
Distributed Schedule Carrying Code ?

Thomas A. Henzinger, Christoph M. Kirsch, and Slobodan Matic

EECS, University of California, Berkeley

Abstract. We present an approach for the design and implementation
of embedded real-time software running on a distributed platform. The
approach consists of a high-level specification layer instantiated by Giotto
programs and a low-level verification and execution layer instantiated by
Schedule carrying code (SCC). We explain a methodology in which sev-
eral code suppliers, coordinated by a resource manager, independently
generate and verify portions of the software system to be implemented on
different hosts. A scheme for compiling Giotto programs by taking into
account task (port) allocation to suppliers and hosts is described. After
semantics of distributed SCC is presented we investigate composability
properties. Since SCC executable carries its schedule as code, in order
for distributed SCC to be composable we introduce a type for it, that for
each supplier specifies time instants in which it is allowed to use com-
putation or communication resources. We formally prove that if supplier
SCC programs individually satisfy certain properties, namely type con-
formance and time safety, then the distributed SCC program correctly
implements the original Giotto program specification. We demonstrate
composability by showing that time to check these properties is pro-
portional to the size of individual Giotto program portions. Although
we assume static (time-triggered) computation and communication we
make sure that the approach is valid also for the multi-modal Giotto
programs.

1 Introduction

We are motivated by one of the major issues a car manufacturer faces in the in-
tegration of software subsystems in the computer controlled vehicle architecture.
Due to the required determinism a common solution consists of computer nodes
interacting by exchanging messages according to a static time-triggered commu-
nication protocol and running tasks that were scheduled off-line. The software
subsystems are generated independently by several contractors (developers, sup-
pliers) from specifications provided by a resource manager (car manufacturer,
integrator). A typical problem occurs if a modification is required for a next
generation of a product. A simple modification in a single software subsystem
may induce a series of modifications in other subsystems. A change of timing
attributes, e.g. task execution times, of one component should not cause the
static schedule of any other components to change.
? This research was supported in part by the AFOSR MURI grant F49620-00-1-0327

and the NSF grants CCR-0208875 and CCR-0225610.

Components need to be designed based on their specifications, but otherwise
independently of each other. The contractors should know as few information
about other subsystems as possible. Also, the larger system is constructed from
components that can be integrated without violating the principle of compos-
ability, i.e. properties that have been established at the component level should
also hold at the system level. These are all common points of interest of our re-
search and the study of linking interfaces in the dependable distributed systems
[5]. A linking interface is characterized by data properties, i.e. the structure and
semantics of the data crossing the interface, and temporal properties, i.e. the
temporal constraints required for data delivery validity.

We study these problems in the scope of programming paradigms we pre-
viously developed. In our approach data properties are given in code compiled
from the high-level system specification whereas temporal properties are given
in the form of a special type that the code has to comply with. In the pro-
posed real-time programming languages the system response is predictable both
in time and value. In particular, in the Giotto programming language [1], this
is achieved by separation of interaction with the environment from task execu-
tion. As long as the scheduler maintains all the deadlines, the output values at
particular time instants do not depend on task ordering or preemption mecha-
nism. Even a change in hardware should not affect the real-time behavior of the
application. In such an approach, in addition to generating the code, the task of
the compiler is to show the existence of a feasible schedule, which usually means
to produce the schedule itself. This is the idea of the Schedule carrying code [3]:
once the feasible schedule is produced, it can be attached to the code to serve
as a certificate for schedulability.

For a given Giotto program the compiler generates code that is interpreted
on two virtual machines, namely the E code for the embedded (E) machine and
the S code for the scheduling (S) machine. The embedded machine [4] handles
interaction with the environment and all requests for computational tasks. It
runs E code that specifies timing and control-flow of software processes, i.e.
tasks and drivers. The embedded machine has three basic instructions: call(d),
for a driver d , schedule(t) for a task t , and future(g, b), for a trigger g and
an E code address b. A trigger is a predicate over the inputs of the embedded
machine, evaluated with every input event. The call(d) instruction immediately
invokes a driver d . The schedule(t) instruction releases a task t for execution, by
inserting it into the internal ready queue. In general, the future(g, b) instruction
marks the E code at the address b for execution at some time when the trigger
g becomes true. A simple abstraction used for E programs is that each E code
instruction executes instantenously, i.e. in a negligible amount of time.

The scheduling machine [3] determines when, and in what order, tasks re-
quested by the E code are actually executed (dispatched). The code that it runs,
S code, represents a feasible schedule for the generated E code. An S program
also consists of three instructions: dispatch(t , v) for a task t and a timeout v,
idle(v) for a timeout v and call(d), for a driver d . A timeout, similar to a trig-
ger, is a predicate over the inputs of the scheduling machine. The dispatch(t , v)

2

resumes the execution of a released task t until the timeout v becomes true. The
task executes until either it completes or the timeout becomes true, whichever
comes first. The idle(v) instruction simply makes the scheduling machine idle
until the timeout v becomes true.

Lastly, the Schedule carrying code is the E code annotated with the S code.
SCC is executable code which eliminates the need for a system scheduler. In our
previous research we were primarily interested in how this model supports verifi-
cation of real-time (schedulability) properties. In particular, we tried to establish
the computational difference between generation of the SCC that satisfies those
properties and validation of the same properties given some SCC. In case we
don’t trust the source of the code, or the code is moved to different targets, the
schedule is revalidated before use. This rests on the premise that validation can
be performed more efficiently than generation.

In contrast to a pure Giotto or a single processor SCC program, in a dis-
tributed SCC program data transmissions take place over intervals of time and
not only at synchronous time instants. The only requirement is that transmis-
sions to the task input ports occur before the task starts with the execution, and
that transmissions from the task output ports occur after the task ends with the
execution. However, to keep the program behavior deterministic with respect to
the environment, drivers that read sensors or write to actuators are executed at
the time instants that mark beginning (end) of the task periods.

Regarding related work, paper [6] deals with the similar problem of distribut-
ing programs written in Lustre language which is somewhat similar to Giotto.
In fact, entire design chain, from a Simulink model to an implementation on the
TTA bus is described. However, in this framework compositional design is not
studied. Instead, end-to-end compilation scheme is presented together with the
scheduling algorithm, which was not, on the other hand, the focus of our work.

The structure of the paper is as follows. Section 2 describes abstract syntax
of the Giotto programming language and shows some programs that will be used
as running examples. Section 3 starts with assumptions on the underlying archi-
tecture, gives an overview of the code generation process in our approach (3.1)
and then explains the Giotto compilation part (3.2). We first present semantics
of general SCC programs in section 4, and discuss it both for distributed SCC
programs compiled from Giotto (4.1) and for such programs that encode earliest
deadline first scheduling strategy (5.2). The basis that enables composability,
the typing mechanism, is introduced in section 5.1. Formal properties of the
methodology are studied in remaining subsections of 5. We prove input-output
equivalence of Giotto and distributed SCC programs if certain conditions are
satisfied and present an efficient algorithm that verifies these conditions.

2 Giotto language

We briefly discuss Giotto syntax and refer to [1] for details on semantics. A simple
example of a Giotto program is shown on Fig 1 (for now ignore the annotations
in brackets). A Giotto program begins with port declarations. A port is any

3

typed variable. A valuation of a set of ports is a function that maps each port to
a value of the appropriate type. The set Ports of all port names is partitioned
into the following five sets: a set SensePorts of sensor ports, a set ActPorts of
actuator ports, a set InPorts of task input ports, a set OutPorts of task output
ports, and a set PrivPorts of task private ports. The set of sensor ports includes
integer typed port pc, a discrete clock port.

sensor
s1 [c1, h1];
s2 [c2, h2];
s3 [c2, h2];

actuator
a1 [c1, h1];
a2 [c2, h2];
a3 [c2, h2];

output
o1 [c1, h1];
o2 [c2, h2];
o3 [c2, h2];

task
t1(x1) output(o1);
t2(x2) output(o2);
t3(x3) output(o3);

driver
i1(s2, o2) output(x1);
i2(s1, o1) output(x2);
i3(s3) output(x3);
g1(o1, o2) output(a1);
g2(o1, o2) output(a2);
g3(o3) output(a3);

start m1 {
mode m1 () period 24 {
actfreq 3 do a1(g1);
actfreq 3 do a2(g2);
actfreq 1 do a3(g3);
taskfreq 1 do t1(i1) ;
taskfreq 3 do t2(i2)
taskfreq 1 do t3(i3)
}
}

Fig. 1. Single mode Giotto program G1

The sensor ports cannot be directly read by tasks, and the task ports can-
not be directly written to the actuators. Instead, a sensor or actuator port p
requires a device driver dev [p]. A task output port p requires the declaration of
an initialization driver init [p] and a copy driver copy [p]. Each task output port
is double-buffered, that is, it is implemented by two copies, a local copy that
is used by the task only, and a global copy that is accessible to the rest of the
program that executes on the same host. The initialization driver initializes the
local copy; the copy driver copies data from the local copy to the global copy. A
task private port requires only an initialization driver. For simplicity reasons the
drivers mentioned in this paragraph were not shown in the figure with example
Giotto programs.

4

output
o1 [c1, h1];
o2 [c2, h2];
o3 [c3, h3];

task
t1(x1) output(o1);
t2(x2) output(o2);
t3(x3) output(o3);

driver
i1() output(x1);
i2(o1) output(x2);
i3(o1) output(x3);
n1(o1, o2);
n2(o1, o3);

start m1 {
mode m1 () period 24 {
exitfreq 3 do m2 (n1);
taskfreq 1 do t1(i1);
taskfreq 3 do t2(i2);
}
mode m2 () period 24 {
exitfreq 2 do m1 (n2);
taskfreq 1 do t1(i1);
taskfreq 2 do t3(i3);
}
}

Fig. 2. Multiple mode Giotto program G2

The second part of a Giotto program are task declarations. A Giotto task
t has a set In[t] ⊆ InPorts of input ports, a set Out[t] ⊆ OutPorts of output
ports, a set Priv [t] ⊆ PrivPorts of private ports, and a task function task [t] from
the input and private ports to the private and output ports. Let set Tasks be
the set of all tasks t of the Giotto program.

The third part of a Giotto program are driver declarations. Giotto drivers
transport data between ports and initiate mode changes. A Giotto driver d has
a set In[d] ⊆ Ports of source ports, an optional driver guard cond [d], which is
evaluated on the source ports and returns a boolean, a set Out [d] ⊆ Ports of
destination ports, and a driver function drv [d] from the source to the destination
ports. The driver guard is implemented as a branching condition of the E ma-
chine; the driver function, as an E machine driver. Let set Drvs be the set of all
drivers of the Giotto program.

The final part of a Giotto program declares the set Modes of modes and
the start mode start ∈ Modes . A mode m has a period π[m] ∈ N>0, a set
ModePorts [m] ⊆ OutPorts of mode ports, a set Invokes [m] of task invocations,
a set Updates [m] of actuator updates, and a set Switches [m] of mode switches.
A task invocation (ωtask , t, d) ∈ Invokes [m] consists of a task frequency ωtask ∈
N>0 relative to the mode period, a task t, and an input task driver d, which
loads the task inputs. An actuator update (ωact , d) ∈ Updates [m] consists of
an actuator frequency ωact ∈ N>0, and an actuator driver d. A mode switch
(ωswitch ,m ′, d) ∈ Switches [m] consists of a mode-switch frequency ωswitch ∈ N>0,
a target mode m ′ ∈ Modes , and a mode driver d, which governs the mode change.
Figure 2 shows a multiple-mode Giotto program. If driver d is an input task

5

driver then its input ports can be both sensor and task output ports, In[d] ⊆
SensePorts∪OutPorts. If driver d is an actuator or mode switch driver we require
that its input ports be only output ports, In[d] ⊆ OutPorts.

For a mode m, the least common multiple of the task, actuator, and mode-
switch frequencies of m is called the number of units of m, and is denoted
ωmax [m]. We use an integer k ∈ {0, . . . , ωmax [m] − 1} as the unit counter for a
mode m. Given a mode m ∈ Modes and a unit k with 0 ≤ k < ωmax [m], we
need the following auxiliary operators (see explanations in [2]):

taskInvocations(m, k) :=
{(ωtask , t, d) ∈ Invokes [m] | k · ωtask/ωmax [m] ∈ N>0}

Tasks(m, k) := {t | (·, t, ·) ∈ taskInvocations(m, k)}
taskDrivers(m, k) := {d | (·, ·, d) ∈ taskInvocations(m, k)}
taskOutputPorts (m, k) := {p | t ∈ Tasks(m, k) ∧ p ∈ Out [t]}
taskSensorPorts (m, k) :=
{p | d ∈ taskDrivers(m, k) ∧ p ∈ In[d] ∩ SensePorts}

preemptedTaskPeriods (m, k) :=
{ωmax [m]/ωtask | (ωtask , ·, ·) ∈ Invokes [m] \ taskInvocations(m, k)}

actuatorDrivers (m, k) :=
{d | (ωact , d) ∈ Updates [m] ∧ k · ωact/ωmax [m] ∈ N>0}

actuatorPorts (m, k) :=
{p | d ∈ actuatorDrivers (m, k) ∧ p ∈ Out [d]}

modeSwitches(m, k) :=
{(m ′, d) | (ωswitch ,m ′, d) ∈ Switches [m] ∧ k · ωswitch/ωmax [m] ∈ N>0}

modeSensorPorts (m, k) :=
{p | (·, d) ∈ modeSwitches(m, k) ∧ p ∈ In[d] ∩ SensePorts}

3 Distributing Giotto Programs

We assume that nodes of the distributed platform are connected by a single
shared bus and that all communication is performed according to a Time Division
Multiple Access (TDMA) prototcol: in each time interval only one node is allowed
to send data while all other nodes can listen for the data. In a distributed system
S code may represent the TDMA schedule in the form of executable instructions.
Here we consider a simple architecture where each node has only one processor
for both computation and communication tasks, but distributed systems with
dedicated communication processors can be handled with some modifications.
We formally treat messages communicated over the network similar to tasks.
Instead of worst-case execution time, a message has worst-case transmission
time. In order to simplify notation we also use the same SCC instructions for
messages. If µ is a message then E code instruction schedule(µ) releases the
message for transmission. Similarly, while S code instruction dispatch(µ, v) is
executing the processor is busy with sending the data over the network until the
transmission is over or the timer v becomes true.

6

3.1 Code Generation Flow

In our model the global resource manager generates a Giotto program G to
be implemented by a set C of contractors on a set H of hosts. Let Ports be
the set of all ports declared in program G. The resource manager allocates
each port p except the dicrete clock pc, p ∈ Ports \ {pc}, to a host h̄(p) and
determines a contractor c̄(p) that will implement code for port p. We assume
that all processors are synchronized so that all contractors on all hosts have
reading access to pc. On figures 1 and 2 the port annotation given in brackets
denotes the contractor and the host to which the port is allocated to. If port
p is a sensor port then contractor c̄(p) implements device driver for p. If p is
an actuator port then, beside the device driver, c̄(p) also implements actuator
driver. Task input, output and private ports are defined for each task separately,
so any task input, output, or private port p of a task must be allocated to the
same contractor on the same host. Also, all destination ports of a driver d ∈ Drvs
must be allocated to the same contractor and to the same host, which we denote
c̄(d) and h̄(d) respectively.

For each contractor c ∈ C and each host h ∈ H the resource manager gives
out

– an E program Ec,h that describes timing and control-flow of driver, task and
message invocations for contractor c on host h and

– a type Tc,h that specifies computation and transmission time instants on host
h available for contractor c (see next sections for formal type definition).

Once a contractor c gets E program and Ec,h and type Tc,h for host h it generates

– an S program Sc,h for host h,
– worst case execution (transmission) times wc,h for tasks (messages) - wc,h :

Tasksc,h ∪Msgsc,h → N>0, and
– functionality code for tasks.

Provided with the worst case execution and transmission times the resource
manager finally verifies each generated S program against the corresponding
type and E program. This way the resource manager can verify composability
and ensure that the entire distributed SCC program satisfies Giotto semantics of
program G. Once a contractor modifies its S program on a host, to check if Giotto
semantics is preserved, it is sufficient to check only if this program conforms to its
type. The emphasis here is not to develop the algorithm for generating type given
the application (e.g. Giotto program). This is a scheduling problem and should
be addressed separately possibly through several iterations of the proposed code
generation flow.

3.2 From Giotto to Distributed E Code

Let P be a collection of generated distributed SCC programs for all contractors
and over all hosts. In later sections we formally define syntax and semantics

7

for such a distributed SCC program. The set of ports PortsP of P contains
additional ports (Ports ⊆ PortsP) needed to store the data communicated over
the network. Namely, if according to the Giotto program G and port-to-host
allocation a value of the port p ∈ SensePorts ∪ OutPorts is needed as input to
a driver on a host h different than h̄(p), i.e. if a message with the value of p
must be communicated over the network, then the host h must keep its own
copy ph of port p. Note that ph̄(p) is simply p. We assume that completion of
message transmission updates the port ph with the transmitted value. For each
p ∈ SensePorts ∪OutPorts let µ(p) be the message with the port p value.

We will need the following three operators in order to present compilation
strategy for E programs of distributed SCC:

sendToHosts(m, p) :=
{h̄(d) | ((·, ·, d) ∈ Invokes [m] ∨ (·, d) ∈ Updates [m]) ∧ p ∈ In[d]}
∪{h | (·, ·, d) ∈ Switches [m] ∧ h ∈ H ∧ p ∈ In[d]} \ {h̄(p)}

sendToHosts(p) := {h | m ∈ Modes ∧ h ∈ sendToHosts(m, p)}
sendOutputPorts (t) := {p | p ∈ Out [t] ∧ sendToHosts(p) 6= ∅}
For a given mode m and port p the set sendToHosts(m, p) is a set of hosts

on which a task input, actuator or mode switch driver d is executed in mode m
such that p is an input port of d. The host h̄(p) to which port p is allocated to is
not in sendToHosts(m, p), therefore this set is actually the set of hosts to which
messages with port p values must be sent in mode m. The set sendToHosts(p)
is the set of hosts to which port p values must be sent in at least one of modes
in Modes . For a given task t the set sendOutputPorts(t) is a set of task t output
ports for which there are hosts that should receive the message with port value.

We can formally define a message in an SCC program similar to a Giotto
task: a message has a set of input and output ports and a function from the input
to the output ports. In particular, for a message µ(p) let message input ports
In[µ(p)] be {p}, message outputs ports Out[µ(p)] be {ph | h ∈ sendToHosts(p)}
and a message function task [µ(p)] be identity function from the message input
port to output ports. Let set Msgs be the set of all messages of program P .

According to Giotto semantics task input (output) driver reads (writes) in-
put (output) ports at the time instants defined by the beginning (end) of the
task period. In the distributed SCC implementation a task output driver is still
performed at the end of the task period in an E code instruction. However, a
task input driver is executed in an S code instruction and it is delayed because
its input might need to be sent over the network. In general, in each task pe-
riod, transmission of sensor input ports preceeds task execution which preceeds
transmission of task output ports. Let d be the task input driver for a task t
allocated to host h. For all ports p ∈ In[d] ∩ SensePorts such that h̄(p) 6= h a
message µ(p) is received at h. Completion of the message µ(p) writes on each
host h′ ∈ sendToHosts(p) to the sensor port ph′ . The task t input driver reads
ph (and maybe other ports) and writes to the task t input ports. It succeeds all
sensor port messages and preceeds task t execution. Completion of a task t writes
to the local copy of the task t output ports. Start of a task output port message
µ(p′) for p′ ∈ Out [t] succeeds the task t completion. Completion of a task output

8

port message µ(p′) writes on each of the hosts in h′′ ∈ sendToHosts(p′) to the
task output port ph′′ . Finally, at each h′′ ∈ sendToHosts(p′)∪{h} a task output
driver copies local into global task output ports at the end of the task t period.

We assume that the transmission of a sensor port value is performed in a time
interval of length ε after the time instant the sensor is read. The latency value
ε must be determined at compile time and in order to simplify code generation
we also assume that this value is constant for all ports. If a task reads a sensor
port that needs to be transmitted then the task input driver is called exactly ε
time instants after task is released. Otherwise, it is executed at the time task is
released. Symetrically, the transmission of task output ports is performed in a
time interval of length ε before the time instant the task is logically completed (its
period expires). Again, latency time ε is constant for all tasks t and modes m. We
also require that time ε be less than the mode unit time γ[m] = π[m]/ωmax [m]
for each mode m. This directly implies that the task input driver is always called
before its input ports could be updated with new values.

Algorithm 1 The distributed Giotto program compiler
1: ∀p ∈ OutPorts ∪ PrivPorts : emit(α, h̄(p),call(init [p]));
2: ∀p ∈ OutPorts.∀h ∈ sendToHosts(p) : emit(α, h, call(init [ph]))

3: ∀h ∈ H : emit(α, h, jump(Estart,0,M
α,h));

4: ∀m ∈ Modes : invoke Algorithm 2 for mode m;

Algorithm 1 generates E programs Ec,h for each contractor c ∈ C and each
host h ∈ H . It is similar to the algorithm presented in [2] but modified for the
distributed setting. The E code compiler command emit(c, h, instr) generates
E code instruction instr for a contractor c on a host h. The symbolic reference
Em,k,x
c,h denotes address of an instruction of Ec,h which is executed in mode m at

unit k. The symbol x is used for three different parts of E code and is explained
below. We assume that there is a special contractor α in C and for each host h
the algorithm generates E program Eα,h for it. These E programs are known only
to a resource manager and typically contain only task input and output drivers
and mode switch drivers. These programs do not contain any information needed
by a contractor to generate S code. We give to a contractor as few information
about other contractors as is necessary in order to enhance composibility. Note
also that resource manager E program is always put first in the trigger queue,
so it always executes first.

The compiler begins generating E code by emitting call instructions to the
initialization drivers of all task output and private ports. Then an absolute jump
is emitted to the first instruction of the start mode. The instruction jump(a) is
shorthand for if(true, a). Since this instruction is unknown at this point, we use
a symbolic reference Em,k,M

c,h . The symbolic reference will be linked to the first
instruction of the E code that implements mode m at unit k. The Algorithm 2 is
called to generate code for all modes and units. It generates three types of E code
blocks for each unit k of a mode m. The duration of a unit is denoted by γ. The

9

Algorithm 2 The distributed Giotto mode compiler
k := 0; γ := π[m]/ωmax [m];
while k < ωmax [m] do
∀c ∈ C . ∀h ∈ H : link E

m,k,M
c,h to the address of the next free instruction cell on

(c, h);
∀p ∈ taskOutputPorts (m, k) . ∀h ∈ sendToHosts(p) ∪ {h̄(p)}:
emit(α, h, call(copy [ph]));

5: ∀d ∈ actuatorDrivers(m, k): emit(c̄(d), h̄(d), call(drv [d]));
∀p ∈ actuatorPorts (m, k): emit(c̄(p), h̄(p),call(dev [p]);
∀p ∈ modeSensorPorts (m, k): emit(c̄(p), h̄(p), call(dev [p]));
∀c ∈ C . ∀h ∈ H . ∀(m ′, d) ∈ modeSwitches(m, k):

emit(c, h, if(cond [d], Em,k,m′
c,h));

∀h ∈ H : emit(c, h, jump(Em,k,T
c,h));

10:
∀(m ′, d) ∈ modeSwitches(m, k):

∀c ∈ C . ∀h ∈ H : link E
m,k,m′
c,h to the address of the next free instruction cell

on (c, h);
// compute the unit k′ to which to jump in the target mode m ′ and
// compute the time δ′ before new tasks in the target mode m ′ can be

scheduled
15: if preemptedTaskPeriods (m, k) = ∅ then

// jump to the beginning of m ′ if all tasks in mode m are completed
δ′ := 0; k′ := 0;

else
// compute the hyperperiod π of the preempted tasks in units of mode m

20: π := lcm(preemptedTaskPeriods (m, k));
// compute the time δ to finish the hyperperiod π

δ := (π − k mod π) ∗ π[m]/ωmax [m];
// compute the time δ′ to wait for the unit k′ in the target mode m ′ to

begin
δ′ := δ mod (π[m ′]/ωmax [m ′]);

25: // compute the closest unit k′ to the end of the mode period in m ′ after δ′

k′ := (ωmax [m
′]− (δ − δ′) ∗ ωmax [m

′]/π[m ′]) mod ωmax [m
′];

end if
∀h ∈ H :

emit(α, h, call(drv [d]));
30: ∀c ∈ C :

if δ′ > 0 then
emit(c, h, future(timer [δ′], Em′,k′,M

c,h));
emit(c, h, return);

else
35: emit(c, h, jump(Em′,k′,T

c,h));
end if

∀c ∈ C . ∀h ∈ H : link E
m,k,T
c,h to the address of the next free instruction cell on

(c, h);
∀p ∈ taskSensorPorts (m, k):

40: emit(c̄(p), h̄(p),call(dev [p]));
if sendToHosts(p) 6= ∅ then emit(c̄(p), h̄(p), schedule(µ[p] ≺ ε));
end if

∀(·, t, d) ∈ taskInvocations(m, k):
if In[d] ∩ taskSensorPorts (m, k) 6= ∅ then ε1 = ε else ε1 = 0;

45: if sendOutputPorts (t) 6= ∅ then ε2 = −ε else ε2 = 0;
emit(c̄(t), h̄(t), schedule(ε1 ≺ task [t] ≺ ε2));
∀p ∈ sendOutputPorts (t) :

emit(c̄(t), h̄(t), schedule(−ε ≺ µ[p]));

∀c ∈ C . ∀h ∈ H : emit(c, h, future(timer [γ], E
m,(k+1) mod ωmax [m],M
c,h));

50: ∀c ∈ C . ∀h ∈ H : emit(c, h, return);
k := k + 1;

end while

10

first type of E code block (line 3), labeled Em,k,M
c,h takes care of updating task

output ports, updating actuators, reading sensors, and checking mode switches.
The compiler generates call instructions to the appropriate drivers and an if
instruction for each mode switch. The block is terminated by a jump instruction
to a block that deals with task invocations. The jump is only reached if none of the
mode switches is enabled. The second type of E code block (line 12) implements
the mode change to a target mode m ′. We use the symbolic reference Em,k,m′

c,h to
label this type of E code block. Upon a mode change, the mode driver is called
and then control is transfered to the appropriate E code block of the target
mode. The compiler computes the destination unit k′ as close as possible to
the end of the target mode’s period [1]. The trigger timer [δ′] is a time trigger
with enabling time δ′; that is, it specifies the trigger predicate p′c = pc + δ′,
which evaluates to true after δ′ units of time (say ms) elapse. The third type of
E code blocks (line 38) handles the invocation of tasks and the future invocation
of the E machine for the next unit. The label for these blocks is Em,k,T

c,h . The
final future instruction makes the E machine wait for the duration γ and then
execute the E code for the next unit.

The schedule instructions in the algorithm (lines 46 and 48) are of the spe-
cial form not present in the single processor SCC case. They indirectly contain
precedence constraints needed for correct data transmission by explicitly speci-
fying latency time ε. This number does not affect program execution itself, but
a contractor needs it in order to construct a correct schedule, i.e. S program.
The instruction schedule(µ[p] ≺ ε) releases message µ[p] with a sensor port p
value, but demands that the message transmission is finished in ε time. The in-
struction schedule(ε ≺ task [t] ≺ −ε) releases task t with the constraint that the
task be dispatched after the time ε from the release time instant, and completed
at the latest ε time before the task t logical completion time instant (period).
Finally, the instruction schedule(−ε ≺ µ[p]) releases the message with task t
output port p, with the constraint that the message be sent no earlier than ε
time before the task t logical completion.

Note that the code generation scheme in algorithm 2 implies the order of
execution: task output drivers are followed by actuator drivers, mode switch
drivers, and task input drivers in that order. If the task output port p ∈ OutPorts
is an input port of an actuator, mode switch or task input driver that executes
at a host h in a mode m then h ∈ sendToHosts(p) ∪ {h̄(p)}. The set of hosts
that receives port p data does not depend on program mode. This means that a
message with the port p value is sent to the host h even if the program executes
in a mode in which p is not an input port to any driver at h.

Figures 3 and 5 show distributed E programs for the Giotto programs form
figures 1 and 2. The code for different contractors on the same host is separated
by a single horizontal line, the code for different hosts by two, and the code for
different modes by three horizontal lines.

11

α, h1: E
1,0,M
α,1 : call(o1)

call(o2)

jump(E1,0,Tα,1)

E
1,1,M
α,1 : call(o2)

jump(E1,1,Tα,1)

E
1,2,M
α,1 : call(o2)

jump(E1,2,Tα,1)

E
1,0,T
α,1 : future(8, E1,1,Mα,1) E

1,1,T
α,1 : future(8, E1,2,Mα,1) E

1,2,T
α,1 : future(8, E1,0,Mα,1)

c1, h1: E
1,0,M
1,1 : call(g1)

jump(E1,0,T1,1)

E
1,1,M
1,1 : call(g1)

jump(E1,1,T1,1)

E
1,2,M
1,1 : call(g1)

jump(E1,2,T1,1)

E
1,0,T
1,1 : call(s1)

schedule(µ(s1) ≺ 2)
schedule(2 ≺ t1 ≺ −2)
schedule(−2 ≺ µ(o1))

future(8, E1,1,M1,1)

E
1,1,T
1,1 : call(s1)

schedule(µ(s1) ≺ 2)

future(8, E1,2,M1,1)

E
1,2,T
1,1 : call(s1)

schedule(µ(s1) ≺ 2)

future(8, E1,0,M1,1)

α, h2: E
1,0,M
α,2 : call(o1)

call(o2)
call(o3)

jump(E1,0,Tα,2)

E
1,1,M
α,2 : call(o2)

jump(E1,1,Tα,2)

E
1,2,M
α,2 : call(o2)

jump(E1,2,Tα,2)

E
1,0,T
α,2 : future(8, E1,1,Mα,2) E

1,1,T
α,1 : future(8, E1,2,Mα,2) E

1,2,T
α,2 : future(8, E1,0,Mα,2)

c2, h2: E
1,0,M
2,2 : call(g2)

call(g3)

jump(E1,0,T2,2)

E
1,1,M
2,2 : call(g2)

jump(E1,1,T2,2)

E
1,2,M
2,2 : call(g2)

jump(E1,2,T2,2)

E
1,0,T
2,2 : call(s2)

call(s3)
schedule(µ(s2) ≺ 2)
schedule(2 ≺ t2 ≺ −2)
schedule(−2 ≺ µ(o2))
schedule(t3)

future(8, E1,1,M2,2)

E
1,1,T
2,2 : call(s2)

schedule(µ(s2) ≺ 2)
schedule(2 ≺ t2 ≺ −2)
schedule(−2 ≺ µ(o2))

future(8, E1,1,M1,1)

E
1,2,T
2,2 : call(s2)

schedule(µ(s2) ≺ 2)
schedule(2 ≺ t2 ≺ −2)
schedule(−2 ≺ µ(o2))

future(8, E1,0,M2,2)

Fig. 3. Distributed E program for G1

4 Semantics of Distributed SCC

In [3] we defined the abstract semantics of SCC which ignored all port values.
Here we are interested in input-output behavior of the distributed SCC, so we
present extended semantics by taking into account port values and data trans-
mission over the network. We first describe a general form of a distributed SCC
program not necessarily compiled from Giotto.

An E program E = (V,E, κ, λ) over a set of tasks T , a set of messages M
and a set of drivers D consists of a control-flow directed graph (V,E), and two
edge-labeling functions κ and λ. Each edge e ∈ E is labeled with an instruction
κ(e) and an argument λ(e) as follows:

– κ(e) = schedule and λ(e) ∈ T ∪M . The execution of e releases the task or
message λ(e).

– κ(e) = call and λ(e) ∈ D. The execution of e calls a driver λ(e).

12

α, h1:

E
1,0,T
α,1 : idle(2)

call(i1)
idle(8)

E
1,1,T
α,1 : idle(8) E

1,2,T
α,1 : idle(8)

c1, h1:

E
1,0,T
1,1 : dispatch(µ(s1), 1)

idle(2)
dispatch(t1, 7)
idle(8)

E
1,1,T
1,1 : dispatch(µ(s1), 1)

idle(1)
dispatch(t1, 7)
idle(8)

E
1,2,T
1,1 : dispatch(µ(s1), 1)

idle(1)
dispatch(t1, 6)
idle(7)
dispatch(µ(o1), 8)
idle(8)

α, h2:

E
1,0,T
α,2 : call(i3)

idle(2)
call(i2)
idle(8)

E
1,1,T
α,1 : idle(2)

call(i2)
idle(8)

E
1,2,T
α,2 : idle(2)

call(i2)
idle(8)

c2, h2:

E
1,0,T
2,2 : idle(1)

dispatch(µ(s2), 2)
idle(2)
dispatch(t2, 7)
dispatch(t3, 7)
idle(7)
dispatch(µ(o2), 8)
idle(8)

E
1,1,T
2,2 : idle(1)

dispatch(t3, 2)
idle(2)
dispatch(t2, 7)
dispatch(t3, 7)
idle(7)
dispatch(µ(o2), 8)
idle(8)

E
1,2,T
2,2 : idle(1)

dispatch(t3, 2)
idle(2)
dispatch(t2, 6)
dispatch(t3, 6)
idle(6)
dispatch(µ(o2), 7)
idle(8)

Fig. 4. Distributed S program for G1

– κ(e) = future and λ(e) ∈ N>0 × V . The execution of e activates the trigger
with the binding λ(e) = (δ, v), which means that after δ time units, E code
will be executed starting from control location v.

An S program S = (V,E, ρ, ν, κ, λ) over a set of tasks T , a set of messages
M and a set of drivers D consists of a control-flow directed graph (V,E), two
node-labeling functions ρ and ν, and two edge-labeling functions κ and λ. Each
control location u ∈ V is labeled by one of the following:

– ρ(u) = dispatch and ν(u) ∈ T ∪M . The node u has a successor u′ such
that λ(u, u′) ∈ N>0. If ν(u) ∈ T the execution of u dispatches the task ν(u).
Control proceeds to u′ if ν(u) completes or the first λ(u, u′) time units pass
from the time at which the thread with this control location was created. If
ν(u) ∈M then the analogous explanantion holds for the transmission of the
message ν(u).

– ρ(u) = idle and u has a successor u′ such that λ(u, u′) ∈ N>0. The execution
of u idles the processor h until λ(u, u′) ∈ N>0 time units pass from the time
at which the thread was created.

13

m1 :

α, h1: E
1,0,M
α,1 : call(o1)

call(o2)

if(cond[n1], E1,0,2α,1)

jump(E1,0,Tα,1)

E
1,1,M
α,1 : call(o2)

if(cond[n1], E1,1,2α,1)

jump(E1,1,Tα,1)

E
1,2,M
α,1 : call(o2)

if(cond[n1], E1,2,2α,1)

jump(E1,2,Tα,1)

E
1,0,2
α,1 : call(n1)

jump(E2,0,Tα,1)

E
1,1,2
α,1 : call(n1)

future(4, E2,1,Mα,1)

E
1,2,2
α,1 : call(n1)

future(8, E2,0,Mα,1)

E
1,0,T
α,1 : future(8, E1,1,Mα,1) E

1,1,T
α,1 : future(8, E1,2,Mα,1) E

1,2,T
α,1 : future(8, E1,0,Mα,1)

c1, h1: E
1,0,M
1,1 : if(cond[n1], E1,0,21,1)

jump(E1,0,T1,1)

E
1,1,M
1,1 : if(cond[n1], E1,1,21,1)

jump(E1,1,T1,1)

E
1,2,M
1,1 : if(cond[n1], E1,2,21,1)

jump(E1,2,T1,1)

E
1,0,2
1,1 : jump(E2,0,T1,1) E

1,1,2
1,1 : future(4, E2,1,M1,1) E

1,2,2
1,1 : future(8, E2,0,M1,1)

E
1,0,T
1,1 : schedule(t1 ≺ −2)

schedule(−2 ≺ µ(o1))

future(8, E1,1,M1,1)

E
1,1,T
1,1 : future(8, E1,2,M1,1) E

1,2,T
1,1 : future(8, E1,0,M1,1)

c2, h2: E
1,0,M
2,2 : if(cond[n1], E1,0,22,2)

jump(E1,0,T2,2)

E
1,1,M
2,2 : if(cond[n1], E1,1,22,2)

jump(E1,1,T2,2)

E
1,2,M
2,2 : if(cond[n1], E1,2,22,2)

jump(E1,2,T2,2)

E
1,0,2
2,2 : jump(E2,0,T2,2) E

1,1,2
2,2 : future(4, E2,1,M2,2) E

1,2,2
2,2 : future(8, E2,0,M2,2)

E
1,0,T
2,2 : schedule(t2 ≺ −2)

schedule(−2 ≺ µ(o2))

future(8, E1,1,M2,2)

E
1,1,T
2,2 : schedule(t2 ≺ −2)

schedule(−2 ≺ µ(o2))

future(8, E1,2,M2,2)

E
1,2,T
2,2 : schedule(t2 ≺ −2)

schedule(−2 ≺ µ(o2))

future(8, E1,0,M2,2)

c3, h3: E
1,0,M
3,3 : if(cond[n1], E1,0,23,3)

jump(E1,0,T3,3)

E
1,1,M
3,3 : if(cond[n1], E1,1,23,3)

jump(E1,1,T3,3)

E
1,2,M
3,3 : if(cond[n1], E1,2,23,3)

jump(E1,2,T3,3)

E
1,0,2
3,3 : jump(E2,0,T3,3) E

1,1,2
3,3 : future(4, E2,1,M3,3) E

1,2,2
3,3 : future(8, E2,0,M3,3)

E
1,0,T
3,3 : future(8, E1,1,M3,3) E

1,1,T
3,3 : future(8, E1,2,M3,3) E

1,2,T
3,3 : future(8, E1,0,M3,3)

m2 :

α, h1: E
2,0,M
α,1 : call(o1)

call(o3)

if(cond[n2], E2,0,1α,1)

jump(E2,0,Tα,1)

E
2,1,M
α,1 : call(o3)

if(cond[n2], E
2,1,1
α,1)

jump(E2,1,Tα,1)

E
2,0,1
α,1 : call(n2)

jump(E1,0,Tα,1)

E
2,1,1
α,1 : call(n2)

future(4, E1,2,Mα,1)

E
2,0,T
α,1 : future(12, E2,1,Mα,1) E

2,1,T
α,1 : future(12, E2,0,Mα,1)

c1, h1: E
2,0,M
1,1 : if(cond[n2], E2,0,11,1)

jump(E2,0,T1,1)

E
2,1,M
1,1 : if(cond[n2], E

2,1,1
1,1)

jump(E2,1,T1,1)

E
2,0,1
1,1 : jump(E1,0,T1,1) E

2,1,1
1,1 : future(4, E1,2,M1,1)

E
2,0,T
1,1 : schedule(t1 ≺ −2)

schedule(−2 ≺ µ(o1))

future(12, E2,1,M1,1)

E
2,1,T
1,1 : future(12, E2,0,M1,1)

c2, h2: E
2,0,M
2,2 : if(cond[n2], E2,0,12,2)

jump(E2,0,T2,2)

E
2,1,M
2,2 : if(cond[n2], E

2,1,1
2,2)

jump(E2,1,T2,2)

E
2,0,1
2,2 : jump(E1,0,T2,2) E

2,1,1
2,2 : future(4, E1,2,M2,2)

E
2,0,T
2,2 : future(12, E2,1,M2,2) E

2,1,T
2,2 : future(12, E2,0,M2,2)

c3, h3: E
2,0,M
3,3 : if(cond[n2], E2,0,13,3)

jump(E2,0,T3,3)

E
2,1,M
3,3 : if(cond[n2], E

2,1,1
3,3)

jump(E2,1,T3,3)

E
2,0,1
3,3 : jump(E1,0,T3,3) E

2,1,1
3,3 : future(4, E1,2,M3,3)

E
2,0,T
3,3 : schedule(t3 ≺ −2)

schedule(−2 ≺ µ(o3))

future(12, E2,1,M3,3)

E
2,1,T
3,3 : schedule(t3 ≺ −2)

schedule(−2 ≺ µ(o3))

future(12, E2,0,M3,3)

Fig. 5. Distributed E program for G2

14

– ρ(u) = O. If u has a successor u′ then κ(u, u′) = call and λ(u, u′) ∈ D.
This indicates that control is at a transient instruction and the execution of
(u, u′) calls a driver λ(u, u′).

If we compile Giotto program into E and S programs we assume that each
port is allocated to a particular contractor and host. Let the sets of tasks, mes-
sages, and drivers to be implemented by a contractor c on a host h be defined
as Tasksc,h = {t ∈ Tasks | ∀p ∈ In[t] ∪ Out [t] ∪ Priv [t] . c̄(p) = c ∧ h̄(p) = h},
Msgsc,h = {µ ∈ Msgs | ∀p ∈ In[µ] . c̄(p) = c ∧ h̄(p) = h}, and Drvsc,h = {d ∈
Drvs | ∀p ∈ Out [d] . c̄(p) = c ∧ h̄(p) = h} respectively. For the rest of the paper,
a node of a directed graph without incoming (outgoing) is called a source (sink)
node of the graph.

An SCC program Pc,h = (Ec,h ,Sc,h , Φc,h) for a contractor c and a host
h consists of an E program Ec,h and an S program Sc,h over sets Tasksc,h ,
Msgsc,h and Drvsc,h , and an annotation function Φc,h that maps each sink of
the control graph of Ec,h to a node in the control graph of Sc,h . When the
E code execution arrives at a sink v, this creates a new thread of S code which
starts at control location Φc,h(v). If V E

c,h and V S
c,h are respectively sets of control

locations for Ec,h and Sc,h then define the following two sets of control locations
V E
h = {v ∈ V E

c,h | c ∈ C} and V S
h = {u ∈ V S

c,h | c ∈ C}, and a function
Φh : V E

h → V S
h such that Φh(v) = Φc,h(v) if v ∈ V E

c,h .
A distributed SCC program P over a set C of contractors and a set H of hosts

is a function that assigns to each c ∈ C and each h ∈ H an SCC program Pc,h

for a contractor c and a host h. In the following paragraphs we define operational
semantics for a distibuted SCC program.

A state q = (r , v, s, τ, θ) of P over a set C of contractors and a set H of hosts
consists of a valuation function r of ports in PortsP , a program counter function
v that assigns to each host h ∈ H a control node vh ∈ V E

h , a status function
s : Tasks ∪ Msgs → N0 ∪ {⊥}, a trigger function τ that assigns to each host
h ∈ H a queue τh ⊆ (N0×V E

h)∗ of trigger bindings, and a thread function θ that
assigns to each host h ∈ H a set θh of threads. Let s be the function such that
for each task t ∈ Tasks, the status s(t) ∈ N0 indicates that t has been released
and executed for s(t) ≥ 0 time units; the status s(t) = ⊥ indicates that t has
been completed (or not yet released). For a message µ ∈ Msgs , s(µ) is defined
analogously for the message release and transmission. Each thread (u, δ) ∈ θh
consists of a program counter u ∈ V S

h and a number δ ∈ N0 of time units for
which the thread has been executed. If u is a sink, then the thread (u, δ) has
terminated and may be removed from θh .

The state q has a transition to the state q′ = (r ′, v′, s′, τ ′, θ′) if one of the
following:

Completion S transition The state q is completion enabling, that is, there
exist a host h ∈ H and a thread (u, δ) ∈ θh such that s(ν(u)) = ⊥ and
ρ(u) = dispatch. Let the successor of u be u′. Then r ′ = r except that
r ′(Out [ν(u)]) = f [ν(u)](r(In[ν(u)])), (v′, s′, τ ′) = (v, s, τ) and θ′ = θ except
that θ′h = θh\{(u, δ)}) ∪ {(u′, δ)}.

15

Transient S transition The state q is not completion enabling but transient
enabling, that is, there exist a host h ∈ H and a thread (u, δ) ∈ θh , such
that ρ(u) = O, the successor u is u′ and κ(u, u′) = call. Then r ′ = r except
that r ′(Out [λ(u, u′)]) = f [λ(u, u′)](r(In [λ(u, u′)])), (v′, s′, τ ′) = (v, s, τ) and
θ′ = θ except that θ′h = θh\{(u, δ)}) ∪ {(u′, δ)}.

E transition The state q is neither completion nor transient enabling but E
enabling, that is, there exists a host h ∈ H and either (1) vh has no successor
and (0, ·) ∈ τh , or (2) vh has a successor v′h . If (1) let (0, v̄) be the first such
pair in τh . Then p = p′, v′ = v except that v′h = v̄, s′ = s, τ ′ = τ except
that τ ′h = τh \ {(0, v̄)} and θ′ = θ. If (2) then one of the following:
– κ(vh , v′h) = call and r ′ = r except that r ′(Out [λ(vh , v′h)]) = f [λ(vh , v′h)](r(In [λ(vh , v′h)])),
s′ = s and τ ′ = τ ;

– κ(vh , v′h) = schedule and r ′ = r , s′ = s except that s′(λ(vh , v′h)) = 0,
τ ′ = τ ;

– κ(vh , v′h) = future and r = r ′, s′ = s and τ ′ = τ except that τ ′h =
τh ◦ {λ(vh , v′h)}.

In all three cases, if v′h is a sink, then θ′ = θ except that θ′h = θh ∪
{(Φh (v′h), 0)}; if v′h is not a sink, then θ′ = θ.

Timeout S transition The state q is neither completion nor transient nor E
enabling but timeout enabling, that is, there exist a host h ∈ H and a thread
(u, δ) ∈ θh such that ρ(u) ∈ {dispatch, idle}, the successor of u is u′,
λ(u, u′) ∈ N0 and λ(u, u′) ≤ δ. Then (r ′, v′, s, τ ′) = (r , v, s, τ), θ = θ′ except
that θ′h = (θh\{(u, δ)}) ∪ {(u′, δ)}.

Time transition The state q is neither completion nor transient nor E nor
timeout enabling. Then r ′(p) = r(p) for all p ∈ PortsP \ {pc} and r ′(pc) =
r(pc) + 1. For σ = r(pc) we call function rσ = r the port valuation at time
σ. For this transition it also holds v′ = v and for each h ∈ H we have:
– the queue τ ′h results from τh by replacing each trigger binding (δ, u) by

(δ − 1, u),
– the thread set θ′h results from θh by replacing each thread (u, δ) by

(u, δ + 1),
– let Xh = {x | (u, ·) ∈ θh , ρ(u) = dispatch, ν(u) = x} and let x̄ ∈ Xh be

a task or message to be executed on h; if x ∈ Tasksc,h∪Msgsc,h for some
c ∈ C , then s′(x) = s(x) + 1 or s′(x) = ⊥ if x = x̄, and s′(x) = s(x)
if x 6= x̄; in case s′(x) = ⊥ we say that on the transition (q, q′), task or
message x completes after execution time s(x) + 1.

Note the priorities implied by this definition: transient S code that is enabled
by the completion of tasks has priority over E code, which has priority over all
remaining S code. See [3] for details on the order of transitions.

A trace of the distributed SCC program P is a sequence ψ = q0, q1, . . . , qn
of states of P such that (1) q0 = (r̂ , v̂, ŝ, ·, θ̂), where r̂(pc) = 0, ŝ(x) = ⊥ for all
x ∈ Tasks ∪Msgs , v̂h ∈ Vh and θ̂h = ∅ for all h ∈ H , and (2) for all i ∈ N0, there
is a transition from qi to qi+1.

Let wc,h : Tasksc,h ∪Msgsc,h → N>0 be the worst case execution (transmis-
sion) time function for the tasks and messages of contractor c ∈ C on host h ∈ H .

16

This function is provided by the contractor c. Let w : Tasks ∪Msgs → N>0 be a
function defined with w(x) = wc,h(x) for each x ∈ Tasksc,h ∪Msgsc,h . The trace
ψ of P is an w-trace if for each task or message x ∈ Tasks ∪ Msgs and i ∈ N0,
if x completes on the transition (qi, qi+1) of ψ, then it completes with execution
(transmission) time at most w(x).

4.1 Giotto Generated Distributed SCC

The E programs compiled according to the scheme presented in section 3.2 have
a special form. Let G be a Giotto program, Modes the set of modes of G, and
M the size of Modes . We assume that for each input Giotto program M is
bounded by a constant. Note that according to Algorithm 2 each instruction of
the compiled E program is associated with a Giotto program mode and a unit
of the mode. Let the sets of tasks, messages, and drivers to be implemented by
a contractor c on a host h be Tasksc,h , Msgsc,h and Drvsc,h respectively. Let
gc,h be equal to |Tasksc,h |+ |Msgsc,h |+ |Drvsc,h |, i.e. let gc,h represent the size
of the part of program G allocated to contractor c and host h. The size g of the
Giotto program G is bounded by O(

∑
c∈C ,h∈H gc,h).

The tuple Ec,h = (V E
c,h , E

E
c,h , κ, λ, η) is G-generated E program if it satisfies

the following properties:

– The tuple (V E
c,h , E

E
c,h , κ, λ) is an E program and η : V E

c,h → Modes × N0

is a node-labeling function such that if v ∈ V E
c,h and η(v) = (m, k) then

k ∈ {0, ..., ωmax [m]}.
– The control graph (V E

c,h , E
E
c,h) is a directed acyclic graph with exactly one

source node v such that η(v) = (m, k) for every mode m ∈ Modes and every
unit k ∈ {0, ..., ωmax [m]}.

– Each path from a source to a sink of the control graph node consists of
1. a sequence of O(gc,h) edges (v, v′) with κ(v, v′) = call, followed by
2. a sequence of O(gc,h) edges (v, v′) with κ(v, v′) = schedule, followed by
3. a single edge (v, v′) with κ(v, v′) = future and λ(v, v′) = (·, v̄) where
v̄ is a source of V E

c,h . The source on the path and v̄ may or may not be
associated with the same mode.

– For each m ∈ Modes and each k ∈ {0, ..., ωmax [m]} at most one node v with
ν(v) = (m, k) may have more than one successor. In that case v has no more
than M successors. On each path either all nodes v have the same mode-unit
pair ν(v) or ν(v) switches to a new value along the path.

If all numbers in G, i.e. mode periods as well as task and actuator frequencies,
are bounded by n, then ωmax [m] is also bounded by n for all m ∈ Modes . The
number of sources of (V E

c,h , E
E
c,h) is O(M ·n), and the number of sinks isO(M 2 ·n).

Since we consider the number of modes to be fixed, we have |V E
c,h | = O(gc,h ·n).

An SCC program Pc,h = (Ec,h ,Sc,h , Φc,h) for a contractor c and a host h is
a G-generated SCC program if the following is satisfied:

– The tuple Ec,h = (V E
c,h , E

E
c,h , κ, λ, η) is G-generated E program.

17

– The control graph (V S
c,h , E

S
c,h) of the S program Sc,h = (V S

c,h , E
S
c,h , ·, ·, ·, ·)

consists of chains of total length O(gc,h · n).
– The function Φc,h maps a sink node v′ ∈ V E

c,h to a source node Φc,h(v′) ∈ V S
c,h

such that if (v, v′) ∈ EE
c,h , κ(v, v′) = future and λ(v, v′) = (σ, ·) then the

chain in (V S
c,h , E

S
c,h) that starts from node Φc,h(v′) does not contain numbers,

i.e. clock timeouts in dispatch and idle instructions, larger than σ.

According to the last condition, if the next E code instruction is executed after
σ time units, then the chain of S code instructions describes the schedule for
at most next σ time units. Note that if G is a single-mode program then both
(V E

c,h , E
E
c,h) and (V S

c,h , E
S
c,h) consist of chains of size O(gc,h).

A distributed SCC program P over a set C of contractors and a set H of
hosts is a G-generated distributed SCC program if it consists of G-generated
SCC programs Pc,h . For the initial state q0 = (r̂ , v̂, ŝ, τ̂ , θ̂) of a trace of P we
require that v̂h is a source node vα ∈ V E

α,h with η(vα) = (start , 0), and that
τ̂h = {(0, vc) | c ∈ C \ {α}, vc is a source in V E

c,h , η(vc) = (start , 0)}.

5 Composing Distributed SCC

5.1 Types

Beside G-generated E program Ec,h , a contractor c ∈ C on host h ∈ H receives
for each mode mode m ∈ Modes of the Giotto program G a type, a pair of
predicates Tm

c,h = (Dm
c,h , X

m
c,h). The predicates Dm

c,h , X
m
c,h : {0, ..., π[m] − 1} →

{0, 1} are defined as follows:

– Dm
c,h(σ) = 1 iff in mode m at time σ the contractor c at the host h may

dispatch a task from Tasksc,h ,
– Xm

c,h(σ) = 1 iff in mode m at time σ the contractor c at the host h may send
(dispatch) a message from Msgsc,h .

Let Tc,h = {Tm
c,h | m ∈ Modes} and let T = {Tc,h | c ∈ C , h ∈ H }. The

type T is feasible for G if the following conditions are satisfied:

– (Resource Sharing) For all m ∈ Modes , c1, c2 ∈ C (c1 6= c2), h1, h2 ∈ H
(h1 6= h2), and σ ∈ {0, ..., π[m]− 1}

RS1 : at most one of Dm
c1,h1

(σ), Dm
c2,h1

(σ), Xm
c1,h1

(σ) and Xm
c2,h1

(σ) is equal to
1 [on each host at most one contractor may either dispatch or send at a
time],

RS2 : at most one of Xm
c1,h1

(σ), Xm
c2,h1

(σ), Xm
c1,h2

(σ) and Xm
c2,h2

(σ) is equal to
1 [at most one contractor on one host may send over the network at a
time].

– (Data Reception) For all m ∈ Modes , all k ∈ {0, ..., ωmax [m] − 1}, all p ∈
SensePorts ∪OutPorts and all σ ∈ N0 if either

DR1 : p ∈ taskSensorPorts(m, k) and kγ[m] ≤ σ < kγ[m] + ε [a sensor port
data must be sent in the ε time window after it is read], or

18

DR2 : p ∈ taskOutputPorts(m, k + 1) and (k + 1)γ[m] − ε ≤ σ < (k + 1)γ[m]
[a task output port data must be sent in the ε time window before it is
written]

if Xm
c̄(p),h̄(p)

(σ) = 1 then Dm
c,h(σ) = Xm

c,h(σ) = 0 for each c ∈ C and h ∈
sendToHosts(p) [when a host is supposed to receive data no dispatch or send
is allowed].

Example feasible types for programs G1 and G2 are shown on figures 6 a)
and 7.

Fig. 6. a) Feasible type and b) EDF schedule for G1

Fig. 7. Feasible type for multi-mode Giotto program G2

19

5.2 Typed Earliest Deadline First S Programs

In the rest of the paper we assume that the type Tm
c,h = (Dm

c,h , X
m
c,h) is given as

a sequence Jm
c,h = {[s, s′)j} of lmc,h ∈ N0 nonintersecting and increasing intervals

[s, s′)j ⊆ [0, π[m]) with integer bounds s, s′ ∈ N0. For all j ∈ {1, ..., lmc,h} and all
integer σ ∈ [s, s′)j it is either Dm

c,h(σ) = 1 or Xm
c,h(σ) = 1. For all integer σ ∈

[0, π[m]), Dm
c,h(σ) = 1 or Xm

c,h(σ) = 1 if and only if there exists j ∈ {1, ..., lmc,h}
such that σ ∈ [s, s′)j .

For each sink node v ∈ V E
c,h , i.e. each future instruction of Ec,h , we construct

a chain of the control graph of Sc,h , i.e. we generate a block Sv
c,h of S code

instructions dispatch and idle. Let e ∈ EE
c,h be the incoming edge of v, κ(e) =

future, λ(e) = (σ, ·) and η(v) = (m, k) for some mode m ∈ Modes , integer time
instant σ ∈ [0, π[m]) and unit k ∈ {0, ..., ωmax [m]}. Let Jv

c,h be the intersection of
Jm
c,h with the interval [kγ[m], kγ[m]+σ), i.e. Jv

c,h = {[max{kγ[m], s}, min{kγ[m]+
σ, s′}) | (s, s′) ∈ Jm

c,h}.
Even if only time intervals from Jm

c,h are avialable for task execution (mes-
sage transmission) it can easily be shown by the standard interchange argument
that the Earliest Deadline First (EDF) strategy is the optimal strategy with
respect to schedule feasibility. So, contractors can always check EDF strategy
and, if feasible, generate the S program Sc,h according to the following scheme.
The release and deadline times of tasks and messages to be implemented by a
contractor c on a host h in mode m are implicitly contained in the E program
Ec,h .

Let tm,k
c,h be the EDF permutation of tasks from Tasksc,h at unit k of mode

m, i.e. let tm,k
c,h be the function that maps a number i ∈ {1, ..., |Tasksc,h |} to the

task from Tasksc,h with the i-th earliest deadline at the time instant kγ[m]. We
similarly define the function µm,k

c,h , the earliest deadline function for messages
at the unit k of mode m. The S code block of Sv

c,h contains for each interval
[s, s′) ∈ Jv

c,h (in the order given by Jv
c,h) one of the two following sequences of

instructions. It contains the instructions in the left column if Dm
c,h(s) = 1 and

the instructions in the right column if Xm
c,h(s) = 1:

idle(s − kγ[m])

dispatch(tm,k
c,h

(1), s′ − kγ[m])

dispatch(tm,k
c,h

(2), s′ − kγ[m])

...

dispatch(tm,k
c,h

(|Tasksc,h |), s′ − kγ[m])

idle(s − kγ[m])

dispatch(µm,k
c,h

(1), s′ − kγ[m])

dispatch(µm,k
c,h

(2), s′ − kγ[m])

...

dispatch(µm,k
c,h

(|Msgsc,h |), s′ − kγ[m])

Note that this form of S code exploits the fact that an instruction that
dispatches a task or a message which is not released is simply ignored. The Figure
4 shows S program for Giotto program G1 which is generated according to the
EDF scheme described above using type shown on Figure 6 a). The schedule
represented by such S program is shown on Figure 6 b).

The size of both sequences shown above is bounded by O(gc,h). The number
of such sequences in mode m is bounded by the sum of the number of units
ωmax [m] and the number of intervals lmc,h . If all numbers in G are bounded by n,
then for each mode m both ωmax [m] and lmc,h are O(n). For a given mode unit

20

there are O(M 2) sink nodes in (V E
c,h , E

E
c,h), but since we consider the number

of modes to be bounded, the size of the S program Sc,h is |V S
c,h | = O(gc,h ·

n). Therefore, it is easy to check that Sc,h generated according to the above
scheme and Ec,h satisfy the requirements for G-generated SCC program Pc,h =
(Ec,h ,Sc,h , Φc,h).

5.3 Distributed SCC implementing Giotto

Let G be a multiple mode Giotto program, let P = {Pc,h | c ∈ C , h ∈ H } be a
G-generated distributed SCC program and let T = {Tc,h | c ∈ C , h ∈ H } be a
feasible type for G. The following properties of G-generated SCC programs Pc,h

will be used to state composability result:

– Type compliance of Pc,h with Tc,h is satisfied if all dispatch instructions of
Pc,h execute in time intervals defined in Tc,h .
Formally, a state q = (·, v, ·, ·, θ) of P violates type compliance with Tc,h =
(Dc,h , Xc,h) if there exists a thread (u, δ) ∈ θh such that ρ(u) = dispatch,
η(vh) = (m, k) and either
• ν(u) ∈ Tasksc,h and Dm

c,h(kγ[m] + δ) = 0, or
• ν(u) = Msgsc,h and Xm

c,h(kγ[m] + δ) = 0.
We say that (Pc,h ,wc,h) type-complies with Tc,h if for all wc,h -traces ψ of
P = {Pc,h} no state of ψ violates type compliance with Tc,h .

– Time safety property of Pc,h requires that
1. no driver reads from output ports of a task or message from Tasksc,h ∪

Msgsc,h before it completes execution (transmission), and
2. no driver writes to input ports of a task or message from Tasksc,h ∪

Msgsc,h after it starts with execution (transmission).
Formally, a state q = (·, v, s, ·, θ) of P violates time safety on (c, h) if there
exists a task or message x ∈ Tasksc,h ∪Msgsc,h such that either
• vh has a successor v′h with κ(vh , v′h) = call and λ(vh , v′h) = d [E code

driver], or
• there exists a thread (u, ·) ∈ θh with ρ(u) = O, u has a successor u′,
κ(u, u′) = call and λ(u, u′) = d [S code driver],

and one of the following
TS1 : In[d] ∩Out [x] 6= ∅ and s(x) 6= ⊥, or
TS2 : Out [d] ∩ In[x] 6= ∅ and s(x) 6= 0,

We say that (Pc,h ,wc,h) is time-safe if for all wc,h-traces ψ of P = {Pc,h}
no state of ψ violates time safety on (c, h).

Finally, we define type compliance and time safety for entire G-generated
distibuted SCC program P :

– We say that (P ,w) type-complies to T if (Pc,h ,wc,h) type-complies with Tc,h

for each c ∈ C and each h ∈ H .
– We say that (P ,w) is time-safe if (Pc,h ,wc,h) is time-safe for each c ∈ C and

each h ∈ H .

21

The compositional nature of these definitions shows that if, for some c ∈ C and
h ∈ H , only Pc,h is modified then for the compliance with the type T and time
safety of P it is sufficient to check if (Pc,h ,wc,h) type-complies and data-complies
with Tc,h and if it is time-safe.

Let rG
σ and rP

σ be port valuation functions at time σ ∈ N0 for G and
P respectively. A trace of P and a trace of G are input-compatible (output-
compatible) if they have the same sensor (actuator) port values at the same
times, i.e. if rG

σ (p) = rP
σ (p) for each sensor port p ∈ SensePorts (each actuator

port p ∈ ActPorts) and each time instant σ ∈ N0. The G-generated distributed
SCC program (P ,w) implements the Giotto program G if for any w-trace of P
and any trace of G, input-compatibility implies output-compatibility.

Theorem 1 Let G be a Giotto program and (P,w) be the distributed SCC pro-
gram G-generated according to Algorithm 2. If T is a feasible type for G and
(P,w) type-complies to T and is time-safe, then (P,w) implements G.

Proof. Note first that the RS1 resource sharing property of T and type com-
pliance property of (P ,w) ensure that for each state of (P ,w) and each host
h ∈ H there exists at most one thread (u, ·) in θh such that ρ(u) = dispatch.
Also, the RS2 resource sharing property of T and type compliance property of
(P ,w) ensure that for each state of (P ,w) there exists at most one thread (u, ·)
in

⋃
h∈H θh such that ρ(u) = dispatch and ν(u) ∈ Msgs . So, if T is feasible and

(P ,w) type-complies to T then there are no resource sharing conflicts.
We prove the input-output equivalence of the two programs under the type

compliance and time safety assumptions. We first show that traces of G and P
match on task output port values.

Lemma 1 If p ∈ OutPorts, h ∈ sendToHosts(p)∪{h̄(p)}, then rG
σ (p) = rP

σ (ph)
for any time σ ∈ N0.

Proof (Lemma). We use induction on time σ. For time σ = 0 the statement
holds because according to lines 1 and 2 of the Algorithm 1 the initialization
driver init [p] is called on h̄(p) and init [ph] is called on all h ∈ sendToHosts(p)
(E transitions with call instructions). They set p and ph to initial rG

0 (p) value.
Since p ∈ OutPorts there exists a task t such that p ∈ Out[t] and t ∈

Tasksc,h̄(p) for some c ∈ C . In the code generated by the Algorithm 2 (line 4)
the global copy rP (ph) of the task output port p on host h is updated only by the
invocation of the driver copy [ph] (call E transition) if t ∈ taskOutputPorts(m, k)
for a mode m and a unit k, i.e. when task t logically completes. Note that accord-
ing to the Giotto semantics rG(p) is also updated only if t ∈ taskOutputPorts(m, k),
so we only have to prove that rP (ph) is modified with a correct value.

Let σ be any time instant at which call(copy [ph]) instruction is executed,
i.e. for which t ∈ taskOutputPorts(m, k) for some mode m ∈ Modes and unit k
of m. Assume that lemma holds for all integers less than σ.

1. h = h̄(p) :
Let σ′ be the last time instant task t was released before σ. Let the mode

22

and the unit of the corresponding schedule E transition be m ′ and k′ re-
spectively, t ∈ taskOutputPorts(m ′, k′). Let d be the task t input driver,
i.e. (·, t, d) ∈ Invokes [m ′], and let p′ be an input port of d, p′ ∈ Out[d]. By
the definition of the sendToHosts operator we have h ∈ sendToHosts(p′) ∪
{h̄(p′)}.
– If p′ ∈ OutPorts by induction hypothesis we also have rG

σ′ (p′) = rP
σ′(p′h).

– If p′ ∈ SensePorts and h̄(p′) = h the port p′ is updated on the host h
at time σ′ by execution of dev [p′] driver (line 40, call E transition) and
by input-compatibility assumption we have rG

σ′ (p′) = rP
σ′ (p′h) = rP

σ′(p′).
– Let p′ ∈ SensePorts and h ∈ sendToHosts(p′). According to the Algo-

rithm 2 (line 40) and input-compatibility the driver dev [p′] is invoked
at the unit k′ on the host h̄(p′) and the message µ(p′) with the port
p′ value rG

σ′ (p′) is released (line 41, schedule E transition). If the pro-
gram (P ,w) is time-safe, then (Pc,h ,w) is also time-safe. Therefore, the
message transmission completes before time σ′ + ε because at this time
instant driver d is called and TS1 should not hold. By assumption, the
DR1 data reception property is satisfied throughout the message trans-
mission, so the message completion S transition correctly updates the
port p′h .

So, for all p′ ∈ Out [d] we have rG
σ′ (p′) = rP

σ′+ε(p
′). We assume that time

ε is less than a time step γ[m′] so the message transmission is completed
before any potential mode switch from mode m ′. If the time safety property
is satisfied the task t is dispatched after σ′ + ε (TS2 does not hold), but
completed (completion S transition) by time σ − ε (TS1 does not hold) at
which the local copy of p is updated. So, rG

σ (p) = rP
σ (p) for all p ∈ Out [t].

Since h = h̄(p) we have rG
σ (p) = rP

σ (ph).
2. h ∈ sendToHosts(p) :

By the similar argument as above it can be proved that rG
σ (p) = rP

σ (p).
According to the Algorithm 2 (line 48) on the host h̄(p) the message with
the port p value rG

σ (p) is released (schedule E transition). Again, time
safety and DR2 data reseption properties ensure that the message is trans-
mitted to the host h after the task t completes but before time σ. Since
h ∈ sendToHosts(p) the driver copy [ph] is invoked on the host h at time σ
and we have rG

σ (p) = rP
σ (ph).

So, if the programs G and (P ,w) are input-compatible the lemma above
holds. To prove the output-compatibility of the two programs consider a port
p ∈ ActPorts and let h = h̄(p). The code in P generated by the Algorithm 2
updates p in mode m at unit k only if p ∈ actuatorPorts(m, k) (line 5). The
same is true for the execution of the Giotto program G. Let d be an actuator
driver such that p ∈ Out[d]. Since each driver input port p′ ∈ In[d] is also in the
set of task output ports OutPorts and since by the definition of the sendToHosts
operator h ∈ sendToHosts(p′)∪{h̄(p′)} by the lemma we have rG

σ (p′) = rP
σ (p′h).

After applying driver function drv [d] on Out[d], which updates p on h, we have
rG
σ (p) = rP

σ (ph) = rP
σ (p).

23

5.4 Checking Type Compliance and Time Safety

The paper [3] discusses time safety checking only for single mode Giotto pro-
grams without communication. These results are here generalized both for dis-
tributed and multiple-mode setting. For single mode Giotto program we give
an efficent algorithm that checks if Pc,h complies to a given type and if it is
time-safe. For multiple-mode programs we give only a sufficient condition that
can efficiently be checked.

Let T = {Tc,h | c ∈ C , h ∈ H } be a feasible type for a Giotto program G
with M modes and P = {Pc,h | c ∈ C , h ∈ H } be distributed SCC program G-
generated by the Algorithm 2. Let w be worst case execution function. Finally,
let gc,h be the size of the part of G allocated to contractor c and host h and let
all numbers in G be bounded by n.

Given a G-generated SCC program Pc,h = (Ec,h ,Sc,h , Φc,h), with Ec,h =
(V E

c,h , E
E
c,h , κ, λ, η) and Sc,h = (V S

c,h , E
S
c,h , ·, ·, ·, ·) we first define a directed graph

Pc,h = (V P
c,h , E

P
c,h) with V P

c,h = V E
c,h ∪V S

c,h and EP
c,h = EE

c,h ∪ES
c,h ∪EE,S

c,h ∪ES,E
c,h ,

where EE,S
c,h contains edges connecting a sink of V E

c,h with a source of V S
c,h and

ES,E
c,h edges connecting a sink of V S

c,h with a source of V E
c,h . In particular, if

(v′1, v1) ∈ EE
c,h such that κ(v′1, v1) = future and λ(v′1, v1) = (·, v2) then v1 is a

sink and v2 is a source of V E
c,h . Let u1 be a source of V S

c,h such that u1 = Φ(v′1)
and let u2 ∈ V S

c,h be the sink node of the chain for which u1 is the source. If
ν(v2) = (·, k) such that k 6= 0 then (v1, u1) ∈ EE,S

c,h and (u2, v2) ∈ ES,E
c,h . The

Figure 8 is related to graphs Pc,h for the multiple-mode Giotto program G2. It
shows graph P in which each edge abstracts a chain of O(gc,h) edges found in
each Pc,h graph.

Fig. 8. Abstracted transition graph P for G2

Lemma 2 The graph Pc,h is an acyclic graph.

Proof. As discussed with respect to the Algorithm 2 (line 25) and as defined by
the Giotto semantics in [1], for a mode switch the compiler computes the unit
of the destination mode as close as possible to the end of the mode’s period.
This means that the time until the end cannot increase when mode switch is
performed. Since there can be no multiple switches at the same time instant, i.e.

24

in each visited mode time has to progress for some nonzero time, this actually
means that time until the end of target mode’s period has to decrease. Therefore,
if there was a mode switch from mode m at unit k1 and at some later instant
the program performs another mode switch now to the mode m at unit k2 then
k1 < k2. Note also that in constructing EP

c,h we ignore mode switches with
unit zero of target mode. This is because at such mode switch there will be no
active task that already executed for some time and further behavior is as if
the program started its execution at that time instant. The last two conclusions
together show that Pc,h is an acyclic directed graph.

We next construct a state transition graph by annotating each node v of the
graph Pc,h with a particular state qv = (r , v, s, τ, θ) of the SCC program Pc,h .
The port valuation component r is completely ignored. The graph Pc,h is acyclic,
so its nodes can be sorted and processed in topological order. Each source node v
of Pc,h , and for each mode there is exactly one such node, is annotated with state
(·, v, s0, ∅, ∅), where s0 is a function that maps each x ∈ Tasksc,h ∪Msgsc,h to 0.
For other nodes of Pc,h we proceed by transforming the state of its immediate
predecessors. We do so by performing one or more transition steps defined by
semantics of an SCC program. Task execution time nondeterminism in time
transition steps is eliminated by assuming that each task (or message) x ∈
Tasksc,h∪Msgsc,h completes exactly after time given by the worst-case execution
time wc,h(x). From the properties of G-generated SCC program it can easily
be shown that if a node v ∈ Pc,h has more than one predecessor then each
predecessor v′ is annotated with a state qv′ = (·, v′, sv′ , ∅, ∅). Let the relation
“≤” on set N0 ∪⊥ be defined by extending the order relation on N0 with a ≤ ⊥
for all a ∈ N0 (recall that s(x) = ⊥ means that task x completed execution).
Then qv = (·, v, sv, ∅, ∅) where, for each x ∈ Tasksc,h ∪Msgsc,h , sv(x) is the least
element (with respect to relation ≤) of the set {sv′(x) | (v′, v) ∈ EP

c,h}. So, for
the nodes with more than one incoming edge we compute the amount of time
tasks executed pointwise and conservatively.

We say that the state transition graph Pc,h type-complies with Tc,h (is time-
safe) if none of its states violates type-compliance with Tc,h (time-safety). We
now give the sufficent condition for a distributed SCC program to be time-safe
and type-compliant.

Lemma 3 If state transition graph Pc,h type-complies with Tc,h and if it is
time-safe then the G-generated SCC program (Pc,h , wc,h) type-complies with Tc,h

and is time-safe.

Proof. Let q = (·, v, s, τ, {(u, δ)}) be an arbitrary state of an wc,h -trace ψ of
Pc,h . There exists a node in Pc,h with a state q′ = (·, v, s′, τ, {(u′, δ)}), i.e. q and
q′ match except on task status functions s and s′ and S program control nodes u
and u′. We show that s′(x) ≤ s(x) for each x ∈ Tasksc,h ∪Msgsc,h . Note that on
the trace ψ tasks and messages may complete in time less than the one given by
wc,h . Assume first that the trace ψ executes in a single mode. If along ψ we have
s′(x) = s(x) for some state q = (·, v, s, τ, {(u, δ)}) then s′(x) is incremented in a

25

time transition if ρ(u) = dispatch and ν(u) = x. But in that case s(x) is also
incremented or it becomes ⊥ (in which case x executed for less than wc,h(x)).
Since a ≤ ⊥ for any a ∈ N0 we still have s′(x) ≤ s(x) after transition is taken. We
can conclude the same for the case when trace ψ consists of states from different
modes by noting that for mode switches in the graph Pc,h the status function s
is determined by taking the least value on all incoming edges of a node. From
the fact that s′(x) ≤ s(x) we directly have that if q′ is time-safe then q is also
time-safe. This fact also shows that if s(x) is incremented by a time transition
at a state q then there must be some x′ ∈ Tasksc,h ∪ Msgsc,h such that s(x′)
is incremented by the time transition at a state q′. So, if q′ type-complies with
Tc,h then q also type-complies with Tc,h .

The size of Pc,h = (V P
c,h , E

P
c,h) is O(gc,h · n) because, as we recall from

the section 4.1, both (V E
c,h , E

E
c,h) and (V S

c,h , E
S
c,h) are of the same size. If node

v ∈ Pc,h has only one predecessor then computing its state takes constant time.
Otherwise, if v has l predecessors then it takes O(gc,h · l) time. However, since
there are O(M 2 · n) = O(n) predecessors for all such nodes v, we can compute
their states in total time O(gc,h · n). Therefore, constructing transition graph
Pc,h and annotating it with states can be done in O(gc,h ·n) time. Finally, each
state of Pc,h can be checked for type compliance and time safety in constant
time (we assume that a driver can access at most a constant number of tasks).
Therefore, we have the following lemma:

Lemma 4 The state transition graph Pc,h can be constructed and checked if it
type-complies with Tc,h and if it is time-safe in time O(gc,h · n).

The Lemma 3 gives only a sufficient condition. If state transition graph Pc,h

does not type-comply with Tc,h (is not time-safe) then, for general Giotto pro-
gram G, we can not conclude that SCC program (Pc,h , wc,h) does not type-
comply with Tc,h (is not time-safe). This is so because in the state construction
of Pc,h different incoming edges of a node may impose conservative approxima-
tion on different tasks. However, for some special cases this condition is also a
necessary one. If G is a single mode Giotto program then the state transition
graph Pc,h for such a program consists of disconnected chains. So, if Pc,h does
not type-comply or is not time-safe at some state q then the trace along the
chain up to q is a counterexample. From the previous lemmas we directly have
the following theorem:

Theorem 2 Let G be a single-mode Giotto program and let g be the total size
of G. It can be checked in time O(gc,h ·n) if (Pc,h ,wc,h) type-complies with Tc,h

and if it is time-safe. It can be checked in time O(g ·n) if (P , w) implements G.
If only (Pc,h ,wc,h) is modified then it can be checked in time O(gc,h ·n) if (P , w)
still implements G.

References

1. T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A Time-Triggered Lan-
guage for Embedded Programming In Proc. IEEE, Vol. 91, pp. 84-99, 2003.

26

2. T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic. Time safety checking for
embedded programs. In Embedded Software, LNCS 2491, pp. 76-90. Springer, 2002.

3. T. A. Henzinger, C. M. Kirsch, and S. Matic. Schedule Carrying Code In Embedded
Software, LNCS 2855, pp. 241-256. Springer, 2003.

4. T. A. Henzinger and C. M. Kirsch. The Embedded Machine: Predictable, Portable
Real-time Code In Proc. PLDI, pp. 315-326, ACM Press, 2002.

5. H. Kopetz and N. Suri. Compositional Design of RT Systems: A Conceptual Basis
for Specification of Linking Interfaces In Proc. ISORC, pp. 51-60, IEEE, 2003.

6. P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, P. Niebert and T. Le Ser-
gent. From Simulink1 to SCADE/Lustre to TTA: a layered approach for distributed
embedded applications In Proc. LCTES, pp. 153-162, ACM Press, 2003.

27

