Copyright © 2004, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FORMAL REFINEMENT VERIFICATION
IN METROPOLIS

by

Douglas Densmore

Memorandum No. UCB/ERL M04/10

22 May 2004

FORMAL REFINEMENT VERIFICATION
IN METROPOLIS

by

Douglas Densmore

Memorandum No. UCB/ERL M04/10

22 May 2004

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Formal Refinement Verification in Metropolis

Douglas Densmore
University of California, Berkeley
densmore @eecs.berkeley.edu

Abstract—When building system level models of computer sys-
tems, often it is advantageous to begin with an abstract model for
the purposes of simulation or initial behavior verification. How-
ever, once this abstract model has served its purpose, a more de-
tailed, less abstract model should replace it to give not only a more
“realistic” performance estimation but also bring the model closer
to a possible physical implementation for reasons such as synthe-
sis. However, in order to make this refinement, one must be as-
sured that the refined models conform to the behavior of their
abstract counterparts. This paper introduces the beginning of a
framework for the Metropolis Design Environment which begins
to verify this refinement.

I. INTRODUCTION

As computer systems become more and more complex, ab-
straction is used to simplify many portions of the design into
selected behaviors needed at that particular point in a design.
These behaviors reflect the necessary information to proceed
with the design while not hindering the designer with tedious
details or overly complex interactions. As the design progresses
however, those details are added back into the design as the
level of abstraction decreases. The abstract components of a
design must be replaced with their more detailed counterparts.
Key in this transformation is that the replacing components do
not introduce behaviors that were not present in the abstract
system. It is the process of ensuring that the set of possible
refined behaviors are a subset of the abstract behaviors that is
refinement verification.

The Metropolis Design environment [5] is particularly in
need of such a verification procedure. Metropolis is a frame-
work based around a meta-model enforcing a semantics involv-
ing the separation of communication, computation, and coordi-
nation activities. From this meta-model there are paths to sim-
ulation, analysis, and synthesis tools. Metropolis has as part
of its syntax and semantics the notion of successive refinement.
Figure 1 shows briefly how refinement is used currently.

//In Metropolis Netlist

/*introduce to the netlist (this),
and object for refinement (ref_obj)*/
refine (ref_obj,this);

/*redefine the connects

so that the refinement input

and outputs map to the abstracts ports*/

refineconnect (this, src_connect (ref_obj,out),
port (ref_obj,out),abs_out);

refineconnect (this, src_connect (ref_obj, in),
port (ref_obj,in),abs_in);

Fig. 1. Current Metro Refinement

Previous work in the area of model checking these types of
systems has included [12] which examines how to represent
process network structures, [4] and [9] which examine how to
use Co-Design Finite State Machines for Functional Equiva-
lence. [11] creates a way to look at analysis of C programs
for source-to-source transformations and was useful in think-
ing how to represent the structure of programming languages.
Each of these sources provides some insight and background
into how to think about verifying structures in programs. These
helped identify that the key to this project was to have a method-
ology in place with a compact data structure which was flexible,
allowed for abstraction, and which can be evaluated efficiently.

A. YAPI and TTL Models

One clear motivating example for the need for refinement in
Metropolis involves the YAPI (Y-Chart API) [6] and the TTL
(Task Transaction Level) Libraries. These are both process net-
work based FIFO libraries. In Metropolis, the YAPI library has
unbounded FIFO-like elements while the TTL library attempts
to be a refined version with boundedfifo, yapi2TTL, TTL2yapi,
and rdwrthreshold elements. The boundedfifo simply is the
storage mechanism now with a fixed size. The rdwrthreshold
element acts as the coordination for access to this element. Fi-
nally, yapi2TTL and TTL2yapi are used for the refinement in-
terface in the refined netlist similar to figure 1.

During the use of these elements in a multi-media applica-
tion exercise in Metropolis, several bugs were discovered. This
drew attention to the fact that refinement checking is a crucial
element as the design process becomes more complex and spec-
ifications are adhered to in an ad hoc manner.

This paper goes on to demonstrate a particular methodology
on much smaller models then either the TTL or YAPI library el-
ements. The flow is not currently mature enough for a model as
complex as TTL or YAPI but the overall flow and goals will not
change when moved to this issue. Ultimately an example file
provided with the Metropolis distribution and a test file were
used as will be shown in section VI. However, it is this back-
ground which gave rise to this project.

B. Purpose of paper

The purpose of this paper is to detail the initial tool chain
and methodology for verifying that one Metropolis Model is
a refinement of the other. Section II formally introduces what
refinement verification is. Section II-A states the problem in
terms of the Metropolis Meta-Model. Section III describes the
process of writing a Metropolis backend to create the structure
on which refinement verification would be based. Sections IV

and V discuss two important tools in this investigation. Finally
sections VI, VII, and VIII detail the results, conclusions, and
future work respectively.

I1. REFINEMENT

The notion of refinement verification for this paper stems
from that of Hierarchical Verification in {2]. This project be-
gins with Hierarchical Verification as the foundation and modi-
fies it slightly for this project. [2] uses the term implementation
whereas we will use the term refinement to mean the same thing.
We will define the problem as follows:

A model is generically defined as an object which can gen-
erate a set of finite sequences of behaviors, B. One of these
possible finite sequences, B, is considered a trace, @. Given a
model X and a model Y, X refines the model Y, denoted X <f¢f
Y if given a trace @ of X then the projection @[ObsY] is a trace
of Y. A trace, @ is considered a sequenced set of observable val-
ues for a finite execution of the module. A projection of a trace,
a[ObsY], is the trace produced on Module Y for the execution
which created @ over the Observable variables of Y. The two
modules X and Y are trace equivalent, X ~Ref y, if X <Re/ y
and ¥ <Ref x.

The answer to the refinement problem (X,Y) is YES if X re-
fines Y and otherwise NO.

A. Refinement Verification for Metropolis

Building on the generic refinement definition given in section
II, we have defined the refinement problem in Metropolis with
a discussion on the syntactic conditions and trace definition.

1) Syntatic Conditions: [2] frames the refinement condi-
tions in terms of the reactive modules [1] syntax and puts re-
quirements on their variable structures for each model to be
compared. For the similar syntactic conditions for Metropo-
lis models, given X <R/ Y, are that Yinputs € Xinputs and
Youtputs © Xoutputs- Essentially this simply requires that X
have all of ¥s inputs and outputs (if not more). This could be
viewed as simply a naming issue if you require the same or-
der and number of corresponding inputs and outputs for each
model.

2) Trace Definition: As mentioned previously, a trace, @ is
considered a sequenced set of observable values for a finite exe-
cution of the module. In the case of Metropolis, the key observ-
able values that we are concerned with are function calls to me-
dia. This paper will refer to a trace consisting of function calls
to media as a Traceps, where the “M” stands for “Metropolis”.
Due to the semantics of Metropolis, processes must communi-
cate strictly via media. Ultimately the behavior of a process can
be characterized by the sequence by which it makes these calls.
Syntactically this results in an interface call attached to a partic-
ular port. Figure 2 shows the process and medium interaction.
This shows what is observable to the rest of the system is this
process’ use of the media interface.

In order to characterize the Metropolis trace, TraceM, the
key structure to be obtained from the model is the control flow
graph concerning the ways in which these sets of observable
events can occur. Once this structure is created State Equiva-
lence concepts such as Bisimilarity and Similarity [2] could be

(8

|
I!merlace Calls
on Ports

Process

B2

FSM

|
IObservable | Provides

/ I | Services
Internal
Computation Ports
(Not visible)

Fig. 2. Function Calls to Media as Observable Variables

used to determine refinement. A Trace)s can be obtained by
traversing this structure described next.

B. Control Flow Automata in Metropolis

The key structure in this investigation is the Control Flow
Automaton (CFA) representation of a Metropolis Model.
Metropolis has an Action Automata specification underlying it
[5] but this provides much more information than is required
and its structure is not suited to use in our refinement scenario.
A CFA is defined as a very much like [8). It is a tuple <@, qo,
X, Op, —>.

Q is a finite set of control locations. These will be determined
by the Metropolis model structure. qg is the initial control loca-
tion, X is a set of variables, and Op are operations which denote
(1) function calls to media (2) basic blocks of instructions start-
ing (3) basic block of instructions ending. This ending and be-
ginning notion is taking from the Action Automata semantics. A
basic block is taken in the traditional sense, meaning a section
of code in which there is no conditional execution which could
result in a different execution sequence. A basic block simply
could be viewed abstractly as a function call. It is for this rea-
son that the start and end are denoted. This way, the CFA could
be augmented with the body of the function call, inserted inside
the beginning and end portions.

An edge (q, Op, q’) is a member of a finite set of edges and
the transition relationship, —, is defined as (Q x Op x Q). A
edge makes a transition based on the Op present, q —°7 q'.

Ideally an CFA is created which represents the model and
corresponding automata are created which represent the state
of variables in the automata. For example a model may have a
loop which is checks the value of a particular variable. The CFA
would have a variable, v € X, which has an automata which can
be queried as to the value of that variable to determine what
edges can be transitioned. For the purposes of this project,
these automata are not formally defined nor are they automat-
ically generated. Figure 4 shows one possible representation
that could be used to show the incrementing of an integer with
a functional range of 0 to 2.

Figures 3 and 4 demonstrate a code snippet and the resulting
Metropolis CFA as defined in this paper.

Once a CFA is defined, a Traceps is nonempty word @;...n
over the alphabet of Q control locations such that a; — a;+3
forall1 <i<n.

Naturally the potential for a CFA to be quite large is a con-
cern. As you will see in the description of the backend it is

bounded by the nodes in the Abstract Syntax Tree created by
Metropolis compilation which could be very large. However
this can be reduced further by heuristic grouping of nodes to
create control locations as will be shown.

III. CFA BACKEND

The Metropolis Design Environment is designed around the
concept of a meta-model as mentioned previously. This allows
for the initial model to be decomposed into an intermediate rep-
resentation and then fed to a number of different tools called
backends. This is demonstrated roughly in the structure shown
in figure 5. As you can see the model is parsed into an Abstract
Syntax Tree (AST) and that AST is interpreted by the backends
to generate another representation with semantics for another
tool while maintaining some relationship to the original model.
The creation of a backend to generate a CFA as described ear-
lier was the primary work of this paper.

The CFA backend traverses the AST and identifies the nodes
of the AST. It is composed of two files:

« CFABackend.java

« CFACodegenVisitor.java

CFABackend.java is what is called when the backend is in-
voked and actually writes to various files the results of the vis-
itor functions. The file CFACodegenVisitor.java actually con-
tains the visitor functions. The visitor functions traverse the
AST and determine what should happen at each type of node.
There are over 160 different node types that can make up an
AST. It is in these functions that the CFA structure is deter-
mined. In particular this is true when visiting what this project
introduces as Grouping Node Types. Each AST node generates
its own location structure. Groups of these belong to a group
location structure. Each group location structure each contains
exactly one node which is a member of the Grouping Node
Types. These sets of group location structures with one unique
node of the Grouping Node Types are what constitute a con-
trol location, Q, in the CFA. All of this is stored in an internal
list structure which can be traversed itself. It is this heuristic
grouping which prevents the size of the CFA from being O(AST
Nodes in Model) and rather O(Grouping Node Types in Model)
which is substantially smaller in practice. In order to have this
reduction the Grouping Node Types are currently defined as:

o Structure Nodes - these include ProcessDeclNode, Com-

pileUnitNode

//sample code snippet
process example {
port Read portl;
port Write port2;
void thread() {
int x = 0
while (x<2)({
portl.callRead();
x++i}
port2.callWrite();
}
}

Fig. 3. Metro Code Example

Hypothetical Automaton for X variable

X=0 X=1 X-z

Automaton for
Model

Control Location 2
Group Typo Node: L
while loop

X<2

Control Location 3
Group Typo Noda:
ThisPortAccessNode

Port1.callRead()+

Control Location 4 Control Locabon 8
Group Typae Node: None Group Typo Nodo: None
Ending of basic block Ending of basic block

Port1.callRead()-

Gmcml :::lion 5 Port2.callWrite()-
of Varnizhle Nodes
X++(+)
Coatrol Location 9

Fig. 4. Resulting CFA for Code Example

o Control Nodes - these include AwaitStatementNode,
AwaitGuardNode, LoopNode
« Variable Nodes - these include ThisPortAccessNode
Also, the CFA internal structure is able to be created in one
pass through the Metropolis Model code so the running time
it is O(Nodes Traversed with Visitor Functions) where visitor
functions < AST nodes types in code.

A. Visual Representation

The first and most trivial result of the CFA backend is a sim-
ple visual representation as shown in figure 6

This is simply for debugging purposes and allows the user to
see not only what the structure of the CFA is but also examine
what individual nodes compose a control location. This infor-
mation can be used to redefine what a Grouping Node Type is
and also see the effects of different heuristic choices for group-
ing. The Group field is an integer identification of what group
this is. In turn this corresponds to a control location, Q in the
CFA. The Parents field is a set of integers which define which
groups are the parents of this group. Types is a set of integers
which are associated which each node to identify it (as defined
by the AST node types). The Inputs field denotes what input
variables must be required to transition from this group. The
Outputs field denotes which output variables will be present
(go “high”) when you transition from this node. Misc is used
to hold such information as if arithmetic nodes are visited (i.e.
a PlusNode denoting a possible incrementing of a variable) or
other information used to build the CFA. Names is simply a

list of Strings which indicates what types nodes make up this
group location (corresponding to the type field; easier to read).
And finally the Cond Code field indicates which type of condi-
tional node was visited for the group (i.e. LoopNodes, Awail-
StatementNodes, etc) and is internally defined to identify the
branching structure of the CFA. The “arrow” like symbols are
used where there are multiple children. This can be produced
in one pass of the internal list structure of the CFA or O(CFA
Control Locations).

B. Finite State Machine Representation

The second more functional result of the CFA backend, is
that it produces a Finite State Machine representation of the
CFA. The inputs to the finite state machine represent informa-
tion provided by other automata to the CFA model (such as the
variable automata) and the outputs are the function calls to me-
dia. This is formatted as a KISS representation. An example of
KISS is shown in figure 7.

This format was chosen for two reasons: (1) It is easily pro-
duced from the internal list structure (2) it can be read by vari-
ous tools such as SIS [7]. SIS in turn can produce other formats
such as BLIF, PLA, EQN, etc. Of particular interest is BLIF
whose close relative EXLIF can be read by FORTE [10] as will
be described in section IV

Once the initial data structure is created by the backend the
algorithm to create a KISS file is as shown in figure 8

The running time of this algorithm is O(2 * CFA Structure
Groups). Essentially you have to traverse the structure once to
create the lists of inputs and outputs. Then you must traverse it
again 1o actually generate the KISS file based on that informa-
tion. Each line of KISS requires that you examine the input and
output lists completely to see if they contain input or output at
that location.

C. Reactive Module Representation

The third and final result of the CFA backend is a “reactive
module” [1] file. This is a modeling language for describing the
behavior of hardware and software systems. This is produced
as an additional benefit of the backend for three reasons: (1) It

Meta model language

Meta model
compiler

Elabotatar

tool toz! too!

SystemC, Java, Prometa,
C++ simulator Qss

Fig. 5. Metropolis Compiler Structure

Group: 3

Parents: 2

Types: 12

Inputs: inl

Outputs: #can be blank
Misc: #can be blank
Names: LoopNode

Cond Codes: 1

I I
v \Y

Fig. 6. CFA Visual Representation

#KISS File

.i 3 #input count

.0 4 #output count

.s 2 #state count

.P 2 #next state equations

#inputs current_state next_state outputs
010 sl s2 0101

000 s2 sl 1010

.e

Fig. 7. KISS Representation

is very inexpensive to create a reactive module which models an
FSM. (2) It allows for non-deterministic behavior which is not
allowed by KISS models provided to SIS. (3) It can be read by
tools such as MOCHA [3). MOCHA allows a rich set of model
checking algorithms to be run on the CFA model that are useful
both for refinement and other verification tasks.

The first point for making this representation was that it was
inexpensive to do from the FSM representation. Figure 9 gives
the algorithm to do so.

This can be done in one pass of the KISS file. The variable
declaration initializations for the module are simply from the
KISS input (.i), output (.0), and state (.s) declarations. The init
command is simply another listing of the variables. The largest
part of the file, the update commands, correspond one-to-one
with each line in the KISS body. The running time of this is
naturally O(KISS file body).

The second reason for using this representation, non-
determinism, is inherent in the fact that multiple guards may
be true. Also inherent is that the union of all guard commands
does not have to equal the entire space of the inputs (i.e. it
can be partially specified). Naturally, KISS currently has de-
terministic behavior so it will result in a reactive module with
deterministic behavior. However, there is nothing preventing a
reactive module from being produced from a KISS file which
would not run in SIS. A CFA could be produced that has non-
deterministic behavior simply with a modification to the back-
end.

The third and final reason, MOCHA, will be discussed in sec-
tion V.

IV. FORTE

Prior to the integration of Reactive Modules into the CFA
Backend, the project was targeting a tool called FORTE.
FORTE [10] is a tool provided by Intel Corporation which is
a collection of several tools. These are Functional Language

Input: CFA Data Structure, D
Output: KISS File
/fcreate unique inputs list (1)
v group locations i € D{
for each input j € i{
if j ¢ unique input list IL, add j}}
//same procedure as (1) for outputs using a different list
/[Create the declarations section
Simply output the size of the input and output lists for the .i and .0
portions. The .s is the size of the structure D and .p is how many lines
you process when done making the body.
//Create the Body
/finput portion of the kiss line (2)
¥ group locations, i € D{
V elements, e € IL{
ifeciwrntel
else write 0}
Output current_group and child.group
{/same procedure for output values as (2) for kiss line

}

Fig. 8. Algorithm for KISS construction

Input: KISS File
Output: Reactive Module File
create new Module <filename>
/Nists of the extemal, interface, and private variables
for V i € FSM Output
new interface variable
for Vi € FSM Input
new external variable
for Vi € FSM State
new private variable
create new atom cfa
controls <each interface variable, each private variable>
reads <each external variable, each private variable>
init
<all interface and private variables = false except first state variable>>

update
<for each line of the KISS representation the guard is the appropriate
input = true and that current state = true, the result is the next state
variable = true and the appropriate outputs = true>

Fig. 9. Algorithm for Reactive Module construction

(FL), Symbolic Trajectory Evaluation (STE), FSM Logic Data
model, and some circuit drawing tools. FORTE works on circuit
descriptions of models. This is was a major factor in influenc-
ing the decision to reduce the CFA into a FSM representation.

Once a model had been created as a KISS file, that KISS
file was given to the SIS tool. This was used to create a BLIF
file with the script in figure 10. This representation was very
similar to the EXLIF file format used by FORTE. Some simple
modifications allowed this to be converted to EXLIF and in turn
read by FORTE also shown in figure 10. These manual edits
could be worked into a Perl script in the future.

Once the models are converted to EXLIF files FORTE can
begin to process them for refinement. The algorithm is in figure
11.

The running time for such an algorithm is approximately
O(m e n) where n is the number of states and m is the tran-
sitions. This algorithm and corresponding code was not created
as part of this project but supplied by Intel.

//sis commands

read_kiss <filename>
state_minimize

state_assign <nova> or <jedi>
source script.rugged
write_blif <filename>

BLIF to EXLIF Manual Edits
« Remove start kiss, end_kiss, and kiss code embedded in file
« Remove external don’t care section (.exdc)
« Add to the .latch definitions a clk signal and the type of flop it is
(rising, falling)
« Remove the .latch_order and .code portions

Fig. 10. SIS Commands and EXLIF requirements

Input: Two EXLIF Models, A and R with State Space X4 and £r
Output: Answer to the Refinement Question (R, A)
Letqs € Laandqr € Zr
Given a set of states, the set S, S€ is (Ta UZR)\ S
Let £ be a vector of inputs common to both A and R
Let §a(ga, Z) be a vector of outputs for A given the state q4 and the
inputs ¥
Let §r(gr, T) be a vector of outputs for R given the state qr and the
inputs £
Let E,, be a set of sets of states reachable in n input sequences
Let o be a set of sets {(4. qr) | 94 € £ 4, qr € Tr}
Let Tr{qa, %, qa”) = true if there is a transition from qa to q4’ under
input
Let pre(o) = {(94,qr)| IZ: Tr(qa, £,94") N Tr(qr, T, qr") N (Qa’,
qr’) € 0}
//Start of Algorithm
Eo=0
Ei(qa,qr) =V £, §a(qa,) © ¥r(Qr,)
k=0
do {
k=k+1
Ex+1(q4,qr) = Ex(q4, qr) \ preEg (Qa. qr)
until (Ex+1 =Ex)
if (Y qr € TR, 3 q4 such that (qa,qr) € Ex)
Return YES
else
Return NO

Fig. 11. Algorithm for FORTE Refinement Check

V. MOCHA

Since the CFA Backend produces a Reactive Module
MOCHA can be used to do refinement checking. However, this
requires some manual preparation of the file produced by the
backend. [3] describes refinement as a trace inclusion problem.
This amounts to:

1) For every initial state, s of X, the projection of s to the

variables of Y is an initial state of Y.

2) For every reachable state of s of X, if X has a transition

from s to ¢ then Y has a matching transition.

The search can be done symbolically or emuneratively with
MOCHA. In the case that the test fails it generates a coun-
terexample of a trace on X which is not a trace of Y. This may
be computationally complex. Therefore some restrictions are
placed on the modules, to verify X <7/ y.

1) The module Y has no private variables

2) Every interface variable of Y is an interface variable of X.

3) Every external variable of Y is an external variable of X.

Recalling our requirements for refinement, the 2nd and 3rd
conditions are already met. However, a module created with the
CFA Backend will have private variables representing states.
The solution for this is to create a Witness Module, W. This is a
module whose interface variables are the private variables of Y.
Also, W should not contain any of the external variables of X. In
turn, a module, Y’, will be created with those private variables
declared as interface variables. Once this is the case then X||W
=<Ref y* as shown in [1]. The procedure is naturally:

1) Create Y’ from Y by changing private variables to inter-

face.

2) Define a Witness Module, W, whose interface variables
are the private variables of Y but exclude the observable
variables of X.

3) Check X||W <Be/ ¥’ with MOCHA

Since this not automatic this is a potential bottleneck in the
flow, since the creation of a Witness Module requires creativity

on the part of the user. In addition the parallel composition is
also manual.

VI. RESULTS

In order to demonstrate a proof of concept for our methodol-
ogy, we assembled the previously described components into a
complete flow as shown in figure 12.

Modelx Réﬁnehantr\?ekriﬁcaﬁon Flbw E \

Metropolis Model (.mmm})

Reactive Visual
Module of CFA :> Representation
Winess CrA Backend | {for debugging)
Module
% Kiss fite of
Edit and CFA
Parallel
Comp.
SIS
X|W < Y72 s ibaial
@ BLIF file
MOCHA
Manual Edits to BLIF
&
NEXLIF2EXE
Mode.exe file
\ FORTE /

Fig. 12. Refinement Verification Flow

As you can see from figure 12, the process begins with a
Metropolis Model. Using the metropolis compilation engine
you can simply run it through the CFA Backend automatically.
This will return a reactive module file, and KISS file, and a vi-
sual representation. The reactive module is fed to Mocha but
first it must be augmented with witness module manually to do
refinement checking on it. This was described in section V. The
visual representation is simply for viewing. The main trunk of

Refinement | MOCHA Result | FORTE Result

(Test,Test2) | YES Pending

(Test2, Test) | NO Pending

(XX, XX2) | NO NO

(XX2, XX) NO NO
TABLE]

REFINEMENT CHECKING OUTCOMES

the flow requires that you submit the KISS file to SIS. The script
in figure 10 is run to assign state encoding and logic to the sym-
bolic states in the KISS file. This can then be written out in
BLIF format. Then the slight manual edits as described previ-
ously have to be done to the BLIF file to convert it to EXLIF for
FORTE. Finally you run NEXLIF2EXE (provided by FORTE)
to convert the EXLIF to an executable format for FORTE.

This flow was demonstrated using a file from the Metropo-
lis examples distribution, XX.mmm, and a small examplie file
created solely for this project, Test.mmm. These files were
compared with modified versions, XX2.mmm and Test2.mmm,
which should not be a refinement and one which should be a
refinement respectively. The two “XX” files are shown in the
appendices. Also in the appendices are an example of a snippet
of the visual representation, reactive module code for one of the
modules, and the KISS and BLIF code generated. This gives a
feel for the various representations. The “Test” files are simply
not provided as to not overwhelm with information.

The results (Table 1) was that the two files, XX.mmm and
XX2.mmm, were indeed found to not be a refinement, (XX,
XX2) = NO. This was verified by both with MOCHA and
FORTE. The two files, Test.mmm and Test2.mmm, were found
to be a refinement, (Test, Test2) = YES, by MOCHA. The re-
sults for FORTE for these files are still pending as of the writing
of this report. While these are trivial models, this is encour-
aging for two reasons (1) The flow works from start to finish
and (2) It can indeed begin to identify potential refinements and
models which are not refinements.

As mentioned, the FORTE flow contained code provided
from Intel. It is due to this limited access that the results have
not yet been attained for the “Test” files. The results for the
other files were as expected and increase our confidence in the
flow.

The overall coding effort was primarily in the CFABack-
end.java and CFACodegenVisitor,java files. There is ~ 1000
lines of code between the two. They are built right into the
existing Metropolis infrastructure so they can be run like any
other current backend.

VII. CONCLUSIONS

The conclusion of this project is that there is now a flow in
place to check the refinement of Metropolis Models. This flow
was successfully shown on a model included with the Metropo-
lis distribution package. Currently this flow only works on very
simplistic models but in order to remedy this only the CFA
Backend component needs to be made more robust. The tool
chain will function, from the more robustly modeled CFA, cor-
rectly and should need only minor adjustments. The flow is

also nicely automatic for a large portion. A small script should
be able to take care of the edits needed to the BLIF file. The
only major obstacle to complete automation is the creation of
the Witness Module. This is a small tradeoff in return for the
power and future usefulness of the MOCHA tool.

This project began with not only the absence of a tool chain
but also a methodology. Regardless of the performance of this
initial flow, the methodology is now in place and can be built
upon and made more robust to handle issues as they will in-
evitably arise. This methodology hopefully has as its founda-
tion sound model checking practices while at the same time
taking advantages of heuristics and abstractions to target this
problem domain.

VIII. FUTURE WORK

Primarily the future work will be concerned with the devel-
opment of the CFA internal data structure. This is not only the
most complex and semantically difficult of all the portions of
the flow but it also is the foundation for the entire flow. The
FSM and Reactive Module creation works acceptably and cor-
rectly provided that the CFA structure is robust and correct.
Currently the CFA backend has a limited number of visitor
functions. This needs to increase if more complex modules
(having more complex and diverse AST nodes) are going to
be examined. This initial flow was created with the example
model in mind and the visitor functions and heuristics reflect
this. This will be the bulk of the future work. However, it would
also be interesting to explore some more of the features, partic-
ularly relating to non-determinism, associated with the reactive
modules. Metropolis has the notion of non-determinism and
naturally this will not work with the current FSM structure. In-
stead on adding some constraint to the FSM, perhaps MOCHA
and reactive modules could exploit this. Naturally, the next step
for larger models is to get this to work for the TTL and YAPI
libraries.

ACKNOWLEDGEMENTS

Thanks to Felice Balarin, John Moondanos, Roberto
Passerone, Harry Hsieh, and Yoshi Watanabe for their valuable
input and guidance without which this project would not have
been possible.

REFERENCES

[1] ALUR, R., AND HENZINGER, T. A. Reactive modules. Formal Methods
in System Design: An International Journai 15, 1 (July 1999), 7-48.

[2] ALUR, R., AND HENZINGER, T. A. Hierarchical Verification. Draft,
Mar 2003, ch. 8.

[3] ALUR, R., HENZINGER, T. A., MANG, F. Y. C., QADEER, S., RAJA-
MANI, S. K., AND TASIRAN, S. MOCHA: Modularity in model check-
ing. In Computer Aided Verification (1998), pp. 521-525.

[4] BALARIN, F., HSIEH, H., JURECSKA, A., LAVAGNO, L., AND
SANGIOVANNI-VINCENTELLI, A. Formal verification of embedded sys-
tems based on cfsm networks. In Proceedings of the 33rd annual confer-
ence on Design automation conference (1996), ACM Press, pp. 568-571.

[5] BALARIN, F., LAVAGNO, L., PASSERONE, C., SANGIOVANNI-
VINCENTELLI, A., SGROI, M., AND WATANABE, Y. Modeling and
designing heterogeneous systems. Tech. rep., University of California,
Berkeley.

(6] DE Kock, E. A., SmITS, W. J. M., VAN DER WOLF, P., BRUNEL,
J.-Y., KRUJTZER, W. M., LIEVERSE, P., VISSERS, K. A., AND ES-
SINK, G. Yapi: application modeling for signal processing systems. In
Proceedings of the 37th conference on Design automation (2000), ACM
Press, pp. 402-405.

[7) E. M. SENTOVICH, K. J. SINGH, L. LAVAGNO, C. MOON, R. MUR-
GAl, A. SALDANHA, H. Savol, P. R. STEPHAN, R. K. BRAYTON, AND
SANGIOVANNI-VINCENTELLI, A. SIS: A system for sequential circuit
synthesis. Tech. rep., University of California, Berkeley, 1992.

[8) HENZINGER, T. A., JHALA, R., MAJUMDAR, R., NECULA, G. C.,
SUTRE, G., AND WEIMER, W. Temporal safety proofs for systems code.
In Proceedings of the 14th International Conference on Computer-Aided
Verification (CAV) (2002), Lecture Notes in Computer Science 2404,
Springer-Verlag, pp. 526-538.

[9] HsieH, H., BALARIN, F., LAVAGNO, L., AND SANGIOVANNI-

VINCENTELLI, A. Syncronous approach to functional equivalence of em-

bedded system implementations. JEEE Transactions On Computer-Aided

Design of Integrated Circuits and Systems 20, 8 (Aug 2001), 1016-1033.

NAOR, N., LERMAN, Y., AND KESSLER, M. Forte/fl user guide. Tech.

rep., Intel Corporation, Jan 2003.

NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND WEIMER, W. CIL:

Intermediate language and tools for analysis and transformation of C pro-

grams. Lecture Notes in Computer Science 2304 (2002), 213-228.

STREHL, K., AND THIELE, L. Symbolic model checking of pro-

cess networks using interval diagram techniques. In Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD-98) (San Jose, California, 8-12, 1998), pp. 686-692.

(10]
(1]

12

APPENDIX I
METROPOLIS MODELS

package test;
process XX {

port IntReader port0;
port IntWriter portl;

public XX(String name) {}
void thread() {
int w=20, r = 0;
while (w < 30) {
block (Outer) {
await {
(portl.nspace() > 0;
portl.intWriter; portl.intWriter){
portl.writelnt (w);
w=w+ 1l;
}
{port0.num() > 0;
port0.intReader; port0.intReader)
r = portO.readInt();

package test;
process XX2 {

port IntReader port0;
port IntWriter portl;

public XX2(String name) {}
void thread() f{
int w =0, r = 0;

while (w < 30} {
block (Outer) {
await {
(portl.nspace() > 0;
portl.intWriter; portl.intWriter}{
portl.writelnt (w);
port0.readint();
w=w+ 1;
}
(port0.num() > 0;
port0.intReader; port0.intReader)
r = port0.readlInt();

APPENDIX 11
VISUAL REPRESENTATION SNIPPET FOR XX.MMM

Group: 5

Parents: 4 5 5 5

Types: 128 25 51 152

Inputs:

Outputs: writeInt portl

Misc:

Names: AwaitGuardNode BlockNode ObjectFieldAccessNode
ThisPortAccessNode

Cond Codes: 0 0 0 0

|

A

Group: 6

Parents: 5 6

Types: 152 51

Inputs:

Outputs: portl_end writeInt_end

Misc:

Names: ThisPortAccessNode-End ObjectFieldAccessNode-End
Cond Codes: 0 0

I

v

APPENDIX III
REACTIVE MODULE

//Reactive Module of Metro CFA
module XX is

external thread_input, w_input, r_input : bool

interface r, w, writelnt, portl, portl_end, writelnt_end,
readInt, port0, portO_end, readInt_end : bool

private s0, sl1, s2, s3, s4, s5, s6, s7, s8, s9, sll : bool

atom cfa controls s0, sl, s2, s3, s4, s5, s6, s7, s8, s9,
sll, r, w, writelnt, portl, portl_end, writeInt_end,
readInt, port0, portO_end, readInt_end

reads thread_input, w_input, r_input, s0, sl, s2, s3, s4,
s5, s6, s7, s8, s9, sl

init
[} true -> s0’ := false; sl’ := true; s2’ := false;
83’ := false; s4' := false; 85’ := false; s6’ := false;

s7' := false; sB' := false; s9’ := false; sll’ := false;

r’ := false; w’' := false; writelnt’ := false;

portl’ := false; portl_end’ := false; writelnt_end’ := false;
readInt’ := false; port0’ := false;

portO_end’ := false; readInt_end’ := false;

update
[} s0 = true -> s0’ := true;

[} s1 = true -> s1' := true;

[} thread_input = true & sl = true -> s2’ := true;
r’ := true ; w' := true ;

[} w_input = true & s2 = true -> s3’ := true;

[} 83 = true -> 34’ := true;

[l s4 = true -> 55’ := true; writelnt’ := true ;
portl’ := true ;

[l 85 = true -> 56’ := true; portl_end’ := true ;
writelnt_end’ := true ;

[l w_input = true & w_input = true & w_input = true
& 56 = true -> s7’ := true;

[)] r_input = true & s5 = true -> s8' := true;
readInt’ := true ; port0’ := true ;

[} sB = true -> 59’ := true; portO_end’ := true ;
readInt_end’ := true ;

[} s8 = true -> si1’ :

= true;

APPENDIX IV
KISS FILE

#Kiss File for XX.mmm

#Generated by CFA Backend

i3

.0 10

.5 11

.p 9

Variable Order

? thread w r *** r w writelnt portl portl_end
writeInt_end readInt port0 port0O_end readInt_end
100 s1 s2 1100000000

010 s2 s3 0000000000

000 s3 s4 0000000000

000 s4 s5 0011000000

000 s5 s6 0000110000

010 s6 s7 0000000000

001 s5 s8 0000001100

000 s8 s9 0000000011

000 s9 s11 0000000000

.e

APPENDIX V
BLIF FILE

.model XX.kiss

.inputs IN_O0 IN_1 IN_2

.outputs OQUT_0 OUT_1 OUT_2 OUT_3 OUT_4 OUT_5
QUT_6 OUT_7 OUT_8 OUT_9

.latch v5.0 LatchOut_v3 0

.latch v5.1 LatchOut_v4 0

.start_kiss

Wi 3

.0 10

.p 13

.s 4

.r SO

000 SO S1 0000000000

010 S0 SO 0000000000

100 S0 SO 1100000000

000 S1 s2 0011000000

010 S1 SO 0000000000

100 S1 SO 1100000000

000 S2 SO 0000110000

001 S2 S3 0000001100

010 S2 SO 0000000000

100 S2 SO 1100000000

000 S3 SO 0000000011

010 S3 SO 0000000000

100 S3 SO 1100000000

.end_kiss

.latch_order LatchOut_v3 LatchOut_v4

.code SO0 00

.code S1 11

.code S2 01

.code S3 10

.names LatchOut_v3 LatchOut_v4 [39) (30}

111 1

.names v5.0 LatchOut_v3 [39] [32]

001 1

.names LatchOut_v3 [40] [36)

111

.names IN_2 LatchOut_v3 ([40) v5.0

1--1

-01 1

.names [30) LatchOut_v3 [40] v5.1

1--1

-01 1

.names IN_O0 OUT_C

11

.names IN_0 OUT_1

11

.names [30] OUT_2

11

.names [30] OUT_3

11

-names [32) OUT_4

11

.names [(32] QUT_S

11

-names IN_2 OUT_6

11

.names IN_2 OQUT_7

11

.names [36] OUT_8

11

.names {36] QUT_9

11

.names IN_O IN_1 [39}

00 1

.names LatchOut_v4 (39] [40}

011
.exdc

.inputs IN_0 IN_! IN_2 LatchOut_v3 LatchOut_v4

.outputs v5.0 v5.1 OUT_0 OUT_1 OUT_2 OUT_3 OUT_4¢
QUT_S OUT_6 OUT_7 OUT_8 OUT_9

.names IN_0 IN_1 IN_2 LatchOut_v3 LatchOut_v4 v5.0

11--—-
1-1--
-11--—
—11-
--1-0

e

.names IN_0O

11---
1-1--
11—
——11_
--1-0

-

.names IN_O

11-—-
1-1--
-11--
—11-
--1-0

i

.names IN_O

11---
1-1--
_11__
-—11-
--1-0

bt b pes e

.names IN_O

11-— 1
1-1-- 1
-11-- 1
--11- 1
--1-0 1

.names IN_O

11---
1-1--
-11--
——11_
--1-0

=

.names IN_O

11---
1-1--
-11--
-—11-
--1-0

R

.names IN_O

11---1
1-1-- 1
-11--1
-=11- 1
--1-0 1

.names IN_O

11--—-
1-1--
—-11i-——
—_—11-
--1-0

= e

.names IN_D

11--- 1
1-1-- 1
-11-- 1
-~11~ 1
--1-0 1

.names IN_O

11--- 1
1-1-- 1
-11-- 1
--11- 1
--1-0 1

.names IN_0

11--- 1
1-1-- 1
-11-- 1
--11- 1
--1-0 1
.end

IN,

1

IN_1

IN_1

IN_1

IN_1

IN.1

IN_1

IN_1

IN1

IN_}

IN_1

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v3

LatchOut_v4

LatchOut_v4

LatchOut_v4

LatchOut_v4

LatchQut_v4

LatchOut_v4

LatchOut_v4

LatchOut_v4

LatchQut_v4

LatchOut_v4

LatchOut_v4

v5.1

ouT_0

OUT_1

ouT_2

ouT_3

OUT_4

ouT_S

OUT_6

ouT_7

QUT_8

OUT_9

