
Visual Programming Languages: A Survey

Marat Boshernitsan
Michael Downes

Report No. UCB/CSD-04-1368

December 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Visual Programming Languages: A Survey

Marat Boshernitsan
Michael S. Downes

Report No. UCB/CSD-04-1368

Computer Science Division, EECS
University of California, Berkeley
Berkeley, CA 94720-1776 USA

{maratb,mdownes}@cs.berkeley.edu
December 2004

Abstract

Over the past ten years, frequent increases in computer processing speed and graphics display capabilities
have made possible a great deal of research and experimentation in the field of visual programming
languages. A variety of different design methodologies have arisen from these research efforts, and
numerous visual programming systems have been developed to address both specific application areas,
such as user interface design and physical simulation, and more general programming tasks. We present
a survey of the field of visual programming languages beginning with an historical overview of some of
the pioneering efforts in the field. In addition, we present different classifications of visual programming
languages, touch on implementation and design issues, and discuss efforts to formalize the theoretical
basis for visual languages. We also discuss and examine a variety of the more important projects in the
field over the last few years.

Note: This survey was originally written as a term project paper for the graduate course on programming
language design in December 1997. As was required by the course instructor, we uploaded the report to a
web page, received our grades, and forgot all about it. To our great surprise, others have found this paper
through various Internet search engines and started referring to it. In December 2004 we decided to submit
this paper as an official technical report to make it easier for others to locate and cite. Despite this more
official status, please keep in mind that this survey was written in 1997 and was never meant to be more than
a term project paper. While we tried our best to write a survey representing the state of the art in visual
programming language research, we make no claim that we actually succeeded.

Contents

1 Introduction 1

2 History of Visual Programming Languages 1

3 Classification of Visual Programming Languages 2

4 Theory of Visual Programming Languages 3
4.1 Formal Specification of Visual Programming Languages . 3
4.2 Analysis of Visual Programming Languages . 4

5 Visual Language Issues 5
5.1 Control Flow . 5
5.2 Procedural Abstraction . 6
5.3 Data Abstraction . 6

6 Visual Programming Languages 6
6.1 ARK . 6
6.2 VIPR . 8
6.3 Prograph . 12
6.4 Forms/3 . 20
6.5 Cube . 22

7 Conclusion 23

ii

1 Introduction

From cave paintings to hieroglyphics to paintings of Campbell’s soup cans, humans have long communicated
with each other using images. The field of visual programming languages asks: why, then, do we persist in
trying to communicate with our computers using textual programming languages? Would we not be more
productive and would the power of modern computers not be accessible to a wider range of people if we were
able to instruct a computer by simply drawing for it the images we see in our mind’s eye when we consider
the solutions to particular problems? Obviously, proponents of visual programming languages (VPLs) argue
that the answer to both these questions is yes.

The questions above highlight the primary motivations for most research into VPLs. First, many people
think and remember things in terms of pictures. They relate to the world in an inherently graphical way and
use imagery as a primary component of creative thought [Smith 1975]. In addition, textual programming
languages have proven to be rather difficult for many creative and intelligent people to learn to use effectively.
Reducing or removing entirely the necessity of translating visual ideas into somewhat artificial textual rep-
resentations can help to mitigate this steep learning curve problem. Furthermore, a variety of applications,
including scientific visualization and interactive simulation authoring, lend themselves particularly well to
visual development methods.

The sections which follow present a survey of the field of visual programming languages which has emerged
in response to the issues mentioned above. We begin with a discussion of the historical trends and early
work which laid the foundations for modern research in the field (Section 2). Section 3 provides a description
of a taxonomy for visual languages. We follow with a primer on the main theoretical aspects of VPLs in
Section 4, and briefly discuss a variety of language issues in Section 5. We then clarify the topics discussed in
previous sections by presenting examples of important and interesting VPLs (Section 6). Finally, we share
some concluding remarks and thoughts on future work (Section 7).

2 History of Visual Programming Languages

The field of visual programming has grown from a marriage of work in computer graphics, programming
languages, and human-computer interaction. It should come as no surprise, then, that much of the seminal
work in the field is also viewed as pioneering work in one of the other disciplines. Ivan Sutherland’s ground-
breaking Sketchpad system stands out as the best example of this trend [Sutherland 1963]. Sketchpad,
designed in 1963 on the TX-2 computer at MIT, has been called the first computer graphics application.
The system allowed users to work with a lightpen to create 2D graphics by creating simple primitives, like
lines and circles, and then applying operations, such as copy, and constraints on the geometry of the shapes.
Its graphical interface and support for user-specifiable constraints stand out as Sketchpad’s most important
contributions to visual programming languages. By defining appropriate constraints, users could develop
structures such as complicated mechanical linkages and then move them about in real time. We will see
the idea of visually specified constraints and constraint-oriented programming resurface in a number of later
VPLs. Ivan Sutherland’s brother, William, also made an important early contribution to visual program-
ming in 1965, when he used the TX-2 to develop a simple visual dataflow language. The system allowed
users to create, debug, and execute dataflow diagrams in a unified visual environment [Najork 1995].

The next major milestone in the genesis of VPLs came in 1975 with the publication of David Can-
field Smith’s PhD dissertation entitled “Pygmalion: A Creative Programming Environment” [Smith 1975].
Smith’s work marks the starting point for a number of threads of research in the field which continue to
this day. For example, Pygmalion embodied an icon-based programming paradigm in which the user cre-
ated, modified, and linked together small pictorial objects, called icons, with defined properties to perform
computations. Much work has since gone into formalizing icon theory, as will be discussed below, and many
modern VPLs employ an icon-based approach. Pygmalion also made use of the concept of programming-
by-example wherein the user shows the system how to perform a task in a specific case and the system uses
this information to generate a program which performs the task in general cases. In Smith’s system, the
user sets the environment to “remember” mode, performs the computation of interest, turns off “remember”

1

mode, and receives as output a program, in a simple assembly-like subset of Smalltalk, which performs the
computation on an arbitrary input.

3 Classification of Visual Programming Languages

As the field of VPLs has matured, more and more interest has been focused on creating a robust, standardized
classification for work in the area. Such a classification system not only aids researchers in finding related
work but also provides a baseline with which to compare and evaluate different systems. Some of the
most important names in the field, including Chang, Shu, and Burnett, have worked on identifying the
defining characteristics of the major categories of VPLs [Chang 1987, Shu 1986, Burnett & Baker 1994].
The following presents a summary of the classification scheme discussed below:

1. Purely visual languages

2. Hybrid text and visual systems

3. Programming-by-example systems

4. Constraint-oriented systems

5. Form-based systems

Note that the categories are by no means mutually exclusive. Indeed, many languages can be placed in more
than one category.

The single most important category has to be purely visual languages. Such languages are characterized
by their reliance on visual techniques throughout the programming process. The programmer manipulates
icons or other graphical representations to create a program which is subsequently debugged and executed
in the same visual environment. The program is compiled directly from its visual representation and is
never translated into an interim text-based language. Examples of such completely visual systems include
VIPR, Prograph, and PICT, the first two of which will be discussed in more detail below. In much of the
literature in the field, this category is further subdivided into sections like iconic and non-iconic languages,
object-oriented, functional, and imperative languages [Chang 1987, Burnett & Baker 1994]. However, for
our purposes a slightly larger granularity helps to emphasize the major visually-oriented differences between
various VPLs.

One important subset of VPLs attempts to combine both visual and textual elements. These hybrid
systems include both those in which programs are created visually and then translated into an underlying
high-level textual language and systems which involve the use of graphical elements in an otherwise textual
language. Examples in this category include Rehearsal World and work by Erwig et. al. In the former,
the user trains the system to solve a particular problem by manipulating graphical “actors,” and then the
systems generates a Smalltalk program to implement the solution [Finzer & Gould 1984]. The latter involves
work on developing extensions to languages like C and C++which allow programmers to intersperse their
text code with diagrams [Erwig & Meyer 1995]. For instance, one can define a linked list data structure
textually and then perform an operation like deletion of a node by drawing the steps in the process.

In addition to these two major categories, many VPLs fall into a variety of smaller classifications. For
example, a number of VPLs follow in the footsteps of Pygmalion by allowing the user to create and manipu-
late graphical objects with which to “teach” the system how to perform a particular task. Rehearsal World,
described above, fits into this category of programming by example. Some VPLs can trace their lineage
back, in part, to Sutherland’s constraint manipulations in Sketchpad. These constraint-oriented systems
are especially popular for simulation design, in which a programmer models physical objects as objects in
the visual environment which are subject to constraints designed to mimic the behavior of natural laws,
like gravity. Constraint-oriented systems have also found application in the development of graphical user
interfaces. Thinglab and ARK, both primarily simulation VPLs, stand out as quintessential examples of
constraint-based languages [Smith 1986, Borning 1981]. A few VPLs have borrowed their visualization and

2

programming metaphors from spreadsheets. These languages can be classified as form-based VPLs. They
represent programming as altering a group of interconnected cells over time and often allow the program-
mer to visualize the execution of a program as a sequence of different cell states which progress through
time [Burnett & Ambler 1992]. Forms/3 is the current incarnation of the progenitor of this type of VPL,
and it will be covered in detail below. It is important to note that in each of the categories mentioned above,
we can find examples of both general-purpose VPLs and languages designed for domain-specific applications.

The field of visual programming has evolved greatly over the last ten years. Continual development and
refinement of languages in the categories discussed above have led to some work which was initially considered
to be part of the field being reclassified as related to but not actually exemplifying visual programming. These
VPL orphans, so to speak, include algorithm animation systems, such as BALSA [Brown & Sedgewick 1984],
which provide interactive graphical displays of executing programs and graphical user interface development
tools, like those provided with many modern compilers including Microsoft Visual C++. Both types of
systems certainly include highly visual components, but they are more graphics applications and template
generators than actual programming languages.

4 Theory of Visual Programming Languages

In this section, we survey the theoretical advances in the field of Visual Programming Languages, mostly
derived from early work by S.-K. Chang on generalized icon theory. To set up the framework for the discussion
which follows, we put forth some definitions from [Chang 1990]:

icon (generalized icon)
An object with the dual representation of a logical part (the meaning) and a physical part (the image).

iconic system
A structured set of related icons.

iconic sentence (visual sentence)
A spatial arrangement of icons from iconic system.

visual language
A set of iconic sentences constructed with given syntax and semantics.

syntactic analysis (spatial parsing)
An analysis of an iconic sentence to determine the underlying structure.

semantic analysis (spatial interpretation)
An analysis of an iconic sentence to determine the underlying meaning.

In this section, we restrict our discussion to two-dimensional visual languages, although everything that
follows can be generalized to three (and more) dimensions.

4.1 Formal Specification of Visual Programming Languages

A spatial arrangement of icons that constitutes a visual sentence is a two-dimensional counterpart of a one-
dimensional arrangement of tokens in conventional (textual) programming languages. In those languages, a
program is expressed as a string in which terminal tokens are concatenated to form a sentence whose structure
and meaning are discovered by syntactic and semantic analysis, respectively. Thus, the construction rule
is implicit in the language and need not be spelled-out as part of the language specification. Conversely,
in visual programming languages we distinguish three construction rules that are used to arrange icons:
horizontal concatenation (denoted by &), vertical concatenation (denoted by ^), and spatial overlay (denoted
by +).

In formalizing visual programming languages, it is customary to distinguish process icons from object
icons. The former express computations; the latter can be further subdivided into elementary object icons

3

(a) (b) (c) (d)

(e)

(g)

(f)

Figure 1: Some icons from the Heidelberg icon set. Elementary object icons: (a) a character, and (b) a
selected character. Process icons: (c) insertion operation, and (d) deletion operation. Composite object
icons: (e) a string (composed of characters), and (f) a selected string (composed of a character and two
selected characters). Visual sentence denoting replacement of a substring in a string.

and composite object icons. The elementary object icons identify primitive objects in the language, whereas
the composite object icons identify objects formed by a spatial arrangement of the elementary object icons.
Finally, the term elementary icons is used to refer to both process icons and elementary object icons and
denotes those icons that are primitives in the language. Since a picture (or, icon, in our case) is worth a
thousand words, we attempt to illustrate all of the above concepts in Figure 1 which demonstrates a few
icons from the Heidelber icons set [Rhor 1986] and a complete visual sentence.

A visual programming language is specified by a triple (ID, G0, B), where ID is the icon dictionary, G0

is a grammar, and B is a domain-specific knowledge base [Tortora 1990]. The icon dictionary is the set of
generalized icons each of which is represented by a pair (Xm, Xi), with a logical art Xm (the meaning) and a
physical part Xi (the image). The grammar G0 specifies how composite object icons may be constructed from
elementary icons by using spatial arrangement operators. Note that we need to specify spatial composition
operators as terminals in the grammar precisely because they are no longer implicit in the language definition.
The knowledge base B contains domain-specific information necessary for constructing the meaning of a given
visual sentence. It contains information regarding event names, conceptual relations, names of resulting
objects, and references to the resulting objects.

4.2 Analysis of Visual Programming Languages

As discussed above, visual sentences are constructed from elementary icons using iconic operators. The
syntactic analysis of visual sentences (also known as spatial parsing [Lakin 1986]) is based upon a number
of approaches [Chang 1990]. Here, we present a partial listing of such approaches.

4

Picture-processing grammars
Originally designed to parse digital pictures on a square grid, these grammars are based on the fact
that digital pictures are composed of pixels. These grammars discover the structure of visual sentence
by composing individual pixels into recognizable visual elements (lines, arks, etc.) [Golin 1990]. This
approach is useful when an iconic system needs to be able to recognize icons with a certain level of
error tolerance (e.g. handwritten digits).

Precedence grammars
This spatial parsing grammar can be used for two-dimensional mathematical expression analysis and
printed-page analysis. Precedence grammars are more suitable for syntactic analysis of visual sentences
constructed from elementary icons and iconic operators. The parse tree is constructed by comparing
precedences of operators in a pattern and subdiving the pattern into one or more subpatterns.

Context-free and context-dependent grammars
These grammars are used to specify composition of visual sentences using familiar formalisms, and so
many standard methods of parsing such grammars are applicable.

Graph grammars
These are by far the most powerful (albeit least efficient) specifications of visual languages. These
formalisms provide for the most means for establishing context relationships and much recent work has
been devoted to making parsing with graph grammars computationally feasible [Rekers & Schürr 1995].

A parse tree produced by one of the above parsing methods is subsequently analyzed using traditional
approaches to semantic analysis (e.g. attribute grammars, ad-hoc tree computations, etc.).

Because the field of visual programming languages has only recently entered a more or less mature stage,
much of the work on formalization of visual languages is still in its infancy (published within last 2-3 years)
and so we do not survey it here in any detail.

5 Visual Language Issues

We now discuss some common language issues in light of which the following presentation of visual languages
is cast [Burnett 1994]. These issues are mostly applicable to general-purpose visual languages (suitable for
producing executable programs of reasonable size), although certain issues will also be relevant to domain-
specific languages (designed to accommodate a particular domain such as software engineering or scientific
visualization).

5.1 Control Flow

Similarly to conventional programming languages, visual languages embrace two notions of flow of control
in programs: imperative and declarative.

With the imperative approach, a visual program constitutes one or more control-flow or dataflow diagrams
which indicate how the thread of control flows through the program. A particular advantage of such approach
is that it provides an effective visual representation of parallelism. A disadvantage of this method is that
a programmer is required to keep track of how sequencing of operations modifies the state of the program,
which is not always an intended feature of the system (especially if it is designed to accommodate novices).

An alternative to imperative semantics of flow control is to use a declarative style of programming. With
this approach, one only needs to worry what computations are performed, and not how the actual operations
are carried out. Explicit state modification is avoided by using single assignment: a programmer creates
a new object by copying an existing one and specifying the desired differences, rather than modifying the
existent object’s state. Also, instead of specifying a sequence of state changes, the programmer defines
operations by specifying object dependencies. For example, if the programmer defines Y to be X + 1, this
explicitly states that Y is to be computed using object in X , allowing the system to infer that X ’s value

5

needs to be computed first. Thus, the sequencing of operations is still present, but must be inferred by the
system rather than defined by the programmer. Off course, special care must be taken by the system that
circular dependencies are detected and signaled as errors.

5.2 Procedural Abstraction

We distinguish two levels of procedural abstraction. High-level visual programming languages are not com-
plete programming languages, i.e. it is not possible to write and maintain an entire program in such a
language and inevitably there’s some underlying non-visual modules that are combined using a visual lan-
guage. This approach to visual programming is found in various domain-specific systems such as software
maintenance tools and scientific visualization environments. At the opposite end of the scale, are low-level
visual languages which do not allow the programmer to combine fine-grained logic into procedural modules.
This methodology is also useful in various domain-specific languages such as logic simulators. General-
purpose visual programming languages normally cover the entire spectrum of programming facilities ranging
from low-level features, including conditionals, recursion, and iteration, to high-level facilities that allow one
to combine low-level logic into abstract modules (procedures, classes, libraries, etc.).

5.3 Data Abstraction

Data abstraction facilities are only found in general-purpose programming languages. The notion of data
abstraction in visual programming is very similar to the notion of data abstraction in conventional program-
ming languages, with the only requirements being that abstract data types be defined visually (as opposed
to textually), have a visual (iconic) representation, and provide for interactive behavior.

6 Visual Programming Languages

In this section we present a sample of visual programming languages that illustrate many of the concepts
presented in this report.

6.1 ARK

More than 10 years after its inception, the Alternate Reality Kit (ARK), designed by R. Smith at Xerox
PARC, remains one of the more unique and visionary domain-specific VPLs. ARK, implemented in Smalltalk-
80, provides users with a 2D animated environment for creating interactive simulations. The system is
intended to be used by non-expert programmers to create simulations and by an even wider audience to
interact with the simulations. In order to help users to understand the fundamental laws of nature, ARK
uses a highly literal metaphor in which the user controls an on-screen hand which can interact with physical
objects, like balls and blocks, which possess masses and velocities and with objects, called interactors,
representing physical laws, like gravity [Smith 1986]. By giving a kind of physical reality to abstract laws,
the system attempts to remove some of the mystery surrounding the ways in which such laws interact with
objects and each other. Users can modify any objects in the environment using constructs called message
boxes and buttons, viewing the results of their changes in real time. The simulation runs in an “alternate
reality” contained within a window inside an all-encompassing “meta-reality.” The structure is very much
like a modern windows-and-desktop GUI. The programmer can move the hand between alternate realities
and pull objects out of the simulation and into meta-reality at anytime. An object which has been lifted out
of its alternate reality does not participate in the simulation until it is dropped out of meta-reality.

The example of a user reaching into and removing an object from an alternate reality highlights one of
the more interesting design issues in ARK, namely the necessity to occasionally break with the highly literal
physical world metaphor in order to provide useful functionality. Smith refers to this issue as the tension
between magic and literalism in ARK [Smith 1987]. While using a hand which can grab physical objects is a
highly literal component of the system, allowing a user to reach into a simulation and alter or remove objects

6

Figure 2: Planetary Orbit Simulation in ARK

7

with no regard to the physical laws currently at work in the environment clearly provides the user with what
could be considered “magical” powers. The question of when to allow a magical event or action in ARK
to conflict with the physical metaphor parallels a similar concern in the design of more traditional VPLs.
In developing most VPLs, researchers have had to decide on the appropriate uses of text in their system.
While it is possible to design a system which uses no text whatsoever, and such systems have been created,
the resulting programs are often very difficult to read and understand. Most VPLs, even those which are
completely visual, use text, at the very least, to label variables and functions in programs. Thus designers
must face the same problem as was addressed in ARK. They must attempt to balance consistency of visual
representation with usability.

Although ARK targets a fairly specific application domain, it supports a powerful programming model.
Programmers can not only create simulations by linking together various pre-built objects and interactors,
but they can also develop new interactors. Programming a simulation, such as the planetary orbit simulation
shown in Figure 2, involves first generating physical objects, like balls, from the object warehouse in the
lower right corner of the display. By clicking on the objectMenu button, the programmer can choose to
instantiate any object available in the environment. After creating some physical objects, the programmer
follows the same procedure to place interactors, like the Motion and Gravity objects in Figure 2, in the
alternate reality. The programmer now uses the messageMenu button to find out what sorts of messages to
which the various interactors respond by placing the button on an interactor and pressing it with the hand.
This generates a list of all messages appropriate to that interactor. The programmer chooses one, such as
“off” for the gravity interactor in the orbit simulation, and the system generates a message box. Message
boxes are objects which can send and receive Smalltalk messages. The programmer links the new message
box, in our case one which generates the message “off”, to the appropriate interactor by joining them with
a dotted line. The message box can then be collapsed to a single button as in Figure 2. Interactors affect
all the objects in the same alternate reality, so after specifying all the necessary controls, a programmer can
begin the simulation.

It is important to note that all of the objects in the underlying Smalltalk environment are available to the
ARK programmer. Objects which are not ARK-specific appear as representative objects, like the TwoVector
object in Figure 3. As shown in the figure, such Smalltalk objects can be linked with ARK objects in the
same way as native objects. The example shown involves using a TwoVector object as the input to a button
which sets the velocity of a disk.

Clearly, ARK interactors behave much like constraints on the physical objects in the alternate reality.
Thus, creating and modifying interactors exemplify ARK’s constraint-oriented features. A programmer can
generate new interactors by creating networks of message boxes. As a simple example, consider developing
a frictional force interactor by creating a message box which adds a force to an object proportional to the
negative of its velocity [Smith 1987]. The message box can be set to continuously send its message, and
when its behavior has been verified, the programmer can convert it to an interactor.

6.2 VIPR

VIPR, or Visual Imperative PRogramming, developed by Citrin et. al at the University of Colorado repre-
sents a unique approach to completely visual general purpose programming. Rather than relying on icons,
forms, or other traditional graphical representations, VIPR uses nested series of concentric rings to visualize
programs, as shown in Figure 4. Each step in a computation involves merging two rings in the presence of
a state object which is connected to the outermost ring. One can visualize program execution as walking
down a network of pipes which branches off in different directions while changing the state based on actions
written on the inside of the pipes [Citrin et al. 1994].

The ongoing development of VIPR has been motivated, in part by a desire to create an object-oriented
language which is relatively easy to learn and use. As a result, VIPR includes most of the common attributes
of object-oriented languages, including inheritance, polymorphism, and dynamic dispatch. The language’s
semantics have been defined to be similar to C++in order to make it easier for experienced programmers
to read and understand VIPR programs. However, the language is entirely visual, so the semantics of a

8

Figure 3: Accessing a Smalltalk object in ARK

9

Figure 4: Visualization of program execution in VIPR

VIPR program can be understood by applying a small number of graphical rewrite rules. This relationship
to C++also means that VIPR provides support for both low- and high-level programming.

Figure 5 presents examples of if/then/else and while/do statements in VIPR. Arrows in the figures
represent substitution. If execution reaches a ring from which an arrow emanates, then this ring can be
replaced with the ring structure to which the arrow points. This idea of substitution becomes more important
in function calls, as shown in Figure 6. The left side of the figure represents a call to the function defined on the
right. Small circles internal and tangent to rings indicate parameters, so m is a parameter in the call to fun.
Every function must have at least one parameter, called the return address or continuation parameter. This
parameter indicates the next statement to execute following the function call. The continuation parameter
is always located in the lower right corner of the function definition and function call rings. All other
parameters can be matched from function call to function definition by either their location with respect
to the continuation parameter or by an optional label. For example, in Figure 6 parameter m in the call
matches to x in the definition, because they are in the same location relative to the continuation parameter.
In the example shown, the small circle inside the continuation parameter ring indicates that the function
returns a value. By performing the substitutions called for by the arrows in the figure, we can see that the
variable result is passed through to n in the function call.

Figure 7 shows an example of defining a simple geometric point class in VIPR along with the equivalent
C++class definition. The entire class is surrounded by a dotted ring. Private fields or methods are surrounded
by double boxes and are not visible in an instance of a class until execution enters a method of the class.
Method definitions follow the scheme of function definitions discussed above. Figure 8, Figure 9 and Figure 10
show a small example program which makes use of the point class. Note that variables which have been
declared to be pointers to a particular class but have not yet been initialized point to shaded instances of the
class. These are referred to as pseudo-instances [Citrin et al. 1994]. The instances become unshaded after
the variables are initialized. The only other important aspect of the example to note is the appearance of the
self variable in the state upon entry into the “xDistance” method. Clearly, in a program with a fairly large
number of classes and subroutines, the display could become rather crowded. In order to improve program
visualization for large-scale projects, Citrin et. al have begun work on a variety of new display methods for
the VIPR environment, including zooming and fisheyeing [Citrin et al. 1996].

10

Figure 5: Example Control Constructs in VIPR

11

Figure 6: Function definition and call in VIPR

The VIPR group has also developed a visual representation for the lambda calculus which they refer to
as VEX for Visual EXpressions. VEX is intended to become an expression-oriented component of VIPR
[Citrin et al. 1995]. We will only take a brief look at its major features. Figure 11 shows the textual and
visual representations for the Y combinator. As in VIPR, parameters are represented by small circles inside
and tangent to main rings, so f and x are parameters in the example. Function application is represented by
adjacent closed figures, and arrows point from the applied functions to their argument. In VEX, free and
bound identifiers are easily recognized. Each identifier is connected by an undirected edge to a labeled root
node. Free identifiers are connected to roots which are not inside and tangent to any rings, while bound
identifiers are connected to internally tangent roots. Thus, in Figure 12 identifier 2 is free in the overall
expression while identifier 5 is bound inside the expression represented by ring 3. Graphical equivalents have
been devised for α-conversion, β-reduction, and η-reduction, but a detailed discussion of these is beyond the
scope of this report.

6.3 Prograph

In this section we describe the Prograph language which is considered to be the most (commercially) suc-
cessful of the general-purpose visual languages [Cox & Pietryzkowsky 1990].

The research on Prograph originated in 1982 at the Technical University of Nova Scotia. Since then, sev-
eral versions of the language have been released, with the most recent (Prograph/CPX) being commercialized
by Pictorius, Inc.

Prograph is a visual object-oriented language. It combines the familiar notions of classes and objects with
a powerful visual dataflow specification mechanism. Prograph is an imperative language, providing explicit
control over evaluation order. Of particular interest are Prograph’s cases and multiplexes, the special control
structures which are intended to replace explicit iteration and provide sophisticated flow control. We will
discuss these as part of an example below.

Prograph allows the programmer to work on both high and low levels, allowing him or her to design and
maintain more or less complicated software. Primitive computations such as arithmetic operators, method
calls, etc. are combined to form method bodies by dataflow diagrams. The methods are then organized into
classes, which are, in turn, organized into class hierarchies. In addition, Prograph provides the programmer

12

Figure 7: Definition of a point class in VIPR and the equivalent class

13

Figure 8: Example program using point class

14

Figure 9: Example program using point class (Cont.) a. at Statement 2 b. inside xDistance

15

Figure 10: Example program using point class (Cont.) at Statement 4

with so-called persistent objects that can be stored in a Prograph database between different invocations of
the program.

We will now introduce some of the more interesting Prograph features by means of an example of
topological sort algorithm on directed graphs. Graphs will be represented by adjacency lists, i.e. a graph is
a list of lists, each of which corresponds to a node. A list representing a node consists of the name of the
node, followed by names of all nodes at the heads of outer edges of this node.

Figure 13 depicts a Prograph program to perform topological sort. The “Methods” window contains the
names of all functions in this program, with “CALL” being the top-level routine 1.

Methods consist of one or mores cases. Each case of a method is a dataflow diagram that specifies how
the case is to be executed. Each dataflow primitive designates an operation to be performed on data which
enters through one or more terminals (at the top of the operation icon). The output of an operation is
produced at one or more roots (at the bottom of the operation icon). The edges of a flow diagram indicate
how data propagates from the root of one operation to the terminals of the next, i.e. the order of execution
is data-driven.

Method “CALL” (also shown on Figure 13) consists of two cases. The case number, as well as the total
number of cases, is indicated in the title bar of the window containing the method’s dataflow diagram.
It contains calls to two system methods “ask” and “show” (underlined method names designate system
methods) and a call to a user-defined method “sort” whose definition is presented on Figure 14.

The execution of “CALL” begins by evaluating the result of calling method “ask” and the constant “()”
– the empty list. “ask” obtains input from the user which becomes the value of its root. After the evaluation
of “ask” and the constant is competed, their results are passed to “sort” which is the next operation to be
executed. Note that the call to “sort” is accompanied by a control called next-on-failure represented by an
icon to the left of the operation icon. This indicates that if call to “sort” fails (which implies that the graph
contains a cycle; see below for the explanation on how this failure condition is generated), execution of case
1 of “CALL” should halt and case 2 should be executed.

In case 1 of “CALL”, the operation sort is a multiplex (which is pictorially distinguished a simple operation
by being drawn in a three-dimensional fashion to emphasize the fact that a it is executed many times). At
least one of the roots or the terminals of the multiplex is annotated with an icon that indicates the type

1All functions in Prograph are referred to as “methods”, even those that are not member functions – so-called universal
methods.

16

Figure 11: Y combinator ((Y e) = (λx.e(xx))(λx.e(xx)) = e((λx.e(xx))(λx.e(xx))) = e(Y e)) expressed
textually in VEX

17

Figure 12: VEX syntax

Figure 13: Prograph example – A topological sort algorithm

18

Figure 14: Prograph example – Method “sort” for topological sort algorithm

of the multiplex. The multiplex in Figure 13, is called an iterative multiplex (a different kind of multiplex
is presented when we discuss the method “sort”). The annotations on this multiplex indicate that output
values on the loop roots will be passed to the loop terminals as input values for the next iteration. The
execution of the loop continues until a special control called terminate-on-success is not executed inside
method “sort”.

Method “sort” (Figure 14) contains two controls that terminate the execution of the method. The first
such control (comparing “sort” input to “()”), called terminate-on-success, indicates to the callee of “sort”
that multiplex is to be terminated with “success” status. The second control (comparing output of partition
operation to “()”), called terminate-and-fail-on-success, indicates to the callee that the multiplex is to be
terminated with “fail” status. As discussed above, this has the effect of failing the execution of the callee
and passing control to its next case (case 2 of “CALL” in our example).

Of particular interest is a different kind of multiplex contained in the method “sort”, called a parallel
multiplex. These include calls to “partition” and “remove”. This multiplex means that an operation should
be applied to each element of an input list (similar to “map” in Lisp) in parallel.

Execution of any operation, including method call, can result in any of the following outcomes: execution
succeeds, execution fails, execution results in an error. The differentiation of “failures” from “errors” distin-
guishes Prograph from other case-based languages (such as Prolog) by providing a finer control mechanism.
In the case of an error, execution of the program is halted. In other cases, execution continues, according to
a control primitive attached to the operation in the body of the callee. This control primitive, marked either
by a check or by a cross to indicate whether is it executed on success or on failure respectively, always halts
execution of current case and diverts thread of control in one of the following ways:

• Start execution of the next case.

• Indicate failure of the method within which it is contained.

• End execution of calling multiplex.

• Indicate failure in the execution of calling multiplex.

19

Figure 15: Forms/3: Sample Form

While this brief example is insufficient to illustrate all the features of Prograph, such as its object-oriented
model and its interactive programming environment, it demonstrates the essentials of the language. As we
conclude our discussion of Prograph, we should mention that the foremost achievement of this language
is its ability to free the programmer from tedious chores with the unnecessary level of detail provided by
conventional languages, which, in part, is responsible for the language’s commercial success.

6.4 Forms/3

Forms/3 [Burnett 1994] is another general-purpose object-oriented visual programming language whose fea-
tures emphasize data abstraction. However, unlike Prograph (Section 6.3) and VIPR (Section 6.2), no
inheritance or explicit message-passing is supported.

Forms/3 borrows the spreadsheet metaphor of cells and formulas to represent data and computation
respectively. A particular features of Forms/3 is that cells may be organized into a group called form, a
basic data abstraction mechanism. A form may be given pictorial representation (an icon) and it may be
instantiated into an object. In a sense, a form corresponds to a prototype object in prototype-based object
oriented languages.

In Forms/3 data (values) and computation (formulas) are tightly coupled. Every object resides in a cell
and is defined declaratively using a formula. Objects can only be created via formulas and each formula
produces an object as a result of its evaluation. Formulas provide a facility to request results from other
objects and create new objects: there’s no explicit message passing.

The programmer creates a new Forms/3 program by creating a new form, adding cells to it, and specifying
the formulas. A sample form is depicted in Figure 15. The formulas for this form were specified by first
selecting cell “X”, typing “5”, selecting cell “Y”, clicking on “X” and typing “+ 1”. The programmer could
have also referred to cell “X” by typing its name, rather than selecting it on the screen.

Forms/3 implements a declarative approach to flow control combined with the time dimension in an
approach that the authors call “vectors in time”. With this approach, each vector defines a sequence of
objects that represent the value of that cell at different points in time. Returning to the sample form in
Figure 15, if X defines a time vector of numeric objects such as <1 2 3 4 5>, then Y defines a time vector
<2 3 4 5>. Forms/3 provides the programmer with explicit access to the time dimension, and so iteration
can be implemented very elegantly even with this declarative approach. Consider an example of Figure 16,
a form designed to compute nth Fibonacci number. Here, “earlier” is one of the time-based operations in
Forms/3.

Just as in other general-purpose visual programming languages, Forms/3 allows the programmer to work
on both low and high levels. Low-level programming in Forms/3 is performed via formulas, while higher-level

20

Figure 16: Forms/3 – computing Fibonacci numbers. (a) A form and a formula for one of the cells, and (b)
a conceptual sketch of workspace in time

21

Figure 17: Function to compute the factorial of a number in Cube

abstraction is realized by collecting cells into forms.
In conclusion of our discussion of Forms/3 it is worth mentioning that unlike some visual programming

language, Forms/3 does not aim to eliminate text completely: the presence of text in formulas is a feature
of the language. The objective of the language is to use visual techniques such as direct manipulation and
continuous visual feedback to enhance the process of programming.

6.5 Cube

Cube, by M. Najork, represents an important advance in the design of visual programming languages in that
it is the first three dimensional VPL. Since Cube programs are translated into simpler internal representations
for type checking and interpreting, the language would fall into the category of a hybrid according to our
taxonomy. However, the user is never exposed to any textual representation, so the argument could be made
that Cube comes very close to being a completely visual language. The language uses a dataflow metaphor
for program construction. Working in 3D provides a number of important benefits over more traditional
2D VPLs. For example, working in three dimensions allows the system to display more information in
an environment which is easier to interact with than a 2D representation which uses the same screen size
[Najork & Kaplan 1991]. In the 3D display, the programmer is free to move his or her viewpoint anywhere
inside the virtual world in order to look at any particular section of a program from any viewpoint. This
sort of flexibility is not available in most 2D VPLs.

Figure 17 shows the main components of a Cube program as they appear in a recursive function to com-
pute the factorial of a given number [Najork 1995]. Cube programs are composed primarily of holder cubes,
predicate cubes, definition cubes, ports, pipes, and planes. The entire structure in Figure 17 is surrounded

22

by a definition cube which associates the icon “!” with the function defined within the cube. The definition
cube has two ports connected to it, one on the left and on the right. The left-hand port serves as the input
while the right-hand port provides output, although ports in Cube are bi-directional, so technically either
port can serve either function. Both ports are connected through pipes to holder cubes in the bottom plane
of the diagram which represents the base case of the recursion. Note that each plane represents a dataflow
diagram. In the case of the bottom plane, the diagram simply supplies default values for the ports and
indicates what type of values each port can accept or produce. If the value at the input port is 0, then the
bottom plane is active and the value from the right-hand holder cube, i.e. one, flows to the output port. If
the input is greater than zero, the greater than predicate in the top plane is satisfied, and one is subtracted
from the input by the bottom branch of the upper dataflow diagram. This difference is fed into the recursive
call to the factorial function, and the result is multiplied by the original input. The product then flows to
the output port. After defining the factorial function within a program, the programmer can then call it by
simply connecting a predicate cube labeled by the “!” icon to holder cubes at the two ports.

7 Conclusion

The field of visual programming languages abounds with examples of unique efforts to widen the accessibility
and enhance the power of computer programming. Although the various projects discussed above vary
in a number of details, particularly the visual metaphor employed and the targeted application domain,
they all share the common goal of improving the programming process. In addition, recent research into
solidifying the theoretical foundations of visual programming and serious efforts to develop standardized
formal classifications for VPLs indicate that the field has begun to reassess itself and mature. Even as the
area has grown over the past twenty years, important historical contributions from work such as Sketchpad
and Pygmalion have maintained their influence on various VPL designs.

Despite the move toward graphical displays and interactions embodied by VPLs, a survey of the field
quickly shows that it is not worthwhile to eschew text entirely. While many VPLs could represent all aspects
of a program visually, such programs are generally harder to read and work with than those that use text
for labels and some atomic operations. For example, although an operation like addition can be represented
graphically in VIPR, doing so results in a rather dense, cluttered display. On the other hand, using text
to represent such an atomic operation produces a less complicated display without losing the overall visual
metaphor.

As computer graphics hardware and processors continue to improve in performance and drop in price,
three dimensional VPLs like Cube should begin to garner more attention from the research community. 3D
VPLs not only address the problem of fitting large amounts of information on a rather small screen, but
they also exemplify the inherent synergy between programming languages, computer graphics, and human-
computer interfaces which has been a hallmark of visual programming from its inception.

23

References

[Borning 1981] Borning, A. H. The programming language aspects of thinglab, a constraint oriented sim-
ulation laboratory. ACM Trans. Programming Languages and Systems, 3(4):353–387, October
1981.

[Brown & Sedgewick 1984] Brown, M. and Sedgewick, R. A system for algorithm animation. In Proc. of
SIGGRAPH ’84, pp. 177–186, 1984.

[Burnett & Ambler 1992] Burnett, M. M. and Ambler, A. L. A declarative approach to event-handling in
visual programming languages. In Proc. 1993 IEEE Symposium Visual Languages, pp. 34–40,
Seattle, Washington, September 1992.

[Burnett & Baker 1994] Burnett, M. M. and Baker, M. J. A classification system for visual programming
languages. J. Visual Languages and Computing, pp. 287–300, September 1994.

[Burnett 1994] Burnett, M. M. Seven programming language issues. In Burnett, M. M., Goldberg, A.,
and Lewis, T. G., editors, Visual Object-Oriented Programming. Prentice Hall and Manning,
Greenwich, CT, 1994.

[Chang 1987] Chang, S. Visual languages: A tutorial and survey. IEEE Software, 4(1):29–39, January 1987.

[Chang 1990] Chang, S.-K., editor. Principles of Visual Programming Systems. Prentice Hall, New York,
1990.

[Citrin et al. 1994] Citrin, W., Doherty, M., and Zorn, B. Design of a completely visual object-oriented
programming language. In Burnett, M., Goldberg, A., and Lewis, T., editors, Visual Object-
Oriented Programming. Prentice-Hall, New York, 1994. Not published yet.

[Citrin et al. 1995] Citrin, W., Hall, R., and Zorn, B. Programming with visual expressions. In Proc. 1995
IEEE Symposium Visual Languages, pp. 294–301, 1995.

[Citrin et al. 1996] Citrin, W., Hall, R., and Zorn, B. Addressing the scalability problem in visual program-
ming. In Proc. of CHI ’96, 1996.

[Cox & Pietryzkowsky 1990] Cox, P. T. and Pietryzkowsky, T. Using a pictorial representation to combine
dataflow and object-orientation in a language-independent programming mechanism. In Glin-
ert, E. P., editor, Visual Programming Environments: Paradigms and Systems. IEEE Computer
Society Press, Los Alamitos, CA, 1990.

[Erwig & Meyer 1995] Erwig, M. and Meyer, B. Heterogeneous visual languages : Integrating visual and
textual programming. In Proc. 1995 IEEE Symposium Visual Languages, pp. 318–325, 1995.

[Finzer & Gould 1984] Finzer, W. and Gould, L. Programming by Rehearsal. BYTE, 9(6):187–210, June
1984.

[Golin 1990] Golin, E. J. A method for the specification and parsing of visual languages. PhD dissertation,
Brown University, 1990.

[Lakin 1986] Lakin, F. Spatial parsing for visual languages. In Chang, S.-K., Ichikawa, T., and Ligomenides,
P., editors, Visual Languages, pp. 35–85. Plenum Press, New York, 1986.

[Najork & Kaplan 1991] Najork, M. and Kaplan, S. The cube language. In Proc. 1991 IEEE Workshop
Visual Languages, pp. 218–224, Kobe, Japan, 1991.

[Najork 1995] Najork, M. Visual programming in 3-d. Dr. Dobb’s Journal, 20(12):18–31, December 1995.

24

[Rekers & Schürr 1995] Rekers, J. and Schürr, A. A graph grammar approach to graphical parsing. In Proc.
1995 IEEE Symposium Visual Languages, Darmstadt, Germany, 1995.

[Rhor 1986] Rhor, G. Using visual concepts. In Chang, S.-K., Ichikawa, T., and Ligomenides, P., editors,
Visual Languages. Plenum Press, New York, 1986.

[Shu 1986] Shu, N. C. Visual Programming Languages: A Perspective and a Dimensional Analysis, pp.
11–34. Plenum Press, 1986.

[Smith 1975] Smith, D. C. PYGMALION: A Creative Programming Environment. PhD dissertation, Stan-
ford University, 1975.

[Smith 1986] Smith, R. The alternate reality kit : An animated environment for creating interactive simu-
lations. In Proc. 1986 IEEE Workshop Visual Languages, pp. 99–106, 1986.

[Smith 1987] Smith, R. B. Experiences with the alternate reality kit: An example of the tension between
literalism and magic. IEEE CG & A, 7(9):42–50, September 1987.

[Sutherland 1963] Sutherland, I. B. SKETCHPAD, a man-machine graphical communication system. In
Proceedings of the Spring Joint Computer Conference, pp. 329–346, 1963.

[Tortora 1990] Tortora, G. Structure and interpretation of visual languages. In Chang, S.-K., editor, Visual
Languages and Visual Programming, pp. 3–30. Plenum Press, New York, 1990.

25

