the eigenvalues and -vectors, respectively. These
two functions depend and call a number of auxiliary functions that are explained in
Sections 6, 7, 8, 9, and 10. Finally, in Section 11, we give a summary of the codes’
dependencies on IEEE arithmetic.

As a guiding principle, we first give a coarse but more easily understandable
description of the main algorithm prior to a more exhaustive explanation of the algo-
rithmic details. Every section contains a subsection that explains the importance of
key parameters and their impact on both accuracy and efficiency.

In addition to the algorithmic description of stegr, larre, and larrv, we give

∗Department of Computer Science, University of Texas, Austin, TX 78712-1188, USA. inder-
jit@cs.utexas.edu

†Mathematics Department and Computer Science Division, University of California, Berkeley,
CA 94720, USA. parlett@math.berkeley.edu

‡Computer Science Division, University of California, Berkeley, CA 94720, USA.
voemel@eecs.berkeley.edu

§This work has been supported by grant no. ACI-9619020, National Science Foundation Coop-
erative Agreement (NPACI).

1



2 I. S. Dhillon, B. N. Parlett and C. Vömel

an overview of storage requirements and a graphical illustration of the functionalities
in order to clarify the code design and software structure.

2. Overview of MRRR. For a symmetric tridiagonal matrix T ∈ Rn×n, the
MRRR algorithm promises to compute a set of eigenvalues λ1, . . . , λm and a set of
vectors v1, . . . , vm, ‖vi‖2 = 1, satisfying

‖(T − λiI)vi‖ = O(nε‖T ‖)(2.1)

|vT
i vj | = O(nε), i 6= j(2.2)

using O(nm) arithmetic operations. Here ε is the roundoff unit. Pairs of vectors that
satisfy (2.2) are said to be orthogonal to working precision. A stricter criterion for
small residual norms is

‖(T − λiI)vi‖ = O(nε|λi|),(2.3)

demanding relatively small residuals.
Section 2.1 presents the ideas of the MRRR algorithm. After the definition of

some technical terms in Section 2.2, we give a short nontechnical presentation of the
algorithm. Finally more technical description is given in Section 2.3.

2.1. Informal outline of the underlying ideas. Our discussion is based on
the results from [10, 11, 12, 13, 14] that justify the MRRR algorithm. For a review
of the theory of inverse iteration, we refer to [9].

2.1.1. Issues of standard inverse iteration. We consider inverse iteration
for a general symmetric matrix and some of its important properties.

• (1A) Small residuals, in the sense of (2.1), are not enough to guarantee
orthogonality to working precision when the eigenvalues are close.

• (1B) In contrast, if two eigenvalues are nearly as small as the separation
between them, then approximate eigenvectors whose residuals satisfy (2.3)
will be orthogonal to working precision. Stated differently: eigenvalues with
a large relative gap (relgap(λ) = gap(λ)/|λ|) whose eigenvectors satisfy (2.3)
also satisfy (2.2).

• (1C) If λ̂ approximates an eigenvalue λ to high relative accuracy, then just
one step of inverse iteration with a good starting vector will achieve (2.3).

Moreover, at least one column of (T − λ̂I)−1 is sufficiently good as a starting
vector to guarantee (2.3), namely the column with the largest norm.

2.1.2. How to overcome the limitations of inverse iteration. The obser-
vations from Section 2.1.1 suggest the following ’ideal’ Algorithm 1.

Algorithm 1 The core MRRR algorithm.
for each eigenvalue with a large relative gap do

Compute an approximation that is good to high relative accuracy.
Find the column of (T − λ̂I)−1 with largest norm.
Perform one step of inverse iteration.

end for

2.1.3. Obstacles. The principal challenges facing Algorithm 1 are:
• The eigenvalue must be defined to high relative accuracy by the data. No

computed eigenvalue can have an error less than the uncertainty in the eigen-
value. Uncertainties in matrix entries can arise from the data itself or from



The design and implementation of the MRRR algorithm 3

transformations. Unfortunately, small relative changes in the entries of most
matrices cause large relative changes in tiny eigenvalues.

• An approximation to the eigenvalues (however small) must be computed to
high relative accuracy.

• A good starting vector for inverse iteration must be found as inexpensively
as possible, ideally with O(n) work.

• Eigenvalues might not have large relative gaps.
• Rounding errors must not spoil the computed output.

2.1.4. MRRR: how to overcome the obstacles. The MRRR algorithm ad-
dresses all these issues, resulting in an O(nm) algorithm for m eigenpairs. Specifically,
it is based on the following results.

• (2A) For a tridiagonal matrix T and most, but not all, shifts σ, the standard
triangular factorization T − σI = LDLT , L unit bidiagonal, has the prop-
erty that small relative changes in the nontrivial entries of L and D cause
small relative changes in each small eigenvalue of LDLT (despite possible
element growth in the factorization). Thus the algorithm works with LDLT

factorizations instead of T .
• (2B) For a given tridiagonal matrix, bisection can compute an eigenvalue to

high relative accuracy with O(n) work.
• (2C) For symmetric tridiagonal matrices, it is possible to find the column of

(T − λ̂I)−1 with the largest norm with O(n) operations.
• (2D) In order to apply Algorithm 1, eigenvalues must have large relative

gaps. MRRR uses the observation that shifting can alter relative gaps. If
the relative gaps of a group of eigenvalues are too small, then they can be
increased by shifting the origin close to one end of the group. Furthermore,
the procedure can be repeated for clusters within clusters of close eigenvalues

• (2E) Differential qd algorithms compute the different (shifted) LDLT factor-
izations with a special property: tiny relative changes to the input (L, D) and
the output (L+, D+) with LDLT − σI = L+D+LT

+ give an exact relation.
This property was only discovered in 1991 and ensures that roundoff does not
spoil Algorithm 1.

2.2. The essence of the MRRR algorithm.

2.2.1. Glossary of useful terms. The following terms are used in the rest of
this paper.

• (Sub-)block : If T has any negligible off-diagonal entries then it is split into
principal submatrices called blocks each of which has off-diagonal entries that
exceed some threshold, either absolute or relative.

• Representation: A triangular factorization T − σI = LDLT of a symmetric
tridiagonal matrix T .

• Relatively Robust Representation (RRR): A representation that determines a
subset Γ of the eigenvalues to high relative accuracy. This means that small
relative changes in the entries of L and D cause small relative changes in each
λ ∈ Γ. (The sensitivity can be quantified by a condition number [12].)

• Root representation and Representation tree: The MRRR procedure for com-
puting eigenpairs is best represented by a rooted tree. Each node of the graph
is a pair consisting of a representation (L, D) and a subset Γ of the wanted
eigenvalues for which it is an RRR. The root node of the representation tree
is the initial representation that is an RRR for all the wanted eigenvalues.



4 I. S. Dhillon, B. N. Parlett and C. Vömel

• Singleton: a (shifted) eigenvalue whose relative separation from its neighbors
exceeds a given threshold.

2.2.2. The essence of the MRRR algorithm. We now can give a more
precise and refined description of the essence of the MRRR algorithm that extends
Algorithm 1.

Algorithm 2 The essence of the MRRR algorithm.
Given an RRR for a set of eigenvalues
for each eigenvalue with a large relative gap do

Compute the eigenvalue λ̂ to high relative accuracy.
Find the column of (LDLT − λ̂I)−1 with largest norm.
Perform one step of inverse iteration.

end for
for each of the remaining groups of eigenvalues do

Choose shift σ outside the group.
Compute new RRR L+D+LT

+
= LDLT − σI.

Refine the eigenvalues.
end for

2.3. More on the ideas behind the MRRR algorithm. It is difficult to
understand MRRR without appreciating the limitations of standard inverse iteration.
We give here a more detailed account of the issues raised in Section 2.1.1 and the
properties of MRRR summarized in Section 2.1.4.

2.3.1. Issues and challenges. (1A) First, for any symmetric matrix A, let λ, µ
denote machine representations of two eigenvalues and v, w those of the corresponding
(normalized) eigenvectors. Define the residuals r = (A − λI)v and s = (A − µI)w,
then

vT w =
1

µ − λ

(
rT w − vT s

)
.(2.4)

The two dot products on the right hand side will not vanish in general. Furthermore,
there is no intrinsic reason why there should be cancellation in the numerator, so
‖r‖, ‖s‖ ≤ Knε‖A‖ is not too pessimistic.

Thus by (2.1) and Cauchy-Schwartz |vT w| ≤ 2Knε‖A‖
|µ−λ| is a realistic bound. Con-

sequently, it has been standard practice for inverse iteration to employ orthogonaliza-
tion of v and w explicitly when the eigenvalues are close. This makes the algorithm
expensive for large clusters, in the extreme case up to O(n2m) work.

(1B) Now suppose that (2.3) holds for λ and for µ, substitute in (2.4) and take
absolute values in (2.1) to find

|vT w| = O(
nε(|λ| + |µ|)

|µ − λ| ).(2.5)

Hence, (2.5) guarantees numerically orthogonal eigenvectors provided the separation
|µ− λ| is not much smaller than |λ| and |µ|. Thus, our goal is to achieve (2.3). For a
general symmetric matrix, we do not know how to do this but for tridiagonal matrices
it is feasible.

(1C) If the approximation λ̂ is closer to λ than to any other eigenvalue, then

‖(A − λ̂I)−1‖−1 = δλ. If we define, for any vector v̂ of unit length, the residual

r(v̂, λ̂) = (A − λ̂I)v̂, then δλ := |λ − λ̂| is an attainable lower bound for ‖r(v̂, λ̂)‖.



The design and implementation of the MRRR algorithm 5

In general, it is too expensive to find an optimal vector that minimizes the residual
norm. However, in the 1960’s, Varah and Wilkinson [9] showed that for at least one

canonical vector, say er, ‖(A − λ̂I)−1er‖ ≥ ‖(A − λ̂I)−1‖/√n. Let ṽ = (A − λ̂I)−1er

and v̄ = ṽ/‖ṽ‖. Then

‖r(v̄, λ̂)‖ = 1/‖ṽ‖ ≤
√

nδλ.(2.6)

Thus, the canonical vector er, when used as starting vector for inverse iteration, yields
an iterate with residual that is within a factor of

√
n of the optimum. Moreover, if λ̂

approximates λ to high relative accuracy, i.e. δλ = O(ε|λ|), then v̄ achieves (2.3).

2.3.2. Key results and principles of MRRR. (2A) In the 1960’s Kahan

discovered that the Cholesky factor L̃ of a symmetric positive definite tridiagonal
matrix determines all of the eigenvalues of L̃L̃T to high relative accuracy [6]. More
surprising still is the fact that most, but not all, indefinite LDLT representations
determine their tiny eigenvalues to high relative accuracy, despite element growth. If
λ, v is an eigenpair of LDLT , ‖v‖ = 1, λ 6= 0 and ρ denotes the spectral diameter,
then λ is determined to high relative accuracy by L and D provided that

max

{
vT L|D|LT v

|λ| ,
‖Dv‖∞

ρ

}
≤ K, K = O(1).

This shows that a factorization can still be an RRR for λ despite possibly large entries
in D and L as long as those are neutralized by small entries in v [13].

(2B) Bisection is based on a function that counts the number of eigenvalues of
a given matrix less than a given value. A short proof of the backward stability of
this computation for a symmetric tridiagonal matrix T in floating point arithmetic
is given in [4], a more careful analysis in [5]. However, a comparable analysis of the
correctness of bisection for a matrix in product form LDLT , D a diagonal and L a
unit bidiagonal matrix, has not been done yet. Commutative diagrams and proofs of
the mixed stability of the stationary dqds factorization LDLT − σI = L+D+LT

+, the
progressive dqds factorization LDLT − σI = U−D−UT

− , and twisted factorizations
LDLT − σI = Nr∆rN

T
r (see 2E) are given in [14]. It is a topic of future research to

show the correctness of a bisection algorithm based on these different factorizations.
(2C) Inexpensive ways to find the column of (T − λ̂I)−1 with largest norm were

discovered in the mid 1990’s independently by Godunov and by Fernando, see [11] and

the references therein. Given an RRR, let λ̂ be a relatively accurate approximation
of λ. Define for k = 1, . . . , n the vector

(LDLT − λ̂I)vk = ekγk, vk(k) = 1.(2.7)

The normalization factors

γk, γ−1

k = [(LDLT − λ̂I)−1]kk,(2.8)

can be computed from a double factorization

(LDLT − λ̂I) = L+D+LT
+ = U−D−UT

−(2.9)

with O(n) work. Various formulae for the γk with different stability properties are
given in [11]. Once all γk are known, we choose a suitable one, say k = r, and solve
the corresponding equation (2.7) in a careful way. The choice is guided by the idea of
obtaining a right-hand side with a small angle to the (true) eigenvector.



6 I. S. Dhillon, B. N. Parlett and C. Vömel

Let v denote the eigenvector for the eigenvalue λ closest to the approximation λ̂.
Then from an eigenvector expansion, it is shown in [11] that

‖(LDLT − λ̂I)vr‖2

‖vr‖2

=
|γr|
‖vr‖2

≤ δλ

‖v‖∞
≤ δλ

|v(r)| .(2.10)

In particular, if r is chosen such that |v(r)| ≥ 1/
√

n, then an upper bound on (2.10)
is

√
n δλ. In practice, instead of finding the minimizing r for the quotient |γr|/‖vr‖2

from (2.10), we choose

r = arg min
1≤k≤n

|γk|.(2.11)

In [11], it is shown that, as δλ → 0, (LDLT − λ̂I)−1 becomes essentially a rank-1
matrix whose k-th diagonal element converges to the square of the k-th entry of the
true eigenvector divided by δλ. Thus, by (2.8) and for small enough δλ, finding the
largest component of the true eigenvector is equivalent to finding the minimum γr of
(2.11).

In [11], the resulting v = vr from (2.7) is called the FP vector, FP for Fernando
and Parlett. The Davis-Kahan gap theorem [11] applied to (2.10) shows that v ap-
proximates the true eigenvector with an error angle φ satisfying

| sin φ| ≤ ‖LDLT v − vλ̂‖2

‖v‖2 gap(λ̂)
≤ δλ

‖v‖∞ gap(λ̂)
,(2.12)

where gap(λ̂) = min
{
|λ̂ − µ| : λ 6= µ, µ ∈ spectrum(LDLT )

}
. Furthermore, note

that by (2.7), the Rayleigh Quotient correction of v to λ̂ is given by γ/‖v‖2.
(2D) The guiding principle of the MRRR algorithm is to compute, by stationary

dqds transformations, a sequence of RRRs that achieve large relative gaps by shift-
ing as close as possible to eigenvalue groups previously defined as clustered. By this
principle of multiple representations, MRRR refines clusters until it finds singletons
with large enough relative gaps, and the computational path is described by a repre-
sentation tree. In this tree, the root representation is given by an LDLT factorization
of T (with appropriate shift) that defines all the wanted eigenvalues to high relative
accuracy. The representation of a child (which corresponds to either a subcluster or
a singleton within the parent) is computed from the parent representation by differ-
ential qd transformations. Each leaf of the representation tree is a singleton from
which the corresponding FP vector is computed. Algorithmically, the tree is built
from the root down. The current node is processed by inspecting its set Γ of (local)
eigenvalues. Immediately a relative gap exceeding a threshold is encountered, the
inspected subset is declared a new child node. If the child consists of more than one
eigenvalue, a new RRR is computed and stored; if the child is a singleton, the FP
vector is computed. The inspection then continues for the unexamined eigenvalues of
Γ. Dhillon [8] observed that the intermediate RRRs (of non-singletons) can be stored
in the eigenvector matrix.

(2E) One goal of [14, 13] is to show that roundoff does not spoil the procedure.
Specifically, it is shown that 1.) the computed pairs λi, vi have small residuals with
respect to the root representation (a weaker form of (2.1) where T is replaced by
the factorization of a translate), and 2.) the vectors computed from different repre-
sentations are orthogonal to working accuracy and satisfy (2.2). The mixed relative



The design and implementation of the MRRR algorithm 7

stability of the dqds algorithms is essential. Another key ingredient of the procedure
for computing the FP vector is the use of a twisted factorization to solve (2.7). With
the multipliers from (2.9), let

Nr =




1
L+(1) 1

. .

. .

L+(r − 2) 1
L+(r − 1) 1 U−(r)

1 U−(r + 1)
1 .

. .

. U−(n − 1)
1




,

and, with the pivots from (2.9) and γr from (2.7), define

∆r = diag(D+(1), . . . , D+(r − 1), γr, D−(r + 1), . . . , D−(n)).

Then the twisted factorization at λ̂ (with twist index r) is given by

LDLT − λ̂I = Nr∆rN
T
r .(2.13)

(Note that the double factorizations in (2.9) are special cases of (2.13), the forward
factorization corresponds to r = n and the backward factorization to r = 1.) When

we compute the FP vector of the singleton λ̂, we choose r according to (2.11).
Hence, the solution of (2.7) is equivalent to solving

NT
r vr = er, vr(r) = 1.(2.14)

The advantage of using this equation is that vr can be computed solely with multi-
plications, no additions or subtractions are necessary. By (2.14), we obtain

vr(i) = −L+(i)vr(i + 1), i = r − 1, . . . , 1,(2.15)

vr(i + 1) = −U−(i)vr(i), i = r, . . . , n − 1.(2.16)

This feature permits the error analysis of the computed FP vector in [14].



8 I. S. Dhillon, B. N. Parlett and C. Vömel

3. stegr. stegr is the main LAPACK driver and the interface for users who
wish to use the MRRR algorithm. In Section 3.1, we give a simplified outline of the
code, a more detailed one is given in Section 3.2. The goal of this section is to present
an overview of the code. Detailed descriptions of all computational and auxiliary
subroutines called by stegr are given in later sections.

stegr will be an important part of the next release of LAPACK [1]: the simple
eigenvalue drivers like syevr will make extensive use of stegr. Furthermore, a
parallel version is planned for ScaLAPACK [3]; a possible design alternative that
might lend itself better to parallelism is mentioned in Section 3.5.

3.1. Principal algorithmic structure and functionalities. For an overview
of the algorithmic structure, see Algorithm 3, a more detailed description is given
in the following Algorithm 4 in Section 3.1 The two major components, eigenvalue
(A2) and eigenvector computation (A3)both require O(n2) work for the full set of
eigenpairs.

Algorithm 3 Principles of stegr: Given a real symmetric tridiagonal matrix T ,
compute its eigenvalues and optionally eigenvectors.

(A1) Data preprocessing and parameter error checking.
(A2) Determine the unreduced blocks, their root representation, and their eigenvalues.
if eigenpairs are wanted then

(A3) For each eigenvalue compute its corresponding eigenvector.
end if
(A4) Post-processing. Return the computed eigenvalues (and -vectors) ordered from smallest to
largest eigenvalue.

For the illustration of the functionalities and the code dependencies, see Fig-
ure 3.1.

L D L^T

λT

L D L^T

vλ

STEGR

LARRVLARRE

and, optionally, eigenvectors of

Compute selected eigenvalues

a real symmetric tridiagonal 

matrix T.

find a representation and

For each unreduced block of T,

compute its wanted eigenvalues.

For each unreduced block of T,

and compute the eigenvectors of

the corresponding eigenvalues.

build a representation tree

INPUT: matrix T

OUTPUT: subblock structure of T. 

For each subblock of T a relatively 

robust representation and the 

wanted eigenvalues.

root representation and eigenvalues

of the tridiagonal matrix T.

Preprocessing and analysis Postprocessing of eigenvalues

(and potentially −vectors) of T.

INPUT: symmetric tridiagonal T

OUTPUT: all or selected eigenvalues

and, if desired, the corresponding

eigenvectors.

OUTPUT: eigenvectors and −values

of the matrix T

INPUT: for each subblock of T its

Fig. 3.1. Principal functionalities of stegr.

3.2. Detailed algorithmic structure and functionalities. In this section,
we give a detailed description of the algorithmic structure, see Algorithm 4. Important
details regarding the pre- and post-processing phase that were omitted in the previous
section are explained here. Figure 3.2 illustrates the functionalities and the code
dependencies, expanding on Figure 3.1.



The design and implementation of the MRRR algorithm 9

Algorithm 4 Details of stegr: Given a real symmetric tridiagonal matrix T , com-
pute wanted eigenvalues and optionally eigenvectors. A subset of the spectrum can
be specified by either choice of an index set IL : IU or of an interval [VL, VU].

(A1) Data preprocessing and parameter error checking:
Scale T to the allowable range if necessary.
Check parameters and work space.
(In particular, if eigenvalues from a range [V L, V U ] have to be computed, compute the number of
eigenvalues in that interval.)

(A2) Find the unreduced blocks of T , their root representation, and their eigenvalues:
if the matrix T defines its eigenvalues to high relative accuracy then

Enable relative splitting criterion that respects relative accuracy.
else

Enable absolute splitting criterion only based on ‖T‖.
end if
For each unreduced block, compute a root representation and its eigenvalues.

if eigenpairs are wanted then
(A3) For each eigenvalue compute its corresponding eigenvector and support:

Build the representation tree. Find suitable RRRs so that all eigenvalues become singletons.
for each eigenvalue with a large relative gap do

Use the simplified Algorithm 1 to compute the eigenvector.
end for

end if

(A4) Post-processing. Return the computed eigenvalues (and -vectors):

Ensure that all eigenvalues are consistent with the original matrix T , shift them if necessary.
if the matrix T defines its eigenvalues to high relative accuracy then

Refine the computed eigenvalues through bisection on T .
end if
if the matrix T has been scaled then

unscale the computed eigenvalues
end if
if the matrix T has split into sub-blocks then

Put the eigenvalues (that have been stored by blocks) in increasing order. Apply the same
ordering to the eigenvectors.

end if

3.3. Governing parameters and workspace requirements. stegr has one
important parameter.

• The precision to which the eigenvalues are computed initially: If eigenvectors
are not wanted then eigenvalues are computed to full accuracy in larre. If
eigenvectors have to be computed, the initial approximations will be refined
in larrv. In this case, the precision required in larre can be lower. For a
subset of eigenpairs, larre uses bisection to compute all wanted eigenvalues.
However, if the proportion of wanted eigenpairs is high enough or the full
spectrum has to be computed, then all eigenvalues are computed by dqds
(and, potentially, the unwanted ones are discarded).

3.4. Workspace requirements. stegr uses two different kinds of workspace,
real and integer. In the rest of this paper, WORK denotes the real and IWORK the
integer work space.

stegr partitions the available workspace into two segments, one part is used to
store persistent data that is available during the whole computation, and the sec-
ond part that is going to be reused by different subroutines. The persistent data is
computed by larre. It is used (and if necessary refined) by larrv.



10 I. S. Dhillon, B. N. Parlett and C. Vömel

LARRVLARRE

L D L^T

LARRR

LARRC

T

L D L^T

λ

LARRJ

λ
λv, refined

STEGR

of the matrix T

OUTPUT: eigenvectors and −values

root representation and eigenvalues

INPUT: for each subblock of T its

(if needed) 

For each unreduced block of T,

IL:IU, or those in the interval

[VL,VU].

and, if desired, the corresponding

OUTPUT: the selected eigenvalues

INPUT: symmetric tridiagonal T, a 

eigenvectors.

and compute the eigenvectors of

the corresponding eigenvalues.

compute its eigenvalues.

to right.
order eigenpairs from left

Unscale eigenvalues if it is
necessary.
If matrix had split into blocks, 

Postprocessinig

whether T passed a test for high 

relative accuracy or not.

eigenvalues are computed.

This influences the way the 

to high relative accuracy.

Test if T defines its eigenvalues

INPUT: matrix T

OUTPUT: flag value INFO indicates 

For each block of T,

OUTPUT: subblock structure of T. 

robust representation and eigenvalues

For each subblock of T a relatively 

if T defines evals highly accurately.

INPUT: matrix T, flag to indicate

find a representation and build a representation tree

matrix T.

a real symmetric tridiagonal 

Compute selected eigenvalues

and, optionally, eigenvectors of

If an interval (VL, VU] of the

interval.

number of eigenvalues in the

spectrum was selected, compute

number of eigenvalues in (VL,VU]
The difference VU−VL gives the 
OUTPUT: Negcount of VL and VU. 
INPUT: matrix T

Preprocessing & analysis of T

allowable range..

Potentially scale matrix to 

error via XERBLA if necessary.

Check input parameters, return

OUTPUT: eigenvalues with high

all eigenvalues, or those with index

selected part of the spectrum: either

relative accuracy.

INPUT: T, approximate eigenvalues 

bisection on tridiagonal T.

the computed eigenvalues by

high relative accuracy, refine

If T defines its eigenvalues to

Fig. 3.2. Detailed functionalities of stegr.

Real persistent data includes
• the Gersgorin intervals (size 2N),
• uncertainty bounds for each computed eigenvalue (size N),
• the separation of each eigenvalue from its right neighbor (size N).

Integer persistent data includes
• the splitting indices at which the matrix T breaks up into blocks (size N),
• the block number of each eigenvalue (size N),
• the local indices of the eigenvalues within each block (size N).

The remaining real and integer workspace is shared and reused by larrr, larre,
larrv, and potentially larrj.

3.5. A note on design alternatives. The computations for different sub-
blocks are completely independent from each other. Thus, it would have been possible
to write a code that, instead of computing all eigenvalue first and then the correspond-
ing eigenvectors, consisted of a single loop over all matrix blocks and computed the
eigenvectors immediately. This variant might be pursued in a future parallel version.



The design and implementation of the MRRR algorithm 11

4. larre: Compute the root representation of each unreduced block and
all wanted eigenvalues. larre is one of the two major computational subroutines
used by stegr. It computes for each unreduced block its root representation and the
wanted eigenvalues by either bisection or dqds.

4.1. Principal algorithmic structure and functionalities. For the algorith-
mic structure, see Algorithm 5. For the illustration of the functionalities and the code
dependencies, see Figure 4.1.

Algorithm 5 Principal algorithmic structure of larre: Given a real symmetric
tridiagonal matrix T , find its unreduced sub-blocks. For each sub-block, compute
its root representation and the wanted eigenvalues. Subsets of the spectrum can be
designated either by indices IL : IU or by an interval [VL, VU].

Record Gersgorin intervals.
Record splitting indices, set negligible off-diagonals to zero.
if only a subset of the spectrum is wanted then

if the wanted subset is given by its indices IL : IU. then
Find a corresponding interval [VL,VU].

else
Find the (global) indices IL : IU.

end if
Compute crude approximations to the wanted eigenvalues by bisection.

end if
for each unreduced block of T do

(B1) Decide whether dqds or bisection will be used for the eigenvalue computation.
(B2) Choose a shift for the root representation.
(B3) Compute the root RRR.
(B4) Perturb the root RRR by a few ulps.
(B5) Compute (or refine) wanted eigenvalues of the RRR by bisection or dqds.

end for

LARRA

T

λ

L D L^T
T

L D L^T

LARRE

LARRD, LARRB, LASQ2

A bound on the error of the computed

OUTPUT: eigenvalues of L D L^T

of a subblock.

INPUT: representation L D L^T

The size of the gap to the neighbor

The index of each eigenvalue with

respect to its subblock.

eigenvalue.

on the right of each eigenvalue.

For each unreduced block of T,

dqds algorithm (lasq2).

compute the eigenvalues of its

bisection (larrd, larrb) or the 

root representation by either

For each unreduced block of T,

perturb its root representation

by a small relative random 

amount.

T −    I = L D L^T.

σ
compute the root representation

and find a suitable shift

For each unreduced block of T,

σT −    I = L D L^T.

and the corresponding factorization

the subblock with a suitable shift 

OUTPUT: root representation of 

INPUT: subblock of matrix T

σ

find a root representation and

INPUT: matrix T

compute its eigenvalues.

For each unreduced block of T,

set the negligible off−

diagonal entries of T to 0.

Compute splitting points and

on the right of each eigenvalue.

The size of the gap to the neighbor

eigenvalue.

A bound on the error of the computed

respect to its subblock.

The index of each eigenvalue with

robust representation and eigenvalues

For each subblock of T a relatively 

OUTPUT: subblock structure of T. 

Fig. 4.1. Principal functionalities of larre.



12 I. S. Dhillon, B. N. Parlett and C. Vömel

4.2. Detailed algorithmic structure and functionalities. In this section,
we expand our description of the central part of Algorithm 5. Algorithm 6 describes
in detail the proceeding once an unreduced block of T has been found. It describes
in more detail how the root representation is chosen, in particular the location of the
shift and tests to ensure that an RRR has been found. It also gives the details on the
computation of the (local) eigenvalues and their indices and block numbers by either
bisection or dqds. The dqds algorithm requires a definite RRR whereas bisection does
not.

Figure 4.2 expands on Figure 4.1, illustrating of the functionalities and the code
dependencies on other subroutines.

Algorithm 6 Detailed algorithmic structure of the central part of larre: For each
unreduced sub-block, compute an RRR and its eigenvalues.

for each unreduced block of T do
Deal with 1 × 1 block and ignore rest of loop.
Find local spectral diameter.

(B1) Decide whether dqds or bisection will be used for the eigenvalue computation:
if only a subset of the spectrum is wanted then

Count the number of wanted eigenvalues in the block.
If the percentage of wanted eigenvalues is large enough, dqds will be used, bisection otherwise.

else
Dqds is used for the full spectrum.

end if

(B2) Choose a shift for the root representation:
if Dqds is used then

Compute the extremal eigenvalues accurately.
else

Find adequate lower and upper bounds on extreme wanted eigenvalues as initial shifts.
end if
In both cases, we have obtained bounds V L and V U on the wanted eigenvalues.
Compute the Sturm counts at the 0.25 and 0.75 points of the wanted interval [VL,VU].
Choose shift σ for the root RRR at the most crowded end.

(B3) Compute the root RRR:
while no factorization has been accepted as an RRR do

Compute factorization T − σI = LDLT , accept if element growth is less than tolerance.
If dqds is going to be used, accept only if the factorization is definite.
Change shift carefully if factorization is not accepted.

end while

(B4) Perturb the root RRR by a few ulps:
Perturb each element of D and L by a tiny random relative amount.
Store the representation in the corresponding block of T , the matrix D in the diagonal part and
the non-trivial entries of L in the off-diagonal part.

(B5) Compute wanted eigenvalues of the RRR by bisection or dqds:
if Dqds is used then

Compute all eigenvalues, discard unwanted ones.
Record uncertainties, gaps, local indices and block numbers.

else
Change previously computed approximate eigenvalues of T by shift σ (of root RRR).
Refine approximate eigenvalues, uncertainties, and gaps by bisection to a specified accuracy.
Record local indices and block numbers.

end if
end for



The design and implementation of the MRRR algorithm 13

T
L D L^T L D L^T

λ

LARRD, LARRB, LASQ2

T

LARRE

LARRA

A bound on the error of the computed

points recorded.

splitting criteria are used.

have been set to 0 and the split

Depending on this flag, different 

indicating whether T defines its

blocks, the off−diagonal entries of T

OUTPUT: Parition of T in unreduced 

eigenvalues to high relative accuracy.

INPUT: subblock of matrix T, a flag

set the negligible  off−

diagonal entries of T to 0.

Compute splitting points and

Bisection is used if T defines its

root representation by either

bisection (larrd, larrb) or the 

compute the eigenvalues of its

dqds algorithm (lasq2).

For each unreduced block of T,

on the right of each eigenvalue.

The size of the gap to the neighbor

eigenvalue.

respect to its subblock.

The index of each eigenvalue with
OUTPUT: eigenvalues of L D L^T

so that L D L^T is definite..

root representation has has been used

computed and a suitable shift of the

a large part of the spectrum is to be

More efficient dqds is used if all or 

spectrum is to be computed. 

or if only a smaller part of the 

eigenvalues to high relative accuracy

of a subblock.

INPUT: representation L D L^T

OUTPUT: perturbed relatively

representation of subblock of T.

INPUT: relatively robust

clusters.

amount to resolve very tight

by a small relative random 

perturb its root representation

For each unreduced block of T,

INPUT: matrix T, high rel. acc. flag

OUTPUT: subblock structure of T. 

on the right of each eigenvalue.

The size of the gap to the neighbor

eigenvalue.

A bound on the error of the computed

respect to its subblock.

The index of each eigenvalue with

robust representation and eigenvalues

For each subblock of T a relatively 

find a root representation and

compute its eigenvalues.

For each unreduced block of T,

robust representation. Each element

σT −    I = L D L^T.

OUTPUT: root representation of 

and the corresponding factorization

the subblock with a suitable shift 

accuracy, a zero shift has to be used.

bisection does not.For high relative

needs a definite matrix whereas  

of the eigenvalue algorithm. DQDS

shift is also influenced by the choice

shifts are chosen.. The choice of the

Depending on this flag, different 

indicating whether T defines its

eigenvalues to high relative accuracy.

INPUT: subblock of matrix T, a flag

σ
compute the root representation

and find a suitable shift

For each unreduced block of T,

σT −    I = L D L^T.

a small random relative amount.

of D and L has been perturbed by

Fig. 4.2. Detailed functionalities of larre.

4.3. Governing parameters.
• Initial precision of bisection: Dqds always computes the eigenvalues to full

accuracy. However, if bisection is used, it can be more efficient not to compute
the eigenvalues to full precision if they will be improved through Rayleigh
Quotient correction in larrv.

• Maximum allowable element growth for the root factorization: When dqds is
used, the shift for the root representation makes the matrix definite and thus
the factorization is an RRR for all eigenvalues. If the shift for a subset is inside
the spectrum, then the LDLT factorization will be indefinite. Nevertheless
it is still an RRR for all eigenvalues if the element growth is small enough.

• The threshold to switch between bisection and dqds : If a large enough propor-
tion of the eigenvalues is wanted, the code uses dqds to find all eigenvalues
and discards the unwanted ones.

• The size of the random perturbation that is applied to the root representation:
To break up very tight clusters, tiny random perturbations are made to the
root representation.

4.4. Workspace requirements. larre requires 6N real workspace that are
shared and reused by the computational routines for bisection (larrd, larrb) and
dqds (lasq2). The storage requirements are dictated by dqds for which 6N total stor-
age are needed. Integer workspace IWORK requirements are dominated by larrd.



14 I. S. Dhillon, B. N. Parlett and C. Vömel

5. larrv. larrv is the second major computational subroutine used by stegr.
It computes, from the output generated by larre, the wanted eigenvectors.

5.1. Principal algorithmic structure and functionalities. For the algorith-
mic structure, see Algorithm 7. For the illustration of the functionalities and the code
dependencies, see Figure 5.1.

Algorithm 7 Principal algorithmic structure of larrv: Build the representation
tree from the root representation and refine the eigenvalues. Compute eigenvectors of
singletons by Rayleigh Quotient Iteration.

for each unreduced block of T do
if the block does not contain any wanted eigenvalues then

skip block.
end if
(C1) Build representation tree from the root down one level at a time as follows:
while there are still eigenvectors of this block to be computed do

(C2) Process nodes of current level of representation tree as follows:
for each node do

(C3) Retrieve the RRR of the node and refine its eigenvalues.
while the node is not entirely processed do

(C4)Identify the next child.
if a child is not a singleton then

(C5) Compute an RRR for the child and store it.
else

(C6) Refine the eigenvalue (if needed) and compute the corresponding eigenvector.
end if

end while
end for

end while
end for

LARRFLARRB

LARRV

LAR1V

L D L^T

v

OUTPUT: A representation of the 

parent.

INPUT: A representation of the 

relative gaps in the child.

the cluster. This increases the

representation that is closer to

one eigenvalue, compute a new

If a child consists of more than

have large relative gaps.

extract its children when they

For the current parent node,

Loop over unreduced blocks and

representation tree levels.

eigenvalue of the current parent node.

eigenvector.

eigenvalue and the corresponding 

OUTPUT: a (possibly refined) 

INPUT: an isolated approximate

using a twisted factorization.

by Rayleigh−Quotient iteration

the corresponding eigenvector

If a child is a singleton, compute

current child.

For the current unreduced block,

a smaller relative error.

OUTPUT: refined eigenvalues with

eigenvalue group.

relative error due to a shift close to

representation, with possibly large

INPUT: eigenvalues of current 

If not, refine the eigenvalues.

exhibit relative gaps suitably.

computed to enough figures to

current representation have been

Ensure that all eigenvalues of the

node, retrieve its representation.

For the current unprocessed

the corresponding eigenvalues.

and the current level of the 

and compute the eigenvectors of

compute a representation tree

For each unreduced block of T,

of the matrix T

OUTPUT: eigenvectors and −values

root representation and eigenvalues

INPUT: for each subblock of T its

then to next unreduced block.

have been computed. Proceed

eigenvectors of the current block

the representation tree until all

Proceed with the next level of 

of unprocessed nodes from a

queue.

representation tree, obtain the list

Fig. 5.1. Principal functionalities of larrv.



The design and implementation of the MRRR algorithm 15

5.2. Detailed algorithmic structure and functionalities. In this section,
we expand our description of the central part of Algorithm 7. Algorithm 8 describes
the computations for a sub-block. Note that we use the word ’eigenvector’ for an ac-
cepted FP vector: algorithmically, we compute an FP vector which has the numerical
properties of an eigenvector when the corresponding eigenvalue is approximated to
high relative accuracy, see Section 2.

Algorithm 8 Detailed algorithmic structure of the central part of larrv: Given the
root representation and its eigenvalues, compute the corresponding eigenvectors.

(C1) Build representation tree from the root down one level at a time as follows:
Retrieve root representation.
Initialize queue of unprocessed nodes with root.
while there are still eigenvectors of this block to be computed do

(C2) Process nodes of current level of representation tree:
The unprocessed nodes are stored in a queue.
Nodes of the current level are dequeued, children (except singletons), as detected, are enqueued.
This corresponds to a breadth-first construction of the representation tree.
for each unprocessed node of the current level do

(C3) Retrieve the RRR of the node and refine its eigenvalues:

Retrieve the RRR of the node (stored in T if root, in the unused part of the eigenvector matrix
Z otherwise).
Refine the local eigenvalues to enough figures so that the relative gaps can be assessed accu-
rately enough and singletons can be detected.
while the node is not entirely processed do

(C4) Identify the next child:
Starting with the leftmost unprocessed eigenvalue of the node, proceed to the right until a
large relative gap is found.
if a child is not a singleton then

(C5) Compute an RRR for the child and store it:
Store RRR in Z at the index corresponding to the first and second eigenvalues of the
node.
Add the child node to the queue to be processed on the next level of the tree.

else

(C6) Refine the eigenvalue (if needed) and compute the corresponding eigenvector:

while the FP vector is not accepted do
Compute FP vector from one step of inverse iteration with a twisted factorization.
Record Rayleigh Quotient correction and residual norm.
if Rayleigh Quotient correction or residual norm is small enough then

Signal convergence.
Store refined eigenvalue with appropriate shift.

else
if Rayleigh Quotient Correction is accepted and maximum allowed number of steps
not exceeded then

Improve eigenvalue approximation by Rayleigh correction.
else

Refine eigenvalue to full accuracy by bisection
end if

end if
end while
Scale computed vector to unit length and store it and its support.

end if
end while

end for
end while



16 I. S. Dhillon, B. N. Parlett and C. Vömel

The functionalities and code dependencies of larrv are illustrated in Figure 5.2.

LAR1VLARRFLARRB

L D L^T

LARRV

v

child are not too small. Ensure that

so that the relative gaps inside the

Ensure that the shift is close enough

the outside of the child cluster.

parent. Choose a new shift close to

INPUT: A representation of the 

Loop over unreduced blocks and

representation tree levels.

have large relative gaps.

extract its children when they

For the current parent node,

of unprocessed nodes from a

queue.

representation tree, obtain the list

and the current level of the 

For the current unreduced block,

OUTPUT: refined eigenvalues with

a smaller relative error.

to high relative accuracy.

course of processing the rep. tree.

accuracy and will be refined in the , 

The eigenvalues need not have full

root representation and eigenvalues.

INPUT: for each subblock of T its

dqds transformation.

via the differential stationary

new representation is computed 

relative gaps in the child. The

the cluster and increases the 

If a child consists of more than

representation that is closer to

one eigenvalue, compute a new

child.

OUTPUT: A representation of the

defines all eigenvalues of the child

the factorization with this shift 

Proceed with the next level of 

Or else bisection is used to 

compute the eigenvalue to full

initial eigenvalue approximation.

within the error bounds of the

in the correct direction and stays

so that it improves the eigenvalue

Rayleigh correction is supervised

using a twisted factorization. The

by Rayleigh−Quotient iteration

the corresponding eigenvector

If a child is a singleton, compute

eigenvalue of the current parent node.

eigenvector.

eigenvalue and the corresponding 

OUTPUT: a (possibly refined) 

INPUT: an isolated approximate

then to next unreduced block.

have been computed. Proceed

eigenvectors of the current block

the representation tree until all

eigenvalue group.

accuracy. An eigenpair is accepted 

relative error due to a shift close to

representation, with possibly large

INPUT: eigenvalues of current 

If not, refine the eigenvalues.

exhibit relative gaps suitably.

computed to enough figures to

current representation have been

Ensure that all eigenvalues of the

node, retrieve its representation.

For the current unprocessed

of the matrix T

OUTPUT: eigenvectors and −values

the corresponding eigenvalues.

and compute the eigenvectors of

compute a representation tree

For each unreduced block of T,

RQ correction is small.

when either the residual or the

Fig. 5.2. Detailed functionalities of larrv.

5.3. Governing parameters.
• Precision of bisection when refining the eigenvalues of a child : Bisection is

used to refine the local eigenvalues of a child after they have been translated
by the new incremental shift. Shifting generally leads to a loss of the leading
digits that the eigenvalues have in common. In general, it is not necessary to
compute the eigenvalues to full precision by bisection since Rayleigh Quotient
correction is used in computing the vector. However, a minimal number
of leading figures has to be accurate so that relative gaps can be reliably
identified.

• The number of Rayleigh Quotient Correction steps allowed : Once a singleton
is encountered, its eigenvalue with respect to the current RRR must have
maximal accuracy (if the the separation is small; accuracy requirements can
be relaxed if the separation is large) . Rayleigh quotient correction is more
efficient in the asymptotic region than bisection but need not be reliable
inside clusters of close eigenvalues. Since the asymptotic region is not known
a-priori, the algorithm tries to improve the approximation by a number of
Rayleigh Quotient Correction steps. If the Rayleigh Quotient iterate has
not converged, the eigenvalue is refined to all its figures by slower but more
reliable bisection.

• The minimum relative gap between children: The error in the FP vector is
proportional to the reciprocal of the relative gap between eigenvalues. So we
insist on the relative gap being larger than a threshold. If the threshold is
raised, then the representation tree will become deeper.



The design and implementation of the MRRR algorithm 17

5.4. Workspace requirements. larrv partitions the available work space into
a first part that persists and a second part that is shared and reused by called sub-
routines.

Real persistent data includes
• the local eigenvalues, that is the eigenvalues with respect to the current RRR

(size N),
• the quantities lidi and l2i di for the current representation (size 2N), needed

for dqds transformations.
Integer persistent data includes
• the twist index for each singleton (size N),
• the queue for the nodes of the current level of the representation tree and the

parent level (size 2N).
The remaining real and integer workspace is shared and reused by lar1v, larrf,

and larrb.
Furthermore, the matrix of the eigenvectors Z is used as intermediate storage for

representations.

6. larrf: Compute the representation of a child from the representation
of its parent. larrf is an auxiliary subroutine called by larrv to compute a new
RRR for a child.

6.1. Principal algorithmic structure. For the algorithmic structure, see Al-
gorithm 9.

Algorithm 9 Principal algorithmic structure of larrf: Compute an RRR of a child
from the RRR of a parent.

Given a node with representation LDLT and (local) eigenvalues λi ∈ [l, r]
Set σl = l and σr = r

while No RRR has been found do
Compute factorization at left end: L̂D̂L̂T = LDLT − σlI.
if factorization has little element growth then

Accept factorization as RRR and exit.
end if
Compute factorization at right end: ĽĎĽT = LDLT − σrI.
if factorization has little element growth then

Accept factorization as RRR and exit.
end if
(D1) Inspect the factorizations at each end of the child.
if (D2) the better of the two factorizations passes the refined test for an RRR then

Accept that factorization as RRR and exit.
else

if maximum number of trials not exceeded then
(D3) Save characteristics of better factorization for later inspection.
(D4) Choose new shifts by backing off from the cluster ends by a small amount.

else
(D5) Inspect all computed factorizations and choose the best among them as RRR.

end if
end if

end while

6.2. Detailed algorithmic structure. In this section, we describe in detail the
algorithm for finding an RRR of a child. From the RRR of the parent, the algorithm
has computed by stationary dqds transforms two new factorizations with shifts σl = l
and σr = r. Some element growth has occurred in both factorizations but there is still
the possibility that one is an RRR for the wanted subset. A heuristic test is employed.



18 I. S. Dhillon, B. N. Parlett and C. Vömel

If one of them is satisfactory, it is accepted, or else the shifts σl and σr are changed
and new factorizations are computed. For any factorization without an NaN, we save
the shift and the element growth to select the best among all inspected factorizations
as safeguard in case none of them passes our tests for immediate acceptance, see
Algorithm 10.

Algorithm 10 Detailed algorithmic structure of the central part of larrf: How to
select a suitable factorization as representation for a child

(D1) Inspect the factorizations at each end of the child:
if no NaN has occurred then

choose the one with the smaller element growth as the better one.
else

Disregard any factorization with an NaN completely.
If there is one factorization without NaN, select it as the better one.
Ignore the following RRR test and go directly to (D2a).

end if

(D2)the factorization passes the refined test for an RRR:
Compute approximate eigenvector v from product of entries of bidiagonal factor L at poorer end
of cluster.
RRR test: Compute relative condition number ‖Dv‖∞, D from the better end.
if the RRR test is passed then

Accept that factorization as RRR and exit.
end if

if (D2a) maximum number of trials not exceeded then
(D3) Save characteristics of better factorization for later inspection:
Save the shift and the element growth.

(D4) Choose new shifts by backing off from the cluster ends by a small amount:
Choose δl and δr large enough to decrease the element growth and small enough to preserve
large relative gaps.
σl = σl − δl, σr = σr − δr .
Double δl and δr .

else

(D5) Inspect all computed factorizations and choose the best:
From all factorizations without NaNs, take the one with the smallest element growth.

end if

6.3. Governing parameters.
• The maximum allowable element growth to accept a factorization as RRR

immediately: A factorization with essentially no element growth defines all
its eigenvalues to high relative accuracy. For this reason, such a factorization
should be accepted as RRR immediately. However, there is the danger to
select a factorization prematurely without looking at others with even smaller
element growth.

• The amount by which to back off from the end of a child : As mentioned
before, one has to select carefully the amount by which to back off. The
goal of backing off is to reduce element growth while to preserve as well as
possible large relative gaps. If a shift near the end of a cluster coincides
with a Ritz value then the factorization breaks down. The code tries a new
shift by backing away from the end. However, by selecting the shift of the
representation farther away from the eigenvalues, the relative gaps inside
the child decrease and thus the algorithm has to do more work to compute



The design and implementation of the MRRR algorithm 19

orthogonal eigenvectors. Backing off too far even might, in an extreme case,
make the algorithm fail to find a relative gap above the threshold. On the
other hand, backing off too little will not reduce the element growth. A
natural choice is to back away by the distance to the next eigenvalue (in the
child) or the average gap inside the cluster. More research is needed on this
subject.

• The number of times the algorithm should back away from the ends of a child.

7. lar1v: Compute an FP vector from a relatively isolated eigenvalue
approximation. lar1v is an auxiliary subroutine called by larrv to compute an
FP-vector of a singleton. Apart from the FP vector v, it also returns the twist index
r from the twisted factorization used, the negcount (the number of pivots smaller

than λ̂), and γr. γr can be used to compute the residual of the FP vector and the

Rayleigh Quotient correction to λ̂. The optional negcount can be used to ensure the
correct direction (sign) of the proposed Rayleigh Quotient correction: if the proposed
correction step has the correct sign and lies within the uncertainty interval, it is
accepted. On the other hand, if the negcount indicates that the proposed correction
step goes in the wrong direction or the size of the correction step would take the new
iterate outside the known uncertainty interval, the algorithm switches to bisection to
compute the eigenvalue.

7.1. Principal algorithmic structure and functionalities. In order to sim-
plify the presentation, we only describe the main parts of the computation of the FP
vector, see Algorithm 11. For the computation of the negcount and a more detailed
description, we refer to the next section.

Algorithm 11 Principal algorithmic structure of lar1v: Compute an FP vector for
a relatively isolated eigenvalue approximation from a twisted factorization.

Given a parent RRR LDLT and a relatively isolated approximate eigenvalue λ̂.
(E1) Compute forward and backward factorization of LDLT − λ̂I.
if the location of the twist index has not been previously chosen then

(E2) Compute γk, k = 1, . . . , n and find the twist index r = arg min |γk|.
end if
Form the twisted factorization LDLT − λ̂I = Nr∆rNT

r using the data from (E1).
(E3) Compute the FP vector by solving NT

r v = er(⇔ Nr∆rNT
r v = γrer), v(r) = 1.

7.2. Detailed algorithmic structure and functionalities. This section gives
the details on how to compute an FP vector. Note that the computation of the twist
index r is only done once per eigenvalue and omitted if multiple Rayleigh corrections
are applied to the same eigenvalue approximation. Furthermore, the computation of
the negcount of λ̂ can be omitted if λ̂ is accurate. One detail is omitted in Algo-
rithm 12: it has to be ensured that the negcount is only computed from factorizations
without a NaN.



20 I. S. Dhillon, B. N. Parlett and C. Vömel

Algorithm 12 Detailed algorithmic structure of lar1v: Compute an FP vector for
λ̂ from a twisted factorization. Optionally, supply a negcount of λ̂.

(E1) Compute forward and backward factorization of LDLT − λ̂I:

Compute forward factorization LDLT − λ̂I = L+D+LT
+

by dstqds and negcount of λ̂.
if the twist index r has been previously chosen then

Only compute the factorization (and the negcount) down to the index r.
end if
Compute backward factorization LDLT − λ̂I = U−D−UT

− by dqds.
if the twist index r has been previously chosen then

Only compute the factorization (and the negcount) up to the index r.
end if

if the location of the twist index has not been previously chosen then
(E2) Compute γk , k = 1, . . . , n and find the twist index r = arg min |γk|:

γk = sk + pk, k = 1, . . . , n. (sk arise in the forward, pk in the backward factorization.)
Choose r as the index of the minimum |γr|.
If dstqds and dqds factorization have been stopped at index r, the sign of γr completes the
negcount. (The negcount has actually been done on ∆ from the twisted factorization.)

end if
Form the twisted factorization LiDiL

T
i − λ̂I = Nr∆rNT

r using the data from (E1).

(E3) Compute the FP vector by solving NT
r v = er(⇔ Nr∆rNT

r v = γrer), v(r) = 1:

Find the solution of Nr∆rNT
r v = γrer by solving NT

r v = er:
Solve backward using L+ with indices r − 1 : −1 : 1 and forward using U− with indices r + 1 : n.

8. larra: Splitting of the matrix T into unreduced blocks. It is a very
common technique in eigensolvers to split a given matrix into unreduced blocks and
then work in turn on each of the blocks. One major reason is efficiency: since all
solvers have a complexity that is super-linear with respect to the matrix size, smaller
sub-blocks will improve performance with respect to storage and operations. There
is a second reason for splitting in MRRR: the theory assumes that all eigenvalues are
simple.

MRRR offers two different splitting strategies:
• An ’absolute’ splitting criterion that sets the off-diagonal value to zero when-

ever it is small compared to ‖T ‖.
• A ’relative’ splitting criterion that sets the off-diagonal value to zero when-

ever it is small compared to the geometric mean of its neighboring diagonal
elements.

The relative splitting criterion is designed so that neglecting an off-diagonal is equiv-
alent to tiny relative changes in the neighboring diagonal elements.

9. larrb, larrc, larrd, and larrj: Sturm counts and bisection. lasq2:
dqds.. Bisection plays a central role when computing the eigenvalues to high relative
accuracy. It is based on Sturm counts and MRRR makes heavy use of it.

larrb implements bisection for tridiagonal matrices in factored form LDLT

and has two alternative criteria for stopping the refinement of an eigenvalue. Con-
sider neighboring eigenvalue approximations λ̂i and λ̂i+1 with uncertainties ±δλi and
±δλi+1 so that the true i-th eigenvalue lies in [λ̂i − δλi, λ̂i + δλi] and the true i+1-th

in [λ̂i+1 − δλi+1, λ̂i+1 + δλi+1]. Denote by λ̂i+1 − δλi+1 − λ̂i − δλi the right gap of λ̂i.

Then eigenvalue λ̂i has converged if either of the following is true.
• The width of the uncertainty interval of λ̂i is smaller than a threshold times

its right gap. This means that the uncertainty in the eigenvalue cannot change
the gap by more than a relative amount determined by the threshold.



The design and implementation of the MRRR algorithm 21

• The width of the uncertainty interval of λ̂i is smaller than a threshold times
the maximum (in absolute value) of the two interval boundaries. This im-
plies that the eigenvalue is correct to a number of digits determined by the
threshold.

larrb is used each time a child has been computed from its parent in order to recover
lost figures in precision due to shifting. Furthermore, it is used for the computation
of singletons in the case that Rayleigh Quotient Correction does not converge to the
wanted eigenvalue. It has an input parameter that allows a user to choose between
different Sturm counts: the twist index is an integer between 1 and n; setting it to
n corresponds to a stationary dqds transform, setting it to 1 to a progressive dqds
transform, otherwise it uses a twisted factorization with twist index r.

larrc does Sturm counts on the matrix T at two fixed points l and r and re-
turns the number of eigenvalues in [l,r]. It is used by stegr to compute the needed
workspace when the eigenvalues in an interval [V L, V U ] have to be computed. An-
other use is to find the most crowded end of the spectrum when computing the root
representation of a block in larre.

larrd implements bisection for tridiagonal matrices T and has a single conver-
gence criterion: the relative width of the convergence interval. larrd is a variant of
the LAPACK code stebz that has been adapted for stegr. Apart from computing
initial approximations of eigenvalues, it can also be used to compute the index of an
eigenvalue in its block when the matrix splits.

larrj implements bisection for tridiagonal matrices T and has a single conver-
gence criterion: the relative width of the convergence interval. Its functionality is
similar to larrd with the difference that it refines given initial intervals around the
selected eigenvalues. It is used for post-processing of the eigenvalues computed in
larre and larrv in case the user asks stegr to compute eigenvalues to high rela-
tive accuracy and the matrix T allows that, see Section 10.

lasq2 is the LAPACK implementation of the dqds algorithm [15] that internally
computes the eigenvalues of a (positive or negative) definite LDLT factorization. For
this reason, if dqds is used, the root representation has to be definite.

10. larrr: Test if T defines its eigenvalues to high relative accuracy.
stegr aims to compute the eigenvalues of T to high relative accuracy if the matrix
deserves it. There are a number of sufficient criteria that T can be tested on [2].
Currently, we are testing whether T is scaled diagonally dominant (s.d.d.). For the
algorithmic structure, see Algorithm 13.

Algorithm 13 larrr: Test if T is s.d.d. and thus defines its eigenvalues to high
relative accuracy.

S.D.D. test:
Compute matrix T̂ = D−1/2TD−1/2 with diagonal entries ±1.
if |êi| + |êi−1| < 1 ,∀i then

return TRUE
else

return FALSE
end if

11. The role of IEEE arithmetic. The implementation of the MRRR algo-
rithm relies on IEEE arithmetic for speed in order to avoid branched tests in loops [7].

Sturm sequences on the tridiagonal matrix T can produce zero pivots whenever
the chosen shift is a Ritz value (i.e. the eigenvalue of a principal submatrix). From



22 I. S. Dhillon, B. N. Parlett and C. Vömel

the recurrence

di = (Tii − σ) − T 2
ii+1

di−1

we see that with di−1 = 0, the next pivot di is set to −∞, and the computation
continues normally afterwards with di+1 = (Ti+1i+1 − σ). This allows the inner loop
to be written without tests.

Sturm sequences on the factored matrix LDLT via stationary or progressive dqds
transforms can produce a NaN during the computation. In the case of stationary
dqds, if d+

i−1
6= 0, the pivots satisfy

d+

i = (di − σ) − (d+

i−1
− di−1)(l

2
i−1di−1/d+

i−1
),

but if d+

i−1
= 0, then |d+

i | = ∞ and d+

i+1
= NaN. For the progressive dqds, if d−i+1

6= 0,
the pivots satisfy

d−i = di−1l
2
i−1 − σ + (d−i+1

− dil
2
i ) ∗ di/d−i+1

,

but if d+

i+1
= 0, then |d+

i | = ∞ and d+

i−1
= NaN. If a NaN occurs in the stationary or

the progressive dqds transforms, then all subsequent quantities will be set NaN . In
contrast to Sturm sequences with T , the computation has to be repeated with a safe
procedure that uses tests and branches. Fortunately, these cases are rare.

12. Summary and conclusions. In this paper, we have shown how the theory
of the MRRR algorithm translates into software. We have described the design and
implementation of stegr that will be part of the next release of LAPACK; a parallel
version will also be implemented for ScaLAPACK. We have identified governing pa-
rameters of the algorithm and discussed their influence on accuracy and performance.

Acknowledgments. The authors are very grateful to Osni Marques for his in-
valuable help with thoroughly testing and improving our software.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s Guide. SIAM,
Philadelphia, 3. edition, 1999.

[2] J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant
matrices. SIAM J. Numer. Anal., 27(3):762–791, 1990.

[3] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memory
computers - design issues and performance. Computer Physics Communications, 97:1–15,
1996. (also as LAPACK Working Note #95).

[4] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[5] J. W. Demmel, I. S. Dhillon, and H. Ren. On the correctness of some bisection-like parallel

eigenvalue algorithms in floating point arithmetic. Electronic Trans. Num. Anal., 3:116–
140, 1995. LAPACK working note 70, etna.mcs.kent.edu/vol.3.1995/pp116-149.dir/pp116-
140.ps.

[6] J. W. Demmel and W. Kahan. accurate singular values of bidiagonal matrices. SIAM J. Sci.
Stat. Comput., 11(5):873–912, 1990.

[7] J. W. Demmel and X. S. Li. Faster numerical algorithms via exception handling. IEEE Trans.
Comp., 43(8):983–992, 1994. (Also: LAPACK Working Note 59).

[8] I. S. Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector
Problem. PhD thesis, University of California, Berkeley, California, 1997.

[9] I. C. F. Ipsen. Computing an eigenvector with inverse iteration. SIAM Review, 39(2):254–291,
1997.



The design and implementation of the MRRR algorithm 23

[10] B. N. Parlett. Acta Numerica, chapter The new qd algorithms, pages 459–491. Cambridge
University Press, 1995.

[11] B. N. Parlett and I. S. Dhillon. Fernando’s solution to Wilkinson’s problem: an application of
double factorization. Linear Algebra and Appl., 267:247–279, 1997.

[12] B. N. Parlett and I. S. Dhillon. Relatively robust representations of symmetric tridiagonals.
Linear Algebra and Appl., 309(1-3):121–151, 2000.

[13] B. N. Parlett and I. S. Dhillon. Multiple representations to compute orthogonal eigenvectors
of symmetric tridiagonal matrices, 2004.

[14] B. N. Parlett and I. S. Dhillon. Orthogonal eigenvectors and relative gaps. SIAM J. Matrix
Anal. Appl., 25(3):858–899, 2004.

[15] B. N. Parlett and O. Marques. An implementation of the dqds algorithm (Positive case). Linear
Algebra and Appl., 309:217–259, 2000.


