Copyright © 2004, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LOW COMPLEXITY, HIGH PERFORMANCE
ALGORITHMS FOR ESTIMATION
AND DECODING

by

Payam Pakzad

Memorandum No. UCB/ERL M04/20

1 May 2004

LOW COMPLEXITY, HIGH PERFORMANCE
ALGORITHMS FOR ESTIMATION
AND DECODING

by

Payam Pakzad

Memorandum No. UCB/ERL M04/20

1 May 2004

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Low Complexity, High Performance Algorithms for Estimation and
Decoding)

by
Payam Pakzad
B.S. (California Institute of Technology) 1998
M.S. (University of California, Berkeley) 2001
A dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in

Engineering — Electrical Engineering
and Computer Science

in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Venkatachalam Anantharam, Chair
Professor Michael Jordan
Professor Bernd Sturmfels

Spring 2004

Low Complexity, High Performance Algorithms for Estimation and Decoding
Copyright © 2004
by

Payam Pakzad

Abstract

Low Complexity, High Performance Algorithms for Estimation and Decoding
by
Payam Pakzad

Doctor of Philosophy in Engineering — Electrical Engineering
and Computer Science

University of California, Berkeley

Professor Venkatachalam Anantharam, Chair

The tremendous success of the graphical error-correcting codes has generated
great interest in iterative message-passing algorithms for approximate decoding and
estimation; indeed the applications of such approximation techniques extend to a
surprisingly vast range of fields of science and engineering, from thermal physics to
artificial intelligence, and from computer vision to communications and information
theory. In this thesis we will discuss two novel approaches to the general estimation
problem based on graphs; each approach results in methods which are superior, in
terms of performance and/or complexity, to the existing algorithms that solve the
same problem exactly or approximately.

In the first approach we reformulate the general estimation problem in a measure-
theoretic framework, free of the notion of ‘variables’, upon which the conventional
‘junction tree’ based methods heavily rely. This enables us to exploit all the under-
lying structure in the data of the problem, in order to reduce the complexity of the
underlying marginalization task. We introduce appropriate notions of independence
and junction trees, and the corresponding measure-theoretic junction tree algorithm,
and we give an automatic procedure, called ‘lifting’, that finds such low complexity
junction trees for a given marginalization problem. This automatic procedure often

gives rise to algorithms that are substantially less complex than those obtained using
1

the conventional methods.

The second approach is based on a recently discovered connection between the
fixed points of the well-known loopy belief propagation algorithm, and certain ‘varia-
tional free energy’ concepts from statistical physics. We discuss the general ‘Kikuchi
approximation method’ for solving a marginalization problem. We define appropri-
ate concepts of graphs and minimal graphs representing such problems, and. derive
several results on the strengths and limitations of the Kikuchi method based on the
graph-theoretic properties of these graphs.

In addition to theoretical discussions, for each approach we provide detailed exam-
ples and simulation results on several applications of interest, such as exact decoding
of low-density parity-check (LDPC) codes, and joint decoding of a partial response

magnetic recording channel and an LDPC code.

Acknowledgements

Throughout my academic lifé, I have been the fortunate recipient of contributions,
both academically and personally, from many individuals, whose help has alleviated
the long process of completing a doctoral degree.

I am most grateful to my advisor, Prof. Venkat Anantharam for his support and
encouragement. His unique insight, and the vast scope of his knowledge in engineering
and mathematics have been a source of intriguing research ideas and directions. I am
also thankful to Prof. Bora Nikolié for the opportunity to learn about the magnetic
recording applications; and to my dissertation committee members, Profs. Michael
Jordan and Bernd Sturmfels for their interest, support and feedback.

I would like to thank my wife, Irina, without whose love and support I would not
have accomplished this feat. My parents, Houshang and Farzin have been constant
sources of inspiration for me; their love and encouragement have carried me through
difficult times and against the odds. I have been fortunate to have my brother and
sister-in-law, Shamim and Niloofar, and my younger brother, Pooya live close-by for
most of my stay at Berkeley. Their love and assistance has made the experience of
these years quite pleasurable. My aunt and uncle, Mrs. Akhtar Mobini and Mr.
Naghi Mobini, and my cousins Kambiz and Sima have been my family away from
home, especially during my undergraduate years in southern California. I am grateful
for their constant support.

My good friend, Brian, who was one of the first people I met at Caltech, has been
a great source of information on most things related to computers and the internet.
Engling, whom I consider a true jack-of-all-trades (and even a master-of-a-few), has
been a fantastic friend and colleague. I would also like to thank Dr. Dimitrios Antsos
for all his help throughout the years. Finally, I would like to thank Ruth, Mary, and
the other friendly and helpful staff of the EE graduate office here at U.C. Berkeley.

Payam Pakzad

Contents

List of Figures viii
List of Tables - ix
1 Introduction and Overview 1
1.1 Marginalization Problems 3
1.2 Graphical Models e e e e e e e e e e e e e e e 4
1.2.1 Junction Tree Algorithm, GDL 7

1.2.2 Loopy Belief Propagation 9

1.3 Outline of the Rest of This Dissertation. 9

I Probabilistic Junction Trees 13
2 Introduction and Setup 15
2.1 Motivation L 15
2.2 Preliminaries e 17

3 Probabilistic Junction Trees 22
3.1 Probabilistic Junction Tree (PJT) Algorithm 24
3.2 Existence of Junction Trees 25
3.3 Algorithm to Find a Junction Tree 32

4 Construction of Junction Trees - Lifting 34
41 Liftingo o e e 34

4.2 Algorithm to Construct a Junction Tree 38
4.3 Measure Theory vs. Variables 39
5 Complexity Issues 44
5.1 Computing Conditional Expectations 44
5.2 Complexity of the PJT Algorithm 46
5.3 Complexity of Lifting 48
6 Examples 51
7 Summary and Discussion 73
II Kikuchi Approximation Method 75
8 Introduction and Setup 77
81 Motivation e 77
8.2 Setup and Notation e e e e e e e e 78
9 Kikuchi Approximation Method 81
9.1 Connection with Statistical Physics 81
9.2 Kikuchi Approximation Method 85
9.3 Lagrange Multipliers and Iterative Solutions 91
9.4 Convexity Conditions 92
10 Graphical Representations of the Kikuchi Problem : 96
10.1 Connection with Junction Trees 103

10.2 Necessary and Sufficient Conditions for Exactness of Kikuchi Method 106

11 Generalized Belief Propagation Algorithm 116
12 Experimental Results 123
12.1 Joint Decoding of LDPC Codes and Partial Response Channels . . . 127

iv

13 Summary and Discussion

Appendices

A Proofs from Part 1
A.1 Proofof Theorem 2.1
A.2 Proof of Correctness of Algorithm 3.1

B Proofs from Part 11
B.1 Proof of Theorem 109
B.2 Proof of Theorem 10.11.
B.3 Proof of Proposition 11.1

C Pairwise Partitions vs. Valid Partitions

D On the Positive Rank Decomposition of Matrices

E Overcounting Factors and Mobius Inversion Formula

F Some Bounds on the Error of Kikuchi Approximate Free Energy
G Legendre Transform, Plefka Expansion and Mean-Field Methods

H CCCP Algorithm to Minimize Kikuchi Free Energy

132

135

137
137
140

145
145
147
148

151

153

156

157

159

163

List of Figures

Pictorial illustration of Example 2.220

2.1

3.1 Augmenting junction trees; Lemma 3.3 27
3.2 Transformation of junction trees used in Theorem 3.4 31
4.1 Pictorial illustration of Example 4.1 35
6.1 GDL junction tree for Example 6.1 52
6.2 Junction tree for Example 6.2 56
6.3 DBayesian network of Example 6.3 57
6.4 Bayesian network for a probabilistic state machine 60
6.5 Junction tree created for chain of length 12 and memory 6 61
6.6 LDPC Codesof Example6.6. 64
6.7 Graph of CH-ASIA Example 69
6.8 Junction tree for CH-ASIA Example e e e 69
6.9 Trellis of the state machine withn=9andm=4. 72
8.1 Hasse diagram of the poset of Example 8.1 80
9.1 Tanner graphof alinearcode 90
9.2 Alternative poset of linear code of Example 9.1 91
10.1 Equivalence of edges forremoval 99
10.2 Hasse diagram vs. junctiontree 106
11.1 Asimple poset e e 120

11.2 Graphical representations of Example 11.1 121

12.1 Graphical representationsof Posets 1 125
12.2 Simulation resultson Poset 1 125
12.3 Graphical representations of Posets 2 126
12.4 Simulation resultson Poset 2 126
12.5 Graphical representations of Posets 3 127
12.6 Simulation resultson Poset3 [127
12.7 Block diagram for an LDPC/PR system 128
12.8 Graphical model for joint BP decoding of LDPC/PR problem 129
12.9 Simulation results for joint decoding of LDPC/PR 130

List of Tables

6.1 Comparison between complexity of GDL and probabilistic GDL. . . . 62
6.2 LDPC Results from Example 6.6 (see also Figure 6.6) 66

Chapter 1

Introduction and Overview

The ultimate objective of the communication theory is reliable transfer of informa-
tion in presence of noise. To achieve this objective, the information is typically first
encoded using an error-correcting code, suitably designed for the specific noisy chan-
nel of communication. The noisy observations are then used to decode the original
information. Probability theory gives a convenient framework to deal with this prob-
lem. First, the noisy channel is modelled by the joint probability distribution of its
inputs and outputs; the challenge involved here is to devise models, which are both
accurate enough to represent the underlying physical system, and simple enough to
allow for efficient analysis. Next, a code is designed to combat the channel noise
by introduction of redundancy; once again, in general there is a trade-off between
the error-correcting capabilities of the code and the complexity of the encoding and
decoding process. The optimal decoding is then performed using the mazimum a
posteriori (MAP) method, in which the configuration with the highest probability
given the observations, is chosen.

More generally, an estimation problem is that of finding the best ‘estimates’, in
the sense of minimizing the probability of error, of a random variable given a body
of observations. This is also known as the probabilistic inference problem. Applica-
tions of the probabilistic inference problem range from medical diagnosis to image
processing, and from speech recognition to error-correcting codes.

The fundamental problem with the straightforward approach to the inference
1

problem is that computing the optimal estimates can be prohibitively complex. Real
systems have myriads of states, and unless an appropriate form of ‘modularity’ is-
introduced, the probabilistic calculations will not be feasible to perform. Graphical
models are an attractive way to represent such ‘modula.;’ models, and the corr_espond—
ing efficient estimation algorithms are described in form of local message-passing al-

gorithms on such graphs.

Graphical models and message-passing algorithms on graphs have seen a resur-
gence of interest in the communications and coding communities because of the suc-
cess of the recently invented turbo codes [6] and the older low density parity check
(LDPC) codes [20] which use such decoding algorithms. They have also long been of
interest to the artificial intelligence community, see e.g. [33; 10]. In fact, ‘codes on
graphs’ have been so successful that they have fundamentally changed the face of the
coding theory, effectively replacing the more complex algebraic codes as the state-of-
the-art error-correcting codes. Using iterative message-passing decoding algorithms,
it is now possible to decode, in real time, LDPC codes with block-lengths of hundreds
of thousands of bits on an average personal computer, achieving rates very close to
the Shannon capacity, see e.g. [9]; decoding good codes with such large block sizes

were unthinkable just over a decade ago.

In spite of these success stories, the conventional graphical methods have their
own shortcomings, and there is always room for improvement. In this document we
discuss two novel approaches to the general estimation problem based on graphical
models; each approach results in methods, which are superior, in terms of performance
and/or complexity, to the existing algorithms that solve the same problem exactly or

approximately.

The rest of this chapter is devoted to a brief overview of the graphical models and
the corresponding message-passing algorithms, which will serve as the background for
our main discussion in Parts I and II. An outline of the rest of this dissertation is

_given in Section 1.3.

1.1 Marginalization Problems

In this section we formulate the central estimation problem addressed in this doc-
ument, as one of two types of marginalization problems: marginalizing a product
function (MPF), or the more specialized problem of marginalizing a product distri-
bution (MPD).! Part I of this document discusses a method to find exact solutions
to an MPF problem, while Part II deals with finding exact or approximate solutions
to an MPD problem.

Let x := (z1,--+ ,Tn), where for each i € [N] := {1,:--,N}, z; is a variable
taking value in the discrete finite set [¢;] :== {1,--- , ¢}, with ¢; > 2. For each subset.

s C [N], we denote by x; € [],.,[¢:] the vector comprised of the variables, whose

i€s
indices appear in s.

Let R be a collection of subsets of [N]; we call each 7 € R a local domain (usually
in the context of an MPF problem), or a region (in the context of an MPD problem).
We assume that each variable index i € [N] appears in at least one such r € R.

Associated with each region r € R is a local kernel function, o, (x;), depending
only on the variables that appear in 7. Then the corresponding R-decomposable
product function is defined as
I(x) := [] ar(xr) (1.1)

reR

For a subset s C [N], we define II.(x,) :=) II(x) as the r-marginal of II(x),

X[N)\r
where the summation is taken over the complete range of the underlying vector, i.e.

xvvr € [Liepvp i)

Problem 1.1 (Marginalizing a product function (MPF)). For one or more
local domains r € R, find the r-marginal I1, (x,). O

In estimation, one is usually interested in the probability distribution which is

induced by the local kernels. Assuming that all the local kernels are nonnegative, we

!These formulations and the corresponding notation are, for the most part, adopted from [2].

3

define the corresponding R-decomposable (Boltzmann) product distribution as

B(x) = % IT o (x) (1.2)

reER

Here Z :=), [l,cpar(xs) is the normalizing constant and is called the partition

function.

Problem 1.2 (Marginalizing a product distribution (MPD)). For one or more
regions v € R, find the r-marginal B.(x,), as well as the partition function Z. O

It is evident that the MPD problem can be viewed as a special case of the MPF
problem, where the partitioﬁ function Z is viewed as a marginal, Ilp, of the product
function, and where other marginals of B(x) are obtained from the corresponding
marginals of II(x) after dividing them by Z. However, because of the importance of
the problems that fall in this category, we have chosen to define MPD as a sépa.ra,te

class of problems.

1.2 Graphical Models

Although easy to state, the marginalization problems defined in the previous section
are fundamentally hard to solve. The obvious reason is that the underlying state
space is exponentially large in the number of the variables, and the straightforward
‘brute force’ ways to carry out the calculations will require as many operations as the
number of states; in fact, for the most general marginalization problems there are no
better ways known, than this very approach. Fortunately, however, in many cases
of interest one can satisfactorily model the underlying system, so that the marginal-
ization problem will have enough ‘structure’ to be efficiently solvable. Conditional
independence relations are the best form to express such structures; each such re-
lation will allow the marginalization task to be broken up into smaller, and more
manageable, subproblem.

Graphical models are the powerful tools used to efficiently store these conditional

independencies and represent the structure in the problem. The graphical represen-
4

tations of complex probabilistic relationships are not only compact, but also often
more humanly comprehensible. In addition, as it turns out, some of the most effi-
cient methods to solve the marginalization problem can be viewed as message-passing -
algorithms on such graphs.

There have been numerous articles and books discussing different variations of
graphical models, from Bayesian networks and chain graphs, to facto.rs graphs and
trellises. The common feature of all these models is that conditional independencies
are represented by an appropriate notion of separation on the graph. We will not
discuss the nuances of different classes of graphical models, and rather refer the reader
to the following, or a number of other good references: (33; 10; 25; 17; 41; 21]. For
the purposes of this document and in the context of the marginalization problems
posed in Section 1.1, by a graphicel representation we mean an ‘independency map’
or I-map, as defined in [33]: A (directed or undirected) graph G with one-to-one
correspondence between the elements of R and the nodes of G, such that separation
on the graph implies conditional independence. Our concept of graph separation is
the conventional one, where two (subsets of) nodes are sajd to be separated, given a
third node if every (directed or undirected) path connecting the two passes through
the third node.

We define a conventional junction tree as follows:

Definition 1.1. Let R be a collection of subsets of the index set [N]. A tree/forest
- G with vertices corresponding to the elements of R is called a junction tree/forest on
R if for each ¢ € [N], the subgraph of G consisting of all the vertices that contain i is
connected. An equivalent condition is that, for every triple of regions r, s,t € R such

that node s separates r and ¢ on G, we must have rN¢ C s. O

Although junction trees are traditionally defined as undirected trees, in the above
definition we do not make distinction between directed and undirected graphs; we

call a directed graph a junction tree if its undirected version is a junction tree in the

usual sense.

The junction tree algorithm, which we will discuss in the next section, is an effi-
cient message-passing algorithm that solves an MPF problem exactly. The complexity
of that algorithm depends on the sizes of the regions associated with the nodes of the

underlying junction tree.

A junction tree may or may not exist on a given a collection R of regions. There
is a rather simple way to answer the question of existence of a junction tree on R,
and find a junction tree if one exists:
As described in Section 4 of [2], we can define a local domain graph Grp for the
collection R. This is a weighted complete graph with vertices that correspond one-
to-one with the local domains r € R, with the weight of the edge (r, s) given by
Wrs = |7 N's|. Then a junction tree exists on R iff wmes =Y, o5 |7| — N, where wmqs
is the weight of a maximum weight spanning tree of Gyp, and as before N is the
total number of variables (see [2]). In case that equality holds, any maximum weight
spanning tree of Gy p will be a junction tree. Therefore the problem of existence of
a junction tree can be solved using a greedy algorithm (such as Prim’s algorithm or

Kruskal’s algorithms, see e.g. [8]) to find a maximum weight spanning tree of Gyzp.

When a junction tree does not exist, there are systematic ways to expand the
regions of R to guarantee existence of a junction tree on the expanded collection.
Given the setup used to define the marginalization problems of Section 1.1, we define
the moral graph for the problem as an undirected graph with vertices 1,--- , N, where
an edge (i,7) exists iff {i,5} C r for some r € R. It is known that a junction tree
of the cliques of a graph G exists iff G is triangulated or chordal, i.e. every cycle
of length 4 or more on G has a chord (see e.g. [10] Section 4.3). Then the general
procedure to construct a junction tree is the following (moralization and triangulation
process): form the moral graph and triangulate it; then a junction tree will exist on
the cliques of the triangulated graph. Note that by construction, each local domain
T € R is contained in some clique of the moral graph, and in this sense a junction

tree on these éliques can also be viewed as a junction tree on R. The triangulation
6

process in effect expands the cliques of the moral graph — by adding variables — in a
way to create conditional independencies which are required on a junction tree.
There are efficient algorithms to find a triangulation of a given graph, although
the general problem of finding the optimal triangulation for moral graph of a GDL
problem is NP-hard (see [10]), where optimality is measured in terms of the complexity
of the message-passing algorithm on the junction tree created from the' cliques of the

triangulated graph.

1.2.1 Junction Tree Algorithm, GDL

In this section we describe the well-known message-passing algorithms on junction
trees, which solve the marginalization problems of Section 1.1. A general frame-
work for describing such algorithms was described by Shafer and Shenoy [38]. Aji
and McEliece [2] gave an equivalent, and for our purposes, slightly more convenient,
framework known as the generalized distributive law (GDL) to describe such algo-
rithms. Throughout this document we will use both names — GDL and the junction
tree algorithm— interchangeably, but will frequently use the GDL notation from (2] to

show connections with this work.

Suppose G is a junction tree on R, with local kernels {o,(x,),7 € R}. Let
{E, -+ ,Er} be a message-passing schedule, viz. the ‘messagé’ along the directed
edge (7, s) of the graph is updated at time ¢ iff (r, s) € E;. The following asynchronous
message-passing algorithm (GDL) will solve the MPF Problem 1.1:

Algorithm 1.1 (JT, GDL). At each time n and for all pairs (r,s) of neighboring
nodes in the graph let the ‘message’ from r to s be a function ur, : [icrnsl@:] — R-
Initialize all messages to 1. At each timen € {1,--- ,T}, if the edge (r,s) € E, then

update the message from node r to s as follows

pro(ens) = D _ar(x,) [w87 () (1.3)
Xr\s teN-\{s}
7

where N, is the set of neighbors of r in G.

This algorithm will converge in finite time, -at which time we have:

br (%7) = () [merloior) = (o) i= D0 ([Jenx)) (19)

teN, XN\ LER

Proof. See [2]. D

Remark. As noted in [38] and [2], the marginalization problems of Section 1.1, as well
as Algorithm 1.1 above, can be generalized on any semiring; A (commutative) semir-
ing is a set with operations + and x such that both + and x are commutative and
associative and have identity elements in the set, denoted by 0 and 1 respectively, and
X is distributive over +. The obvious semiring with usual addition and multiplication
is called sum-product. Another very useful semirings is the maz-product semiring, in
which the objective is to find the maximum of the product function over the different
configurations of the state vector, e.g. in order to perform maximum a posteriori
(MAP) estimation. |

Algorithm 1.1 above will solve the MPF problem with the given semiring algebra,
as long as equations (1.3) and (1.4) are also interpreted in the same semiring. Note
that the key property of a semiring, which allows for localization of calculations, is
the distributivity of x over +. O

Historically, variations of Algorithm 1.1 are known by different names in different
scientific and engineering communities. Most notably, the belief propagaion (BP) al-
gorithm of [33] is a version of the above algorithm, designed to solve an MPD problem.
Note that in an MPD problem, where the desired marginals are probability distribu-
tions, each message-update rule (1.3) can be conveniently scaled by a constant factor,
without any loss of information; at termination we simply re-normalize the functions
b.(x,), which are now called the beliefs, so to obtain valid probability distributions,

summing to 1.

1.2.2 Loopy Belief Propagation

Although convergence and correctness of Algorithm 1.1 depends on the graph G‘ being
a junction tree and hence loop-free, note that the BP algorithm can be applied on a
graph with loops, as an attempt to approximate solutions of an MPDvproblem, seee.g.
[26] for an empirical study. Existence of loops can create undesirable situations, where
the ‘old information’ from a part of the loop will be regarded as new information;
in fact, in the general case, there is no guarantee that an iterative Algorithm 1.1 on
a loopy graph will even converge. However, if the loops of the graph are large (say,
larger than the number of iterations of the algorithm,) or the ‘interdependencies’
around the loops are weak in an appropriate sense, then one expects the algorithm
to produce reasonable approximations to the desired marginals. Indeed, loopy belief
propagation algorithm has been used with enormous success for decoding turbo codes
[6] and low-density parity check (LDPC) codes [13; 20]. However, despite a number
of excellent partial results which have considerably increased our understanding of
the dynamics of such algorithms (see e.g. [37; 46; 36; 11; 35; 20]), so far a general
characterization of the quality of approximation and convergence properties of loopy

belief propagation has not been discovered.

1.3 Outline of the Rest of This Dissertation

This document is organized in two main parts. Part I introduces a novel, measure-
theoretic, junction-tree based approach to solve the MPF problem (1.1) exactly. In
Chapter 2 we give motivation for a measure-theoretic approach, and introduce some
basic concepts from measure theory, which we will use throughout Part 1. We will
take careful steps to ensure that concepts such as conditional independence and ex-
pectation are well-defined for signed measures. As we will see, the ability to work with
signed measures simplifies the task of creating independencies, which is an essential

requirement for creating junction trees.

In Chapter 3 we reformulate the marginalization problem at hand in the measure-
theoretic framework, and define the appropriate notion of a junction tree. We then
give the probabilistic version of the junction tree algorithm in Section 3.1. Sections 3.2
and 3.3 discuss the existence of junction trees and give an algorithm to find one, if

one exists.

Chapter 4 contains the core of our contribution in Part I. There we introduce the
concept of ‘lifting’, as a way to éreate the required conditional independencies on a
junction tree. This results in the algorithm of Section 4.2 to create a junction tree.
In Section 4.3, in light of the theory that is developed, we compare and contrast the

conventional variable-based approaches with our measure-theoretic approach.

In Chapter 5 we discuss the complexity of our methodology. We start with the
complexity of computing a single conditional expectation in Section 5.1. Then in
Sections 5.2 and 5.3 we discuss the complexity of our probabilistic junction tree

algorithm, and the algorithm to create a junction tree.

In Chapter 6 we give several examples of application of our method, in each case
comparing the resulting message-passing algorithm with the conventional junction
tree solution. Of particular interest is the observation that the minimal complexity
trellis-based decoding algorithm for linear block codes can be very naturally described
as an instance of lifting in our framework. Finally in Chapter 7 we further discuss

and summarize our results.

Part II of this document is devoted to a discussion of the Kikuchi approzimation
method, which is a “free energy minimization”-based approach to obtain exact or
approximate solution to an MPD problem (1.2). The junction tree algorithm and
the loopy belief propagation discussed in Sections 1.2.1 and 1.2.2 can be obtained
from special cases of the Kikuchi approximation method. In Chapter 8 we give an
overview of the approximation methods based on free energy minimization, and set

up the notation for the rest of Part II.
10

In Chapter 9 we present a detailed description of the Kikuchi approximation
method. Section 9.1 discusses the connection between the marginalization problems
of Section 1.1, and free energy concepts from statistical physics. In Section 9.2 we
define the Kikuchi approximation method in terms of the solutions. of a constrained
minimization problem. As we will discuss in Section 9.3, Lagrange multipliers method
can be used to define iterative algorithms whose fixed points coincide. with the sta-
tionary points of this constrained minimization problem. We also discuss conditions
for the convexity of this problem in Section 9.4.

We introduce graphical representations for a Kikuchi problem in Chapter 10. For
each such problem we specify the minimal graphical representations, as those with
the fewest edges. From a practical point of view, these minimal graphs result in
iterative solutions with the fewest number of messages at each iteration, and are
hence the most compact. At the same time, the minimal graphs are closely related
to the traditional junction trees, as we will discuss in Section 10.1. In Section 10.2
we report our main theoretical results of Part II, in form of necessary and sufficient
conditions for the exactness of the Kikuchi approximation method. In particular, we
will show that for generic MPD problems, the Kikuchi approximation method can
produce exact solutions if and only if the corresponding minimal graph is loop-free.

In Chapter 11 we derive a version of the generalized belief propagation (GBP)
algorithm of [49] on any graphical representation of the Kikuchi problem. The results
reported here are a generalization of those in [49], [50] and [23].

In Chapter 12 we report the simulation results of running the GBP algorithm on
a few specific choices of Kikuchi problems. In each case we compare the convergence
behavior of our compact version of GBP on the minimal graph with those of the
conventional GBP of [50] (or the Poset-BP of [23]). Finally in Section 12.1 we give
the result of applying the Kikuchi approximation method to the specific problem of
joint decoding of a low-density parity-check code and a partial response channel. In

Chapter 13 we discuss and summarize the results of Part II.

11

Part 1

Probabilistic Junction Trees

13

Chapter 2

Introduction and Setup

2.1 Motivation

Local message passing algorithms such as GDL aim to solve the MPF problem 1.1 of
Section 1.1, to find the desired set of marginals of a product function. As discussed
in Section 1.2.1, GDL makes use of the distributivity of the ‘product’ operation over
‘summation’ in an underlying semiring to reduce the complexity of the required calcu-
lations for a given marginalization problem. In many cases this translates to substan-
tial savings over brute-force computation. However, as we shall see in this document,
sometimes there is more structure available in the product function than the conven-
tional way of thinking about GDL can discover. This is because GDL relies solely on
the notion of variables; any structure at a finer level than that of variables will be

ignored by GDL. We illustrate these limitations in the following simple example:

Example 2.1. Let X and Y be arbitrary real functions on {1,---,n}. Let u(s,j)
be a fixed real weight function for ¢, € {1,---,n}, given by an n X n matrix M
with u(3,7) = M;;. We would like to calculate the weighted average of X - Y:
E =310 2 X@Y ()u,).

The general GDL-type algorithm (assuming no structure on the weight function
w) will suggest the following: |

n n
E=) X)) Y@)uG i),

i=1 i=1

15

requiring n(n + 1) multiplications and (n — 1)(n+1) additions. But this is not always
the simplest way to calculate E.

Consider a ‘luckiest’ case when the matrix M has rank 1, i.e. the weight function
14, j) factors as f1(i) - f2(j). In this case E = (Y1, X(0)f1(9)) (Xi=; Y(5) fo(5)),
requiring only 2n + 1 multiplications and 2n — 2 additions.

Suppose next that p(z,j) does not factor as above, but the matrix M ha's a low
rank of 2, so that u(i, j) = f1(2) f2(5) +91(2)g2(s). Then we can compute E as follows:
E= (ZX () f1(5)) Z Y(5)£0)) + ZX (8)91(3)) ZY (7)92(5))

i=1 i=1 j=1
This requires 4n + 2 multiplications and 4n — 4 additions.
Next suppose that the fixed weight matrix M is sparse, for example with u(i, j) =
m; 1(i + j — n — 1 =0), where 1(-) is the indicator function. Then
n
E=) mX@Y(n+1-4),
i=1
requiring only 2n multiplications and n — 1 additions.
o It would be nice to have an automatic procedure to discover the existence of such
complexity reducing opportunities. The goal of the first part of this dissertation is to

develop such a procedure. O

Note that in each case in Example 2.1, some (manual) introduction of hidden
variables and/or redefinition of functions would allow the conventional GDL to also
discover the best method of calculation. However we do not consider this prepro-
cessing phase as part of the GDL treatment. Our aim is to develop an automatic
procedure that aims to discover such potentially useful structures in the data.

We introduce a measure-theoretic framework which goes beyond the focus on ‘vari-
ables’ to represent the states of the data. With the conventional GDL approach, once
one chooses the set of variables to represent the state-space, the consequent attempts
to create independencies in order to find a junction tree (i.e. the moralization and

triangulation procedure) are confined to working with that chosen set of variables.
16

The primary advantage of our reformulation is to get rid of this restriction. The
alternative we provide to the moralization and triangulation procedure, which we call
‘lifting,” automatically discovers a way to exploit structure that is not aligned to the
variables, which the usual approach is unable to discover. For instance, in the ex-
ample above, we can automatically discover the advantage of the low rank of matrix
M. '

Our measure-theoretic framework replaces GDL’s concept of ‘local domains’ with
o-fields in an appropriate sample-space. We also replace GDL’s ‘local kernels’ with
random variables measurable with respect to the corresponding o-fields. The problem
of finding the marginal with respect to a local domain is then naturally replaced
by that of taking the conditional expectation given the corresponding o-field. As
we shall see, this representation has the flexibility to capture both full and partial
independencies in the state space.

Our formalism includes the conventional GDL as a special case, in the sense that
any junction tree that moralization and triangulation can produce in the conventional
GDL can also be discovered using our framework.

Remember that GDL algorithm of Section 1.2.1 generalizes to arbitrary semirings.
Similarly, our results are generalizable to an arbitrary semifield’. However in the rest
of this document we focus on the sum-product algebra in order to avoid abstract

distractions.

2.2 Preliminaries

Let (2, M) be a discrete measurable space, i.e. S is a finite or countable set and M is
a o-field on Q. Let 1 : M — (—00, 00) be a signed measure on (2, M), i.e. u(@) =0

and for any sequence {a;}2, of disjoint sets in M, w(U7" a:) = Y7 #(a;), where the

1A semifield is an algebraic structure with addition and multiplication, both of which are commu-
tative and associative and have identity element. Further, multiplication is distributive over addition,
and every nonzero element has a multiplicative inverse. Such useful algebras as the sum-product
and the max-sum are examples of semifields (see [4]).

17

infinite sum is implicitly assumed to exist. Then (2, M, u) is called a measure space.
As a matter of notation, we usually write p(ai,az,- - ,a,) for p(a; NazN---Nay).
Also, given events a and b with u(b) # 0, we write u(a|b) for the ratio i‘ﬁ‘(’—;’)ﬂ.

Let 7,G,H and {F1,--- ,Fum} be sub o-fields of M.

Definition 2.1.

e Atoms of a o-field: We define the set of atoms of F to be the collection of the

minimal nonempty measurable sets in F w.r.t. inclusion:
AF):={feF : f#0, andVge F, fnge {0, f}}.
We also denote by A'(F) th;a set of atoms of F with nonzero measure:
A(F) = {f € A(F) : u(f) #0}.

o Augmentation of o-fields: We denote by F V G the span of 7 and G, i.e. the
smallest o-field containing both F and G. For a set A of indices, we write F4
for \/;c4 Fi, with Fp := {0, Q}, the trivial o-field on Q. Note that the atoms bf
F V G are all in the form f N g for some f € A(F) and g € A(G). |

e (Conditional Independence: We say F is conditionally independent of G given H
and write F 1. G | ‘H w.r.t. u when for every atom h of H,

- if u(h) =0thenVfe€ F,g€G, u(f,g,h)=0

— if u(h) #0then Vf € F,g€ G, ul(f,9,h)u(h) = p(f,h)u(g,h).

When the underlying measure is obvious from the context, we omit the explicit
mention of it. Similarly, we say a collection {Fi,---,Fp} of sub o-fields are
mutually conditionally independent given H, and write Fy IL Fp Il - - - Il Fy|H,
if AV, F; |Hforallie{1,---, M}

o Independence: We say F is independent of G or F 1L G w.or.t. u when

18

Note that these definitions are consistent with the usual definitions of indepen-

dence when u is a probability measure.

e Partially-defined Random Variables: A partially-defined random variable X in
F is a partially-defined function on {2, where for each r in the range of X,
X~1(r) is measurable in F. We write X € F, and denote by Ax(F) the subset
of A(F) where X is defined.

e FEzpectation and Conditional Expectation: Assuming () # 0 and that the sum

exists, we define the ezpectation of X as

E[X] := Z X(f)u(f) (2.1)
feA (F)
Z X(f)u(fl)
FEAX(F)

When the sum exists, we define the conditional ezpectation of X given G, as a

partially-defined random variable Y in G, defined on Ay(G) := A'(G), as

E[X|G](9) = —= () E X(f)u(g, f) for each atom g € A'(G) (2.2)
fEAX(F)
> X(Hulfle) for g € A'(G)
feAx(F)

O

It is important to note that equations (2.1) and (2.2) should not be taken at face

value, as prescribing the way to carry out the summation; in many cases, such as the

ones in Example 2.1, the calculation can be simplified. We will address this in detail

in Section 5.1 in the context of our general method to create independencies.

Remark. It should be kept in mind that the definitions above are tailored to work with

a signed measure u. Indeed some of the specifications above would be unnecessary

if the measure u were unsigned; e.g. in the definition of conditional independence

19

above, the first condition is automatically true for an unsigned measure, because in
that case u(f,g,h) < p(h) for all f,g,h. Similarly, the introduction of the partially-
defined random variables is only necessary in order to deal with such anomalous
situations with signed measures, where a zero-measu;ed event can have non-zero-
measured subsets, i.e. where we have u(f U g) = 0 while u(f) # 0 and u(g) # 0 for
some f,g € M. As we shall see, however, the derivation of the forthcoming .theory
with signed measures significantly simplifies the essential task of creating conditional

independencies. O

The following simple example illustrates some of the basic concepts above:

Example 2.2. Consider a simple sample space { = {0,--- ,9}.

(a) (b) ©

Figure 2.1: Pictorial illustration of Example 2.2
(a) Atoms of F,, (b) atoms of F3, and (c) atoms of F, V F.

Each o-field is defined by its set of atoms, as a partition of Q. Figures 2.1(a) and
(b) illustrate two o-fields F, and F, where A(F,) = {{0,1,2,3,5,7},{4,6,8,9}}
and A(%) = {{0,1},{2,3,4,5,6},{7,8,9} }. Figure 2.1(c) illustrates the augmented
o-field F, V F, where A(F, V F) = {{0,1},{2,3,5},{4,6},{7},{8,9}}.

If X is a random variable in F,, then X would be constant over each atom of F,,
ie. X(0) =X(1)=X(2) =X@3)=X(5)=X(7), and X(4) = X(6) = X(8) =
X(9). On the other hand, Y could be a partially-defined random variable in F,
defined on Ay (F3) := {{0,1},{7,8,9}}. Then we would have Y (0) = Y(1), and

Y(7) =Y (8) =Y(9), while Y(2),--- ,Y(6) are undefined.
20

Both X € 7, and Y € F; can be viewed as (partially-defined) random variables

in Fo V F, since each atom of F, V F is contained in an atom of F, and F,. O

The signed conditional independence relation satisfies certain properties (inference
rules) that we now state. See [33] and [10] for discussion of inference rules for the

case when p is a probability measure?.

Theorem 2.1. Let 7,G,X,Y be o-fields. Then the following properties hold:

FiU G | X = GILF | X Symmetry (2.3a)
FLGvX|Y => FLG|Y & FlLx|Y Decomposition (2.3b)
f'_nglX & fiLylgVX = FUGVY IX Contraction (2.3¢)
FLG|X & FVGLY|X = FUGVY|X : (2.3d)
FLG|X & FVXLY|G = FULGVY|X (2.3¢)

FLGVX|Y & FVGLY |X¥ = FUGVY|X & FVYLG|Xx (23f)
Further, if measure p is known to be unsigned, the following also holds:
FLGVX|Y = FULG|AXVY Weak Union (2.3g)

Proof. See Appendix A.1l O

2Note that the signed conditional independence relation satisfies symmetry, decomposition and
contraction, but in general weak union does not hold. So this relation is not a semi-graphoid, see
[33]. The unsigned conditional independence, on the other hand.is a semi-graphoid.

21

Chapter 3

Probabilistic Junction Trees

We now formulate a probabilistic version of the MPF problem 1.1 and introduce the
corresponding concept of junction trees. We also describe a probabilistic version of

the GDL algorithm to solve this marginalization problem.

Throughout this document let (2, M,) be a measure space, {Fy,--- ,Fu} be
sub o-fields of M, and let {X;,---, X} be a collection of partially defined random
variables with X; € F;. We will speak of the measure space (2, {Fy,-- ,Fum},)

since the choice of M will not be relevant. We are interested in solving the following;:

Problem 3.1 (Probabilistic MPF). For one or more i € {1,--- ,M}, findY; :=
E[[]; X;|Fi], the conditional ezpectation of the product, given F;. O

Given a conventional MPF problem, one can choose a subset of local kernels whose
product is viewed as a measure function in our framework, and the other kernels can
be viewed as random variables, each measurable w.r.t. the o-field defined by the
variables comprising its local domain. Suppose that R = {ry,---,7,}. Then for a

configuration z,, of the variables corresponding to a local domain r; € R, we have
M 1 ‘n
B[%]7)6n) = 2522 (TT s o)) o Thric) (3.1)
]=1 T xr:.: j=1

where, out of the n original local kernels, the first M were treated as random vari-

_ables, and the last » — M have been relegated to the measure, so that p(x) =
22

[Teeprs1 @ (Xr,). Equation (3.1) shows that solving the probabilistic MPF prob-
lem with this setup will in effect amount to a solution to the conventional MPF

problem.

In most applications, for a family of MPF problems the local kernels can be
categorized as either fized or arbitrary. For example, in an LDPC decoding problem,
which we will consider in Example 6.6, the code itself is fixed, so the local kernels
at the check-nodes are fixed; we only receive new observations and try to find the
most likely codeword given each observation set. As another example, when finding

the Hadamard transform } T, (—1)%¥ f (21, - - ,z,) of an arbitrary function

e T
f, the functions (—1)%*¥ are fixed, see Example 6.4. Typically, we want to assign
(some of) the fixed kernels as the measure function, and the arbitrary kernels as the
marginalizable random variables; this way, once a junction tree has been found for

one problem, it can be used to marginalize the product of any arbitrary collection of

random variables measurable in the same o-fields. See Chapter 6 for more examples.

We now define (probabilistic) junction trees as follows:

Definition 3.1. Let G be a tree with nodes {1,--- , M}. We say subsets A and B of
{1,--- , M} are separated by a node i if Vz € A,y € B, the path from z to y contains
i. Then we call G a junction tree if VA,B C {1,--- ,M} and i € {1,--- ,M} s.t. ¢
separates A and B on the tree, we have F,.ll Fp | Fi. O

The definition above should be compared to that of the conventional junction
tree in Section 1.2. As was the case there, junction trees have the key property that
separation on the tree imply conditional independence. This is the very property thét
allows the marginalization task to be performed locally, and hence, with reduced

computational complexity.
23

3.1 Probabilistic Junction Tree (PJT) Algorithm -

Suppose G is a junction tree with nodes labelled by o-fields {Fy,- -+ , Fum} as defined
above, and let {X1,---, X} be random variables with X; € F;. Then the following

message-passing algorithm will solve the probabilistic MPF problem 3.1:

Algorithm 3.1 (PJT). For each edge (i,7) on the graph, define a ‘message’ Y: ;
from node i to j as a partially-defined random variable measurable w.r.t. Fj, initial-
ized to 1.

For eachi=1,--+ , M let N; denote the set of neighbors of i on G, and for each edge
(i,5) in the tree, define N;; = N\{j}.

For each edge (,]) in the tree, update the message Yi (asynchronously) as:

Y,y =E[% [] Yk‘i‘fj] (3.2)

keN;, ;

This algorithm will converge in finite time, at which time we have:

Yi=X: [] Yes (33)

keN;

where as before, Y; == E[I'[;‘i1 lef,-] is the objective random variable.

Proof of correctness of Algorithm 3.1. See Appendix A.2 O

It is easy to notice the similarities between the PJT algorithm above, and the con-
ventional junction tree (GDL) Algorithm 1.1 of Section 1.2.1: the outgoing message
from a node of the junction tree is computed by local marginalization — i.e. taking the
conditional expectation — of the product of the corresponding local random variable,
and the incoming messages from all other neighbors of that node. To emphasize this
connection further, note that message Y;; in the algorithm above can be viewed as a
function Y; ;(f;) on A'(F;), where f; ranges over A'(F;). Then the update rule (3.2)
can be rewritten as (c.f. equation (1.3)):

Yii(f5) = Z p(fil £) X (f:) H Yii(fi) (34) -

fieA'(F3) kEN; ;
24

Similarly, equation (3.3) can be rewritten as (c.f. equation (1.4)):
Yi(f:) = Xi(f:) [] Yaa(Fo) (3.5)
kEN;

One should note that rarely is the way suggested by equation (3.4) an efficient way
to carry out the summation (we will discuss this further in Section 5.1). However,
there may be some value to seeing equations (3.2) and (3.3) written as (3.4) and
(3.5), since in some sense the language of o-fields has been translated into one of
‘variables.” However it should be remembered that these ‘variables’ f; € A'(F;)
for j = 1,---,M do not in any sense play the role of what are called variables
in the original GDL algorithm. We will discuss the computational complexity of
Algorithm 3.1 in Section 5.2.

3.2 Existence of Junction Trees

As described in Section 1.2, in the conventional GDL formulation, given the collection
R of the local domains, there is a rather simple way to determine whether a junction
tree exists, requiring only a greedy algorithm to find a maximum-weight spanning
tree of the so-called local domain graph Grp.

In our measure-theoretic framework on the other hand, this problem is not as
simple. The reason is that in the GDL framework the conditional independence
property is much easier to verify: given three local domains 7,s,t € R, r and s are
conditionally independent given ¢ iff 7 Ns C ¢t. In our framework, on the other hand,
in general the o-fields are not rectangular, and hence cannot be represented in terms
of underlying variables; indeed elimination of the variables was the key objective in
switching to the probabilistic framework. This lack of compact representation makes
it harder to determine if conditional independencies exist.

In this section we present an algorithm to determine whether a junction tree exists
on the given o-fields, and to find one if it does exist. We will prove results that will

allow us, in a divide-and-conquer way, to break down the problem of finding a junction
25

tree into smaller problems and recursively build a junction tree from smaller trees.

Definition 3.2. A wvalid partition of {1,--- , M}\{3} with respect to a node i is a

partition {p1,- -+ ,pi} of {1, , MP\{e} (ie. oy py = {1, , M}\{i} and p;pe =

0 for j # k) such that F,,’s are mutually conditionally. independent, given F;. O

Definition 3.3. Let P = {p,,--- ,p;} be any partition of {1,---, M}\{i}. -A tree
with nodes {1,--- , M} is called compatible with partition P at node 1 if its subtrees

hanging from i correspond to the elements of P. O

It is clear that the conditional independence relations satisfied by the elements of a
valid partition are precisely of the kind that is implied by the junction tree definition.

The following results make this connection precise:

Lemma 3.1. Given {Fy,--- ,Fun}, a tree with nodes {1,--- , M} is a junction tree
iff at each node i it is compatible with some valid partition of {1,--- , M}\{i} w.r.t.
i.

Proof. Immediate from the definitions. a

Lemma 3.2. Vi € {1,---, M}, there is a finest valid partition w.r.t. i, which we
shall denote by P;, such that every other valid partition w.r.t. i is a coarsening of P;.

Further, if p is an element of P; and p is the disjoint union of nonempty sets e; and

e, then Fe, Y Fe, |.75',

Proof. Suppose A = {p1,---,m} and B = {q1, -+ ,gm} are valid partitions w.r.t.
node i. Now construct another partition, S = {pNq:p € A & ¢ € B}. We claim
that S is also a valid partition w.r.t. %, (finer than both A and B): To see this, we need
to show that for each d =pNq € S, FylL Fye | F;, where d°® := {1,--- , M}\{i}\d is
the complement of d. Using simple manipulations like']-'p = Foniquec) = Fprng V Fpnge

we get:

Fong V Fpnge AL Fpe

‘E
]:pﬁq \Y fpcnqil_ fpnqc Vv fpcnqc I .7:3 = fpan.L fpnqc
26

Fi by (2.3b)

And finally, the last two relations and (2.3d) imply that FpngIL Fpeupnge)

Fi, and

hence FpngdL Fpng)e | Fi. So a finest valid partition w.r.t. i exists, whose atoms are

the intersections of atoms of all the valid partitions w.r.t. <.

Now suppose p is an element of P; and p is the disjoint union of nonempty sets e;
and ep, and Fe, Il F,, I Fi. We also have F, V F, 1L Fpe
relations and by (2.3d) we get Fe, UL Fpe V Fo, | Fi, and hence Fe, 1L Fee |.7-', Then

F;. Then fro.m the last two

e; and e; would be elements in a finer valid partition which is a contradiction. O

The following lemma states that, given some ‘boundary’ conditions, junction trees

on subsets of {1,---, M} can be joined to form a junction tree on the complete set:

Lemma 3.3. Let d be a subset of {1,--- ,M} and let &' := {1,---,M}\d be its
complement. Suppose there erist t € d and i € d' such that Fal Fyu |.7-'t and
Fall For I}', Let G be any junction tree on d and G’ any junction tree on d'.
Then the tree obtained by connecting G and G’ by adding an edge between t and i is
a junction tree on {1,--- , M} (see Figure 3.1.)

G’ G

Figure 3.1: Augmenting junction trees; Lemma 3.3

Proof. Let z be any node that separates A and B on the resultant tree. We will show
that 4 lL Fp | F and hence we have a junction tree.

Let A; = ANd, A, = ANnd’, B = BNd and B, = BNd' and without loss of generality
(WLOG) suppose = € d. Then at least one of A, and B; must be empty, or else z
would not separate A and B. Suppose A; = .

27

First suppose £ = t. Then we have:

Fa, L Fp, | 7 ' by j.t. property on G

}-AIV]:Bl-u-fBz |-7:t since A; U B; C d and Bsz'

So by (2.3d) we have F4, L Fp, V Fpg, |.7-'t, ie. Fol Fp |.7-'t and we are done.
Next suppose = € d\{¢}. Then we must also have that z separates A; from B; U {¢}

(assuming WLOG that B, is nonempty.) Then:

fAlJ-LFBlV]:tIfz (3.6)
Fa,VFVFp AL Fp, |F . since AAUB U{z} Cdand ByCd (3.7)

We will show that F4, Il Fp, V Fg, VF; | F. and hence F4 1l Fpg | Fe.
Let x, T, a, £ and B, be arbitrary atoms of Fzy Fiy Fa, Fp, and Fp, respectively.

o Case p(x) = p(7) = 0. Then from (3.7) we have that p(a, 81,62, x,7) = 0, and

so we are done.

e Case u(x) = 0 and u(r) # 0. Then from (3.7) we have u(a, 51,082, Xx,7) =

/‘l‘(aa ﬁl, X 7)#(.32, T)/”‘(T) But &Om (36)’ u(a7ﬁ1) X T) = 0 since l‘l'(X) = 0
Thus p(a, £1, B2, X, 7) = 0 and we are done.

o Case pu(x) # 0 and p(7) = 0. Then from (3.7) we have that u(a, 81, Be, X, 7) =

w(B1,P2,x,7) = 0, and so we have the equality u(a,B:1,B2, X, 7T)e(x) =
p(a, x)u(Br, P2, X, T) = 0 and we are done.

e Case pu(x) # 0 and p(7) # 0. Then from (3.7),

ple, By, B2, X, 7) = ple, By, X, T) (B2, 7) [(),
28

and from (3.6), u(a, B1,x, 7) = plo, x)u(Br, X, 7)/u(x). Substituting the latter

into the former, we obtain

w(a Br, B2, X, 7) = wlen X)u(Br, X (B2 7)) (WOK(T))-
But by (37)’ /"'(ﬁlaX) T)Ii(ﬁz,T)/#(T) = “(IBI, 162, X T), S0

e, B, Ba, x, 7) = pla, x)(B, By x> 7)/ 14(x)

and we are done.

We now state our main theorem on the existence of junction trees:

Theorem 3.4. Given a set of o-fields {F1,--- ,Fu}, if there ezists a junction tree
on {1,--- , M}, then for everyi € {1,--- , M} there ezists a junction tree compatible
with P;, the finest valid partition w.r.t. i.

Proof. The claim is trivial for M < 3. We will prove the theorem for M > 3 by
induction: Let P, = {c1,---,c} with U, ¢; = {1,---, M}\{i} and ¢; Ny = 0
for j # k. Let G be a junction tree. Let @ = {d1,---,dn} be the partition of
{1,--- , M}\{i} compatible with G. Let d = d; be an arbitrary element of @, and let
@' = Upy;dx U {i}. Let t = N;Ud be the node in d that is neighbor to ¢ in tree G.
By Lemmas 3.2 and 3.1 above, d is the union of some of ¢;’s. WLOG assume that
d =X, cx where K <1, and also assume that ¢ € cx.

Then from the junction tree property, we have
Fll Fy | 7 (3.8)

Since G is a junction tree, the subtree on d is also a junction tree. Now |d| < M,
and so by induction hypothesis there exists a junction tree on d compatible with P},

the finest valid partition w.r.t. t of d\{t}.
29

Now we claim that R = {c:\{t} : 1 < k < K} is a valid partition of d\{t}
w.r.t. t. To see this, let ¢ = ¢, for some arbitrary £ = 1,--- , K, and let ¢ = d\{c},
so Fq = F.V Fy. But one of ¢ and ¢’ contains £. Then by the properties of valid

partition w.r.t. ¢, we have:
FNFRLFNF o0 FULFNVF|F

also, FilL F. Vv Fo | JF: since t separates i from d on G

Then by (2.3f) followed by (2.3b), the last relations imply that F 1L F | F; and
we are done.

Next we show that for all k € {1,--- , K — 1} (so that ¢ & ¢x), ¢k is an element
of P,. If not, then there exists a ¢ = ¢, € R, with ¢t € ¢, s.t. ¢ is the disjoint union
of some subsets e; and e; and F,, L 7., | 7. Also F,, V F,, \LF; | F; so by (2.3d)
we get Fo, L F., VF, | Fi. We also have F,, VF., 1L F; | F; since e; Uey =cand ¢
belongs to another set in the finest valid partition w.r.t. 7. From the last two relations
and by (2.3f) followed by (2.3b) we get Fe, IL 7., | ;. But by Lemma 3.2, c € P,

cannot be so decomposed, so {e;,e2} = {c, 0} and we have proved the claim.

So we have shown, by induction, that there exists a junction tree, G4 on d, where
node ¢ has at least K — 1 neighbors with subtrees corresponding to ¢z, 1 < k < K—1.
Now we modify the original junction tree, G in K + 1 steps to get trees H, Hy,-- -,
Hjy_; as follows:

First we form H by replacing the subtree in G on d, with G4 above, connecting
i to t with an edge. By Lemma 3.3, H is a junction tree on {1,--- , M}.

Let Hy be the subtree of H after removing the subtrees around ton ¢, 1 < k <
K —1. Then Hp is a junction tree. For each j =1,---, K —1 let L; be the subtree of
H on ¢;, and let z; be the node on ¢; that was connected to ¢ in H. Then at each step
j=1,---,K —1 we form H; by joining H;_; and L; by adding the edge between 3

and z; (see Figure 3.2.)
30

omm——-
- -,

Figure 3.2: Transformation of junction trees used in Theorem 3.4
Dashed ovals depict the junction subtrees, whose name is labelled just outside the
oval, on the subset denoted just inside the oval. (a) The original junction tree H, (b)
Hy, (c) H;, and (d) the final junction tree Hg_;.

We now show inductively that each H; is a junction tree. By induction hypothesis

H;_, is a junction tree. At the same time, L;, being a subtree of a junction tree,
is also a junction tree. Further F, 1l i;} Fe, VFere VFar | Fi, since ¢; isa set in a
valid partition w.r.t. i.
Also, F., 1L Vl;} Fe, VFere VFa | F.,, since on the junction tree H, node z; sepa-
rates ¢; from cx Ud' Uﬂ;i ¢r . Then by Lemma 3.3, each H; is a junction tree (Note
that Hg_, is a junction tree on {1,--- ,M}.)

Next we perform the same tra.néformation on Hg_;, starting with other neighbors

of i. The resulting tree will be a junction tree, and will be compatible with 7. O

Remark. Notice that the results of this section prescribe a recursive method to find a

junction tree, when one exists; we shall describe that method in the next section. In a
31

sense, Theorem 3.4 and Lemma 3.3 can be viewed as tools to ‘cut’ and ‘paste’ smaller

junction subtrees, in the quest to find a junction tree on the full set {1,--- ,M}. O

3.3 Algorithm to Find a Junction Tree

We will now give an algorithm to find a junction tree when one exists.

Given a set of o-fields {Fi,--- ,Fu},
Algorithm 3.2. Pick any node i € {1,--- , M} as the root.
o If M = 2 then the single edge (1,2) is a junction tree. Stop.

o Find the finest valid partition of {1,--- , M}\{i} w.rt. i, P,={c1,--- ,ci} (see

remarks below).
o Forj=1tol

e Findanodet€cjst FlF, | Fi. If no such node ezists,
then stop; no junction tree exists.

Find a junction tree on c; with nodet as root. Attach this tree,
by adding edge (i,t).

End For

Proof of correctness of Algorithm 8.2. At each iteration, ¢ is chosen so JF; L Fe; | F.
But we also had Fs L 7,V F | 7i. By (2.3¢) the last two relations imply
Fe, AL F vV .75'63; | F;. But we also have Fe; LF; V .7-'c§

Fi. So by Lemma 3.3 we have
a junction tree at each step. Also, from Theorem 3.4 if the algorithm fails, then there

is no junction tree.]

Remark. In the general case of the signed conditional independence, we know of no
better way to find the finest valid partition than an exhaustive search in an exponen-
tial subset of all the partitions. In the case of unsigned measures, however, we can
show that when a junction tree exists, the finest valid partition coincides with the

finest pairwise partition, which can be found in polynomial time, see Appendix C.
32

Therefore, starting with a conventional MPF problem, the question of existence of a
probabilistic junction tree can be answered in polynomial time, as long as an unsigned

measure is chosen. Od

33

Chapter 4

Construction of Junction Trees -
Lifting

In the previous section we gave an algorithm to find a junction tree, when one exists.
In this section we deal with the case when Algorithm 3.2 declares that no junction
tree exists for the given set of o-fields. In particular, we would like to expand the
o-fields in some minimal sense, so as to ensure that we can construct a junction tree.

Recall from Section 1.2 that the standard systematic way to construct a conven-
tional junction tree is through the process of moralization and triangulation. The
triangulation process in effect expands the cliques of the moral graph — by adding
variables,— in a way to create conditional independencies which are required on a
junction tree. We will see that our lifting procedure achieves the same goal, with the
added possibility of expansion of o-fields without adding a whole variable direction.
In a sense, this amounts to automatically discovering new hidden variables in the

space and using them to minimally expand the local domains.

4.1 Lifting

Definition 4.1. Let (Q, {#1,--- ,Fum}, 1) be a given measure space. We call a mea-
sure space (¥, {F},- - ,Fu} &') a lifting of (Q,{F1,--- ,Fm},p) if there is a map
f: ¥ — Q such that:

e 4 is consistent with p under the map f, i.e.
34

VAEFu,..m nlA)=p(f(A).

o Foralli=1,--- ,M, fis'(F],F;:)-measurable, i.e.
VAe F, fTH(A) e F.

where for A € Q, f~1(A) :={w' € ¥ : f(v') € A}.
O
In words, up to some renaming of the elements, each o-field F; is a sub-o-field of

Fi, and F] is obtained from F; by splitting some of the atoms.

Example 4.1. Consider a simple measure space (€, F, u), where Q = {0,---,8},
and F is described by its atoms, A(F) = {{0,1,2,3,5,7}, {4,6,8}}, see Figure 4.1

below.

(@ (b (©)

Figure 4.1: Pictorial illustration of Example 4.1
(a) Atoms of F on £, (b) atoms of f~!(F) on &, and (c) atoms of F’ on .

A lifted space (Q,F’,u') is also pictured in Figure 4.1(c). In particular, we
have ¥ ={0,1,2!,22,3,4,5,6,7,8,9,9%}. The lifting function is defined as f(2!) =
f(2%) = 2 and f(9') = f(9%) = 0. The the consistency condition implies that
E(2Y) + 1/ (22) = u(2), 4'(9') = —1/(9?), and 1/ (i) = i for all other i € Q. Pictorially,
the element 2 € Q has been split into two new elements 2! and 22, and a virtual
element with measure zero has been split into two elements 9' and 9 with ca.ncellixig
measures. We can consider f~!(F) as a o-field on €', whose atoms are A(f~(F)) =

FHAF) = {{0,1,2},2%,3,5,7},{4,6,8,9',9%} }, where we have chosen to assign
35

the pair of cancelling elements 9! and 92 to the second atom; note that this o-field is
essentially the same as F. Now let ' be another o-field on ¥, with atoms A(F’) =
{{0,2%,3},{1,22,5,7}, {4,6,9'},{8,92} }, as depicted in Figure 4.1(c). Note that the
(F', F)-measurability condition is satisfied, since atoms of f~!(F) are a coarsening

of those of F'.) O

We now describe the connection of the above concept with our problem.

Let (S, {F1,--- , Fu}, &) be alifting of (, {F1, - , Fu}, u) with the lifting map
f : ¥ — Q asdescribed in Definition 4.1. Let G’ be a junction tree on {1,-- -, M }
corresponding to o-fields {#], - ,F),}. We will construct a junction tree G” from
G’ such that the running Algorithm 3.1 on G” will produce the desired conditional
expectations at the appropriate nodes.

For each i = 1,--- , M, let G; be the o-field on € with atoms A(G;) = {f(a) :
a € A(F)}, and let Y; € G; be the random variable with Y;(f~!(a)) = Xi(a) for
all a € A(F;); so that up to a renaming of the atoms and elements, (Q, Fi, 1) and
(¥, G;, /) are identical measure spaces and X; and Y; are identical random variables.
Let G” be a tree with nodes {1,--- , M, M+1,--- ,2M}, - with corresponding o-fields
{A, ,Fy,G1,- - ,Gyy} and random variables {1,---,1,Y},---,Ypy},~ which is
generated by starting with G’ and adding edges (j, M + j) for each j = 1,--- , M.
In words, G” is a graph obtained from G’ by adding and attaching each node with
o-fields G; for i = 1,--- , M (which are in turn equivalent to the original F;’s,) to the
node with o-field F;. Then by Lemma 3.3, G” is a junction tree and hence running
Algorithm 3.1 on G” will produce E[[]Y, ¥;|G;] at the node labelled (M + j) for
each j =1,--- , M. But these are equivalent to E[[]}, X;|#;] for j=1,--- , M and
we have thus solved the probabilistic MPF problem.

So we only need to establish how to lift a certain collection of o-fields to create

the required independencies and form a junction tree.

36

Suppose we have three o-fields, F;, 7> and F3, and we would like to find a lifting
(Y, {F1, F5, F3}, 1) of (Q, {F1, Fa, F3}, 1) so as to have the conditional independence
relation 7L F} | 73. Let a; € A(Fy), cx € A(F2) and b; € A(F3) be arbitrary -
atoms. For each cx, let A; be the matrix with (i,5) entry equal to u(a;,b;,ck).
Let Ay = A} + A} be an additive decomposition of Ax. Then this decomposition
corresponds to a lifting of the measure space obtained by splitting the ‘atom ¢ of Fo
into two, say c} and cZ, where y'(ai, b;,ci) and p'(a;, b, c2) are defined as the (7, 5)
entries of A} and A2 respectively. We will use this decomposition technique to obtain
a lifting that makes Il F} | 73.

Remember first that in order to have this independence, if u(cx) = 0, we must
have p(a;, bj, cx) = 0 for all 4, j, i.e. the matrix A, must be zero. Therefore if Ay is
a nonzero matrix with zero sum of entries, we first decompose it as the sum of two
matrices with nonzero sum of entries. This corresponds to splitting atom ¢, in a way

that the new atoms have nonzero measure.

Next for each such matrix A, with nonzero sum of entries, the independence
condition corresponding to c; is exactly the condition that Ay is rank-one. Then if
Aj is not rank-one, we can use an ‘optimal’ decomposition of A, as the sum of say ¢
rank-one matrices (so that none of the matrices are zero-sum).! This corresponds to
splitting the atom c; into g atoms, {c},--- ,ci} where each of ¢}’s render 7; and 7
independent. ci’s are then the new atoms of the lifted o-fields 7.

It is now clear why we have taken the trouble to develop this theory for signed
measures. The signed, rank-one decomposition of a matrix can be done in O(m%2),
e.g. using standard singular value decomposition techniques, where m is the number
of elements of the matrix. On the other hand, the positive rank-one decomposition
of a matrix is very hard to find, see e.g. [7]. See also Appendix D for a geometric

interpretation of the positive rank-one decomposition.

1This can always be done with ¢ = rank(Ax). Obviously rank(A) is also a lower bound for q.
An optimal decomposition, however, not only aims to minimize g, but also involves minimizing the
number of nonzero entries of the decomposing matrices, as discussed in Section 5.

37

4.2 Algorithm to Construct a Junction Tree
Combining the above ideas with the Algorithm 3.2 we obtain:
Algorithm 4.1. Pick any node i € {1,--- , M} as the root.

o If M = 2 then the single edge (1,2) is a junction tree. Stop.

e Find any® valid partition of {1,--- , M}\{i} w.r.t. i, P. = {c1, -~ ,c}-

Forj=1tol

e PFindanodet€c;st FlF, I]’t If no such node exists, then
pick any t € c;. Lift F; by splitting some or all of its atoms
as discussed above, so to have F; L F, | F,.

e Find a junction tree on c; with node t as root. Attach this tree, by
adding edge (i,t).
e End For
The resulting measure space (¥, {Fy,- -+ , Fu }, &) is a lifting of the original mea-

sure space (, {F1,--- ,Fum}, 1), and the tree generated by this algorithm is a junction
tree corresponding to this lifted collection of o-fields.

Once a junction tree is available, Algorithm 3.1 can be applied to solve the proba-
bilistic MPF problem of Section 3. Note that any algorithm obtained in this manner
is simply a reformulation of the original marginalization problem, and can be viewed
as a GDL-type algorithm after introduction of certain new variables and potentially
unintuitive manipulation of the objective functions. The advantage of our measure-
theoretic framework is that it allows for automation of this process, without the need
for discovering ‘hidden variables.’

The complexity of Algorithm 4.1 will be discussed in Section 5.

2Although any valid partition will work, in general ﬁner partitions should result in better and
less complex algorithms (see Section 5).

38

4.3 Measure Theory vs. Variables

In Section 3.1, after presenting the measure-theoretic version of Algorithm 3.1, we
emphasized the connection with the original GDL by rewriting Algorithm 3.1 in terms
of ‘variables’ representing atoms of each o-field. Our objective in‘doing so was to
show that, while the language of o-fields might seem exotic, all our algorithms can be
discussed in more conventional terms. We emphasize once again that the ‘variables’
appearing in equations (3.4) and (3.5) bear no direct relation to the ‘variables’ of the
conventional GDL.

It would probably be useful if one could similarly describe Algorithm 4.1 in terms
of some variables, in order to emphasize once again that our algorithms can be thought
of in conventional terms. We now describe how to rephrase Algorithm 4.1 in the
language of ‘variables.” One should note that the main step of Algorithm 4.1, namely
the splitting of atoms of a o-field in order to create conditional independencies, in a
sense introduces new ‘variables.” We illustrate how to think of Algorithm 4.1 in terms
of variables by first considering a basic triangulation step in the conventional GDL -
along the lines of the basic step of our algorithm, and then describing how the basic
step of our algorithm can be though of in terms of ‘variables.’

Consider state space Q = {(z, e xp) o € [g) == {1,--- ,¢i}} for integers
¢; > 2, with a uniform measure, i.e. p(x) =1 for all x € §2. Let r, s and ¢ be subsets
of {1,--- ,n}, and define s' := (r Nt)\s. Define F;,F; and F3 to be the o-fields
with atoms corresponding to (the level sets of) x,, X, and x, respectively, so that for
example A(F1) = {{x € Q: x, = x!}, Vx!}, and so on. We will index the atoms
of F1 by x} € [gr] where ¢, := [];c, &, and similarly for 7, and F3. Note that for
convenience we have overloaded symbol x,, as either an integer in [g,], or isomorphi-
cally as an |r|-tuple in J],,[gi]. The distinction will be apparent from the context.
For each atom x2 of 73, let A,z be the (g- X ¢;) matrix of joint measure, with (x},x})
entry equal to u(x},x3,x2), where we use p(x},x3,x2) as the shorthand for the mea-

sure of the intersection of the x!st atom of F;, the xrd atom of F; and the x2nd
39

atom of F,. But p is the uniform measure, so u(x!,x3,x?) is 1 iff x},x? and x3 are

consistent, i.e.

I-"(xvl-’ xf ,xg) = 1(x:ns = x?ns)l(xznt = xgm)l(x,l.m = x::nt)

= 1(x:ns = xfns)l(xﬁm = xght)l(x;, = X‘} (4.1)

But we showed earlier that F; 1L F3 | F, iff A,z is rank-one for all x2, i.e. eciuation
(4.1) factorizes as f1(x}) - f3(x?). From equation (4.1) above it is obvious that this
happens iff ' = (r Nt)\s is empty, i.e. rNt C s. Remember from Section 1.2 that
this is precisely the condition for r — s —t to be a (GDL) junction tree.

Now suppose that s’ is not empty. Then, after possibly reordering its rows and/or
columns, A,z will be a diagonal block matrix, where each block is a (g\s X gn\s)
matrix, and where the diagonal blocks (D) are blocks of all 1’s, and off-diagonal
blocks (O) are 0 matrices:

D O 0
ag=10 " 42)
00 .. D
Then the rank-one decomposition of Az corresponds to the decomposition where

the diagonal blocks are separated:
(0]

DO:.-0| [00-.--0 0 0
0 0 ol |0 D o 0 0 o

Az = |, T R e .. @3
0o0--0 |00:-0 OO0 .- D

This corresponds to the following decomposition of (4.1):
Ax%(xrl-v x;) = Z (s = Xong) (X3 = X)) 1(x5 = %% = %)
T,
The corresponding lifting is obtained by splitting atom x2 of F, by intersecting it
with the level-sets of X, so the new atoms can be represented by (x2,xy). This
means that the atoms of F; are the level-sets of X,u¢ = Xsurng)- This is precisely

what would be done in the GDL framework: in order for the local domains 7, s and ¢
40

to form a junction chain r — s — ¢, we expand the domain s to contain r Nt.

We have therefore shown that when the state space and the o-fields are represented
in terms of orthogonal directions of variables, our condition for independence reduces
to that of GDL, and our lifting algorithm will produce the same expansions as in the

GDL framework.

Next consider the case when the sample space €2 and the underlying measure u
are arbitrary. For each i = 1,2, 3 let ¢; := | A(F;)| , and define variables z,y, z taking
values in [g1], [g2] and [gs] respectively, corresponding to different atoms of Fi, 7, and
F3; this means that A(F;) = {{:z: =1}, {z=a}}, AR)={{y=1},--- {y=
2}} and A(F;3) = {{z = 1},---,{z = ¢s}}. Once again we use the shorthand

2

p(zt,y?, 23) for the measure of the intersection of the z'st atom of F; and the y?nd

atom of F, and the z3rd atom of F;.

As before, for each y € [go] denote by A, the matrix of the joint measures u(z, 2, y).
Let 7, denote the rank of A,. Correspondingly, we decompose each A, as the sum
of r, rank-one matrices, which is equivalent to splitting the yth atom of F; into
new atoms. To properly index these new atoms, we need to invent a new ‘hidden
variable’ wy taking value in the set [ry]. Then the new atoms of the lifted o-field,
F4 can be indexed by pairs of variables (y,w,) € [go] X [ry]. In particular, 7 will
have)72 | r,, atoms, compared to the g, atoms of F,. Note however that in general,
the ‘directions’ corresponding to w,’s are not aligned to those of variables z,y or z,
and the pair (y, w,) does not take value in a product space. Considering some special

cases, however, may add some intuition into the process of lifting:

If A, is full-rank for some y, then w, is aligned to either z or z: Remember that
Ay is a (@1 X g3) matrix. Suppose ry = q1 < g3, so that A, has full row rank. We
then decompose A, row-wise, into ¢ single-row matrices. But rows of A, correspond
to the atoms of F;, which are indexed precisely by the variable z. Therefore for this
particular value of y, the variable w, is identical to the variable x, and the new atoms

are indexed by pairs (y,z) where z € [q;]. This indeed is a product space. If A, is
41

full-rank for all ¢’s, then creating the desired conditional independence requires a full
augmentation of 7, and F, i.e. Fy = F; V F2, and atoms of F;, correspond to the
elements of the product space [q] X [go], indexed by pair (z,y).

More generally, if A, can be rearranged as a block matrix with rank-one blocks
such that each row and column of blocks contains at most one nonzero block,- such as
in Equation (4.2),— then the ‘hidden variables’ w,’s will correspond to ‘sub-directions’

of variables z and z, as determined by the position of the nonzero blocks.

The other trivial case is when A, is rank-one for some y. In this case no splitting
of the yth atom of F; is needed, and the corresponding atom of F, will be duplicated

as an atom of F.

We will close this section by showing that any junction tree obtained using the

moralization and triangulation procedure can also be found using Algorithm 4.1.

Suppose we start with the conventional MPF problem discussed in Section 1.1,
with M = |R| local domains, R = {S,--- , Sp}. Let G be a junction tree of cliques of
the triangulated moral graph for the given MPF problem, as discussed in Section 1.2.
For each node i of G, let S} be the domain (subset of [V]) for the corresponding clique.
Then, as discussed before, each S; of the original GDL local domains is contained in
the domain S for a node of G. We can assume then that G is a tree on {1,--- , M}
by identifying each node of G with the index i of a local domain it contains; (if an
index ¢ € {1,---, M} is left unaccounted for, we will add a node ¢ as a neighbor of
a node in G which also contained local domain S;, and we set S; = S;.) Therefore
we will have S; C S] for each node i of G. Then, as before, we let the state-space
Q to be represented by the GDL variables {z;,--- ,z,}, equipped with the uniform
measure, and identify {F;,--- ,Fp} as the o-fields whose atoms are the level-sets of
{zs,, -+ ,Ts, } respectively.

We will then run Algorithm 4.1, using the convention that each time a lifting
is required to create a conditional independence relation F;lL F,. |.7-} (where ¢ C

{1,---,M}), we lift F; to F;, where the atoms of F, are the level-sets of variables
42

zs;. Note then that since the atoms of F; correspond to zs, and S; C S, we have
Fi C F{, confirming that atoms of J; are indeed split to obtain those of F;. We will
now show that with the above choice for the liftings, Algorithm 4.1 can create G as
the junction tree. .

We start Algorithm 4.1 with a node i as the root, where 7 is a leaf-node of G. Let ¢
be the neighbor of i in G and let P := {cy,--- , ci} be the partition of {1,--- , M}\{t}
that is compatible with G. We can assume WLOG that ¢; = {i}. Also let jx € cx be
the neighbor of ¢ in G lying in ¢, for each k = 1,--- ,l. Then the first lifting will be
a splitting of atoms of F; to ensure F; 1L Vi;ll Fer | F:. We do this, according to the
above convention, by splitting atoms of F; to form F/, whose atoms correspond to
the level-sets of zg;. But since G is a (GDL) junction tree on domains {S1,--,Su}
we must have S;J. N(Ukz;Se,) € S, forall j=1,---, 1 Then, from earliér discussions
in this section, F,, AL F,, AL --- Il F,|F| holds, and in particular P is now a valid
partition of {1,---, M}\{t} w.r.t. t (where F; has been replaced by its lifting 73).
This valid partition can be used in the next call to the algorithm to ensure that
the neighboring subtrees of ¢ in the junction tree will be identical to those in G.
It is then easy to see that following similar choices in each step of Algorithm 4.1,
we will end up with G as the junction tree, while (€, {F1,:--,Fum},) is lifted to
(¥, {F.,--- , Fis}, ') where @ = Q, p' is the uniform measure on ', and F; is the
o-field whose atoms are the level-sets of variables zs:. Therefore we have shown that
using Algorithm 4.1, one can always retrieve a junction tree equivalent to any (GDL)

junction tree obtained using the moralization and triangulation procedure.

43

Chapter 5

Complexity Issues

In this section we discuss the computational complexity of the methods proposed
in this dissertation so far. We start by estimating the complexity of computing the
conditional expectation of a random variable given a o-field, with respect to a signed

measure.

5.1 Computing Conditional Expectations

Consider the problem of efficiently computing the conditional expectation E[X|G].
Let A'(G) = {b1,- - , B} be the atoms of G with nonzero measure, and let F denote
the sigma field generated by X, with atoms A(F) = {@;,--- ,;}. Let W denote the
! x m matrix of conditional measures, with (%, j) entry p(e;|8;). Also define x as an
m x 1 column vector with entries x; = X(a;). Then calculating E[X|G] is precisely
equivalent to computing y := W - x.

At first look it appears that calculating W - x requires / - m multiplications and
l- (m — 1) additions. However, using the fact that matrix W is known a priori, in
many cases we can perform the calculations with a lower number of operations, as
suggested in Example 2.1. To illustrate this in the context of Algorithm 3.1, note
that E[X |g] is precisely the message sent from F to G, in a junction ‘tree’ in the
form F— G. Now let H := {0, Q} be the trivial o-field on the same state space (2.

~We will lift the space so as to create the conditional independence F' 1L G’ | H'. We
44

will then have a junction chain F'— H'— G’. Then it is easy to see that E[X |§] will
be the same as the message from H’ to G’ on this junction tree (after message from

F' has been received at H').

Now to create the desired conditional independence, we need the rank-one decom-
position of W (note that W — the matrix of conditional measures,— is rank-one iff Aq
— the matrix of joint measures u(a;j, G;, Q) = p(aj, B;) is rank-one).

Suppose now that W has rank r < min(l,m). Denote the ith row of W by W,
and define z(3) to be the number of nonzero elements of W;. Let {W;,,--- , W, }
be a linearly independent subset of rows of W, chosen so as to minimize the sum’
z:= 3%, 2(ix). Then for each i =1,---,I, W; = 3} ;_, Ci W, for some I x r matrix
C. Incidentally this matrix has the property that after possibly reordering its rows
and/or columns, it has the r X r identity matrix as a submatrix. Denote by Z' the
number of nonzero elements of the (I —r) x 7 submatrix of C when this r x r identity

submatrix has been removed.

We then have the following rank-one decomposition: W = Y ;_, C*-W;,, where C*
is the kth column of C. Corresponding to this decomposition, W -x can be computéd
asy = Y5, C*- Wi, - x. Calculating W;, - x requires z(i;) multiplications and
(z(ix)—1) additions. Note that, as discussed before, while the vector x is arbitrary, the
matrix W is known a priori and hence we can exclude multiplications and additions
by the 0’'s. To compute y = Y j_, C* - (W;, - x) given scalars (W, - x) we need an
additional 2’ multiplications and (2’ — I + r) additions, where 2z’ was defined above

for matrix C.

Therefore, to compute W-x we need a total of (2'+2z) multiplications and (2'—I+z)
additions. Define x := 2(2’ + z) — [as the edge complezity associated with the hypo-
thetical directed edge from F to G, which is the number of additions and multipli-
cations required for computing E[X|G]. Note from definitions that r < z < rm and
l—r < 2 < (I —r)m, and therefore | < 2z’ + 2z < |- m. Therefore using this tech-

nique, as compared to the straightforward multiplications and summations suggested
45

by equation 2.1, depending on the structure of the matrix W, there is potential for a:
saving by a factor of m in the total operations required to carry out the computations.

Also note that one can always use a row-wise rank-one decomposition (i.e. W =
>k, € Wi, where ef is an (I x 1) column vector with a 1 at the kth position and
0’s everywhere else). Then an upper-bound on x is (2nz—!), where variable nz is
defined to be the total number of nonzero elements in matrix W.

Next we will discuss the complexity of the junction tree algorithm 3.1.

5.2 Complexity of the PJT Algorithm

First notice that, as discussed in Section 4.3, any junction tree obtained using the
moralization and triangulation (possibly after introduction of hidden variables), cor-
responds to a junction tree on a lifting of the original o-fields, — where liftings are
done in the whole-variable directions,— which can also be discovered by Algorithm 4.1.
Algorithm 3.1 on this junction tree will then be equivalent to GDL on the junction
tree of cliques of the triangulated graph. In this sense then, using our framework we
can always find a marginalization algorithm which is at least as good as GDL.

With that point noted, in this section we will discuss the complexity of Algo-
rithm 3.1 in terms of the sizes of the o-fields on the junction tree, rather than those
of the original o-fields before possible lifting. It is clear that the lifted o-fields can be
substantially larger than the original ones. This is also the case in the original GDL
framework, where triangulation can produce enormous cliques.

Let G be a junction tree with o-fields {F7,--- ,Fu}, as defined above, and let
{X1,--- ,Xum} be arbitrary random variables with X; € F;. Denote by ¢; the number
of atoms of the o-field F;, so ¢; = |A(F)|-

It can be seen that, in general, the sample space 2 can have as many as]_[fil a;
elements and thus full representation of o-fields and the measure function requires
exponentially large storage resources. Fortunately, however, a full representation is

not required. Along each edge (Z,j) on the tree, Algorithm 3.1 only requires local
46

computation of E[X IJ:,] for a random variable X € F;. This only requires a ¢; X g;
table of the joint measures of the atoms of F; and F;. For an arbitrary edge (%, j), let
A(F;) = {a1,--- ,aq} and A(F;) = {b1,--- ,by;} be the sets of atoms of F; and F;. -
Define W (3, j) to be the ¢; x g; matrix with (r, s) entry equal to u(as|b,); note that
from Lemma A.1, (possibly after trivial simplification of the problem by eliminating
the events with measure zero,) no atom of F; can have measure 0, S0 u(as|b,) is
defined for all atoms of F;. Then once a junction tree has been found, we need only
keep 2(M — 1) such matrices (corresponding to the (M — 1) edges of the tree) to fully
represent the algorithm, for a total of 23, ;) .y eqge 295 StOTage umits.

As defined in the previous section, for each directed edge (Z,7) in G let x(3,j)
be the corresponding edge complexity, i.e. the arithmetic complexity of computing
E[X;|F;]. From the Algorithm 3.1, calculation of the conditional expectation of the
product given a single o-field F; with the most efficient schedule requires updating
of the messages from the leaves towards the node i. Each edge is activated in one
direction, and at each non-leaf node ! the messages need to be multiplied to update
the message from ! to its neighbor in the direction of . This requires, for each edge
(k,1), an additional g; multiplications. Thus the grand total arithmetic operations
needed to calculate E[[]; X;|7:] is Y14 (x(k, 1) +a1), where the summation is taken
over all the directed edges (k,!) approaching i.

The complexity of the full algorithm, in which E[HJ X,-lf',-] is ca.lcﬁlated for all
i=1,---, M, can also be found using similar ideas. For each node k, let d(k) denote
the number of the neighbors of k on the tree. Then for each directed edge (k,I),
first the d(k) — 1 messages from other neighbors of ¥ must be multiplied by X and
then the conditional expectation given F; must be taken. For each non-leaf node &,
calculating the product of X, and all the products of d(k) — 1 out of d(k) messages
incoming to k requires (3d(k) — 4)gr multiplications, using a method similar to the

one described in Section 5 of [2). So the total number of operations required for the
47

full algorithm is
S xtkD+ D (3d(k) — 4)a

(k) a dir. edge k non-leaf
In particular, if G is a chain F, —Fp — --- — Fu, the complexity of Algo-
rithm 3.1 becomes S"MT! (x(i,i + 1) + x(i + 1,9) + 255" g
Using the upper-bound x(4,% + 1) < (2nz(%,% + 1) — g;41) derived in the previ-
ous section, the above complexity of Algorithm 3.1 on a chain is upper-bounded by
45 ¥ 1 nz(s,i+1). Here we have used the fact that nz(i,i+1) = nz(i+1,3), i.e. the

number of nonzero elements of matrices W (¢, + 1) and W (i + 1,4) are equal.

5.3 Complexity of Lifting

In this section discuss the complexity of Algorithm 4.1. Recall that the lifting process
at each step of Algorithm 4.1 can increase not only the number of atoms of the o-field
which is being processed, but also the overall number of states in the state space. As
mentioned before, in general it is not possible to a priori get a reasonable estimate
of these figures, since the rank-one decompositions can be arbitrarily irregular and
unpredictable. Rather, the complexity will depend on the choices made in each lifting.

Consider again the setup used above, with o-fields F7, F; and F3, where lifting
is done to create F] L F} | F;. Also for each ¢, € A(F2), let Ay be the matrix of
joint measures p(a;, bj, ck) where A(F;) = {a;} and A(F;) = {b;}. Then clearly,
as noted before, the number of atoms of the lifted o-field, F; is minimized by using
a decomposition of Ay as the sum of r; rank-one matrices, where r, = rank(Ax).
However, this is not the only factor determining the complexity of the algorithm. Each
time a nonzero entry of Ay is decomposed as sum of nonzero numbers, in effect new
states are added to the state space. It is therefore preferable to choose decompositions
that minimize splitting of nonzero entries. For example, the splitting in equation
(4.3) does not create any new states, since the nonzero blocks are non-overlapping.

As another example, suppose Ay = (23). Then decomposition A, = (33) + (39) is
48

preferable to A = (;5) + (3 3), since the latter results in creating four new states in

the state space.

An interesting observation is that in the GDL framework, once a representation of
the space is decided by the choice of variables, the operations to create independencies
(e.g. moralization and triangulation) will never expand the state space; ?.ll expansions
of local domains are achieved by addition of whole variables, equivalent to splitting

of non-overlapping rank-one blocks in our framework.

The complexity of each lifting is related (polynomially) to the number of states in
the lifted state space; in the above setup this number is |A(F] VF3V F3)|. Algorithm
4.1 consists of liftings at different stages, so the overall complexity of Algorithm 4.1
is on the order of that of the most complex lifting in the process. Now consider
the case when the algorithm is run on o-fields Fi,- -+ , Fu, each with ¢ atoms, and
when the o-fields are processed in the order of their index to form a junction chain.
It is clear that the original state space can have as many as ¢ states, indicating
that the general algorithm is exponentially complex in M. Once the lifting has
been done to create the independence condition f{_lL]-'{&,__ M} | F5, the number of
atoms of F} can grow to g°. The next lifting, however, will only involve o-fields F;
through F},. Thus the number of relevant states cannot exceed |[A(Fy,,... ppy)l- But
\AF ...)l < TAFD - A F g,)l S 6 - gM7 = g™

In other words, the size of the relevant state space will not exceed q™, and hence
the complexity of none of the consequent liftings will exceed that of the first lifting. An
upper bound on the complexity of Algorithm 4.1 is therefore kK M q%M for a constant
k, where k q’g‘M is an upper bound on the complexity of rank-one decomposition of a

matrix with ¢ elements.

However, even though the general form of Algorithm 4.1 is complex, there are
justifications for why it can be a useful practical tool. Firstly, note that as mentioned
in Section 5.2, a full description of the marginalization algorithm requires storing

only the W (3, j) matrices of the conditional measures of the atoms of the neighboring
49

o-fields, and a full representation of the exponentially large state space is unnecessary.
Secondly, remember that Algorithm 4.1 can be executed off-line once and for all. Once
a junction tree has been created, the corresponding marginalization algorithm can be
used for all possible inputs, namely the random variables Xj, - - -, X Therefore the
cost of creating an efficient algorithm is amortized over many future uses.

As mentioned before, our framework is general enough to be able to take adv.a.nta.ge
of partial independencies in the objective functions; together with ideas of lifting, we

have an automatic algorithm for exploiting these structures.

50

Chapter 6

Examples

In this section we consider several examples where GDL-based algorithms are appli-
cable. We have created a MATLAB library containing the necessary functions to set
up a general marginalization problem and create a junction tree. The examples in
this section are processed using that code. To explain the algorithms resulting from
our code, we have described each example in detail. Note however that to generate
the marginalization algorithms, no calculations were done manually and the entire
process was automatic. The details were presented here simply to clarify the end
result. In each example we further compare the complexity of our message-passing
algorithm with the naive implementation of GDL.

We note that there do exist other methods and techniques that deal with each
specific class of problems. Such methods are tailored for a single class of problems
and are not applicable to the general case. For instance, the paper of Zhang and
Poole [55] gives a procedure that is somewhat more general than the conventional
GDL for generation low complexity algorithms, when the local functions are of spe-
cific form called ‘causally independent.” Our measure-theoretic framework, on the
other hand is general in handling all mqrginalization problems. It is also worth not-
ing that in one of the examples considered,- that of decoding linear block codes,— our

procedure is able to discover the minimal complexity trellis-based decoding algorithm.

Our Example 2.1 from Section 2 can be generalized as follows:
51

Example 6.1. Let A be a finite set of size n, and for each i = 1,---, M, let X; be
a real function on A. Let p be a real (weight) function on AM. We would like to

compute the weighted average of the product of X;’s, namely

M
B=Y - Y [[Xladuter, - au)

a1€EA ap €A i=1

Suppose that the weight function is in the following form:
M M
ﬂt(ah R aM) = H ft(al) + Hgi(a’i)
: i=1 i=1
As long as the weight function u is not in product form, the naive version of the
GDL algorithm will prescribe
E=Y X(a1) - Y Xulam)p(ar, - ,am)
a1€EA apM€EA
requiring O(n™) additions and multiplications, corresponding to the junction tree in

Figure 6.1.

S

1 Xi(a;) Xu.1(am.s) Xulawy (@)

Figure 6.1: GDL junction tree for Example 6.1

Now, Let € be the product space A™ with signed measure y, and fori =1,--- , M,
let F; be the o—field containing the planes a; = ¢, so X; € F;. Let Fo = {0,} be
the trivial o—field. Then the problem is to find the conditional expectation of the
product of the X;’s given F,.

The best junction tree is obtained by lifting the space so that given Jj, all other
o-fields are mutually conditionally independent. To do this, we split the atom
of Fy into two atoms £2; and . In effect, for each element (ay,---,apn) of Q,
the new space {2’ has two elements (a;,--- ,apm) Ny and (a3, - ,anm) N Q. The

new weight function is defined on &' as p'((a1,--- ,al,) N) = Hfil i(a;) and
52

£ ((ar, - an) N = TIY, gi(as).

Then there is a star-shaped junction tree on {0, - - - , M'} with node 0 at the center.

The message passing algorithm on this tree is:

E=E[[] Xi|7]®
= E[[[X:|7) (@) + B[]] X:| 7] (€2)
= [T EX:| 7] () + [B[X:| 7] (22)

) i;ll i=lM
=] D Xia)fi(as) + [[D Xi(a:)gi(as)
i=1 a;€EA i=1 g;€EA

Note that this requires only O(Mn) additions and multiplications. ‘ O

Example 6.2. Partition Function in a Circuit-Switched Network. In a circuit-
switched network, one is interested in finding the invariant distribution of calls in
progress along routes of the network. It can be shown (see [45]) that the invariant

distribution has the form

L
w(ay, -+ am) = Xi(a1) - - - Xm(am) Hl(za"' <ny)

z j=1 i€R;

Here a; is the number of calls along route i; M is the total number of routes; X;(a;)
is a known function (invariant distribution of a; if the links had an infinite number
of circuits); L is the number of links in the network; n; is the capacity of link j and
R; C {1,:+-, M} is the index set of routes that use link j. Finally Z is a normalizing

factor called the partition function, and is ‘deﬁned by

M L
Z:= Y [[X@)][1_ a<ny

a1, ,an i=1 j=1 i€R;

Therefore in order to calculate the invariant distribution, one only needs to calcu-

late the partition function Z. Having this in mind, we consider the following simplest

case:
53

Let Xi(a1),---,Xm(an) be arbitrary functions with integer variables ay,--- ,ap.
Let f(s) = 1(0 < s < n) - g(s) be an arbitrary function of the integer variable s,
which vanishes when s ¢ {0,--- ,n —1}. We would like to calculate the following
weighted marginalization .
M
Z=3)) flar+---+am) [Xi(a)
a) apm =1
Relying on orthogonal directions of independent variables to represent the state space,

a GDL algorithm will suggest
Z=3 Xi(@) Xa(az)--- D flar+ -+ am)Xnl(an)
3 az aMm

Define s; = Z'Z=1 a;- Then, noting that s; < s, < --- < sp and that f(sp) = 0 for

SM 2 1, one can interpret the above sum as the following:

n-1 n—1-s; n—1—-8p_1
Z= Z Xi1(a1) Z Xa(ag)--- Z flar+--- +anm)Xm(an)
a;=0 a2=0 ap=0

Note however that even this simplified version requires O(n™) arithmetic operations.

We will now show that our Algorithm 4.1 creates a simple junction tree, and
implementation of Algorithm 3.1 on that junction tree substantially simplifies the
marginalization problem.

Define a sample space Q = {(a1, -+ ,an) : 0< a;, 0 < sy < n} with uniform
measure, p(w) = 1 for all w € Q; here for ease of notation, we denote elements of O by
w, and define a;(w) to be the ith coordinate of w. We also define, as before, sj(w) =
37, ai(w). When there is no risk of confusion, we drop the explicit dependence of
a;’s and s;’s on w.

For each ¢ = 1,--- , M, let F; be the a'.-ﬁeld with atoms A(F;) = {{w € Q :
a; =j} : j=0,---,n—1}. Define also o-field G with atoms AG) ={{wen:
sM=j}t:5=0---,n- 1}. Next we view local functions as random variables
measurable in the corresponding o-field: X; € F; and g € G. The problem is then to

find E[g [T, X:].
54

We now follow Algorithm 4.1 step by step to create a junction tree. We pick
G as the root node and F) as the neighboring node, and lift to create conditional
independence G 1L Fiy.p—1} | Fu: For each atom fi := {w € Q : ap = k} of Fuy, let
Ay be the (n x n™~=1) matrix with (3, 5) entry u(gi, hj, fi), where g; == {w €N :sy=
i}and hj = {w € Q : ai31 = jifor [=0,--- , M — 2} are atoms of Q. and F1.pm-1)
respectively, and (jar—2jm~3 - - - Jo) is the n-ary expansion of j, so that j = Efio_z j; n.
Then it can be seen that the (3,) entry, u(g;, hj, fi) = 1(i = k+zfi52 Ji) where 1(-)
is the indicator function.Clearly A; has rank (n — k) since it has precisely (n — k)
nonzero (linearly independent) rows, namely rows k through » — 1. Hence we can
split atom f into (n — k) new atoms, corresponding to row-wise decomposition of

Api. Let F}, be the o-field whose atoms are these split atoms. Then

AFy)={fin : 0<I<m<n-1}
={{weQ:ay=1 &sy=m}:0<I<m<n-1}

In particular, F, has n(n + 1)/2 atoms.

Next we try to lift to create co‘nditional independence Fj, Il Fii.a—2) |.7-"M_1:
For each atom f := {w € Q : ay—1 = k} of Fy-1, let A be the (ﬁ('gﬂ x nM-2)
matrix with (3, 7) entry p(f}, .., by, f). Here f},’s are the atoms of F}, and (L, m)
is a map from {0,--- ,n(n+1)/2—1} to {0,--- ,n — 1} x {0,--- ,n — 1} such that
Il <m;. Also hj :=={w € : a1 = jifor | =0,--- , M — 3} are atoms of F1.m2},
and (jar—3jm—4- - jo) is the n-ary expansion of j, so that j = 2,’153 fint. Again it
can be seen that the (i,j) entry, p(fj, m.s hir f&) = Lmi = L+ k + 2,’1533',). It is
evident that this function only depends on row index ¢ through m; — I;; for a given

r € {0,---,n—1}, all the rows with m; — l; = r are identical, and hence can be

grouped together for rank-one decomposition. Also notice that
{fim:0Zl<m<n-1l,m—-l=r}=
{{lweQ:ay=1&sy1=m—1}: 0<i<m<n—-1,m-l=r}

={{weQ: sy_1=r}}
33

Further, each A has (n — k) such groups of rows, corresponding tok <r <n-1.-
Hence we can split atom f into (n — k) new atoms. Let F),_, be the o-field whose

atoms are these split atoms. Then
AFy_)={{weR:ay1=1 &sy_1=m}:0<I<m<n-1}

Note that F},_, has n(n + 1)/2 atoms.

This procedure will be repeated and it can be seen that the lifted o-fields will

have atoms:
AF)={{weQ:a=1&si=m}:0<I<m<n-1}

The corresponding junction tree is the chain pictured in Figure 6.2.

Figure 6.2: Junction tree for Example 6.2

Examining the matrices of joint measures along edges of this chain, it can be
verified that the corresponding junction tree algorithm is equivalent to the following:

n~-1 SM

Z=Y psm) >, Xnm(sm—su-1)

spr=0 spy—1=0

e i X3(s3 — $2) i Xa(s2 — s1)Xi(s1) (6.1)

82=0 81=0

This requires only O(Mn?) arithmetic operations,

The form given in equation (6.1) suggests that, after introduction of variables
si, GDL can also produce (6.1). However, variables s; as defined above are not
independent, so GDL can never come up with (6.1) exactly. To account for this
problem in GDL, one can take s;’s to be free and independent variables taking value

in {0,--- ,n — 1}, and then redefine functions X;(s;, si—1) to equal X;(s; —s;_1) when
56

0 < s;_; < s;, and be zero otherwise. Then indeed GDL will come up with a form
similar to (6.1) (note that upper limits in the sums cannot depend on variable s;; a
postprocessor can however realize that the terms that correspond to s;—; > s; will
vanish.)

Notice however, the automatic nature of our procedure: although we have in’pro—
duced the auxiliary variables s; to analytically express the atoms of ea;:h o-field and
to express the algorithm of equation (6.1) in closed form, the automatic procedure
of Algorithm 4.1 does not rely on these variables. There is no need for pre- or post-
processing of data or introduction of variables. Given a representation of the o-fields
G and F,--- ,Fu, a computer program will automatica.lly come up with algorithm

of equation (6.1) without any assistance. This is the essence of our method. O

In the next example we show that Pearl’s treatment of the belief propagation
algorithm in the case of a node with disjunctive interaction or noisy-or-gate causation

([33], Section 4.3.2) can be viewed as a special case of our algorithm:

Example 6.3. Bayesian Network with Disjunctive Interaction. Let the binary
inputs U = (Uy,Us, -+ ,U,) be the parents of the binary node X in the Bayesian

network of Figure 6.3, interacting on X through a noisy-or-gate.

Figure 6.3: Bayesian network of Example 6.3

This means that there are parameters qy,- - ,gn € [0,1] so that

Px=0l0)=]]a
€Ty

Px=110)=1-[] &

€Ty
57

where T,, :={¢ : U; =1}

Normal moralization and triangulation technique applied to this graph will give a
single clique with all the variables. However, because of the structure in the problem,
a better solution exists. .

Let Fx,F1,---,Fn be the o-fields generated by the (independent) variables z,
Uy, - -+ , U, respectively. All variables are binary so each of the o-fields has pi‘ecisely
two atoms. In our framework, let the ‘random variables’ be (the function) 1 € Fy,
and 7x(w;) = P(U; = w;) € F, for i = 1,--- ,n, with the underlying joint measure
on z,uy,- - , U, defined to be u(z,u;, -+ ,un) = P(X =z |U = (u1,-+- ,u,)). Then
F’s are not mutually conditionally independent given Fx, however the following
simple lifting of space will create the independence: Let a variable z’ be defined
to take value in 0,1,2, where the event {z' = 0} corresponds to {z = 0}, and
{z' =1} U{z' = 2} correspond to {z = 1}. Extend the measure as follows:

[lier, ifd'=0
P ur,e e un) = —[lien, @ if2'=1
1 ifr' =2
Then we see that in this lifted spaces, the o-fields F; (generated by variables u;
respectively) are mutually conditionally independent given F%, (the o-field generated
by variable z'.) Then we have a junction tree in the shape of a star, with F},
corresponding to the central node. The junction tree algorithm will calculate the
following marginalized random variable at the node corresponding to F %
[Ty (P(U; = 0) + P(U; = 1) ¢;) ifz'=0

1 ifz' =2

Then the belief at X is the function

_ I, (PWi=0)+P(U;=1)g) ifz=0
BEL) = {1 —[Iie, (PU:=0)+ P(Ui=1)g) ifz=1

where we have merged the atoms z’ = 1 and =’ = 2 of F}, to get back £ = 1. This is

essentially the same as Equation (4.57) in [33)]. O
58

Example 6.4. Hadamard Transform. Let z,,--- , z, be binary variables and let

f(z1,- -+ ,z,) be a real function of z;’s.- The Hadamard transform of f is defined as:

OREROEID DI | (G Vs (RN

T1y T i=1
where ¥, ,Yn are binary variables.

Since our framework is particularly useful when the underlying functions are struc-
tured, we consider the case when f is a symmetric function of z;,--- ,z,, i.e. f de-
pends only on the sum of the z;’s. Then it is easy to verify that when f is symmetric,
its Hadamard transform, g is also a symmetric function.

We now set up the problem in our framework. Let Q be {0,1}?" with elements
w=(T1,-** yTn, Y1, ,Yn)- Let F and G be the o—fields in which respectively f and
g are measurable; in our case of symmetric f and g, A(F) = {axfork=0,--- ,n} =
{{w : Yyzi=k}for k=0,---,n} and A(G) = {B for k=0,--- ,n} = {{w :
Yivi=k}fork=0,---,n}.

Next we note that all the factors involving terms (—1)*¥ can be summarized as a
signed measure p on F V G as follows:

(e, Be) = Z (_1)E,~xm

w €a;jNPk

= Z (_I)Zi Tiyi

w3 s Ti=J,

ivi=k

D G

(T2 Tn)Y Ti=]
Note that 4 can be stored in a (n + 1) x (n + 1) table.
Now we have a junction tree with only two nodes, corresponding to F and G, and
the marginalizatic;n is done as follows:

9(B) = E[f|G]

n

= floy)ulay, Be)

=0
59

where f(a;) = f((z1,-+ %) : ;% = j) and g(Be) = 9((v1,- -+) : 25 % = k).
This requires only n additions and. (n + 1) multiplications for each of (n + 1)

possible values of g. O

Example 6.5. Probabilistic State Machine. Consider the Bayesia,ﬁ network
depicted in Figure 6.5, where u;, s; and y; denote inputs, hidden states and the outputs
of a chain of length n. Let m be the memory of the state machine, so that each state
s; can be taken to be (Uj—m, -+ ,u;—1), where for ease of notation we fix u_; = u_p =

---:= 0 so we will not have to worry about stages ¢ < m.

Figure 6.4: Bayesian network for a probabilistic state machine

A specific device used to find the maximum-likelihood input symbols given y;’s,
is a trellis, which is equipped with an efficient marginalization algorithm, namely the
BCJR algorithm on the trellis (see [5]). As mentioned before however, this is not a
general method, but rather a method tailored only for a specific class of marginaliza-
tion problems. Description of that algorithm in GDL format with variables requires
introduction of complicated hidden variables (see Example 6.8).

The general and automatic GDL solution for this problem is the BCJR algorithm
on a junction chain (rather than a trellis). The functions involved are P(sg),P(u;),
P(y}|u;, ;) and P(s;|ui—1, Si—1), so the GDL local domains for this chain are {so}, and
{w;} and {wi—m,--- ,w;} fori =1,--- ,n — 1. Assuming binary inputs and outputs,
the BCJR algorithm will require about 3- Y, d(v) ¢, operations, where v ranges over

the GDL localh domains, d(v) is the number of neighbors of v, and g, = 2!l is the size
60

pom———

. -,

'~ 4
e SN g

qi

nz(ii+l) 4 12 4 14 14 12 ‘10 8

Figure 6.5: Junction tree created for chain of length 12 and memory 6

of the set of possible values for the variables in domain v (see [2]). The complexity of
GDL then grows roughly as 3(n —m)2™*2 (the exact formula used below in Table 6.1
is 3(2™+1(2n — 2m + 1) — 6)). ‘

Now consider a case when the output of the state machine depends on the input
and state in a simple, but non-product form. For the purposes of this example, we
have chosen the output ¥; to be the outcome of an ‘OR’ gate on the state s; and input

u;, passed through a binary symmetric channel, i.e.
P(yi|ui, si) = (1 — p)L(yi = VieoUi-j) +P - 1y # VitoUi—j)

where ‘v’ indicates a logical ‘OR’, and 1(-) is the indicator function.

We formed the €2 space as {0,1}", with elements w = (ug,--- ,up—1). Then each
functions P(y; |u;, s;) is measurable in a o—field F;, with two atoms {w : VILsu;_; = 0}
and {w : VRqu;—; = 1}. Since we like to calculate the posterior probabilities on
each input u;, we also include o—fields G; each with two atoms {w : u; = 0} and
{w:u;=1}.

We then run our algorithm to create a junction tree on the F;’s and the G;’s,
lifting the space whenever needed. The result is a chain consisting of the F}’s with
each G hanging from its corresponding F; (see Figure 6.5).

We have run the algorithm on ‘chains with various values of n and m. Table 6.1
compares the complexity of the message-passing algorithm on the probabilistic junc-
tion tree and the normal GDL (BCJR) algorithm. GDL complexity was estimated
as discussed above. The complexity of probabilistic algorithm on the lifted chain, as

discussed in Section 5, is at most (4 nz) where ‘nz’ is the total number of nonzero en-
61

(n,m) (9,5)((9,6)| (10,8)| (10,6)| (10,7)| (11,5)f (11,6)| (11,7){ (12,5)] (12,6)] (12,7)

nz 70 70 82 84 - 82 94 98 98 106 112 114

GDL ops 1710 | 2670 | 2094 | 3438 | 5358 | 2478 | 4206 | 6894 | 2862 | 4974 | 8430

PGDLops || 292 | 202 | 343 352 343 394 412 412 445 472 481

Table 6.1: Comparison between complexity of GDL and probabilistic GDL.
Here nz denotes the total number of nonzero entries in the tables of pairwise joint
measures. ‘GDL ops’ and ‘PGDL ops’ are the estimated total number of arithmetic
operations required by GDL and our probabilistic algorithm respectively.

tries in the tables of pairwise joint measures. We add to this the number of additions
required to get the desired marginals at the level of atoms of the original o-fields to
obtain the figures listed in the table.

The details of the case n = 12, m = 6 have been portrayed in Figure 6.5. The
number underneath each F; is ¢;, the number of atoms of F] V G/ after lifting has
been done. Note that with our setup, originally Fo V Gy has 2 atoms, and all other
F: V Gi’s have 3 atoms. The numbers under the brackets denote nz(i,i + 1), the
number of nonzero elements in the matrix of joint measures between the atoms of
adjacent nodes. Here we note that the pattern that can be seen in these sequences of
numbers is not a coincidence. We will reexamine this general problem at the end of

this chapter. : 0

Example 6.6. Exact Decoding of Low Density Parity Check Codes. In this
example we apply our method to some LDPC codes of small block size over a memo-
ryless channel. The codes used in this example are depicted in Figure 6.6 as bipartite
graphs, in which the upper nodes corresponds to the bits and the lower nodes corre-
spond to the parity checks (see [20]). In each case we will obtain an exact algorithm
to find the a posteriori probabilities for each bit. We then compare these algorithms
with the exact algorithms obtained under GDL using the triangulation method (see

[38] and [2]). As we will see, for a randomly generated LDPC code, the cliques of
62

the triangulated graph are almost as big as the whole variable set, resulting in poor
algorithms. On the other hand, using our framework we are able to find exact al-
gorithms that are much less complex. In fact, as we will show later, the algorithms
derived using our method in this case are equivalent to the best known exact decoding
algorithms for linear block codes, i.e. the BCJR algorithm on the minimal trellis of
the code, see e.g. [21; 5). .

Let H € GF(2)™"" be the parity-check matrix for a binary linear block code with
m check-nodes and block size n. Then the column vector x = [z; - - - z,]T in GF(2)"
is a codeword iff it satisfies Hx = 0. Given observations y* of x, the a posteriori

joint probability of x factors as:

P, za) = 5 [P Pled [] 1085 - x = 0)

i=1 j=1
Here again, Z is a normalizing factor and Hj is the jth row of the matrix H. We are
interested in finding P*(z;)’s, the marginals of P* for i € {1,--- ,n}.

To set up the problem in our framework, we define the sample space €2 to be
the set of codewords, i.e. § := {(xl,- -+,z,) : Hx = 0}. We choose the uniform
measure on £, so that u(x) =1for allx € Q. Fori=1,--- ,n, define o-field F; with
atoms A(F;) = {{x € @ : z; =5} : j =0,1}. Finally we define random variables
X; € F; to equal P(z; = j)P(y}|z; = 7). Then the marginals P*(z;) correspond to
the conditionals expectations E[[]; X;|F].

We ran our MATLAB lifting code for a number of randomly chosen LDPC codes
with small block size (Figure 6.6), and in each case formed a junction chain with
lifted o-fields F7,--- , F,,. Table 2 summarizes each chain.

Each code is presented with block length n and parity checks m, as well as code
rate and parameter c, the number of 1’s per each column of H (checks-per-bit). For
each code, we have listed g;’s, the number of atoms of the lifted o-fields F;. We

have also reported functions nz(%,% + 1), the number of nonzero entries of the matrix

63

Code 1

Code 2

Code 3

Code 4

Code 5

Figure 6.6: LDPC Codes of Example 6.6

of joint measures of the atoms of neighboring o-fields; as discussed in Section 5,
total arithmetic complexity of Algorithm 3.1 on the chain is at most 4), nz(z,i + 1).
Finally, to get the marginal P*(z;) from the conditional expectation E[[]; X;|F:], we
need (g; —2) additions. We have therefore calculated and reported the total arithmetic

complexity of our exact algorithm.

For each code, we also triangulated the moral graph and found the junction tree
of the cliques suitable for GDL-type algorithm. Specifically, for each LDPC code we
form the moral graph; this is a graph with n nodes corresponding to the bits of a
codeword, and where an edge (%, j) exists iff bits ¢ and j are involved in a common
parity constraint. We then triangulate this graph using the algorithm given in Section

3.240f [33], by adding edges (chords) in each unchorded cycle of the graph with length
64

at least 4. The cliques of this graph can be put on a junction tree. In Table 6.2 for
each code we report the size of the cliques of the triangulated graph; the clique sizes
should be compared with log, of the number of atoms of the lifted o-fields in the left
column. We also report the ‘edge sizes’, i.e. the size of the intersection of the cliques
that are connected by an edge in the junction tree of the cliques; these in turn should
be compared with log, of the functions nz(z,7+1). Finally we use 4 Zv clique 4(V) g @S
the (approximate) arithmetic complexity of GDL algorithm, where d(v) is the number
of neighbors of clique v in the junction tree and g, = 2/l is the cardinality of the set

of possible values for variables in v (see [2]).

It can be seen that the triangulation method is incapable of recognizing the struc-
ture that exists within each parity check term 1(H; - x = 0). It is therefore forced to
treat each indicator function as a complete function of the bit variables that appear
in that check. As a result of this and the interconnection between the bits, clique

sizes are almost as big as the block size n, resulting in very inefficient algorithms.

On the other hand, avoiding representation with variables, our measure-theoretic
approach is able to discover minimal liftings that render the o-fields independenf,
and hence come up with much more efficient marginalization algorithms. Since the
general complexity bounds we have given on the lifting procedure in Section 5.3 are
exponential, it is not clear for how large a block size it will be practicable to have
a complete implementation of the lifting algorithm. Our MATLAB implementations
were far from optimized, and were run on a 850MHz Pentium III Laptop, with 256 MB
of memory. It took about half an hour for the largest reported code size, namely
n = 22. This suggests that a highly optimized implementation on a state of the art

computing cluster could carry out lifting for much larger sized codes.

We will now show that applying Algorithm 4.1 to the problem of decoding a linear
block code will produce a junction tree which is equivalent to the minimal trellis

representing the code. Let 2 be a binary linear (n, k) code, with codewords x € Q2
65

Code 1: n =12,m = 8,c = 2, rate=5/12

Moralization/Triangulation

Lifting (Algorithm 4.1)

g Clique sizes:
2,4,4,8,4,4,8,8,8,8,4,2 5 6,6,5,5,5

nz(z,i+ 1) : Edge sizes:
4,4,8,8,4,8,8,16,8,8,4 4,54, 3 4

Total PGDL complexity: 360

Total GDL complexity: 1.8 x 103

Code 2: n =18, m = 6,c = 4, rate=2/3

Lifting (Algorithm 4.1) Moralization/Triangulation
gi: 2,4, 8, 16, 16, 32, 64, 64, 64, Clique sizes:

64, 32, 64, 64, 32, 16, 8, 4, 2 18
nz(z,i+ 1) : 4, 8, 16, 32, 32, 64, 128, 128, Edge sizes: -

128, 64, 64, 128, 64, 32, 16, 8, 4

Total PGDL complexity: 5.95 x 10%

Total GDL complexity: 1.0 x 108

Code 3: n =20,m = 8,¢c = 3, rate=3/5

Lifting (Algorithm 4.1)

Moralization/Triangulation

g 2,4,8, 16, 32, 64, 128, 256, 256, 512,

Clique sizes:

512, 256, 256, 128, 64, 32, 16, 8, 4, 2 14, 16, 16, 16
nz(i,i+ 1) : Edge sizes:
4, 8, 16, 32, 64, 128, 256, 512, 512, 1024, 13, 15, 14

512, 512, 256, 128, 64, 32, 16, 8, 4

Total PGDL complexity: 2.02 x 104

Total GDL complexity: 1.4 x 108

Code 4: n=21,m = 7,¢c = 3, rate=2/3

Lifting (Algorithm 4.1)

Moralization/Triangulation

g 2,48, 16, 32, 64, 128, 256, 256, 256,

Clique sizes:

128, 128, 64, 64, 64, 64, 32, 16, 8, 4, 2 16, 17, 17
nz(i,i+1): Edge sizes:
4, 8, 16, 32, 64, 128, 256, 512, 512, 256, 14, 15

256, 128, 128, 128, 128, 64, 32, 16, 8, 4

Total PGDL complexity: 2.14 x 104

Total GDL complexity: 1.8 x 108

Code 5: n =22,m = 8,c = 4, rate=7/11

Lifting (Algorithm 4.1) Moralization/Triangulation
g Clique sizes:

2, 4, 8, 16, 32, 64, 64, 128, 128, 256, 256, 21, 21

256, 256, 128, 128, 128, 64, 32, 16, 8, 4, 2
nz(i,i + 1) : Edge sizes:

4, 8, 16, 32, 64, 128, 128, 256, 256, 256, 512, 20

512, 256, 256, 256, 128, 64, 32, 16, 8, 4

Total PGDL complexity: 2.40 x 10*

Total GDL complexity: 8.4 x 108

Table 6.2: LDPC Results from Example 6.6 (see also Figure 6.6)

66

defined by H-x = 0. As before, we define i to be the uniform measure on €2, so that
w(x) =1forall x € 2, and for each i = 1,- - - , n, define F; as the o-field whose atoms
are the level sets of the ith bit of x, i.e. A(F;) = {{x €EQ:xz;=35}:5=0, 1}.

Let T be a rank n trellis with binary labels. This is defined as a graph whose
vertices are partitioned into n + 1 tz'm; stages, Vo, V1, -+, V,, with |Vb| = |V,| =1,
such that any edge in T connects vertices from neighboring time stages. Further,
each edge is labelled with a symbol from the set {0,1}. We denote by E;_;; the
set of edges between V;_; and V;, and for each edge e, we denote by A(e) the label
associated with edge e. More generally, we define ,E""m"'d to be the collection of all
paths (emm+1,°**) Emtd—1,m+d) between Vy,, and Vipi4, with e; ;41 € Ejj41. Also for
each path p € Ep, 14, we denote by A(p) the (d x 1) vector of the labels of the edges
of p. We will further assume that if p and p’ are two different paths in Eg,, then
Alp) # AP').

A trellis T is said to represent code 2 if the labelled paths of T from V4 to V,
are precisely the codewords of €2, i.e. @ = {A(p), p € Fo,}. Therefore we identify
codewords of 2 by the paths p € Ey,, in T. With this representation, we can view
measure function u as a function of n-tuples of edges, such that u(p) =1 iff pisa
path in Ey,. Also, using this representation for §2, the two atoms of F; are precisely
{(eo,1,*+ sen—1,a) € Eon : Alei—1;) = 7} for j € {0,1}.

Now note that each trellis representing Q2 can be viewed as a lifting (2, {F}}, &)
of (Q,{F:}, 1), where for each i = 1,--- ,n, F] is defined as the o-field whose atoms
correspond to all the edges in E; ;. Specifically A(F}) = {{(e01, " ;€n-14) €
Eon : €1, =¢€"}, e € E;_y;}. Then the atoms of \/mtd Fi,, correspond in similar

] i=m

way to the paths in E,, m4.

We now claim that for every trellis representing code £2, the chain

Fi—Fy— -+ —F} is a junction chain. To see this, let e be an edge in Ep_;m,
corresponding to an atom of F,. Also let p! := (e, " ,€h—2mn-1) € Fom—1 and
P = (e mi1r "~ +€2 1) € Empa be representing atoms of \/7o;' #/ and /i, ., FI

67

respectively. Then from definitions above, u(p',e,p?) is 1 precisely if (p!,e,p?) is a

path in Ey,, and is zero otherwise. In other words,
p(p',e,p%) = 1(fin(e},_p,,_;) = init(e)) - 1(fin(e) = init(eZ, ;m41)),

where for an edge e € E;_;;, we define init(e) € V;_; and fin(e) € V; as the
initial and final vertices of e, respectively. This means precisely that for a fixed
e € Ep_1m, u(p',e,p?) factorizes as a product of functions of p! and p?, and hence
Ve FANE o FL| Fr, proving that Fj—Fy— --- —F}, is a junction chain.
Finally, recall that for any linear block code there is a minimal representing trellis
Tmin that has the smallest number of vertices and edges at each time stage. The
minimal trellis has the property that for any two initial (or terminal) paths p!,p? €
Eom (or p',p* € Ep_14y), we have pt = p? iff A(p') = A(p?). This means that the
atoms of \/[_, F; can be precisely identified by the paths in Eq, (which are also the
atoms of /i, ;). Similarly, the atoms of \/;_,, F; can be precisely identified by the

i=m

paths in E,_1, (which are also the atoms of \/_,, /). Starting Algorithm 4.1 with
fhé original o-fields {F;}, the lifting of F; will then amount to rank-one decomposition
of a matrix of 0’s and 1’s with non-overlapping blocks of 1’s, of the type mentioned
in Section 4.3, where a 1 in the matrix of joint measures corresponds precisely to the

event that an initial path of Ty, (representing an atom of V;;ll F}) and a terminal

path of Ty, (representing an atom of V;;,. +1F3i) can be joined, with the appropriate
value for the ith code-bit (representing an atom of F;) to form a complete codeword
in 2. From linearity of the code and minimality of trellis Ty,n, the lifted atoms will be
none other than the edges in E;_; ; of Thin, and the lifted o-field will be precisely F;.
Therefore Algorithm 4.1 in this case will produce a junction chain which is equivalent
to the minimal trellis of the code, for the given order of processing of the nodes. It is

also easy to verify that Algorithm 3.1 on this junction tree is the same as the BCJR
algorithm on the minimal trellis. O

Example 6.7. CH-ASIA. Our next example is CH-ASIA from [10], pp. 110-111.
68

The chain graph of Figure 6.7 describes the dependencies between the variables.

Figure 6.7: Graph of CH-ASIA Example

The problem is to marginalize P(S, A, L,T, B, E,D,C, X), which is the product
of the following functions: P(S), P(A), P(L|S), P(T|A), P(B|S), WE = LV T),
P(X|E), f(C,D,B), g(C, B, E) and h(B, E).

Again we set up measurable spaces, with o—fields corresponding to each of the
above functions. We then ran the lifting algorithm to ﬁnd a junction tree in form
of a chain, as in the previous example. This time, however, due to lack of structure
at the level of the marginalizable functions, (i.e. the aforementioned conditional
probabilities,) the algorithm produced exactly a junction tree that one could obtain
by the process of moralization and triangulation at the level of original variables.
In other words, all liftings were done by addition of one or more ‘whole’ orthogonal
directions (i.e. GDL variables) of the Q space to the o—fields. After reconverting

o-fields to ‘variables’, the junction tree we obtained was the following:

(s)Lsad>—aaes >-(BsE>~BDED(BECO—XE D

Figure 6.8: Junction tree for CH-ASIA Example

In this case, our algorithm has reduced to GDL. O

Example 6.8. Probabilistic State Machine Revisited. In the automatic treat-

ment of Example 6.5 it was seen that the lifted junction chains exhibit strong struc-
69

tures, suggesting that there is a simple closed-form solution for the general problem.
This in fact is the case, and as will be seen shortly our marginalization algorithm
is equivalent to the trellis BCJR algorithm. Here we simply report the closed-form
representation of the general junction chain, and give the corresponding marginaliza-
tion algorithm. We have the same underlying sample-space € as in Example 6.5. For
compact representation, we continue to use variables, viewing each specific v;),lue of
a variable as an event, i.e. a subset of Q. Now for each i =0,--- ,n — 1 we define a

variable v; taking value in {0,--- ,¢; — 1}, as follows:
® Yo = Yo

e Fori=1,--- ,m—1:

Vi-1 lf’u, =0
Vi = .
i+1 ifu; =1

Note that here ¢; =i + 2.

e Fori=m,--- ,n—m+1:

Vi =

max(0,v;—1 —1) ifu; =0

withqi=m+1.

eFori=n—-m+2,--- ,n—1:

o ma.x(O, Vi-1 — 2) if U; = 0
T ln—i+1 ifu; =1

with g, =n—1i+2.

Once the lifting has been done, the resulting junction tree is a chain similar to
that of Figure 6.5 where atoms of the o-fields are given by the events {v; = j}; more

specifically, the jth atom of F/ VGl is {w € @ : v; = j}. Then g;, the number
70

of atoms of F; V G; is the number of possible values for v; as listed above. Also in
this case nz(¢,7 + 1), the number of nonzero entries in the matrix of joint measures
of atoms of F; V G and F,, V G}, is simply 2¢;. The total arithmetic complexity
of implementing Algorithm 3.1 on this chain to solve the original marginalization
problem is (9n m+ 6n+ 18m — 7m? — 32), which should be compared to 3(n — m)2™+2
operations required by naive implementation of GDL. -

Lastly, we give the explicit message update rules of Algorithm 3.1 on this chain.
Note that the original form of Algorithm 3.1 will involve multiplying each term below
by a fixed weight, which we have simplified throughout the expressions. Also for
compactness, here we are defining f;(v;) to equal the product P(u;) P(y}|us, - - - , Ui—m),
noting that both these functions are measurable given v;: for a given value of v;, the
corresponding value for u; is 1 if v; = ¢; — 1, and is 0 otherwise; also the corresponding

value for the term VZ,u;_; is 0 if v; = 0, and is 1 otherwise.

efori=1,---,m—1:
i—1(v;)Yi—0i-1(v; ifvy; <g—1
},i—l,i('ui) - f: qiiz_)l i—-2, '1(z) 0 q;
o fin1()Yim2i-1() wvi=g—1
and

Yiic1(vic1) = fi(gi — 1)Yiti(a — 1) + fi(vic1)Yirr,i(vie1)

e Fori=m,--- ,n—m+ 1L
Y im0 fic1(§)Yicai-1(9) ifv;=0
Yioi(vi) = { ficai(vi + 1)Yiga(wi+1) f0<v<g—1
S fia()Yim2ia () Hvi=gi—1

and
Yiic1(vic1) = fi(gi—1)Yi1,6(q:— 1)+ fi(max(0, vi_y — 1)) Yiyr,: (max(0, v;_; — 1))

efori=n-m+2,--- ,n-1:

212'=o fim1(4)Yi2,-1(4) ifv;=0
Yiri(vi) = q fima(vi + 2)Yigi1(vi +2) if0<vy;<g—1
ta T fima(§)Yi2ia () fwi=gi—1
71

and
Yiica(vic1) = fi(@i—1)Yipi(ei—1) + fi(max(oa vi-1—2)) Yiy1:(max(0, vi_, —2))

Careful examination of these expressions reveals that the above algorithm is equiv-
alent to the BCJR algorithm on the trellis tailored for this problem. Figure 6.9 shows
the corresponding trellis for n = 9 and m = 4, and the connection with variables v;

above. It is evident that the original general version of GDL relying on variables is

Figure 6.9: Trellis of the state machine with n =9 and m = 4.
Solid and dashed lines correspond to 0 and 1 inputs respectively.

neither natural nor adequate in dealing with this problem. Although, as shown above,
a description of the optimal marginalization algorithm in terms of some ‘variables’
exists, it requires a careful preprocessing phase to discover such variables. Of course
in practice this inadequacy is addressed by invention of trellises, but that method is
not a general method that is applicable to all classes of problems. Our lifting algo-
rithm, on the other hand, is general and automatic in detecting the structures in any
marginalization problem, and producing an efficient algorithm, without the need to
discover hidden variables or to have any knowledge of trellises. Similarly, the eventual
marginalization algorithm does not run on any trellis nor does it require complicated

descriptions as shown in this example. O

72

Chapter 7

Summary and Discussion

We have developed a measure-theoretic version of the junction tree algorithm. We
have generalized the notions of independence and junction trees at the level of o—fields,
and have produced algorithms to find or construct a junction tree on a given set of
o-fields. By taking advantage of structures at the atomic level of sample space {2,
our lifting algorithm is capable of automatically producing solutions less complex
than the GDL-type algorithms. Although one can typically introduce new variables
and redefine the local functions in a way that GDL will also come up with the same
efficient algorithm as our method, this requires an intelligent processor to examine
the data and determine a good way of introducing these variables. This process, then,
remains more of an art than science. As we saw through example, our framework is
capable of automating this process.

The cost of generating a junction tree with Algorithm 4.1 is exponential in the
size of the problem, and so is the size of any complete representation of the sample
space (2. Once a junction tree has been constructed, however, the algorithm will
only depend on the joint measure of the atoms of adjacent pairs of o—fields on the
tree. This means that an algorithm which was build by considering an 2 space with
exponentially many elements, can be stored compactly and efficiently, and be used
for all combinations of input functions. Therefore the cost of generating an efficient
marginalization algorithm is amortized over many uses.

Using our framework, the tradeoff between the construction complexity of junc-
73

tion trees and the overall complexity of the marginalization algorithm can be made
with an appropriate choice for the representation of the measurable spaces; at one
extreme, one considers the complete sample space, taking advantage of all the pos-
sible structures, and at the other, one represents the sample space with independent
variables (i.e. orthogonal directions), in which case our framework reduces to GDL,
both in concept and in implementation -

The validity of this theory for the signed measures is of enormous convenience;
it allows for introduction of atoms of negative weight in order to create independen-
cies. This greatly simplifies the task of lifting, which now can be done using standard
techniques such as singular value decomposition. By contrast, the problem of find-
ing a positive rank-one decomposition of a positive matrix (which would arise if one
confined the problem to the positive measures functions) is a hard problem (see [7]).
Meanwhile, the complexities and abstractions due to use of signed measure theory are
transparent to the end-user: the eventual marginalization algorithm will only consist

of additions and multiplications of the original data.

The measure-theoretic framework is the natural choice that is capable of discov-
ering all the structure inherent in a problem. The extension of the GDL to this
framework is quite natural and mathematically elegant. Together with the lifting
algorithm, we feel that this approach can have strong practical as well as theoretical

significance.

74

Part 11
Kikuchi Approximation Method

(6]

Chapter 8

Introduction and Setup

8.1 Motivation

It was shown recently in [49] that there is a close connection between loopy belief
propagation and certain approximations to the variational free energy in statistical
physics. Specifically, as we will also discuss later in this document, the fixed points
of the belief propagation algorithm were shown to coincide with the stationary points
of Bethe free energy subject to consistency constraints. Here, Bethe free energy is a
simple class of approximations to the variational free energy. This is while the minima
of the exact form of the variational free energy correspond to the true marginals of

the underlying product distribution.

The significance of this observation goes far beyond the mathematical connection
between fundamental problems from two seemingly unrelated fields; more impor-
tantly, an entirely new perspective is suggested, through which to view the empirically-
successful loopy BP algorithm, and to improve on existing approximate estimation

methods.

It is well-known that the Bethe free energy is only a special case of a more gen-
eral class of approximations called Kikuchi free energy, see [15]. Kikuchi free energy
functionals are in general much more powerful in approximating the variational free
energy, although they are also more complex. Similar to the loopy BP algorithm, a

class of iterative message-passing algorithms can be introduced as in [49], which at-
77

tempt to find the constrained minima of the Kikuchi free energy. Using such message-
passing algorithms is expected to result in approximations that are closer to the true
marginals than are the ones given by belief propagation.

In the rest of this document we will explore a wide range of ideas related to the
Kikuchi approximation method. In particular, we discuss necessary conditions for
uniqueness of the minimizers of the Kikuchi free energy, introduce graphicai repre-
sentations for the problem, and define minimal graphical representations, which result
in iterative solutions that are often significantly less complex than the algorithms dis-
cussed in [49)], [50) and [23]). Furthermore, we will show that, for generic problems,
Kikuchi approximation yields the exact marginals if and only if this minimal graphical
representation of the Kikuchi problem is loop-free, where by the ‘Kikuchi problem’
we mean the problem of minimizing the Kikuchi free energy, subject to some consis-
tency constraints. We will also address the more general problem of approximating
the entropy of a product distribution in terms of the entropies of its marginals.

Other researchers have developed various techniques based on related ideas, each
With specific advantages over traditional loopy belief propagation; we will briefly re-
view concepts from some basic mean field methods in Appendix G. Yuille [54] derived
a ‘double-loop,’ free-energy minimizing algorithm that is guaranteed to converge, un-
like loopy belief propagation, see Appendix H. Welling and Teh [47] formulate an
algorithm of gradient descent type, which is guaranteed to find a fixed point of Bethe
free energy. Wainwright and Jordan [44] discuss convex relaxations of the variational
principle, resulting in efficient algorithms which yield upper bounds to thg partition

function.

8.2 Setup and Notation

Recall from Section 1.1 that the marginalize a product distribution (MPD) prob-
lem 1.2 is defined as that of finding the partition function and/or the marginals of

an R-decomposable Boltzmann distribution, B(x) := 4 [],cpar(%,) for the given
78

collection {a,(x,),™ € R} of kernel functions.

The methods developed in the rest of this document to solve this problem are best
described in the language of partially ordered sets or posets, see e.g. [40]. Specifically, -
the collection R of regions can be viewed as a poset with set inclusion as its partial
ordering relation. This is because inclusion is reflexive (Vr € R,r C.7), antisymmetric
(r C s and s C r implies r =), and transitive (r C s and s C ¢ implies r Ct). We
write 7 C t to denote strict inclusion. We say ¢ covers y in R and write u < t, if

u,t€ R, uCtand Av€e Rst. uCv Ct.

Definition 8.1. Given a poset R, its Hasse diagram Gg is a directed acyclic graph
(DAG)?, whose vertices are the elements of R, and whose edges correspond to cover

relations in R, i.e. an edge (t — u) exists in G iff u < t. O

It follows that for any two distinct nodes r,s € R, we have r C s iff there is a
directed path from s to r in Gp.

Throughout this document we will need the following definitions. Let R be a
poset of subsets of [N] with the partial ordering of inclusion. For each subset r C [N]

we define:

Ancestors: A(r):={s€R : rCs}
Descendants D(r):={s€R :sCr}
Forebears (Up-set) F(r):={s€ R :rCs}

Further for » € R we define

Parents P(r):={s€R : 1<s}

Children C(r):={s€eR:s=<r}

! Traditionally the Hasse diagram is drawn as an ‘undirected graph, with an implied upward
direction’ (see [40]). This is indeed equivalent to a DAG, which will be the view used in this
dissertation.

79

Note that in each of these definitions, the collection of subsets being defined is
comprised of regions, even though the argument r of A(r), D(r) and F(r) need not
be a region itself. For a collection S of subsets of [N], we define F(S) := | J,cs F(s).
Finally we define the depth of each region r € R as:

d(r) = {0 if ris r.na.xima.l
1 + max,ep(r) d(s) otherwise
Example 8.1. Let R := {{1},{4},{1,2},{L,3},{1,2,3},{1,2,4},{1,2,5},{1,3,4}}
be a poset on {1, 2, 3,4,5}. The Hasse diagram corresponding to this poset is pictured
in Figure 8.1 below.

SISIDI
oS
0

Figure 8.1: Hasse diagram of the poset of Example 8.1

Then, e.g. we have A({1}) = {{1,2},{1,3},{1,2,3},{1,2,4},{1,2,5},{1,3,4} };
P({1}) = {{1,2},{1,3}}; 7({L,38}) = {{1,3},{1,2,3},{1,3,4} }; D({1,3}) = {{1} };
and C({4}) = 0. Also, e.g. F({1,4}) = {{1,2,4},{1,3,4}} is defined, even though
{1,4} € R. Finally, in this example regions {1,2,3},{1,2,4},{1,2,5} and {1, 3,4}
have depth 0, while {4}, {1,2} and {1,3} have depth 1, and {1} has depth 2. O

80

Chapter 9

Kikuchi Approximation Method

9.1 Connection with Statistical Physics

In the problem setup described in Sections 1.1 and 8.2, we can view z; as the ‘spin’ of
the particle at position 7 in a system of N particles. Let b(x) denote a probability dis-
tribution on the configuration of spins, and consider a function F(x) called the energy
function. Suppose the energy function is R-decomposable, i.e. E(x) =Y . E.(X,)
for certain functions {E,(x,),r € R}.

In statistical physics one defines (Helmholtz) variational free energy as the follow-

ing functional of the distribution:
F(b(x)) = U(b(x)) — H(b0) o)

where U := 3 b(x)E(x) is the average energy and H := —) b(x) log(b(x)) is the
entropy of the system. We make the connection with the problem formulation of

Section 8.2 by setting E, (x,,) := —log(a,(x;)). We can then write

E(:ZJ) = Z Er(xr)

TER

=~ 3 log(ar(x,))

reR

= ~ log([e (x:)) ~ log(2)

r€R
= —log(B(x)) — log(2)

31

where B(x) is the Boltzmann distribution of (1.2). Then the variational free energy

can be rewritten as follows:

F(b) = Y b(x)(- log(B(x)) — log(2)) + >_b(x)log(b(x)) (9.2)

= Zb(x) log(g():c))) —log(2) - (9.3)

= KL(b||B) — log(2) (9.4)

where KL(b||B) is the Kullback-Leibler divergence between b(x) and B(x), see e.g.
[9]. It is then clear that F'(b) is uniquely minimized when b(x) equals the Boltzmann
distribution B(x) of (1.2), and we have

Fy:= 152’1‘1)1 F(b(x)) = F(B(x)) = —log(Z). (9.5)

As mentioned in the introduction, equation (9.5) is of great interest in science
and engineering. Physicists are interested in finding the log-partition function Fy, as
a function of a temperature variable, which we have omitted here, since thermody-
namical properties of physical systems can be derived from it. In esﬁmation problems
in engineering, one is interested in finding the marginals of the Boltzmann distribu-
tion B(x). This is called the probabilistic inference problem. However, equation (9.5),
viewed as an optimization problem, does not prescribe a practical way for computing
these quantities, as it involves minimization over the exponentially large domain of
distributions b(x).

Given that the energy function is R-decomposable, to simplify the minimization
problem (9.5) one may try to reformulate it in a way that is, loosely speaking, also
R-decomposable. A natural way to do this is to try to represent the free energy as a

functional of the R-marginals of the distribution b(x).

Definition 9.1. We will call a collection {b.(x,),r € R} of probability functions,
which may or may not be the marginals of a single distribution, a collection of R-

pseudo-marginals.
82

A collection of R-pseudo-marginals that are further the marginals of a probability

distribution b(x) are called the R-marginals of b(x). - 0O

Define Ag to be the family of the R-marginals of all probability distributions on x,
i.e. a collection {b,(x,),r € R} belongs to Ag if-and only if there exists a distribution

b(x) s.t. Vr € R, b.(x,) =D, b(x). Then we can rewrite (9.5) as

X[N)\r
Fy,= i Fr({b,
= . fean G 06
b (x,)} = arg | min Fr({br(xr)})
where '
Fa({br}) := b(x):{b,}Jrzr.lg;rginals obe(b(x)) '
Since E(x) is R-decomposable, the average energy decomposes as

UGx) =YY be(x)Er(x,) 9.7)

r€R XxXr

where b,(x,)’s are the marginals of distribution b(x). In general however, the entropy
term in the free energy (9.1) cannot be decomposed in terms of the R-marginals
of b(x). The key component of the Kikuchi approximation method is to use an
approximation of the form

H(b()) = Y ks Hy (b (x,)) | (9.8)

reR

where H,(b-(x;)) := — > . b-(x:)log(b-(x;)) is the regional entropy associated with
a region r € R, and k.’s are suitable constants to be determined.

A suitable choice for the factors {k,} is achieved using the Mé&bius inversion for-
mula, see Appendix E. In particular, we can recursively define a collection of factors
{cr,T € R} using the following equations:

G=1- Y c (9.9)

SEA(r)
where A(r) is the set of ancestors of r, as defined in Section 8.2. Following [49] we
call the ¢,’s defined in this manner the overcounting factors. As it turns out, c¢,’s are

the natural choice for the constants {k.} in (9.8), as we show in Proposition 9.1:
83

Proposition 9.1. The only choice of factors {k;} which can result in exactness of
(9.8) for all R-decomposable Boltzmann distributions ,— i.e. distributions b(x) :=

7 I er @r(x:) for all choices of {ay,r € R} - is the overcounting factors {c.}.

We will prove this proposition in Section 10. In fact the original choice of {k.,} in
the Kikuchi approximation method [15] was also {k,} = {c.}. It will also be shown
that this exactness happens if and only the collection R of regions is ‘loop-free’ in an
appropriate sense, which will be defined in Section 10.1.

The Kikuchi approximation method, which will be defined more formally in Sec-
tion 9.2, proposes to solve a constrained minimization problem of the following form

(cf. equation (9.6)):

(B} = (3100} = arg | min P ((x,)) (0:10)

Here FX({b,}), known as the Kikuchi free energy, see e.g. [15], is defined as (cf.
equation (35) in [49])
FE{bx)}) =D D b (xe)Er(x) + D D e br(xy) log(be () (9.11)
reR x, T€ER X,

and A% is a set of constraints to enforce consistency between the b,’s, defined as

A = {{b,(x,),T€ R} : Vt,u€R st.tC u,Zbu(xu) = by(x;)

Xu\t

and Vu € R, Ebu(xu)'= 1} (9.12)

Xu
Note that in general the constraints of A¥X are not enough to guarantee that
every collection of pseudo-marginals {b,, r € R} € A¥ is in fact the collection of the
marginals of a single distribution function b(x); a collection may very well satisfy all
the consistency constraints of (9.12) and not be the marginals of any distribution.
In Chapter 10 we discuss conditions on R that guarantee that the free energy F(b)
can be viewed as a functional of the marginals of b(x), i.e. {b.,7 € R}, and, as such
a functional, equals the Kikuchi functional F. Further we discuss conditions on R

under which the constraint set AX equals the family of R-marginals Ap.
84

9.2 Kikuchi Approximation Method

In this section we formulate the Kikuchi approximation method for solving the MPD
problem posed in Section 1.1. We will further describe conditions on the collection of

regions R, which are expected to improve the quality of the approximations.

Let Ry be a collection of regions, and {a2(x,), 7 € Ry} be a collection of kernel
functions. We are interested in solving the MPD problem 1.2 posed in Section 8.2
for the collection Ry of regions and the corresponding kernels {al}.

Let R be another collection of regions obtained from R, in such a way that

Vr' € Ry, Ar € Rs.t. v C r. Then one can always form! a collection of R-kernels

{0r(%,), 7 € R} s0 that — 3, log(ar (%)) = — Ty, log(a%(x,)) = E(x).

Now for each r € R, define G,(x;) := [[,c, @s(xs). Then the Boltzmann distribu-

sCr

tion of equation (1.2) takes the following product forms:

b = Dremab) _ Thenorx) _ Tlen i)™

(9.13)

where the last equality follows from the fact that, by (9.9), Zref(s) ¢ = 1 for all
s€R.

Using approximations (9.11) and (9.12) we are now interested in solving the fol-

lowing;:

Problem 9.1 (Kikuchi Approximation).

—log(Z) >~ F*:= min _ FE({b(x)})
{br(xr)}eAK (914)
nd {By(e)} = {t(e)} = axg | min P (b))
O

!Note however that the way this assignment is done can impact the quality of the approximations
to (9.6) provided by (9.14). .

85

Note now that by equation (9.6), if F(b(x)) = F&({b.(x,)}) for all b(x), and
Agr = A, then the minimizer collection {b?(x,)} of (9.14) would correspond exactly -
to the collection of the marginals of the product function B(x) of equation (9.13);
hence, if the Kikuchi approximate free energy FX ({,}) is close to F(b),.and local
consistency constraint set A¥ is also close to Ag, the minimizers {b:} of equation
(9.14) are expected to be close approximations to these marginals. ‘

Our focus in the rest of this dissertation shifts to the above problem and to the
relation between the solution to this problem and the original one in Section 8.2.
An important question which we address in déte,il is when the b}’s are equal to the
marginals B, of the Boltzmann distribution. We also address in detail in Section 10
message-passing algorithms on graphs which solve equation (9.14) which are more
efficient than the ones known to date, such as the generalized belief propagation [50)

and poset belief propagation [23).

The collection R of regions effectively specifies both the Kikuchi approximation
(9.11), and the constraint set (9.12). It is also evident that (9.14) as an approximation
method can be applied for any given FX and AX; better choices of R simply result in
better approximations. Therefore we can define the Kikuchi approximation method
as the general class of constrained minimization problems given by (9.14), which are
parameterized by the poset? R of regions, and local kernel functions a,(x,) for each
r € R.

It remains to specify which choices of R yield good approximations of the marginals.
In the remainder of this dissertation we only consider collections of regions R that
have the same maximal regions as Ry. Expansion of the maximal regions corresponds
to ‘clustering’ methods, as discussed in [33]. The techniques developed here to de-
rive low complexity message-passing algorithms to solve the Kikuchi approximation

problem can also be applied after clustering.

2Note that although ‘inclusion’ is certainly the most natural partial ordering for R, the problem
_ is well-defined for any arbitrary partial ordering.

86

It certainly seems that minimization with more local consistency constraints on
{b,(x,)} should result in better approximations, since the true marginals would satisfy
all such constraints. At the same time, the entropy approximations of the type given
in equation (9.8) are also expected to improve if more regions are included. Therefore
one might conclude that for a given collection of maximal regions of Ro, augmenting
them by introducing additional subregions to form R, — where the a;,’s .corresponding
to the augmented subregions are taken to be 1 — should improve the approximation
(at the expense of increasing the complexity of the underlying minimization).

Let G be a labelled graph whose vertices are identified with subsets of [N]. We

define the following connectivity conditions on G:
Vi € [N], the subgraph of G consisting of the regions in F({¢}) is connected. (Al)

Generalizing this, we can devise condition (An) on G, for each n € {1,--- ,N} as

follows:
Vs C [N], |s|] < n, the subgraph of G on regions in F(s) is connected. (An)

We say a poset R has property (An) iff its Hasse diagram Gp satisfies condition
(An). Note that in the context of Kikuchi problem (9.14), property (An) guarantees
that the beliefs at all regions will be consistent at the level of any subset x, of the
variables of cardinality up to n. It is therefore natural to require that R satisfies at
least condition (A1l). We call a poset R satisfying (An) for all n, a totally connected

poset.

Inspired by [3], one might insist that acceptable approximations of the entropy
term (9.8) are those in which each variable z; appears the same number of times on

the two sides of the equality sign, i.e.

Z =1 for each i =0,--- ,N—-1 (B1)
reF({i})
87

We can extend this condition also, as follows:
z e =1 for each 's C[N], |s|<n st. F(s)#0 (Bn)
rEF(s)
Conditions (Bn) are called the balance condtions, and we call a poset R satisfying

(Bn) for all n, a totally balanced poset.

These conditions are expected to give progressively better approximate solutions,
although they will not in general gua,ranteé an exact solution.

The original cluster variation method of Kikuchi as defined in [24] and [49] in
effect chooses R to be the smallest collection of regions including Ry which is closed
under non-empty intersection of regions. The following proposition shows that the
choice of R made in the cluster variation method is expected to give a reasonable

Kikuchi approximation.

Proposition 9.2. Any collection of regions R which is closed under non-empty in-

tersection of regions is totally connected and totally balanced.

Proof. Note first that if u,v € R and u C v, then there is a directed path from v
to u in Gg, where all the nodes in the path contain u. Let ¢ # @ be any subset of
[N], and let r,s € F(t) be any two regions containing ¢. Then r N s must lie in R,
since R is closed under non-empty intersections. Therefore r and s each are con-
nected in Gg to r N's, where all the vertices on the paths from r to r N s and from s

to rMNs contain 7Ns, which in turn contains ¢. This proves that R is totally connected.

Now let » C [N] be a subset such that F(r) # 0. If r € R, then by definition of
the overcounting factors 3,z c: = 1 and we are done. Suppose then that r ¢ R.
We will show that there is a unique minimal s € F(r), so that F(r) = F(s). If
not, then there must be at least two minimal regions ¢; and ¢, in F(r), with ¢; Z ¢
and t; € t,. Then t; Nty is a region, strictly smaller than both ¢; and ¢, which

lies in F(r) since it contains r. This would contradict ¢; and ¢ each being minimal
88

in F(r). Therefore there exists an s € R such that F(s) = F(r), and therefore
> teF(r) €t = 2ter(s) ¢ = 1. This proves that R is totally balanced. O

The special case when the Hasse diagram G has depth 2, i.e. there are no distinct
T,8,t € R such that r C s C ¢, is called the Betﬁe case in this document. In this case
Gr can be thought of as a hypergraph in which the maximal regions of R are the
vertices and the minimal regions are the hyperedges. If we insist, as assumed in [49)],
that the maximal regions be pairs {3, j} of indices for ¢, j € [N], and that the minimal
regions be all the singletons {i} for i € [N], then we will in fact have a poset R of
depth 2 which is closed under intersection; this is what was called the Bethe case in
[49]. Our notion of Bethe case is more general than that of [49), since no restriction
on the size of the regions is necessary, and we allow for R not to be closed under
intersection.

On the other hand, (3] considers only the case when the aforementioned ‘hyper-
graph’ view of G is a graph, i.e. the minimal elements of R are covered by at most
two regions, so the hyperedges are in fact edges. It can be immediately verified that
he ‘junction graph’ condition given in [3] is simply the intersection of conditions (A1)
and (B1) above. It can also be shown that the ‘junction graph’ condition of [3] does
not imply either (A2) or (B2).

We now give an example to illustrate some of the notions defined in this section.

Example 9.1. Consider the (16, 8) linear code represented by the bipartite graph
of Figure 9.1, where the top nodes correspond to parity checks, and the bottom
nodes correspond to symbol bits. This graph can be interpreted as the Hasse di-
agram of a two-level poset, where the regions associated with the ‘bit-nodes’ are
{1},{2},-- -, {16} respectively, and the region associated with each ‘check-node’ is
the subset of {1,---,16} corresponding to the bits that constitute that parity check.

This is an example of the Bethe case, where the regions corresponding to the check-
89

Figure 9.1: Tanner graph of a linear code

nodes are maximal and those corresponding to the bit-nodes are minimal. The over-
counting factors corresponding to the check-nodes are equal to 1, while those cor-
responding to the bit-nodes equal “one minus the number of check-nodes connected
to that bit-node”. In this case each bit-node is connected to three check-nodes, so
that the overcounting factors for all bit-nodes equal 1 — 3 = —2. In this case, the
GBP algorithm we discuss in Section 11 will reduce to the original Gallager-Tanner
decoding algorithm for LDPC codes, see [13], [41].

This poset has property (Al), but not (A2): note for example that the re-
gions corresponding to the first and third check-nodes are {2,6,7,14,15,16} and
{2,6,7,10,12,16} respectively, both containing {2,6}, but they are not connected
through regions that contain {2, 6}.

Also, this poset satisfies (B1), but not (B2): for s := {2,6}, F(s) is precisely the
first and third check-node regions. Then - e =1+1=2#1.

On the other hand, one can throw in all the intersections of the check-node regions

to create the poset whose Hasse diagram is shown in Figure 9.2.

Here the nodes in the middle row correspond to the intersections of the check-node
regions, in the first row, to which they are connected; e.g. the second node in the
middle row corresponds to region {2,6,7,16}, which is the intersection of the first
and third check-node regions.

It is easy to verify that this poset is totally connected and totally balanced. O
90

Figure 9.2: Alternative poset of linear code of Example 9.1

9.3 Lagrange Multipliers and Iterative Solutions

Lagrange’s method can be used to solve the constrained minimization problem (9.14).

We form the Lagrangian:

L= (—br(x:)log(an(xr)) + ¢ br(x,) log(b(x:)))
r€R X,
+ Z Z Z Are (e) (be(xz) — E br(x))

re€R t<r x: Xr\t
+Y_mr(D brx) = 1) (9.15)
r€ER Xr

where coefficients \.(s;) enforce consistency constraints, and coefficients k., enforce
normalization constraints, and as before ¢t < r means that r covers t. Note that since
the edge-constraints of Gg are a sufficient representation of A¥ as discussed before,
we need only define), for pairs r,t € R with t < r, i.e. along the edges of Gg.

Setting partial derivative 0L/9b.(x,) = 0 for each 7 € R gives an equation for
b.(x,) in terms of \,.’s and A,’s. The consistency constraints give update rules for
each)\, in terms of other A multipliers. Once a set of messages m,; (from r to ¢, for
each edge (r — t) of Gg) has been defined in terms of the Lagrange multipliers A,;’s,
these update rules define an iterative algorithm whose fixed points are the stationa,fy
points of the given constrained minimization problem.

In Section 11 we will give detailed derivation for a nice such algorithm called the
91

‘generalized belief propagation’ (GBP) algorithm, see also [49], and we will also see
that the belief propagation algorithm of [33] is.the restriction of the above algorithm
in the Bethe case. It should be noted that the algorithm we derive in Section 11,
although called GBP, can be considerably less complex than the one called GBP in
[49]). This is because of certain systematic complexity-reducing transformations we
carry out in Section 10, which constitute the major practical contribution .of this

work.

9.4 Convexity Conditions

In this section we describe our results regarding the convexity of the optimization
problem (9.14), which we first reported in [30).

Kikuchi free energy (9.11) constrained on {b,} € A% is bounded below and hence
the constrained minimization problem (9.14) always has a global minimum. There-
fore, as discussed in Section 9.3, the message passing algorithms derived from La-
grangian (9.15) always possess at least one fixed point (see [54] for an algorithm that

is guaranteed to find a minimum of F¥).

The following result gives sufficient conditions on R for the problem (9.14) to have

precisely one minimum:

Theorem 9.3. Kikuchi free energy functional (9.11) is strictly convez on AYX (and
hence the constrained minimization problem has a unigue solution) if the overcounting
factors ¢, € R satisfy:

VSCR, > >0 (9.16)
8EF(S)

where, as defined in Section 8.2, F(S) := UsesF(s) ={r€ R: 3s€ Sst.7C s}
is the set of forebears of S.

Proof. Note that Kikuchi approximate free energy, as a functional of the pseudo-

marginals {b.(x,)} € A consists of an energy term — which is linear, ~ and a linear
92

combination of entropy terms, with both positive and negative coefficients. We will
show that if the hypothesis of the theorem holds, there is a matching between the
negative and the positive terms such that the overall entropy term will be a positive
linear combination of KL divergence terms which are strictly convex, see e.g. [9].
We will prove the existence of such matching using results from the bipartite graph
theory. .

Form a bipartite graph G(V+,V~, E) with vertex sets V+ and V'~ and the edge

set E as follows:

e For each r € R with ¢, < 0, create |c,| nodes {v},--- o} in V-
e For each s € R with ¢; > 0, create ¢, nodes {ug,--- ,u&} in V*+.

o To form the edge set E, connect each v] € V'~ to each uf € V* iff r C s.

For a subset S C V', denote by N(S) the subset of nodes in V'* that are connected

to a node in S. Then graph G has the following property:
VSC VT, [SI<|N(S) (9.17)

To see this, let S = {v} : (s,i) € T} where the index set Z consists of some pairs
of the form (s,i) with ¢, < 0 and 0 < 4 < |c,|. Now create another index set Z as
T :={(s,5) : (s,i) €Z forsomei,0<j < |cs|}, and let S := {v} : (s,i) € I}.
Then clearly S C S and hence |S| < |5|, but notice that N(S) = N(S). Also note
that |S| = — > ,cp ¢, where T := {t € R : (t,1) € T}. Further,

da= D, at D o«

te A(T) teA(T);ce >0 te A(T);ct <0
=IN®I+ > «
’ teA(T);ce <0
< IN(S)|

where the second equality follows from the definitions of |[N(S)| and .A(T). But by
the hypothesis of the theorem, — 3, .rc; < > ,c o) &t- Putting these all together,

we get |S] < (5] = — Tier & < Tieam @ < ING)| = IN(8)) as claimed.
93

Then the bipartite graph satisfies the hypothesis of Hall’s Matching Theorem (see
[14]), and hence there is a matching on G that saturates every vertex of V~. In other
words, there is matching M = {(v%, u?)} such that every vi € V'~ is uniquely matched
with a uJ € V*. Denote by U the subset of vertices in V' that are left unmatched.

We now rewrite the entropy term of the Kikuchi free energy, i.e. the second

summation in (9.11), using the matching M. For each {b,} € AX:

z Cr Z b, log(br) = Z Cr Z by log(b,) + Z Cs Z bs log(bs)

re€ER Xr ricr<0 Xy s:¢5>0 Xs
—cr cs
= Z Zzbr log(b,) + Z Zzbsl()g(bs)
r:6r<0 i=1 X%y 8:cs>0 j=1 x,
== > brloglb)+ Y > bilog(bs)
vieV- Xxr ulev+ Xs
= > (D balog(bs) = > blog(b,)) + Y Y bslog(by)
(iud)eM X Xr uleU *s
= > Yo log(%) + Y > b,log(b,) (9.18)
(viud)eM Xs T uley Xs

Notice that for each (vi,uJ) € M, by definition of the bipartite graph G, we have
T C s. Further we have taken {b,} € AX, and so that me bs(xs) = br(x,) which
implies the last equality. .

Now note that the first term in (9.18) is a sum of KL-divergences®, which are
strictly convex as functions of their arguments, and the second term is a sum of
negative entropy functions which are also strictly convex, see e.g. [9]. On the other
hand, as mentioned earlier, the average energy term of the Kikuchi free energy, i.e. the
first summation in (9.11), is linear in {b,}. Since, constrained by A%, the Kikuchi free
energy is in effect a functional only of the pseudo-marginals associated to the mazimal
regions in R, and since each maximal region contributes such a KL-divergence term

in (9.18), the Kikuchi functional as a whole is also strictly convex. a

Corollary 9.4. (cf. Theorem 3 in [3]) In the Bethe case, the constrained minimization

3To be precise, each term differs from a true KL-divergence by a constant.

94

problem (9.14) has a unique solution if the graphical representation Gr of R -has at

most one loop.

Proof. Let S C R be a subset of regions, and consider the sum Ag := Zref(s) Cr.
Note that in the Bethe case, ¢, = 1 — (# of parents of r) for all r € R. This means
that for each region r € R, the contribution of ¢, to the sum As can.be broken up
as a contribution of (+1) for the vertex r, and a contribution of (—1) for each edge
of the Hasse graph ending in 7. Therefore, As is precisely equal to the number of
vertices minus the number of edges of the Hasse graph of F(.S), which is a subgraph
of Gr. Therefore the sum is nonnegative iff this subgraph has at most one loop.

By Theorem 9.3, a sufficient condition for uniqueness of solution to the constrained
minimization problem (9.14) is that the sum Ag above be nonnegative for all subsets
S C R. In particular, choosing S = R implies, by above, that Gr has at most one
loop. On the other hand, if G has at most one loop, then any of its subgraphs will
have no more than one loop, and by the above argument Ag will be nonnegative for
each S C R. It follows that the nonnegativity of Ag for all S C R is equivalent to the
statement that Gg have at most one loop. Therefore the sufficient condition (9.16)

for the uniqueness of solution is that G have no more than one loop.]

Once we define a suitable notion of graphical representation for a general collection

of regions in the next section, we will generalize the result of Corollary 9.4.

95

Chapter 10

Graphical Representations of the
Kikuchi Problem

In this section we define the notion of graphical representations, for a Kikuchi ap-
proximation problem. The algorithms of the type discussed in Section 9.3 can then
be viewed as message-passing algorithms along the edges of such graphs. We will

discuss this in detail in Section 11.

We will further introduce minimal graphical representations for a given collection
R of regions, which are graphical representations with the fewest number of edges.

Our motivation for introduction of such minimal graphs is two-fold.

First, note that the results of Section 9.4 refer to the uniqueness of solution of
the constrained minimization problem (9.14). However, one is further interested in
the conditions under which these solutions are the exact marginals of the product
distribution (9.13). As we will show in this section, the exactness of approximations
obtained using (9.14) corresponds directly to non-existence of loops in the minimal
graphs. In fact, we will show that in the loop-free case, this graph is a junction tree
and the message-passing algorithms of type discussed in Section 9.3 correspond to a

variation of junction tree algorithm.

Second, as we will discuss in detail in Section 11, the message-passing algorithms
of the type mentioned in Section 9.3 on minimal graphs will be the most compact

_ among all graphical representations of the same problem, and can result in algorithms
96

that are significantly less complex than such algorithms as the GBP of [50] and the
poset-BP of [23].

Let G be a directed acyclic graph with vertex set V(G) and edge set £(G). Parallel

to our definitions in Section 8.2, for each vertex r € V(G) define: .

Ancestors: Ag(r) := {s € V : Ja directed path from s to }
Descendants De(r):={s€V : re Ag(s)}
Parents Pe(r):={seV : (s—r)€&G)}
Children Co(r) ={seV : (r—s)e€&G)}
Forebears Fe(r) == {r} U Ag(r)

As in Section 8.2, for a subset S C V(G) we define F¢(S) := s Fe(s)-
Also define depth of each vertex r € V(G) as:

do(r) = {o ~ if Pg(r) =0

1 + maxsepg(r) dg(s) otherwise

Similarly we define the depth of each edge (t — u) of G, as the depth of the child

vertex u:

dg(t — u) ;= de(u)

Note that given a poset R of regions, the above definitions for the Hasse diagram
Gpg are consistent with the corresponding definitions for the poset from Section 8.2,

i.e. for all r € V(GRg), Aggp(r) = A(r) and so on.

Back to the problem at hand, let R be a collection of regions as before, and let
G be a directed acyclic graph whose nodes correspond to the regions r € R. We will

further assume that an edge (s — t) exists in G only if t C s.

Definition 10.1. The edge-constraint for an edge (s — t) of G is defined as the
97

following functional of the pseudo-marginals {b,, r € R}:

EC(s—ty({br, 7 € B}) :=) by(xs) — by(x) (10.1)

Xs\t

When the arguments are clear from the context, we abbreviate this as EC(,_,). O

Definition 10.2. We call G a graphical representation of AX if AX can be represented

using the edge-constraints of G, i.e.

AK = {{b.(xs), € R} : V(s = t) € E(G), ECsry = 0

andVr€ R, Y b.(x,)=1} (10.2)

Xr

O

As mentioned in the previous sections, a poset R is most naturally represented
by its Hasse diagram Ggr; Hasse diagram uses the transitivity of partial ordering
to represent a poset in the most compact form. Note that our local consistency
constraints also have the transitivity property:

If (r — s),(s — t) and (r — t) are edges in graph G, then
(EC(,-_.S) = 0) and (EC(S_.t) = 0) = (EC(,-..:) = 0)

Therefore the last edge (between ‘grandfather’ and ‘grandchild’) is redundant. This
is why the Hasse diagram Gp, is a graphical representation of AX.

On the other hand, local consistency relations satisfy a property other than tran-
sitivity which can be used to further reduce the representation of AX:

Suppose (r — s), (r — u), (s — t) and (u — t) are edges in graph G, then

()
(EC(,-...S) = 0) and (EC(,-._.u) = 0) and (EC(u_.t) = O) = (EC(S_.t) = 0)

Then a graph obtained by removing the edge (s — t) of G is still graphical
representation of A% since the edge-constraint of (s — t) is implied by other edge-
constraints. We will refer to this property as the () property, because of the under-
lying diamond-shaped structures of the Hasse diagram, on which this property can

be applied.
98

We now make precise the reductions in the graphical representation which are

implied by the anti-transitivity property.

Definition 10.3. Edges (v — r) and (v — r) are said to be Egquivalent Edges
for Removal (EER), and denoted (u — r) ~ (v — r) if there exists a sequence
(to — 1), , (tx —) of edges in Gg, with ¢, = u and ¢x = v and with the property
that Vi=1,---,k, Altic1) NA®) #0,ie. Jw; ERst. ti Cwyand t; Cwy. O

Then it is easy to verify that this relation ‘~’ is reflexive, symmetric and transitive
and is hence indeed an equivalence relation. Therefore for each region r € R, the
collection of all the edges leading to r can be partitioned into equivalence classes of

edges for removal (EER classes of region 7). In the example of figure 10.1(a), {t, u, v}

(a) (r) (s
Q®WO®WO O
- |
(b) |

Figure 10.1: Equivalence of edges for removal
In the Hasse diagram (a) of R the EER classes of z are {t,u,v} and {w,z,y}. (b) is
a realization of Sg, the minimal graphical representation of R.

and {w, z,y} are the EER classes of 2.

(a)

Definition 10.4. From each EER class {(t; — r),- -+ , (tm — 7)}, remove all but one

representative edge from the Hasse graph Gg. Denote the resulting graph by Sg. O

Figure 10.1(b) shows one realization of Sg for the Hasse diagram of part (a).

Note that graph Sg is not unique, since the representative edge of each equivalence
class can be arbitrarily chosen. However, the number of the edges of any choice of
Sg is unique and equals the total number of EER classes of all regions. As we will
see shortly, all choices of Sg result in equivalent, minimal graphical representations

of R. All results in the remainder of this dissertation apply to every choice of Sg.
99

Lemma 10.1. For every pair u,s € R such that s C u, there is a path in Sg between

s and u consisting only of nodes that contain s.

Proof. Clearly the Hasse diagram Gg has the claimed property; in fact if s C u, then
there is a directed path from u to s consisting only of nodes that contain s.

Also note that if the claim is true for all pairs s < u with d(s) </, then it is also
true for all pairs s C v’ with d(s) < (; this is because s C «' implies that there exists
a sequence of regions s =ug <u; < -+ <y =o', with d(u;) <lfori=0,---k—1.
Then there is a path in Sg between each pair u; and u;4; consisting only of nodes
that contain u; and hence s.

Now to prove the claim for pairs s < u we proceed by induction. Suppose first
that s < v and d(s) = 1. Then the edge (u — s) of G remains in Sg, since edges
of depth 1 cannot be EER with other edges. Next assume inductively that we have
proven the claim for all pairs ' < ' with d(s’) < [, and suppose s < u is a pair
of regions of R with d(s) = !+ 1. Then from the definition of Sg there remains an
e_dge (v — s) in Sg, a subset {ty = u,;,---,t = v} of parents of s and a sequence
{wi ,+++ ,wg} of regions of R, s.t. w; € A(ti-1)N.A(t;). Each t; has a depth of at most
[, so for each ¢ = 1,--- , k there are paths in Sg from w; to ¢;—; and to ¢; consisting
only of nodes that contain ¢;_; and ¢; respectively. But s C ¢; for all 4, and hence
there is a path (s,v,--- , Wk, ,tg—1,°* ,Wk—1,°"* , -+ , Wy, ,u) in Sg consisting

only of nodes that contain s. This completes the proof. 0O

Now suppose S and S are two instances of Sg. As mentioned earlier, the number
of edges of Sk and S% are the same. Also by Lemma 10.1, the connected components
of any Sg correspond one-to-one to those in Gr. Therefore S} is loop-free iff S is
loop-free, and in fact the number of loops of Sk is equal to that of S%. With this
justification and based on the next proposition, we call Sg the minimal graphical rep-
resentation, or the minimal graph, of R, and freely talk about existence of loops in

Sr, as if Sg were unique.

100

Lemma 10.2. Let T C R, and view F(T) as a sub-poset of R. Let Sg be a minimal
graphical representation of R, and let G denote the subgraph of Sg on F(T). Then
G is a minimal graphical representation of F(T). Furthermore, for each t € F(T),

the overcounting factors of t w.r.t. posets R and F(T') are the same.

Proof. For each t € F(T), the EER classes of ¢ in poset F(T) are identical to those
in R. Hence G by definition has one edge from each EER class, making it a minimal
graphical representation of F(T'), as claimed. Similarly, fhe overcounting factor ¢,
w.r.t. R depends only on the regions in F(¢t). These are all included in F(T).
Therefore a simple inductive argument shows that the overcounting factors of ¢t w.r.t.

R and F(T) are identical. 0O

Based on this result, in the rest of this dissertation, when talking about a specific
choice of Sg, we write Sz(r) to denote the subgraph of Sg on F(T), as the choice of
the minimal graphical representation of F(T'). |

Proposition 10.3. Sk is indeed a ‘minimal’ graphical répresentation of AK, ie
a collection of pseudo-marginals {b., r € R} lies in AK iff it satisfies all the edge-
constraints of Sg, and further, removal of any of the edges of Sg results in misrepre-

sentation of AK.

Proof. To show that the collection of edge-constraints of Sg is a sufficient represen-
tation of AX, note that by Lemma 10.1, for each r C t there is a path between
r and ¢t with only nodes that contain r. Then the collection of edge-constraints of
this path imply that 3., by(x¢) = br(x;). Therefore any collection {b, r € R} of

pseudo-marginals satisfying all the edge-constraints of Sk belongs to AK.

To prove minimality, let S, be a graph created from Sr by removing an edge
(t1 — u) of Sg. Let {(t1 — w),---, (tx — u)} be the corresponding EER class — all

of these edges are now removed in creating Si. Define T := Uf__,l Urere) T
101

Let b(x) > € > 0 be a positive distribution, with marginals b,(x,),r C [N]. Then
{br(x,),r € R} € AE. Now define another collection {¥.(x,)} as follows:
, br(xr) + €+ (—1) X ifz; € {1,2} Vicu
r(Xr) = { br(xr) else'
Therefore b7.(x7) differs from br(xr) by a small perturbation of +e introduced only
on the cube {1, 2}, which is a subset of the range [Licula] of x.. '
We extend this to define b/(x;) for all the regions r € R as follows:

k
b (%) := D br(xr) if r € | JF(t:)
T XT\r =1
b (%) == bo(x,) else

We claim that (1) b, = b, for all r € R\(UL, F(t:)); (2) b, # b, for any 7 €
(UL, F(t:)), and (3) all the edge-constraints of Sy are satisfied.

Part (1) is obvious from the definition of & above.

Part (2) can be seen easily since for any r € |, F(¢;), u C r and by definition,
marginalizations of b} are different from those of br on the subsets that contain u.

To see part (3), let (r; — 2) be any edge of Sk. If both r1,7, € R\(US, F(t:))
or both 71,75 € Ule F(ti), then by definition, b}, is consistent with &/,. If r, €
Uf=1 F(t;), then its parent, r; must also lie there. Therefore we need only check the
case when 7 lies in (U, F(t:)) and 7, does not. Note that in this case, r cannot
contain u.Also from definition of b%-(xr), the marginals of b, at the level of any subset
that does not contain u coincide with the marginals of b since the € terms cancel
out. Hence b}, marginalizes to b,, and since b,, = b,,, the edge-constraint in Sj

corresponding to (r; — 73) is also satisfied in this case.

We have therefore shown explicitly that there exist collections {b.} of pseudo-
marginals that satisfy all the edge-constraints of Sy but not the edge-constraint cor-
responding to edge (t; — u) of Sk (in particular, thl\u by, (X)) # by (Xu) = bu(x%4).)

Therefore {0} ¢ AK. m]
102

As we have seen, to solve the constrained minimization problem one forms the
Lagrangian, introducing multipliers A;.(x,) for each edge (t — r) of Sg. Since Sg
has fewer edges than any other graphical representation of R, algorithms based on

Sr require the fewest message updates per each iteration.

10.1 Connection with Junction Trees

In this section we show that there is a close connection between the minimal graphical

representation of a collection R of Kikuchi regions, and the junction trees on R.

Definition 10.5. Let {r1,--- , 7} be a collection of subsets of the index set [N]. A
tree/forest G with vertices {ry,--- ,7a} is called a junction tree/forest if it satisfies
condition (A1) of Section 9.2, i.e. that for each 7 € [N], the subgraph consisting of

all the vertices that contain ¢ be connected.! O

Although junction trees are traditionally defined as undirected trees, in the above
definition we do not make distinction between directed and undirected graphs; we call
a directed graph a junction tree if replacing all the directed edges with undirected

ones yields a junction tree in the usual sense.

Let {r1,--- ,7am} be the maximal elements of R. For the rest of this dissertation
we assume that R is totally connected, i.e. it has property (An) foralln=1,--- , N.

Then it is easy to see from the definition above that the following proposition holds:

Proposition 10.4. If Sk has no loops, then it is a junction forest and hence {r1,--- , T}

can be put on a junction tree.

Proof. The Hasse graph Gp satisfies (A1). Let (uo,u1,--- ,u,) form a path in Gg
where ¢ € u; for all j = 0,---,n. Then for all j = 1,---,n either u;_; < u;

or uj < uj—;. Then by Lemma 10.1 there is a path between u;_; and u; for all

!Note that given that G has no loops, condition (A1) implies (An) for all n.
103

J = 1,---,n consisting only of nodes that contain i. This proves that Sg satisfies
(A1). Therefore Sg is a junction forest on R.

Now starting with undirected version of Sg, successively absorb each node r €
R\{ry,---,Tu} together with all its connecting edges into one of its neighbors. The
resulting graph will be a junction forest on {ry,---,7x}, the maximal elements of
R. =

Interestingly, the converse to this is also true:

Proposition 10.5. If the mazimal elements {ry,--- ,7m} can be put on a junction

tree then Sg has no loops.

Proof. First note that the existence of a junction tree on the maximal elements of R
is equivalent to the existence of a junction tree on R.

Recall from Section 1.2 that we define the local domain graph, Gp for the col-
lection R, as a weighted complete graph with vertices corresponding to the regions

r € R, with the weight of the edge (r, s) defined as
W(r,s) = |7’ N S|

Then from Theorem 4.1 of [2], any junctioxi tree on R must be a maximal-weight
spanning tree of Grp. A maximal-weight spanning tree can be obtained using a
greedy algorithm such as Kruskal’s algorithm, see e.g. [8]: Start with an empty
graph, H. Identify an edge of Gyp with the largest weight whose addition does not
create a cycle in graph H, and add that edge to H. Repeat the preceding step until
no more edges can be added.

Let G be the undirected version of the Hasse graph Gg, where each directed edge
(r — s) is replaced by an undirected edge (r,s). Notice that at each stage of the
above algorithm, one can choose an edge from the edge-set of G. To see this, suppose
(t,7) is an edge in Gy p with maximal weight whose addition does not create a cycle.

Then, since G is totally connected, there is a path in G where each vertex on the
104

path contains ¢ N r; every edge in this path then has weight at least |t N 7| > wy,.
Now note that there must be an edge (t',7') in this path (in G), such that ¢’ and 7’
are not connected in H (otherwise ¢ and r would already be connected in H and so
the addition of the edge (t,7) would create a cycle.) Therefore at this stage of the
algorithm we can choose the edge (#',7') instead of (¢,7). This shows that there is a

junction tree on R whose edge-set is a subset of the edge-set of G.

Next note that the junction tree on R constructed in the preceding paragraph,
under the hypothesis that a junction tree exists on R, must include at least one
edge from each EER class of G. Specifically let uo be a parent of r in R, and let
(uo, u1, Uz, -+ , Uy = 7) be any path between ug and r in G such that each u; includes
r. Then it is easy to see that (up — 7) and (um—; — 7) must be in the same EER
class. This proves that any path between 4o and r in G includes one of the edges
in the same EER class with (ug — 7), and therefore any junction subtree of G must
have at least one edge from each EER class. Now remember that S was defined to
be a graph with precisely one edge remaining from each EER class, so we could have
chosen Sgr as a subgraph of the junction tree we constructed. However, if Sg has a

loop, it cannot be a subgraph of a tree. O

Recall that in Section 9.2 we originally defined the Kikuchi problem in terms of a

collection Ry of regions.

Definition 10.6. The original collection R, of regions is called loop-free if there exists
a junction tree on its maximal elements, and is called loopy if no such junction tree

exists. O

Now as before, let R be any poset of regions with the same maximal regions as
Ry, which is totally connected. Then by Propositions 10.4 and 10.5 and the definition

above, Ry is called loopy iff Sk has a loop.
106

10.2 Necessary and Sufficient Conditions for Ex-
actness of Kikuchi Method

It is well-known that the belief propagation algorithm converges to the exact marginals,—
in finite time, — if the ‘underlying graph’ is loop-free, see e.g. [33], [10]. Likewise,
the message-passing algorithms of the type discussed in Section 9.3, will éonverge to
yield the exact marginals if the Hasse diagram is loop-free, and in fact the value of

- the Kikuchi functional equals the variational free energy. However this is a rather
weak result, since only very rarely will the Hasse diagram be loop-free. In fact many
collections of regions that can be put on a junction tree result in Hasse diagrams that
have loops. For example the poset R = {{123}, {234}, {345}, {23}, {34}, {3}} will
have a loop in the Hasse diagram as displayed in Figure 10.2(a), but can be easily
handled as a junction tree 10.2(b).

@R @D DT
H ¢ © 0 @
o

(@) (®)

Figure 10.2: Hasse diagram vs. junction tree

Also, in the example of Figure 10.1, even though the Hasse diagram has loops,
the solution to the Kikuchi approximation problem equals the exact marginals. This
is because not all the loops of G are ‘bad’ loops that cause trouble for the message-
passing algorithm. In fact these ‘bad’ loops are precisely the loops that cannot be
broken when one creates Sg. In the examples of both Figures 10.1 and 10.2, Sg is
loop-free. One can therefore run a message passing algorithm on Sg, which converges
to yield the solution for the Kikuchi approximation (9.14) which is identical to the
exact marginals. In fact in these examples, the Kikuchi free energy functionalequals

_the variational free energy. The results in this subsection are aimed at making these
106

observations precise.

Let R be an arbitrary collection of regions. Note that the following lemma does

not assume that the poset R is totally connected.

Lemma 10.6. If Sr is a tree, then the overcounting factor for each region r € R

satisfies

G = 1- I,PSR(T)I)

where |Ps,(r)| is the number of parents of v in Sg, as defined earlier in Section 10.

Furthermore, the sum of the overcounting factors of all regions equals 1.

Proof. We will show this by induction on the maximum depth of regions of R.

If R has maximum depth of 0, and given that Sg is a tree, R must necessarily
consist only of one region. Then the claim then holds immediately for the single

region of R.

Now suppose the lemma holds for all posets R’ with maximum depth I. Suppose
a poset R has maximum depth ! + 1 and Sg is a tree. Let {(s} — 7),---,(s}, —
)} {(sT = 1), ,(sf, —)} be all the EER classes of a given region r € R.
Let Ty := UM s}, ... | T;, := UF™ s7 be the parents of 7 corresponding to each EER
class. Then F(T3),--- ,F(Tm) must be disjoint or else two of the EER classes could
be merged into a bigger class. Then by induction hypothesis, the sum of overcounting

factors for each sub-poset F(T}),--- ,F(Ty) is 1, and by Lemma 10.2 these are the

same as the overcounting factors w.r.t. R. Then

m m
G=1= Y c=1-3 Y c=1-) 1=1-|Pg,(r)|
SEA(T) i=1 ueT; i=1

since the number of parents of r in Sg is precisely the number of EER classes of r.
107

Now consider the sum of the overcounting factors of all nodes:

dYoa= (1—-Ps(r))

TER TER

=Y1- Y 1

reR (s—r)EE(SR)

= [V(Sr)| = |€(Sr)|

=1

where the last equality follows from the fact that Sg is assumed to be a tree, so the
number of its vertices is one more than the number of its edges. This completes the

inductive step of the proof.]

The following theorem states sufficient conditions for the Kikuchi approximate

free energy and the consistency constraint set of pseudo-marginals to be exact:

Theorem 10.7. (Ezactness of Kikuchi approzimates, AX and F¥)
A) AK = Ap if Sg is loop-free.

B) Let b(x) be a distribution with marginals b,(x;). Then
FE({br, r € R}) = F(b) if b(x) =[] cpbr(x-) Vx

Proof. Part A): Suppose Sg is loop-free, and let {b.(x,), 7 € R} € AK. Since Sp
is a junction forest, there is a distribution b(x) := [[,cp br(%r)/ I1(muee(sg) bu(*u)
that marginalizes to {b.(x,), r € R}; this is a well-known result on the junction trees,
which can be verified by marginalizing b(x) in stages, from the leaves (of the undi-
rected version of Sg) towards an arbitrary region r as the root, where at each step,
by local consistency there will be cancellation. Therefore {b,(x,), 7 € R} € Ag, and
so AKX C Ag. But clearly Agr C A¥ since the true marginals of any distribution are

locally consistent. Therefore AXK = Ap.

108

Part B): From discussion of Section 9.1, F§({b,, r € R}) = F(b) if the entropy

approximation of equation (9.8) is exact. Now

b(x) =] br(¢r)

TeR

KL (b(x)||]] br(xr)) =0

TER

Zb(x)(log(b(x)) log(]] b+(x+))) =

reR

Z b(x) (log(b(x)) — > _ ¢ log(br(x;))) =0

rer

Z b(x) log(b(x)) = D _ &) _ b(x) log(b,(x-))

TeER x

Zb<x> log(b(x)) = 3" ¢ 3 br (%) log 5, (x,))

reR Xr

Fz'z‘ ({b-(x), 7 € R}) = F(b(x))

e bl

O

Corollary 10.8. If Ry is loop-free, then the constrained minimization problem (9.14)
has a unigue solution. Further, the solutions {b}, r € R} is the ezact marginals of
the product function, and the minimum free energy equals the log-partition function,
i.e. bt(x,) = B.(%,) and F* = —log(Z). 2

Proof. From Theorem 10.7, if Sr has no loops then AX = Ag, and further for each
{b;} € AE, the function [], .z b (x,) is a valid distribution on x which marginalizes
to the b.’s, and therefore F ({6,}) = F(I],cg 7). On the other hand, as stated in
Section 9.i, the minimum of F(b) is achieved uniquely with Boltzmann distribution,
B(x) := 3 [I,crar(x,). Now clearly {B,, r € R} € Ag = AK, since {B,, r € R}
is the set of R-marginals of a valid distribution B(x). Therefore {B,, r € R} is a
minimizer of (9.14), and the corresponding minimum F* indeed equals the minimum

Fp of F(b), which in turn is equal to — log(Z).

2In fact in the case when Ry is loop-free, iterative algorithms such as GBP, which we will discuss
in Section 11, converge in finite time to the unique solutions b.

109

To see the uniqueness, note that if {b}, 7 € R} € AK is any minimizer of (9.14),
then the corresponding distribution b*(x) := [].cp b (%;) is a distribution, with
marginals {b7}, which minimizes the variational free energy F(b); but B(x) is the

unique minimizer of F(b). Therefore b*(x) must be equal to B(x), and accordingly

{7} = {B:}. .4

The above results show that a sufficient condition for the exactness of the solutions
of Kikuchi approximation method of (9.14) is that S be loop-free. In the sequel we
address the necessary conditions for exactness.

We first pose the following, more abstract question about entropy approximations:
Under what conditions is an entropy approzimation in the form of equation (9.8) ezact

for all R-decomposable distributions? The following theorem, answers this question.

Theorem 10.9. Let R be a totally connected poset of subsets of [N], and let {k,, r €

R} be a collection of constants. Then the following are equivalent:
(1) HB) =} _,cr kr H:(B;) for all R-Jecomposable distributions B(x).
(2) 3orevie, 7y or =1 for all s C [N] such that U;e, F(3) is connected in Sg.
(3) Xrev,es7is) ke =1 for all S € 2N such that UsesF (s) is connected in Sg.

Further, given the poset R, there ezists a collection {k.,r € R} satisfying (1),
(2) and (3) above, iff Sr, the minimal graph of R, is loop-free. If such collection
{kr, ™ € R} exists, then it is unique and equals the (Mobius) overcounting factors
{¢r, r € R}. ‘

Proof. See Appendix B.1 O

From this theorem, proof of Proposition 9.1 of Section 9.1 follows:

110

Proof of Proposition 9.1. Note that although the statement of Theorem 10.9 assumes
that R is totally connected, that assumption is only needed to show that (3) implies
(1). From the proof of Theorem 10.9, for an arbitrary collection of regions R, any
collection of factors {k,r € R} satisfying condition (1) of Theorem 10.9 must be the

Mobius overcounting factors. ‘ a

As mentioned in Section 9.2, given a product distribution with local kernels
{a®(x,), r € Ry}, where the regions in Ry cannot be put on a junction tree, it is
expected that expanding the collection Ry by adding subsets of 7 € Ry as further
regions would improve the quality of approximation obtained by the iterative algo-
rithms such as GBP. The following result, however, shows that it is improbable that

ezact solutions will be obtained.

Theorem 10.10. If Ry is loopy, then except on a set of measure zero of choices
of kernels {al(x,), r € Ry}, the Kikuchi approzimation method of (9.14) will not

produce the ezact solutions.

Proof. Let T denote the set of Ry-kernels {a2(x,)} for which the Kikuchi entropy
approximation of equation (9.8) is exact for the Boltzmann distribution. Specifically,

define

T = { {a%0x),7 € Ro}: 3 BGO)log(BG) = 3 r 3 Brlx,) log(Br(x,)) }
x r€ER Xr
(10.3)
where, as in Section 9.2, B(x) = 3 [] <z, 2(x,) and B,’s are its marginals. For each
region 7 € Ry define ¢, := [[,., ¢: to be the cardinality of the range of x,, and let

l:i=3 ¢ RoIr- Let f:]R‘+ — R be the error function in approximating entropy as
111

in (9.8), i.e.

f{ed(xn)}) = Z B(x)log(B(x)) = Y_ ¢) Br(x:)log(B:(xy))

TeER Xy
_— sER a x3) HseR Qg (Xs) _
Z Ex' HseR 8 s) 1 (Ex' HseR ag(xg))

sz ,.HseR () ZxN ,Hsenag(xs)
2) S oot S [Ton o)

T‘GR Xr

Then T = £~1(0). Function f(-) above is clearly analytic on its domain, R}. Then, as
demonstrated in [12] §3.1.24, either T = R} or u(T) = 0, where u(-) is the Lebesgue
measure. The first alternative requires that f be identically zero on Rf,_. But from
Theorem 10.9 it is evident that if Ro is loopy, then the entropy approximation cannot

be exact. This completes the proof. O

A stronger version of this result can be derived. Although we have so far focused on
positive distributions B(x) > 0, in many applications one is interested in distributions
that can be zero at certain points of the state space. As mentioned above, using its
continuity, the function zlog(z) can be extended conveniently at the point x = 0
This means that we can handle arbitrary (not necessarily positive) distributions.in
the above framework.

Suppose then we condition on the collections of kernels {a2(x,),r € Ry} which

are zero at predetermined values. Specifically, for each r € Ry, let Z, C [];..[g;] be a

i€r
subset of the range of values of x,., on which o? is zero. We say a collection of kernels
{a®(x,),r € Ro} is consistent with {Z,,r € Ry} if for each r € Ry, a?(x,) = 0 for all

Xy € Zp.

Theorem 10.11. Suppose Ry is loopy, and let {Z,,r € R} be a collection of zeros of
the kernels as defined above, chosen such that the following holds:

Vs C[N], 3%;,%2,%v\s such that &} # 7 Vi € s, and that B(%;, Xv)\s)

and B(%2, x[N]\s) can both be nonzero under the restrictions imposed by {Z,}.
(10.4)

112

Then the conditional measure of the set of kernels {a?(x,),r € Ry} conditioned to
be consistent with {Z.,r € Ry}, for which Kikuchi approzimation method of (9.14)

. 15 ezact is zero.
Proof. See Appendix B.2 ’ ' O

We conclude this section with a generalization of Corollary 9.4 on sufficient con-
ditions for convexity of the Kikuchi free energy. In particular we make a (purely
set-theoretic) connection between the number of loops of Sg and the sufficient con-

ditions of Theorem 10.13 for convexity of Kikuchi free energy.

Definition 10.7. We call a collection R of Kikuchi regions normal, if for all S C R,
there exist a largest region (w.r.t. set-inclusion) mg € (g D(s), possibly the empty
set, that contains any other region u € [\ D(s).

O

Lemma 10.12. If R is normal and Sg is connected and has ezactly one loop, then

ZrGRc" € {07 1}

Proof. Let L C R be the set of nodes in the single loop of Sg, and let L := F(L).
Note that L cannot have a single minimum region, i.e. a region that is contained in all
other regions of L; to see this, suppose to the contrary that ro is the minimum region
of L. Then all the edges of the Hasse diagram that terminate in ro and participate
in the loop L would be EER; all but one of these edges would be removed in Sg,
therefore 7y could not be part of the loop L, which is a contradiction.

It follows from this that for each r € Z, the sub-poset F(r) does not contain the
loop L, and is hence loop-free. Then by Lemmas 10.6 and 10.2, ¢, = 1— |Ps_,,.(,) (")) =
1 — |Ps,(r)|- Then, as argued in the proof of Lemma 10.6, there is a contribution
of +1 for each vertex and —1 for each edge of Sg for the sum }_ .7 c,. Now Sj is
connected and has one loop, so the number of its vertices equal the number of its

edges and s0) 7 ¢, = 0.
113

Now for each r € R\ L such that StuF(r) is connected, we calculate the contribution
of the overcounting factors of regions in F (r)\z to the overall sum. After each stage,
we will inductively append F(r) to L.

First suppose that F(r) does not contain the loop L of R; then

Z cs=ch+ Z Cs . (10.5)
seLuF(r) seL seF(r)\L
We will argue that the second term must equal 0. Remember that from the definition

of the overcounting factors,

1=) = Y e+ Y o (10.6)

SEF(r) seF(r)nL seF(r\L

But Sf(r)nf. must be a tree, since firstly it does not contain the loop L, and secondly
r can have only one parent in Sryni OF else Sr would have a loop containing r.
Therefore by Lemma 10.6, 3¢ z(yng ¢s = 1. Then from (10.6), 3= cz¢y\z ¢ = 0 and
hence by (10.5), 3 ciur(r) Cs = DscL Cs» i-6- the sum is preserved after appending
F(r). '

Next suppose that F(r) contains the loop L of R. Then since R is normal, there is
a largest m € R such that F(m) contains the loop. Again we break up the new sum
of overcounting factors as in equation (10.5). If r is equal to m, > seF(r)nE Cs in (10.6)
equals 0 since S,z has one loop and has no region 7’ such that F(r') conté.ins the

loop and hence by what we have shown so far, ¢s = 0. Therefore by (10.6),

S€ESr(rnL
2 ser()\E Cs = 1, and hence from (10.5), 3 sezuzm) s = 2seci & +1=1.

On the other hand, whenever F(r) contains the loop but r # m, then m C R and
hence F(m) C LNF(r). Then by what has been shown so far, > seinF(r) Cs = 1. Then
the additional term 3z, f Cs in (10.5) is 0 and hence 3 7,5,y Cs = Dogef € = 1.

Therefore we have shown that, depending on whether (,., D(s) is empty or not,

the sum) .pc-isOor 1. O

Theorem 10.13. Let R be a normal collection of Kikuchi regions. Then the Kikuchi

free energy functional FE({b.}) is strictly convez if Sg has zero or one loop. In
114

particular, the Kikuchi free energy for the cluster variation method of [49] is strictly

!

convez if Sg has zero or one loop.

Proof. For each S C R, F(S) contains zero or one loop. Then by Lemmas 10.6
and 10.12, Ese}-(s) ¢s > 0 and hence, from Theorem 9.3 the Kikuchi functional is

strictly convex. . -0

115

Chapter 11

Generalized Belief Propagation
Algorithm

We are now in position to describe a class of iterative message-passing algorithms
that try to solve the constrained minimization problem (9.14). Previously described
algorithms such as the generalized belief propagation (GBP) algorithms of [49] and
[50], and Poset-BP algorithm of [23] are special cases of the class of algorithms we de-
scribe. The algorithms proposed earlier work on the full Hasse diagram. The results
derived in the earlier chapters on the minimal graphs allow us to propose algorithms
for solving (9.14) which are often substantially less complex than the ones proposed
in [50] and [23], and which appear to have comparable convergence performance in

some examples we have investigated and reported on Section 12.

Let R be the collection of regions for a Kikuchi approximation problem. In Sec-
tion 9.3 we described how the Lagrange multipliers method can be used to obtain an
iterative, message-passing algorithm with fixed points that coincide with the station-

ary points of (9.14).

Now let G be any graphical representation of AX as defined in Section 10. Then
the Lagrangian of equation (9.15) can be rewritten in terms of the edge-constraints of
G, in which case the ‘messages’ of the resulting iterative algorithm can be identified

precisely with the edges of G. This means that, for each graphical representation
116

of AX there is a distinct message-passing algorithm along the edges of that graph.
Clearly all such algorithms have the same set of fixed points, although the dynamics

of each algorithm may be different.

So far we have represented the constraint set AX using the edge-constraints deﬁped
in Section 10. Motivated by an observation made by Yedidia, Freemaﬁ and Weiss in
[49; 50], we introduce an alternative but essentially equivalent set of edge-constraints;
we will then be able to use this alternative representation of the constraint set AX to

derive an alternative message-passing algorithm to solve (9.14).

Definition 11.1. The YFW edge-constraint' for an edge (s — t) of G is defined as
the following functional of the pseudo-marginals {b,, r € R'}:

EC,_ny({br,T€RY = D cu) bulxi) (11.1)

wE€F(E\F(s) Xuye

where R := {r € R, ¢ # 0} is the collection of regions with non-zero overcounting
factors. Note that, since ¢, = 0 for u € R/, EC{,_,; is a function of only {&,,r € R'}
as claimed in (11.1). When the arguments are clear from the context, we abbrevia.t;e
these edge-constraints as EC{,_,,.

(]
Proposition 11.1. The collection of pseudo-marginals represented by the YFW edge-
constraints is equal to the restriction of AX to R'. Namely, if we define
== {{br(x:), T € R} : Y(s - 1) € £(G), EC{,_y({br,r € R}) =0
and Vr € R/, Zb,.(xr) =1}, (11.2)

Xr
then Ay = AK|,.,, where

AR g = {{b:(x:),7 € R’} : {b;(x;),7 € R’} has an extension {b.(x,),r € R} € AK}

is the restriction of AK to R'.

1We call these constraints YFW after Yedidia, Freeman and Weiss.
117

Proof. See Appendix B.3 0.

Remark. Note from (9.11) and (9.13) that Kikuchi free energy can be rewritten as

follows:

FE{b(xn)}) =)D (— e br(x,) log(Br(xs)) + cr br(x,) log(b(x,))) (11.3)

reR x,

From (11.3) it is apparent that FX({b,,r € R}) only depends on {b,,r € R'},
since the terms involving the pseudo-marginals corresponding to the regions with

zero overcounting factors are multiplied by zero. Therefore (9.14) can be rewritten

as follows
in FX({b,recR)= min FX({b,rcR
oo in TR ({ér,7 € R}) torn PR ({or,r € .})
: K — : K /
and (a.rg {bhrren}gleAg Fg ({b,,7 € R})) |R, = arg {br,rIGnI%’I}IEA'R Fg ({b.,7 € R'})

(11.4)

In other words, the central constrained minimization problem (9.14) is reduced to

the following: ming, rerjeny, Fis ({07 € R'}).

O
We will now write the Lagrangian for (11.4) using the YFW edge-constraints:
by (x,)
L:= ¢ be (%) log (=——=
; (r)log (ﬂr(xr))
+ Z Z Art(Xt) Z Cuz bu(xu) + Z Rr(zbr(xr) - 1) (11.5)
(r—t)e€E(G) =x¢ ueF(N\F(r) Xunt re€R Xr

Setting partial derivative 0L/0b.(x,) =0 for each region r and each value of x,,

and identifying ‘messages,’ for each edge (p — r), as my.(x,) := e~ **r) we obtain:

) =k TI mwx)) (TT TT mwaxa)) (126)

p€EPg(r) deD(r) p'€Pg(A\({r}uD(r))

where constant & is chosen to normalize b, so it will sum to 1, and message m,, is
118

updated to satisfy the original edge-constraint pr\r bp(%p) — br(x,) = 0:

 2oxn Po(%p) (Il epoe map (x”)) ([Lien) [Lsepsianimmey ms’d(xd))

Br(xr) (I €Pa(r)\{p} tsr (x,)) (Hde'D(r) Hp’e'Pa(d)\({r}U'D(r)) mp’d(xd))
A ' (11.7)

Mpr(X;) = K

where k' is any convenient constant. Note that the common terms from the numerator
and denominator of (11.7) can be cancelled, but to avoid even longer formulas we
will not write the explicit form here.

The fixed points of equations (11.6) and (11.7) set all the derivatives of the La-
grangian equal to zero, and hence are precisely the stationary points of the Kikuchi
free energy FX subject to constraint set AX.

The algorithm of equations (11.6) and (11.7) is defined on any graphical represen-
tation of A%, and has as many messages as the edges of the underlying graph. From
results of Section 10 then, using Sg, the minimal graphical representation, yields the
least complex such algorithm in this sense. In fact in most cases the algorithm on Sgp

is substantially less complex than the full version implemented on the Hasse diagram

Gr.

Remark. A version of this algorithm was originally labeled GBP in [49]. In [23]
also the authors described an algorithm called ‘Poset-BP’ which is equivalent to the
restriction of our results when G is the Hasse diagram. Our result shows that in
general there are algorithms with strictly fewer messages, that have the same fixed
points. In particular, the messages corresponding to the edges of the Hasse diagram
that are removed in forming a more compact graphical representation, can be set
to 1 in the entire algorithm. Not only the messages corresponding to the removed
edges need not be updated at each iteration of the algorithm, the update rules for
the remaining messages are also less complex, since they depend on fewer edges. |
It is also noteworthy that the proofs given in [50] and [23] both presume that the

poset is first simplified by removing the regions with zero overcounting factors. We
119

note however that removing the regions with zero overcounting factors can in general
alter the problem. This is because a region with zero overcounting factor may still
serve to ensure consistency between the pseudo-marginals at other regions (see e.g.
the poset in Figure 11.1). We have avoided this restriction, by proving the results for
a general poset. . (]
Q23) (138) (2o
L < <A
OO0
W

Figure 11.1: A simple poset
Region {1} has zero overcounting, but cannot be removed.

Consider now the restriction of the above algorithm in the Bethe case, i.e. each
region in R is either maximal or minimal w.r.t. inclusion. Then P(r) = 0 for
a maximal region r, and D(s) = @ for a minimal region s. To demonstrate the
connection with the belief propagation algorithm, in addition to the messages m,,(x;)

for r C p, we also define messages from a child to parent as follows:

nTP(xf’) = ﬁf(xr) H msr(xr) (118)
s€P(r)\{r}
Then, by equation (11.6), for a maximal region p € R,
bp(xp) = k Bp(xp) [mpalxa) (11.9)
deD(p)

Similarly, for a minimal region r € R,
br(x,) = kBr(%r) [] mar(xr) (11.10)
deP(r)

The update equation (11.7) for messages m,, can then be rewritten as

Zx,,\, Bo(%p) Hde'D(p) Nap(Xa)

Mpr(%r) = k'

Br (xr) 'nrp(xr)
=k Z ,Bp(xp) H Nap(Xa) (11.11)
Xp\r dGD(P)\{T}

120

It is now easy to see that equations (11.8)—(11.11) precisely define the conventional
belief propagation algorithm of [33] applied on Gg.

Example 11.1. Consider a poset R = {r,s,t,u,v,w} with the Hasse diagram Gpg '
given in Figure 11.2(a). We will write the explicit form the GBP algorithm on both
G R and S R-

(a) (b)

Figure 11.2: Graphical representations of Example 11.1
(a) Hasse diagram Gpg, and (b) a minimal graphical representation Sg

GBP on Gpg:
Messages:
X Brlxe) Yy Belxe)
My (Xy) = —_ﬁu(T)—, Myp(Xy) = m__
Meu(Xa) = Exa\u Bs(xs) My (xy) (%) = Ex,\,, Bs(xs) mru(xfu)
O T) M) T T B () i (6)
qu\w BuMeu Mgy qu\w By My Mgy
() = Bu(Xw) , v () = B (Xw)
Beliefs:

br(xr) = B (x,) msu(xu) mvw(xw)a bt(xt) = :Bt(xt) msv(xv) muw(xw)
bs (xs) = Bs (xs) mru(xu) mtv(x'v)a b, (xu) = ﬂu(xu) My (xu) msu(xu) mvw(xw)

bw(Xw) = ﬁw(iw) Muw(Xw) Myw(Xw), bo(Xy) = Bu(Xe) Men(X0) M (X)) My (Xop)

Note that this algorithm contains a ‘loop’: ms, depends on m,,,, which depends

on mg,, which depends on m,,,, which in turn depends on myg,. This means that
121

the above messages will not converge in finite time, even though, as is apparent from

Figure 11.2(b), a junction tree does exist.

Compare the above algorithm with the following:

GBP on Sg:
Messages:
_ Exr\u ﬁ"‘(x’f) _ th\v ﬁt(xt)
Mry(Xy) = W’ My (Xy) = _ﬁu(T)
m (x) _ sz\u ﬂs(xs) ""tv(xv) m (x) _ sz\v ﬁs(xs) mru(xu)
sl ﬂu(xu)) ’ ATl ﬂv(xv) muw(xw)
muw(xw) = Ex“\z fzxn:;u Msu
Beliefs:
br(%r) = Br (%) Mau (), bu(%e) = Bu(e) Moo (Xy) M (%)

bs(xs) = ﬁs(xs) mru(xu) mtv(xv), bu(xu) = ﬁu(xu) mru(xu) msu(xu)

bw(Xw) = Buw(Xw) Muw(Xw), by (%) = Bu(Xv) Mesy (X)) M (X)) My (X))

Notice that the above-mentioned loop is now broken, since m.,, does not exist
anymore. This means that the messages in the above algorithm will converge after
just one round of updates (performed in the correct order). This of course is not
surprising; based on the discussion above, this algorithm is no more than the belief

propagation algorithm on the junction tree of Figure 11.2(b). O

122

Chapter 12

Experimental Results

In the previous chapter we proved that the fixed points of GBP algorithms on any
graphical representation for a poset R coincide with the solutions to the Kikuchi
approximation problem of Section 9.2. We further argued that the algorithm on the
minimal graph Sk has the smallest complexity per each iteration. Two important
questions are not addressed in this document so far: 1) how close are the Kikuchi
approzimations to the true marginals? And 2) how does the convergence behavior of
the GBP algorithm on the minimal graph Sg compare to that on the full Hasse graph
Gr? In this section we address these questions with some simulation results.

We considered three simple loopy posets below. In each case, all the variables
were binary. For each run of the exﬁeriment for a given poset, first we generated
a random collection of potential functions {a,(x,)}, where each value a,(x,;) was
chosen independently and uniformly in the interval [0,1]. Next we calculated the
product distribution B(x) = [],cg @r(x;) together with its true marginals B,(x;).
The GBP algorithm of Section 11 then was run on each of the two graphs G and
Sk for that poset. Further, two different schedules were incorporated to update
the messages for each algorithm: parallel and serial. With the parallel schedule,
all messages were updated together at each iteration. For the serial schedule, we
update the messages one after another, in an order chosen so as to minimize the
number of edges which are updated before their requisite set of edges have been

updated. Each message is updated exactly once during each iteration. To ensure
123

convergence of some algorithms we used damping in the update rule for the messages.
The quantity w reported for each algorithm is the damping factor. In particular, we
used mpt!(x,) = w F({m"}) + (1 —w) m,.(x,), where m7, is the message at iteration
n, and F({m"}) is the ‘pure’ update rule of equation (11.7). The value of w is always
between 0 and 1, with w = 1 corresponding to (11.7). For each case, we decreased w

gradually to ensure that the algorithm converged.

For each poset, we report the savings in complexity per each iteration of GBP
on the minimal graph compared to that on the Hasse graph. To compute these
savings, we calculated the total arithmetic complexity, i.e. the number of additions,
multiplications and divisions involved in update rules of (11.7), for both algorithms.
Note that this is not simply the fraction of edges that are removed in forming the
minimal graph, since the update rules for the messages that remain in the minimal

graph are less complex than the ones on the Hasse graph.

To summarize the performance of each algorithm, at each iteration we calculated a
special measure of distance between the beliefs {b,} and the true marginals { B, }. We

define a distance function D(b,, B,) := m“"’;!f;(rxg)r?z ')("')l as the measure of distance

from the belief b, to the marginal B,; this is a normalized maximum point-wise
difference between the two distributions. The closer D is to 0, the closer the belief
br(xr) is to the true marginal B,(x,) at all configurations of x,. At each iteration
we then calculate the mazimum distance max,eg D(b,, B;), and the mean distance
TIITI Zre g D(br, By). For each poset, the averages of these quantities over 200 runs are

reported for each algorithm. The results are reported below:

Poset 1: The Hasse diagram of this poset has one loop, but the minimal graph is
loop-free. There is a saving of 35.7% per each iteration of GBP on the minimal graph
compared to that on the Hasse graph. As expected, the Kikuchi approximations co-
incide with the true marginals in this loop-free case. The serial algorithms converge
to the fixed-points after one iteration, because we use an optimal schedule for activat-

ing the messages. The parallel algorithm on the minimal graph takes four iteration
124

(equal to the girth of the graph). The parallel algorithm on the Hasse graph requires
damping, and converges much more slowly. Note that in this case, the algorithm on
the minimal graph both gives better performance iteration by iteration and has less

complexity per iteration.

(2 (29 (39 2d (29 (135
@'@ OO
O W

(a) (b)

Figure 12.1: Graphical representations of Posets 1
(a) The Hasse graph Gg, and (b) the minimal graph Sg.

Poset 1, Moan Distarce D Posol 1, Maximurn Distanco D

T Serel. O wal.0 - Serml, Oy w10

Sarl, S, we .00
_-: nu:z,-aw I - Paraiel, G, ws0.00
-g- Panil 5, wat.03 G Penlel, 3, w10

Figure 12.2: Simulation results on Poset 1

Poset 2: The Hasse diagram of this poset has five loops. All but one of these loops
are broken in the minimal graph. 'The;e is a saving of 46.2% per each iteration of
GBP on the minimal graph compared to that on the Hasse graph. The Kikuchi
approximations are at an average distance of about 0.05 from the true marginals,
while the worst estimates have distance of about 0.13. Again the serial algorithms

converge very quickly, although the one on the Hasse graph requires a slight damping.
125

Comparing the parallel algorithms, the one on the minimal graph clearly outperforms

the one on the full Hasse graph, even with equal damping factors.

(a) ()

Figure 12.3: Graphical representations of Posets 2
(a) The Hasse graph Gpg, and (b) the minimal graph Sg.

Posat 2, Mean Distance D Poget 2, Maximumn Distarco O

" Sewwl, O w0
- Sedal, 8, we1.00

(2) | (b

Figure 12.4: Simulation results on Poset 2

Poset 3: The Hasse diagram of this poset has five loops, whereas the minimal graph
has only two loops. There is a saving of 28.5% per each iteration of GBP on the
minimal graph compared to that on the Hasse graph. The Kikuchi approximations
are at an average distance of about 0.05 from the true marginals, while the worst
estimates have distance of about 0.14. Once again the serial algorithms converge
very quickly, without the need for damping. The parallel algorithm on the minimal
graph again outperforms that on the full Hasse graph, the latter requiring a damping
factor w = 0.70 to avoid oscillations.

At least for the simple posets considered here, the less complex GBP algorithm
126

(a) (b)

Figure 12.5: Graphical representations of Posets 3
(a) The Hasse graph Gpg, and (b) the minimal graph Sg.

Posat 3, Moan Distarco D . Posot 3, Masimum Distanco D
'
— mq‘.-nm *mGw—l.N
o~ Seiad 5 wa1.00 ool -0 Swial, 8 wat.00
—+— Paniel, G we0.70 <t Pamdel, O weO.TO
—g- Pamlel S, wel 00

(b

Figure 12.6: Simulation results on Poset 3

on the minimal graph, developed in this document, seems to perform better than the
full GBP on the Hasse graph, especially with the parallel versions of the algorithm.
Considering that each iteration of the algorithm on the minimal graph is less complex
than that on the full Hasse graph, this suggests that there is considerable saving in
the complexity to be gained by using the algorithm on the minimal graph.

12.1 Joint Decoding of LDPC Codes and Partial
Response Channels

An interesting and promising configuration with application in magnetic recording
is a partial response (PR) channel precoded by a LDPC code, as depicted in Figure
12.7, see e.g. [18]. In this section, we apply the Kikuchi approximation method to the

problem of joint decoding of such system. (See also [52; 53] for practical considerations
127

EPR4 Channel

m LDPC > . . Joint A
—» Encoder . . LDPC/PR [—»
: Decoder

Figure 12.7: Block diagram for an LDPC/PR system

of the application of iterative decoding techniques in magnetic recording channels.)
As in Example 6.6 we identify the LDPC code by its parity check matrix H €
GF(2)™ " where n is the block-length of the code, and m is the number of parity
checks. Therefore a codeword x := (z,,---,Z,) satisfies H- x = 0. The partial
response channel is identified by a transfer polynomial k(D) := Y ;_, h; D, where v
is the degree of the channel. For example, the EPR4 channel depicted is identified by
h(D) = 1+ D — D? — D3. Therefore the output of the channel is related to its input
by y(D) = h(D)z(D), in the Z-transfer domain. We will assume an additive white

Gaussian noise (AWGN) with variance o2

. The objective is to find the maximum
likelihood estimates of the transmitted code symbols z;’s given the noisy observations
z=(21,""",2)-

It is clear that this problem can be described as MPD problem of Section 1.1. Let

P(x) denote the joint distribution of the codeword x given the observations. Then

P(x) = % TT1#; - x = 0) [plasl) (12.1)
=1 i=1
= % H I(HJ X = O) Hpn(z,- - Z hj.’l,‘i_j) (122)
=1 i=1 =0

where H; denotes the jth row of the parity check matrix H, and p, is the probability

density of the noise. In particular, for the AWGN of variance o2, we have p,(n) =
n2 '
ke 2%,

The best performing method discussed in [18] involves iteration between BCJR

decoding of the PR channel, and the Gallager-Tanner decoding of the LDPC code.

_This corresponds to the standard BP algorithm performed on the graph of Figure 12.8,
128

Parity
checks
Terminating bits
X \
PR states

" Pulzi - ¥2) /

Figure 12.8: Graphical model for joint BP decoding of LDPC/PR problem

with three classes of nodes: the ‘bit-nodes’ corresponding to the bits z; of the LDPC
code; the ‘check-nodes’ corresponding to the parity checks of the LDPC code; and
‘PR-state-nodes’ corresponding to the states of the PR channel. The corresponding
regions are, respectively, {i}; {j : Hi; = 1}; and {i — j : h; # 0}, for all possible
values of i.

To apply the Kikuchi approximation method for this problem, we used the poset
obtained by the cluster variation method. Specifically, we appended all the intersec-
tion of the above regions to form the collection R of regions. Notice that good LDPC
codes do not have small loops of size 4, so no two check-nodes can intersect in more
than one index. However, the check-nodes can have nontrivial intersections with the
PR-state-nodes. We considered a specific example from [18], with a rate 7/8 LDPC
code with block-length n = 495, and with an EPR4 channel. The resulting poset
had 495 bit-node regions (singletons), 62 check-node regions (each of size 24, since
the LDPC code is regular with 24 bits per check), 495 PR-state-node regions (each of
size 4, since the channel is EPR4), and a total ‘of 659 nontrivial intersection regions,
with nonzero overcounting factors. Of these 659 regions, 494 correspond to the in-
tersections of neighboring PR-state-node regions (each of size 3). The remaining 165
regions (with sizes 2 or 3) are the regions that make the difference from the Bethe

case.
129

» Joint Message-Passing Decoding of LDPC/PR
10 1] 1 1 1 1 1

—— BCJR+LDPC |[]
-6- GBP

1 0-3 1 1) 1] ! 1 L 1

5 5.1 5.2 5.3 54 5.6 5.7 5.8 5.9 6

55
E/N, (dB)

Figure 12.9: Simulation results for joint decoding of LDPC/PR
Each data point is the average over 20 simulation runs with 8 iterations of the
corresponding algorithm.

The full Hasse diagram on this collection of regions has 1711 vertices, and 3973
edges. The minimal graph for this collection has 2951 edges. For comparison, the
corresponding Hasse graph for the original problem, before addition of the intersection

regions, which corresponds to the loopy BP a.lgorithm, has 2476 edges.

Simulation results are reported in Figure 12.9 below. For each SNR and for each
of the 20 simulation runs, we ran both the BCJR+LDPC algorithm of [18], and our
GBP algorithm on the minimal graph for 8 full iterations.

These results suggest that, as expected, the GBP algorithm considered performs

better than the BCJR+LDPC method. Our new technique appears to be particularly
130

well suited to the low SNR regime, which is the one that is most important for current

magnetic recording applications.

131

Chapter 13

Summary and Discussion

Building on the original ideas introduced by Yedidia, Freeman and Weiss in [49], we
have developed a general version 6f the Kikuchi approximation method, defined on
a poset of regions.! It was shown in [49] that the fixed points of the very-successful
loopy belief propagation algorithm can be viewed as the constrained minima of the
Bethe free energy, which itself is an approximation to the variational free energy.
Minimizing the exact form of this variational free energy results in the true marginals
of the underlying product distribution. Then one expects that minimizing better
approximations to the variational free energy would yield better approximations to
the desired marginals. Kikuchi free energy approximations are such generalizations
which are expected to improve on the Bethe free energy. We showed in Proposition 9.1
that the choice of the overcounting factors used in Kikuchi free energy is the only
sensible one for the given class of the approximations.

Although we defined the Kikuchi problem on an arbitrary poset, we have dis-
cussed desirable connectivity and balance conditions on the poset, that are designed
to improve the approximations. We have also introduced a set of conditions for the
convexity of the Kikuchi problem. A well-known result, see e.g. [46], states that
the loopy belief propagation converges if the underlying graph has a single loop. Our

convexity conditions, when restricted to the Bethe case immediately imply this result,

10ther independent attempts at generalization of these ideas have also been made with similar
results, most notably in (50} and [23], although we believe none are as comprehensive as ours. In
particular, our discussion of graphical representations of Kikuchi regions is unique.

132

and more generally amount to a generalization of the single-loop condition.

We have introduced the concepts of graphical representation and the minimal
graphical representations for a Kikuchi problem. These graphs serve as a basis for the
iterative message-passing algorithms such as GBP to solve the Kikuchi approximation
problem. The fixed points of such algorithms on any graphical representation qf a
Kikuchi problem are identical. Thus the minimal graphical representa;.tions, having
the fewest number of edgés (and hence messages), yield algorithms which are the
least complex per each iteration. Our experimental results suggest that these minimal
algorithms perform as well as the algorithms on the bigger graphical representations,
even when compared on an iteration-to-iteration basis.

We have shown that, under some natural connectivity conditions, the minimal
graph of a Kikuchi problem is a tree if and only if there is a junction tree on the
collection of regions. We have further shown that except on a set of measure zero of
the choices of the kernels, the exactness of the Kikuchi approximation corresponds
precisely to the minimal graph being loop-free. Together these imply that the Kikuchi
method can solve the MPD problem exactly precisely when the conventional junction
tree method can also solve that problem exactly. Notice however that the main
advantage of the Kikuchi method is expected in the approximating, ‘loopy’ domain
of problems.

We have successfully applied the methods discussed in the document to the very
real and practical problem of joint decoding of an LDPC code and a partial response
channel. As expected, the results show an improvement over the best known con-
ventional iterative algorithm, based on loopy belief propagation, although further
investigation of the practicality of use of the Kikuchi method for this problem is

required.

133

Appendices

135

Appendix A

Proofs from Part 1

A.1 Proof of Theorem 2.1

Proof. Let f,g,z, and y be arbitrary elements of F,G, X and Y respectively. The

proofs below consider all possible cases for the value of the u on these atoms.
(2.3a): Symmetry is obvious, since fNg=gnN f.

(2.3b): If u(y) = O, then p(f,9,2,9) = 0 and if u(y) # O, then u(f,g,2,9) =
ﬂf’il)"(‘—y(-)g‘ﬁ"—’l for all choices of f,g and z in F,G and X respectively. In particular,

ranging x over all atoms of X and summing the above equation yields the first part of

result, since erA(k’) Il'(f, 9,Z, y) = Au(f) g, y) and erA(X) /'l‘(g’ Z, y) = /J'(ga y) Simi-

larly, ranging g over all atoms of G and summing yields the second part of result.
(2.3c):

e u(z) = 0. Then from FU G |X, we get u(g,z) = O for all g. Then from
FALY | GV X we get u(f,g,z,y) =0 for all f and y, and so we are done.

e u(z) # 0 and p(g,z) = 0. Then from FU Y |GV X we get pu(f, g,z,y) = 0 for

all f and y, and so p(f, 9, z,y)u(z) = u(f, z)u(g,7,y) = 0 and we are done.
137

o u(z) # 0 and u(g,z) # 0.Then from F I Y I GV X we get

u(f,9,2,9) = uif, 9, 2)u(g, 7, ¥)/ (g, z) (A1)

Also from FI G | X we have p(f,g,z)/p(9,z) = u(f,z)/u(x). Replacing this
into (A.1) we obtain u(f,g,z,y) = p(9, z, y)u(f,)/ u(z) and we are done.

(2.3d):

e u(z) =0. Then from fvg_LLy|X, we get u(f,g,z,y) =0 for all f,g and y,

and so we are done.

o u(z) # 0 and p(z,y) = 0. Then from FVGIUY | X we get p(f,9,2,y) =
u(f, 9, z)u(z,y)/p(z) = 0 for all f,g and y, and in particular p(g,z,y) = 0 and
so we have the desired equality p(f, g, z,y)/p(z) = u(f, z)p(g, z,y) = 0.

e u(z) # 0 and p(z,y) # 0. We have

w(f, 9,z) = p(f, 2)u(g, =)/ u(z) since FILG | X (A.2)
p(f, 9%, y) = p(f, g, 2)u(z, y)/ () since FVGLY|X (A3)
(g, z)/w(z) = p(g, z,y)/u(z,y) since, by (2.3b), GILY | X (A4)

Replacing (A.4) into (A.2) and then into (A.3) we obtain

u(f, 9, z,y) = p(f, z)p(g, z,y)/ u(z).

(2.3e):

e u(z) =0 and p(g) =0. Then from FV XY | G, we get u(f,g9,z,y) =0 and

we are done.

e u(z) =0 and p(g) # 0. From FI G| X we have u(f,g,z) = 0. Then from

FVXLY|G, u(f 9,2,9) = pu(f, 9,2)(y, 9)/1(g) = 0 and we are done.
138

o u(z) #0and u(g) =0. Then from FV ALY | G, we get both u(f,g,z,y) =0
and p(g,z,y) = 0, so the desired equality hold:

p(f,9,z,y) = p(f, T)u(g, z,y)/p(z) = 0.

e u(z) # 0 and u(g) # 0. Then from .7-'VX_1L.')7|G, we get p(f,9,%,9) =
#(f,9,2)u(g,y)/1(g). Also from FILG | X we have

p(f,9,z) = u(f, z)u(g, z)/p(z).

So we obtain the equality u(f,g,z,y) = u(f, z)u(g, z)u(g,y)/(e(g)n(z)). Fi-
nally, decomposition applied to F V X 1L Y | G yields p(g, z)u(g,y)/1(g) = u(g,z,v).

So we have proved u(f,g,z,y) = u(f, z)u(g, z,y)/p(z) and this completes the

proof.
(2.3f):
e u(z)=0. Thenfrom FVGLULY | X, we have u(f, g,z,y) = 0 and we are done.

o u(z) # 0 and p(z,y) = 0. Then from FVGILY |X we have u(f,g,z,y) =
p(f, 9,)z, y)/p(z) and so u(f,g,z,y) = 0. Also after applying (2.3b) to the
above, we have u(f, z,y) = u(f, z)u(z,y)/u(z) = 0 and u(g, z,y) = u(g, z)u(z, y)/pu(z) =
0. So we have the equality u(f, g, z,y)u(z) = p(f, z,y)u(9, 2) = u(f, z)u(9, z,y) =

0 and we are done.

o u(z) # 0 and p(z,y) # 0. Then also u(y) # 0 or else from FILGVX |Y
we would have p(z,y) = 0. Then from FUGV X |y we get u(f,g9,z,y) =

#(f,y)ig, z,y)/n(y), and also after (2.3b) to the above, we get u(f, z,y)/u(z,y) =
p(f,y)/u(y). Replacing the latter equation into the former we obtain

p(fy 9,2, y) = (g, z,y)p(f, =, v)/ 1z, y) (A.5)
139

But from F VG Y | X and by (2.3b) we have both u(f, z,y)/u(z, y) = u(f, z)/u(z)

and u(g, z,y)/u(z,y) = p(g, z)/p(z). Replacing each of these into (A.5) we ob-
tain

w(f, 9,7, y) = plg, T, y)u(f, z)/ p(z)
and

p(f, 9, z,y) = u(f, z, y)u(g,)/ u(z)

and we are done.

A.2 Proof of Correctness of Algorithm 3.1

In this appendix we give a proof for the correctness of the probabilistic junction tree
algorithm 3.1. We will use a proof that parallels that given in [2]. We will need the

following lemmas:

Lemma A.1. Suppose there exists a junction tree with nodes corresponding to o-fields
{A,--+ ,Fu}. Then if f is a zero-measure atom of any of the F;’s, and g C f is
measurable in \/M F;, then u(g) = 0.

=1

Proof. Node i vacuously separates the empty subset of {1,---,M} from

{1,---, M}\{i}. Thus {0,Q}1 V¥, F; | ;. Thus by the definition of conditional
J#i

independence, whenever f € A(F;) has zero measure, all its subsets measurable in

/M F; also have measure zero. 0

Lemma A.2. (cf. Lemma A.l in [2]) Let F1,F; and F;5 be o-fields such that
FillF; |.7"2. Then for any partially-defined random variable X € F,, the follow-
ing equality holds:
E[E[X|%]|%] = E[X|A]
140

Proof. LetY = E[X|F,]. Then Ay(F;) = A'(F2) = {b € A(F) : u(b) # 0} and for
be Ay(F), Y() = ﬁZae Ax(7) X (a)p(a,b). Then, for any nonzero-measure
atom ¢ € A(F3),

B[E[X|%]|%]() = E[Y|A]@©
- —(1— z Y (8)u(b, ©)
= _1_ z Z X (a)u(a, b)u(b, c)
()GGAx(f'l)
. =L Z Z X (a)ula,b,c) since Fi AL F3 | P
()beAy(}'z) a€Ax(F1)

a€Ax(F1) beAy (F2)

=5 T X@ ¥ wabe)
1

> X(@ulac)

“() ac€Ax(F1)
= E[X|F3](c)

where we have used the fact that 7 1L F; |.7-'2, so that Zbe Ary(Y) ula,b,c) =

ZbeA(}'z) p(a, b, c) = p(a,c). O

Lemma A.3. (cf. Lemma A.2 in [2]) Let {F,,--- ,F} and F be o-fields such that
{F,--- ,F} are mutually conditionally independent given F. For eachi=1,--- ,l,
let X; be a partially-defined random variable in F;. Then:

E[liIIXiIF] = 1:IIE[Xi|f]

Proof. We shall proceed by induction. The statement is vacuous for [= 1. For
l=2,1et Y = E[X,X,|F]. Then Ay(F) = {f € A(F) : u(f) # 0}. Also note
that XX, is a partially-defined random variable in F; V F, with Ax, x,(F1 V. F) =
Ax,(FiVF)NAx,(F, VF;), and that any atom of F, V F;, can be written as anNbd

for a E.A(]-'l) and b € A(F3). Then for any f € Ay(F) we have:
141

Y(f)=—Fx > - Xi(a)X2(b)p(a, b, f)
(anb)G.Axl X3 (F1VF2)
acF ,beF2

_ 1 p(a, f)u(d, f)
) aeAle(}'l) beAxZ,(rz) K@) u(f)

1) xu@m@ﬁzéj > X(b)u(bd f)

M) be Ay (F2)
= E[Xi|F](NE[X:|F](f)

where we have used the fact that F, 1L F, | F, so % = u(a, b, f).

For I > 2 assume inductively that the equality holds for ! — 1. Then:

E[li[X,- .7-‘] = E[XlﬁXi
i=1 =2

7]

: | !
=E[X1|f]E[HXi f] since]-"l_lLV.E |,7-'
i=2 i=2
!
= H E[X;|7] by induction hypothesis
i1 :

Using Lemmas A.2 and A.3 above, we are in position to prove a version of the

scheduling theorem 3.1 of [2] for our measure-theoretic framework.

Proof of correctness of Algorithm 3.1. We will show that if E; is the schedule for

activation of the nodes, (i.e. a directed edge (%, j) € E; iff node ¢ updates its message

to its neighbor, j at time ¢) then the message from a node i to a neighboring node j

is:
Y;;(t) = E[II Xkl-ﬁ"],
keK; ;(t)
where K ;(t) is a subset of the nodes defined recursively by:
0 if t =0,
Ki;(t) = Kij(t—1) if (2,5) € Ex,

{7'} UleNi,j Kln‘i(t - 1) if (?‘7 .7) € Et
142

We will prove this by induction on ¢. Case t = 0 is clear from the initialization.
Now let ¢t > 0 and assume that (A.6) above holds for t — 1. We can also assume that

the (i,) € E, so the message Y;; is being updated at time . Then:

Yis®) =E[X: T] Yul7]
© IeN;;

=E[x: [Tl II X/

leN; ; keK, i(t—1)

.7-',] by induction

=E .E [X,- H H Xk|.7-',-] i]-',] by the j.t. property and Lemma A.3
) leN; ; keK, ;(t—1)

=E -X,- H H Xklfj] by the j.t. property and Lemma A.2
T lEN;; keK (t-1)

=E H Xk|.7-'j:| by definition of K; ;(t)
-kEKi,j(t)

Indeed K; ;(t) above is the set of all the nodes whose ‘information’ has reached the
edge (4,7) by time ¢. Similarly, with J;(¢) := {i} U;en, K;4(t), Ji(t) is the collection
of all the nodes whose ‘information’ has reached a node i by time t. As in [2], we
define a message trellis up to time ¢, which is an M x t directed graph, where for
any 1,j € {1,--- ;M} and n < t, i(n) is always connected to i(n + 1), and i(n) is
connected to j(n + 1) iff (¢,) € E,. It follows that we will have J;(t) = {1,--- , M}
when there is a path from every initial node (i.e. at ¢ = 0) in the trellis to the node
i(t). Then, since the tree has finite diameter, any infinite schedule that activates all

the edges infinitely many times has a finite sub-schedule, say of length ¢y such that
143

Ji(to) = {1,--- , M} for all i. At that time we have:

B[X: [] ¥;(to) 7l =s[x e[II Xklfi] If]
JEN; T JEN; keK;i(to)
=eEX]] II x|"]|#]
) FEN; keK;,i(to)

=E:X,-H H Xk

JEN; keK;, i(to)

5[11 xf7]

“keJi(to)
M
~slfix]
k=1"

This completes the proof of correctness of Algorithm 3.1.

g

144

by (A.6)
by the j.t.

property and
Lemma A.3

by defn. of Ji(t)

Appendix B

Proofs from Part 11

B.1 Proof of Theorem 10.9

Proof. Suppose (2) does not hold, so for some s C [N] such that U;e, F (%) is connected,
> reuie, (i) kr # 1. We will choose kernels {a;, 7 € R} so that (1) will be violated.
Specifically, for each r we choose ar(%x;) = [Liene 1(Zi = 0)([Tigrns L(z: = 0) +
[Licrns 1(zi = 1)). Under the product distribution B(x) = % [I,ep @r(xr), for each
J € [N)\s, z; will have zero probability of taking a value other than 0, i.e. random
variable z; is deterministic and will have zero entropy. On the other hand, since
UsesF (2) is connected, for each pair 4,j € s the probability that z; # z; is zero; in
fact there is exactly a probability of 0.5 that x, = (0,0,--- ,0) and a probability of
0.5 that x; = (1,1,---,1). Therefore random variables z; for ¢ € s are redundant,
and for all t C [N] s.t. sNt # 0, Hy(B;) = 1(bit). Now by independence of x; and
X|n)\s We have

H(B) = Hy(B;) + Hinps(Biapys) = Hs(Bs) =1

On the other hand,

S kHB)= Y. EHB)+ Y. kHB)= Y k- 1+0#1

TER TEU g, F(7) re€R\Uigs F (i) r€U;esF (i)

so that H(B) # 3, g kr Hy(B;). Therefore we have shown that (1) implies (2).

Now suppose that (2) holds. We will show that (3) must hold, using induction
145

on the lezicographical order on the strings of the decreasingly-sorted cardinalities of
elements of S defined on all § C 2IM); we clarify this ordering using an example:

Suppose N = 12, and & = {{10,11,0}, {1,---,10}},
S: = {{1,2,3,4,5},{3,4,5,6},{6,7,8,9,10}}, S3 = {{1},---,{7}} and
Sy = {{6},{7},{8}}. Then the ‘sorted strings of the cardinalities’ are str(S;) =
[10.3]), str(S;) = [5.5.4], str(S;) = [1.1.1.1.1.1.1] and str(S,) = [1.1.1], so that
str(S1) >ier Str(S2) >iex str(S;,;) >tez Str(Sy).

It is clear that if all s € S were singletons, so that str(S) = [1.--- .1], then (3) is
equivalent to (2). Now suppose S = {s1, - , Sn}, and |s,| > 2. We split s, as the dis-
joint union of £; and ¢y, i.e. s, = t;Ut; and t;Nt; = O, so that 0 < [t,], |t2] < |sn|- De-
fine Ty := {s1, - ,$n-1,t1}, T2 := {81, , Sn-1,t2} and Tp := {81, * , Sn_1, t1, %2}
Clearly now, with the above lexicographical order, str(T1), str(T;) and str(T};) each
are smaller than str(S). Furthermore, User; F(8), User, F(s) and User,, F(s) are each

connected, since they all contain UsesF(s) as an up-set. But

Yo k= > R+ Y, kRt Y k=1

T€UseTyp F(3) T€UsesF(s) r€F(t1)\UsesF(s) reF(t2)\UsesF(s)
ST S U S
T€UseT; F(9) r€UesF(8) TEF(t1)\UsesF(3)
ST S T S
T€U e, F(3) TE€EU,esF(s) r€F (t2)\UsesF(s)

where we have used induction hypothesis to conclude that each sum must be equal
to 1. Using the above three equations we get > o, .z k- = 1. This completes the

inductive proof.

Next suppose that (3) holds for a choice of factors {k,,r € R}. First note that
choosing S = {r} for each » € R we get equations (9.9), implying that {k.,7 € R}
must in fact be the same as the (Mobius) overcounting factors, {¢,,r € R}. Suppose
now that Sg, the minimal graph of R has a loop. Let L C R be a loop of Sg, and

let Ly C R be the collection of minimal regions of L, i.e. every r € L contains some
146

To € Lo, and that no region in Ly properly contains another region in Ly. Therefore
F(Lo) contains loop L of Sg. We now claim that one can find a loop L with minimal
regions Lo such that for any proper subset Ly C Lo, F(Lg) is loop-free. This is
because if F(Lg) contains a loop L’ for a proper subset Lg of Lo, then we can choose
L} in place of Ly, and F(Lj) still has a loop L. But |Lo| is finite and |Lg| < |Lo|,
so this process must end, yielding a loop L with collection Ly of minimal regions,
with the desired property. Further note that Ly cannot have cardinality 1, since if
Ly = {ro} for some 1y € R, then all the edges of the Hasse diagram that terminate
in 79 and participate in the loop L would be EER; all but one of these edges would
be removed in Sg, therefore r¢ cannot be part of a loop.

Therefore for each region r € F(Lo), Sx(r) is loop-free. Noting that the over-
counting factor ¢, only depends on F(r), and using Lemma 10.6, ¢, =1 — |Pg, (7).
Then, as before, the sum }_ . F(Lo) Cr €aN be rewritten as the difference between the
number of vertices and the number of edges of Sr(;,). But Sr(,) has at least one
loop, therefore it has at least as many edges as vertices. Therefore), . FLo)&r < 0

and cannot be equal to 1. This would contradict (3), and hence Sr must be loop-free.

Now suppose that Sg is loop-free. Then by Proposition 10.4, Sk is a junction
tree. Choose then {k.} to be equal to the overcounting factors {c }, so that k. =
1 — |Psg(r)|- Then by standard results on the junction trees, any distribution B(x)
that decomposes on the junction tree Sg, factors as [] . Br(x,)* (see [10]). From

this (1) follows immediately. This completes the proof of the theorem. O

B.2 Proof of Theorem 10.11

Proof. We define the set T and error function f(-) similar to the proof of Theo-
rem 10.10, with the convention that 0log(0) = 0. Here, however, f is a function on
R, with 1 =3 _p (¢ — |Z|). Once again, f(-) is seen to be analytic on R},.

The argument to show that f is not identically zero proceeds exactly as before. It
147

only remains to show that Theorem 10.9 still holds for the restricted case imposed by
{Z:}. The proof of Theorem 10.9 remains unchanged with the following exception: in .
the first part, to prove that “not (2) implies not (1)”, for each r we choose a,(x,) =
[Liewpens 1@ = 23)(Tlierns 1@ = 31) + [ligns 1(zs = 7)), where %},%2 and
X(n)\s are chosen according to (10.4). The fact that these a’s are consistent with
{Z,} is then guaranteed by (10.4). .
Therefore f is not identically zero on its domain R} of kernels consistent with

| {Z,}, and hence the Lebesgue measure of the set T is zero.]

B.3 Proof of Proposition 11.1

Proof. Givent € R, s € Pg(t), by definition of the overcounting factors

Zcu=1 and Zcu=1

ueF(t) ucF(s)

Therefore Z cy=0 (B.1)
uEF(\F(s)

Now if {b,, r € R} € AK, then Vu € F(¢), Exu\t by(%y) = by(x;). Therefore

EC{—p({br, e RN = > @ bu(x)

uEF(\F(s) Xu\e

= Z Cu be(x:)

ueF(t)\F(s)
= by(xe) Z Cy
ueF(t)\F(s)
=0

Hence {b,, 7 € R'} € A}, and we have proven that A¥|., C A%.
Now conversely suppose that {b,, 7 € R'} € A%,. We will show by induction on
depth function d(¢) of region ¢ € R (w.r.t. .poset R, and not graph G) that for all

s € Alt), Zx,\: bs(xs) = by(x:). The statement holds vacuously for the maximal
148

regions, since these regions cannot have parents. Now let ¢ be a region with depth
d(t) = 1> 0 and let Pg(t) = {s1,--- ,Sm}. For each pair s; and s; of parents of ¢ in
G, consider the following cases on .A(s;) N A(s;):

e Suppose A(s;) N A(s;) = 0. Then, because {b,,r € R’} € A%, we have

Yo) bulx) =0

v€F()\F(3i) Xu\e

Z Cuzbu(x'u) =0

ueF(\F(s;) Xune

Subtracting one from another we obtain the following equality:

Yoo)= D) bu(x) (B.2)

uEF(s) Xune u€F(s;) Xune

Since d(s;) and d(s;) are each no larger than ! — 1, by induction hypothesis we

have

Yué€ f(Si), Z bu(xu) = bsi(xsi)

Xu\s;
Yue€ .7:(3_7‘), Z bu(xu) = ij(XSj)

xu\s,
Replacing these in (B.2) we obtain
Dobulxa) D = bylxy) D e
xa"\t ue}'(s;-) st'\t ue}-(Sj)

But by definition of the overcounting factors, 3, ¢ r(s,) Cu = 2 uer(s;) Cu = 1, 80
that wa bs, (x5) = Ex,j\t bs; (xs5)- '

e Suppose u € A(s;)NA(s;). Then again by induction hypothesis, qu\’. bu(xy) =
bs, (xs,) and quw bu(Xu) = bs;(xXs;). Therefore Zx,,-\, b (Xs) = Ly, bulXa) =
Ex.s_,-\t bs.‘i (xsj)

We can therefore show that for all pairs s; and s; of parents of ¢ in G, Ex,.\, bs, (xs;) =

Zx,.\, bs;(xs;) = bi(x;) for a unique function dj(x;). Now if ¢ & R, we define
J
149

b(x:) := bi(x;). If t € R', using the fact that {b,, 7 € R'} € A}, we have

Yo Y bul(x) =0

uEF(\F(s:) Xune

= ciby(x) + Z ¢y by(x:) = 0
u€A(L\F(s:)

o bt(xt) = b;(xt)

since by (B.1), ¢;+) .c A@\F(sp) € = 0, and ¢; # 0.

So we have shown that zx,,.\t bs; (xs;) = be(x;) for all s; € Pg(t). But G is a
graphical representation of A¥, therefore by argument similar to those of Proposi-
tion 10.3 for each (s — t) € £(Gr)\E(G), the edge-constraint Exs\: bs(xs) = be(x) is
implied by the edge-constraints of those edges of G at the same, or at a lower, depth.
Specifically, there must be a path in G between u and ¢ for each u € A(t), consisting
only of vertices that contain £, or else consistency between b, and b; could not be
implied by the edge-constraints of G. But any vertex that contains ¢{ must have a
depth less than ¢ (remember that we are using the depth function on R, and not
on G: a region containing ¢ could have a G-depth higher than that of t.) Therefore
all the G-edges in this path have depths no more than ! = d(¢) and can be used in
our inductive argument. Together, they imply the consistency between u and ¢, i.e.
sy Du(Xu) = be(xe).

Therefore we have found the desired extension {b,, 7 € R} € Ag, andso AR C AK| ..

This proves that A% = A%, as claimed. O

150

Appendix C

Pairwise Partitions vs. Valid
Partitions

In Section 3.2 we defined valid partitions of {1,--- , M}\{:} with respect to a node ¢,
and showed that a finest valid partition, P; exists. In this appendix we derive similar
results with pairwise paertitions. The significance of this discussion is that, in the case
with an unsigned measure u, as we will describe, the finest valid partitions coincide

with the finest pairwise partitions, which are much simpler to compute.

Definition C.1. A pairwise partition of {1,--- , M}\{i} with respect to a node i
is a partition {p;,---,m} of {1,---, M}\{5} (i.e. U;.=1pj = {1,--- ,M}\{¢} and
pi Npr = 0 for j # k) such that JFp,;’s are pairwise conditionally independent, given

a

Proposition C.1. Vi € {1,---,M}, there is a finest pairwise partition w.r.t. 1,
which we shall denote by Q;, such that every other pairwise partition w.r.t. i is a

coarsening of Q;.
Proof. Similar to the proof of Proposition 3.2. (|

Proposition C.2. If the measure u is unsigned, P, = Q;, i.e. the finest valid partition

w.r.t. @ node i coincides with the finest pairwise partition w.r.t. i.
151

Proof. Let P, := {¢1,--- ,cr} and Q; := {d1,- -+ ,d;} and suppose that P; # Q;. Then
for some r € {1,--- , M}, there must exist distinct j;,--- ,js € {1,---,I} with s > 2
such that ¢, = J;_; d;,. Now let G be a junction tree compatible with P; at 7. Let
¢={1, M)\iife- |

Assume WLOG that .7-'.1’.1 is a leaf node of G lying in ¢, and that, fdjz is its
neighbor. Then Fy, 1L \/§_y Fy, V F;V Fu | Fu,. This implies by weak union that
Fay L Ve Fa;, V Fe | Fa;, V Fi. But also Fa;, AL Fy,, | Fi because dj,,d;, € Q.
Then by contraction, we obtain Fa;, AL Vi Fa;, V Fo | Fi. Then d;, should be a set
in a finer valid partition than P;, which is a contradiction. O

Note that while the computation of the finest valid partitions can be exponentially
complex in the number M of nodes, the finest pairwise partitions can be found in
polynomial time; one only needs to look at the pairs of o-fields at each time to check
conditional independence. Therefore, starting with a conventional MPF problem, the
question of existence of a probabilistic junction tree can be answered in polynomial

time in M, as long as an unsigned measure is chosen.

152

Appendix D

On the Positive Rank
Decomposition of Matrices

Consider a non-negative matrix A € RT*" with rank . We would like to additively
decompose A as the sum of ¢ non-negative rank-1 matrices, By, - - , By € RT*". The
smallest integer g for which such decomposition is possible is called the non-negative
rank of A, and the decomposition is called the non-negative rank decomposition of
A. It is easy to see that this decomposition is equivalent to factorization of A as the
product of two non-negative matrices, V € RT*? and U € RY™ (see [7]).
Geometrically we can view A and V' as collection of vectors in RT, with corre-
sponding polyhedral cones! C(A) and C(V). Any non-negative factorization A = VU

is equivalent to the following (see [43]):
C(4) c C(V) CRY

Then the problem of minimizing q is equivalent to that of finding a polyhedral
cone with minimal number of spanning vectors, which contains the cone of A, and is

itself contained in the positive orthant.

If A has rank r, then it has r linearly independent column vectors in R, so we can

write A = BI" where B = (f;;) € R}*" and I = (;x) € R™". Note that without

'For a matrix X € R™*", we define C(X), the polyhedral cone of X, as the subset of R™
consisting of all non-negative linear combinations of the column vectors of X. The span of X, S(X)
is defined as the subspace consisting of all linear combinations of columns of X.

153

loss of generality we can assume that A has no zero columns; if it does, then let A’
be the matrix obtained by eliminating the zero columns of A, and let A’ = V'U’
be a non-negative rank factorization of A’. Then A = VU is a non-negative rank
factorization of A, where V = V’ and U is obtained by inserting zero columns into
U'.

Now note that for any cone C*, satisfying C(A) € C* C R7, its projection, C
onto S(A) satisfies C(A4) C C* C]ﬁl{;}, where C(A) and R’_{_‘ denote the projections of
C(A) and the positive orthant onto S(A) respectively.

Viewing S(A)(= S(B)) as a copy of R" (with basis vectors b?,--- ,b", the column
vectors of B), C(A) is the cone génerated by I', and R™ is defined by inequalities
Biaz1+ -+ Biyzr 2 0fori=1,--- ,m. Now let P; denote the (r — 1)-dimensional
subspace in R" that is perpendicular to b",’ the ith row vector of B. Then]R’_,’_‘ is
the cone bounded by Py, -- ,P,, (and in the directions of b;’s). Let by be a vector
in the interior of the cone of {b1,--- ,bn}, say bp = by + --- + by,. Let P be the
(r — 1)-dimensional hyperplane perpendicular to, and passing through by. Then for
any cone C*, satisfying C(4) C C* C R™, the intersections (C(4) NP), (C*NP)
and (R™NP) are (r—1)-dimensional convex subsets of space satisfying (C(4)NP) C
(C* N P) - (}R’_,’_‘ N P). Further, '(C(A) NP) is a bounded polytope; to see this, note
that C(4) = C(I') is generated by g!,--- ,g", the column vectors of I'. Now for
each k= 1,--- ,n, the dot-product by - g* = 3 _1-, b; - g* is strictly positive since it is
exactly the sum of the kth column of A. Then g* intersects P at the point b;J!'j-L;:g’“,
which is finite and in the positive direction of g*. Thus C(4) NP is the convex hull

of points -!‘%E;g" onP,fork=1,---,n.

We have therefore shown that the problem can further be reduced to embedding
of (r—1)-dimensional polytopes. It only remains to describe how to project C(A) and
R’}_‘ onto P. Remember that P is described by the equation bp-x = Y10, Bi1z1+-- -+
Yo, Birzr = |bo|?. Noting that each column sum of B is strictly positive, we can

write this as 17;. = (2:1;1 ﬂi,r)—l (lbo|2 - (E:’;l Biizy+---+ Z:’;I ﬁ,-,r_lxr_l)). We can
154

then view the first (r — 1) coordinates of the points of P as the coordinates of a copy
of R™™!. Then the inner polytope corresponding to the projection of C(I") onto P can
be represented as the convex hull of points §* € R™~!, whose coordinates respectively
are the first (r — 1) coordinate of ;%’!';; g*, for kK = 1,---,n. The outer polytope

corresponding to the projection of R’_}[‘ onto P is represented by the inequalities

fori=1,---,m
I i=1 Pi,i%j + 557 p— E ﬁk, (1bol® - > Ek—l Br.jz;) 2 0
or E;—l(ﬁm 2;52 o D k1 Brj)zs + ﬁ%{:lbop 20 (D.1)

Let the columns of Q € R"—1*4 denote the vertices of a polytope with minimal
number of vertices which contains all the vertices §* of the inner polytope, and also
lie inside the outer polytope. Then there is a matrix U’ € RY", such that the kth
column of QU’ is the vertex §* of the inner polytope. Now let Q € R™¢ be obtained
from Q by adding an rth row, where g-; = (3, Bir) 2 (Ib0]? — E;:i 1 Bij J,)
for each [= 1,---,q. Also construct the matrix U € RY™ from U by multiplying
the kth column by the positive quantity bg - g*/|bo|2. Then the kth column of QU is
precisely the vector ¢* in R", i.e. QU = I'. Thus we have A = BQU. But note that
by lying inside the outer polytope, the column vectors of @ satisfy the inequalities

(D.1). Thus BQ is an m x g matrix with non-negative entries. Let V = BQ, so we

have our non-negative rank factorization, A = VU.

- In the particular case when a non-negative matrix A has rank 3 the problem of non-
negative rank decomposition of A reduces to the minimal nesting of convex polygons.
In [1] Aggarwal et.al. present an O(nlog(q)) algorithm to solve this problem, where n
is the total number of the vertices of the two polygons, and ¢ is the number of vertices
of the nested polygon, i.e. the non-negative rank of A. Note that ¢ is upper-bounded
by the maximum of length and width of A.

155

Appendix E

Overcounting Factors and Mobius

Inversion Formula

With the setup of Section 9.1, let 2 be the collection R of subsets of [N] := {1,..., N}

together with the set [N] itself. Then R itself can be viewed as a poset with the

partial ordering of inclusion. Let H, denote the Mdbius dual of the the regional

entropy H,(b,), see e.g. [40]. Then Mébius inversion formula states that

Ht=ZI?, for each t € R,

rek
rCt

H = Z H,p(u,r) for each r € R

uck
uCr

Here the Mébius function p(u,r) is defined for u,r € R,u C r by equations .

Z #(% T) = 61‘-7‘

ueR’
tCuCr

Setting r = [N] in (E.2) yields

Hpy=H(b) == Hou(r, [N]) + By

rER

If the term H, [~ can be ignored, we get the approximation

H~— Z H, u(r,[N])

reR

(E.1)

(E2)

(E.3)

(E.4)

(E.5)

This is precisely the Kikuchi approximation of the entropy term, where ¢, =

—u(r, [N]) are the overcounting factors, since for r = [N], (E.3) reduces to (9.9).

156

Appendix F

Some Bounds on the Error of
Kikuchi Approximate Free Energy

In this appendix we will show that the error of approximating the variational free
energy (9.2) with the Kikuchi free energy (9.11) is bounded.

As before, let x = (z1,--- ,zn) be the state vector, and let R is a collection of
subsets of {1,--- , N}. We define the error term D(b) := F(b) — F5({b,,r € R}) for
any probability distribution b(x) with R-marginals {b.(x,),T € R}.

Let {c,, 7 € R} be the collection of overcounting factors, defined in Section 9.1,
and defne R*:={reR: ¢, >0}and R :={r € R: ¢, <0}.

Notice that the first terms in F(b) and F¥(b), viz. the average energy term, are

identical since the energy term E(x) is assumed to be R-decomposable and hence

Zb(x)E(x) Zb(x) S Ex) =D D b)E(x) =D D be(xs)Er(xr)

r€R reR x T€ER x,

Thus

D(b) = Zb(x) log(b(x)) — 3 e 3 (o) log b ()

reR Xr
= 2 b(x) log(b(x)) = Y _ cr Y b(x) log(br(x-))
TER x

b(x
= b9 oa(g)

157

Define Q(x) = [],cx b-(x-), and notice that Vr € R,Vx, b.(x;) > b(x). Therefore

Qx) = H br (%) - H by (%7)

r€Rt r€R-
> b(x)Zrerter . [be(xr)er
TER~

> b(x)Trert

where the last inequality follows from the fact that 0 < b, < 1 and hence b¢ > 1 for

any negative number a. Then we have -Qi(-,-‘% < b(x){~Lrer+) and hence

D(b) = 3~ b(x) log(g(("x)))

<=)) b(x)log(b(x))

reRt

=()_ e —1H() (F.1)

reRt

Note that the range of state vector x is H _[ai), therefore the entropy term H(b) is
at most log([T;L, ¢: = 3_1r; log(q:)-

Similarly we can write

Q(x) = H by (%) - H by (%,)*

reR+ . TER~
< T trloer)* - b Zrem==
reR+

< b(x)Lrer-or

Then we have ‘é(—)-)- > b(X)(l-ZreR"‘ r) and hence

D) = 3 b6 bogt o ’))

>1- 3) 3 bx) log(b(x))

reR-

=—(1-) c)H() (F.2)

reR+

Equations (F.1) and (F.2) give upper and lower bounds on the error term D(b).

158

Appendix G

Legendre Transform, Plefka
Expansion and Mean-Field
Methods

Consider again the Boltzmann distribution:
Z(pB)

Throughout this section we will keep the explicit dependence on the inverse temper-

B(x) := (G.1)

ature parameter, 3. We will further assume that the energy function decomposes as
E(x) =3, Ei(zi) + X 5 Bij(i, 75)-
We are interested to find a distribution P(x) belonging to a class P of (simple)

distributions, which is close to B(x) in the sense of minimizing the KL-divergence:

Pp(x) := arg min, KL(b]| B) (G2)
But
KL(H1B) = 3 b6 () ~ (@3
- S) + S AOB) +R(ZE) (G
= Z5(0) + U) + n(2(6) (@)
= In(Z(8)) + F(b:) 9

where as before, S(b), U(b; 3) and F(b; B) are the entropy, average energy and vari-

ational free energy associated with b(x) respectively. Now Z(8) does not depend on
159

b(x). Therefore we have
Ps(x) := arg Jin, F(b;6) (G.7)

Thus as before we are looking to minimize the variational free energy. Mean Field
approximation is obtained when at this stage one chooses the constraint set ‘P to be
the collection of product distributions, i.e. P = {distributions b(x) = H,___l b; i(z:) }:
for any distribution b € P,

S(b) = Zb<x) Zln(b (@) = — ZZ bi(=:) In(bs(x:)) (G.8)

1

Ub;8) = Zﬂb(x)E(x) ﬂZ_Zb(wz)E(xz)wZZb(xz)b () Ei (23, ;)

(1).7) Ti 5

(G.9)
One then minimizes the free energy by differentiating with respect to each bi(ﬁ:i), to

get the relations

bi (xz) e e“ﬂ (Et'(zi)+2j Ezj bj(25)E;,j(x:,25)) (G 10)

In an Ising model, we have binary variables (z; € {—1,+1}), and energy terms in
the form BE, ;(z:, z;) = z;z;J; ; and BE;(z;) = z:0;. Then equation (G.10) translates
into the well-known Mean Field Equations,
m; = tanh(6; + »_ Ji;m;) (G.11)
J

where m; is the the mean of distribution b;(z;).

Mean Field approximation above is the crudest in a family of approximations
obtained using Plefka ezpansion, see [34]. To develop these approximations, we start
back with the minimization of equation (G.7), and we remove the constraint collection
P, so that the minimization is done over the complete collection of distributions.
Clearly the minimizing distribution would be the original Boltzmann distribution.

To introduce the approximations, we rewrite the minimization of (G.7) in two

steps: first we minimize the free energy over those distributions with fixed means
160

> . Zib(x) =m; for i = 1,-.- , N. Next we minimize over the vector of the means
(ml, ve ,mN)_

We define Gibbs free energy G({m;}) as the constrained minimum in the first
step:

Gp({m:}) :

T - G.12
b(x):3« zib(x)=m; (ﬂ)) (')

Introducing Lagrange multipliers {);} to enforce the constraints we get

N
Gal{meh) = max min (Fi)+ L Mimi— Faib(x) - (G19

=1

N
= min (F(5:8) + 3 M(B)(m: = 3 mb(x)) (G-14)

i=1 x
where {);(8)} are the set of multipliers chosen to satisfy the constraints. Equation
(G.13) is known as the Legendre transform between {m;} and {\;}.
Differentiating (G.14) with respect to each b(x) and equating to zero, we see that

the distribution bg(x) that minimizes (G.14) has the exponential form:

e—ﬂE(x)"'Zg At (ﬂ)xi

Z({x(8)}; B)

bs(x) = L ZUM(B)):B) = 3 e RGO (Gu15)

Then we have

Gp({m:}) = U(bs; B) — S(bp)
=B bs(x)ER) ~ D _bs(x)(BE(X) = 3_ X(B)z: +m(Z({M(B)}: 8))

=D M(B)z — m(Z({(0)}:8)) (G.16)

The advantage of the two-stage approach lies in the ability to Taylor-expand the
equation (G.16) for small B; this is called the Plefka expansion, see [34]. It can
be seen that for the Ising model discussed above, the zeroth and the first order
terms of the expansion correspond exactly to the mean field free energy (see [34; 27;
51]). The second order term in the expansion is known as the Onsager Reaction Term.

For the Ising model above, the approximation to the Gibbs free energy obtained by
161

keeping upto the second order terms in the Plefka expansion above is known as the

TAP free energy ([42]):

Grap({mi}) = 3 (Fg () + 2 m(T)

L
=D 6mi— Y mamydig — 5D J(1-mi)(1-m]) (G17)
i (i.3) (i.9)

where the last term is the aforementioned Onsager term.

Minimizing Grap({m:}) over the vector {m;} of the means gives the TAP ap-
proximation to the free energy, Fp = —In(Z) of the original Boltzmann distribution.
Correspondingly, the minimizing vector can be used as the approximate means of
variables z; under the Boltzmann distribution.

It is worth mentioning that the TAP approach was devised under the assumptions
of the Sherrington-Kirpatrick (SK) Ising model, where the coupling terms J; ;'s are
independent Gaussian random variables (see [39]). It is therefore important to note
that for a general problem, the addition of Qnsager’s term may even deteriorate the

approximation over the simple Mean Field method.

162

Appendix H

CCCP Algorithm to Minimize
Kikuchi Free Energy

In this section we present Yuille’s concave-convex procedure (CCCP) to minimize the
general Kikuchi free energy. This is an iterative algorithm, consisting of an inner
and an outer loop, and is guaranteed to converge to a constrained minimum of the

Kikuchi free energy. See [54] for more details.

Theorem H.1. (See [54] Theorem 1) Let E(2) = Eyer(z) + Ecave(z) be an energy
function to be minimized, where Eyez(2) and Ecave(z) are convez and concave func-

tions of z respectively. Then a discrete iterative algorithm z* — ztt! s.t. at each step

V Epez(2)) = —V Eogre(2") : (H.1)

is guaranteed to monotonically decrease the energy function E(z) and hence to con-

verge to a minimum of E(z).
Proof. By convexity and concavity of Eye; and Fegye, for all 24,22, 23 and z4:
E’uez(z2) > Evea:(zl) + (22 - zl) : VEve-'t(zl)
' Ecave(24) < Eoave(23) + (24 — 23) - V Ecave(23)-

Replacing z; = z4 = z'*! and z, = z3 = z' in the above inequalities and using

VE,ez(2!t!) = —V E40¢(2!) we obtain:

Evez(zt-i-l) + Ecave(zt+1) < Evea:(zt) + Ecave(zt)
163

O

To solve the constrained minimization problem (9.14) we form the Lagrangian:

X ({br(xr); Are(Xe);6r, t <T € R}) Zcrb (Xr)l g (r(xr))

Br(xr)
T€R
30 3T D () (Ba30) = D b)) + Y e Zb(x,)-l (H.2)
TER 3€C(r) Xs Xp\s TER

where multipliers A.(x;) and &, enforce consistency and normalization constraints of
AX respectively (see equation (9.12)).
As suggested by Theorem H.1 we decompose £¥ into convex and concave parts

K K .
‘C"vez and £ca.ve

e i=C" ZZb (x,)log ,BTE:BT)) Zn, Zb (xr) — 1)

rER Xy TER (H3)
0D D Aslxa) (bslxs) = Y br(x,)
TER 3€C(r) X Xr\s
ca.ve == Z(c - C,-) Z b (x,,) log r(r)) (H4)
reR ﬂ(1')

where c¢* := max,cpg ¢ is the largest overcounting factor of any region.
Then Yuille’s condition (H.1) is equivalent to minimizing the following convex

functional of {b!*1(x,), 7 € R}, where the superscripts ¢ are time indices:

Et+1({bf.+l(xr)}) — Zzbﬁ-l(r) abt cave (bt r))

()
TER xr
+c Z Z bt (x,) log .|. Z Ko Z B+ (x,) — 1)
TER Xxr r€R
+2 Z }:) (726 - S (k) (E5)
rER s€C(r) Xs Xr\s
with
K t(z,
%(bﬁ(xﬂ) = —(c" —¢)(log (c%((x_r))) +1) (H.6)

Setting partial derivatives %{% equal to zero, the minimum of (H.5) is acheived

with

b (x,) = bE (%) F Br(x,)F e~ F e (ke T et Mroxe)-Sae pr) Dor(xr)) (H.7)
164

Equation (H.7) is the update rule for the outer loop of Yuille’s algorithm and is in-
dexed by the time index t. By duality then, the Lagrange multipliers {A.s(xs); &, 7 <

s € R} are constrained to maximize the concave dual energy:

o Ky
EHI({)‘TS(X-S); Kr}) = Py
reR . .
= ST E)E (%) F e F e (e Do nl)-Taerin drxn) - (1Lg)

TER Xr
Since E**! is a concave function of {Ars(xs); kr}, solving the constraint equations
one by one is guaranteed to converge to the unique maximum of (H.8). We therefore

obtain the inner loop of the algorithm, which is indexed by time index 7:

e(":-'-l/c‘) == e_'?': Z b:(xr)l-% ﬂr (:xr)ﬁE e_El*' (Zae c(r) ’\:a(x3)"zae P(r) A:r(xf')) (H.g)
Xr

M)

e b (%)~ F B (x,)E e F e (7 +T e cones M Ceo)=Tae piey Kir)

: (H.10)
bsl,(x’u)l_%* ﬂu(xu)% 6—% e < ('qH'ZaE C(u) A, (%s) =25 Plu)\{r} Az'u(xu))

where equations (H.9) and (H.10) are respectively obtained from normalization and
consistency constraints. Defining my,(x,) := e*(«/¢" and A, = e~kr+er)/e we
can rewrite this algorithm more compactly:
Outer loop update equation:
B (x,) = A, b () E B (%) E ([mar(xe))/(T mrs(xs)) (H.11)
seP(r) s€C(r)

where {m,s(x,); Ar, s < r € R} are the fixed points of the inner loop, with update

equations:
A = (3 F B x)E (T mix)/(T m:s(xs)))'1 (H.12)
xr seP(r) s€C(r)
m:z-l(xu) =

(Zxr\u A BL(%:) 7 F Be(%0) F (TLsep(ry Mo (%)) / (Tsecirguy Mrs (%s))
Au b (%)% Bu(x0)# ([Leepniry Mou(®u)) / (Tlsecqw Mus(*s))

165

)1/2 (H.13)

Bibliography

[1]

[2]

[3]

[4]

[5]

l6]

[7]

A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, and C.K. Yap. “Finding minimal

convex nested polygons”, Infomatipn and Computation, 83:98-110, 1989.

S.M. Aji and R.J. McEliece. “The generalized distributive law”, IEEE Transac-
tions on Information Theory, 46(2):325-343, March 2000.

S.M. Aji and R.J. McEliece. “The generalized distributive law and free energy
minimization”. In Proceedings of the Allerton Conference on Communication,

Control, and Computing, pages 672—681, October 2001.

F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization and
Linearity. Wiley, New York, NY, 1992.

L.R. Bahl, J. Cocke, F. Jelinek, and J.Raviv. “Optimal decoding of linear codes
for minimizing symbol error rate”, IEEE Transactions on Information Theory,

20(2):284-287, March 1974.

C. Berrou, A. Glavieux, and P. Thitimajshima. “Near shannon limit error-
correcting coding and decoding: Turbo-codes”. In Proceedings of the IEEE Inter-
national Conference on Commum'catz'ons, number 2, pages 1064-1070, Geneva,

May 1993.

J.E. Cohen and U.G. Rothblum. “Nonnegative ranks, decompositions, and

factorization of nonnegative matrices”, Linear Algebra and its Applications,

190:149-168, 1993.
167

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms. McGraw-Hill, Cambridge, MA, 2001.

[9] T. Cover and J. Thomas. Elements of Information Theory. Wiley-Interscience,
New York, NY, 1991. ' |

[10] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic
Networks and Expert System;s. Springer-Verlag, New York, NY, 1999.

[11] D. Divsalar, H. Jin, and R. McEliece. “Coding theorems for ‘turbo-like’ codes”.
In Proceedings of the Allerton Conference on Communication, Control, and Com-

puting, pages 201-210, October 1998.
[12] H. Federer. Geometric Measure Theory. Springer-Verlag, New York, NY, 1969.

[13] R.G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, MA,
1963.

(14] P. Hall. “On representatives of subsets”, Journal of London Mathematical Soci-
ety, (10):26-30, 1935.

[15] R. Kikuchi. “A theory of cooperative phenomena”, Physical Review, 6(81):988—
1003, 1951. '

[16] C. Kittel and H. Kroemer. Thermal Physics. New York, NY, 1980.

[17] F. Kschischang, B. Frey, and H.-A. Loeliger. “Factor graphs and the sum-product
algorithm”, IEEE Transactions on Information Theory, 47(2):498-519, February
2001.

[18] B. Kurkoski, P. Siegel, and J. Wolf. “Joint message-passing decoding of ldpc
codes and partial-response channels”, JEEE Transactions on Information The-

ory, 48(6):1410-1422, June 2002.
168

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Luby. “LT-codes”. In Proceedings of IEEE Symposium on the Foundations
of Computer Science, pages 271-280, November 2002.

D.J.C. MacKay and R.M. Neal. “Good codes based on very sparse matrices”. In
Cryptography and Coding: 5th IMA Conference, number 1025, pages 100-111.
Springer-Verlag, Berlin, 1995. '

R.J. McEliece. “On the BCJR trellis for linear block codes”, IEEE Transactions
on Information Theory, 42(4):1072-1092, July 1996.

R.J. McEliece, D.J.C. MacKay, and J.F. Cheng. “Turbo decoding as an instance
of Pearl’s ‘belief propagation’ algorithm”, IEEE Journal on Selected Areas in
Communications, 16(2):140-152, February 1998.

R.J. McEliece and M. Yildrim. “Belief propagation on partially ordered sets”. In
Mathematical Systems Theory in Biology, Communications, Computation, and

Finance, pages 275-300. Springer, 2003.

T. Morita. “Formal structure of the cluster variation method”, Progress of The-

oretical Physics Supplement, (115):27-39, 1994.

K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learn-

ing. PhD thesis, U.C. Berkeley, Computer Science Division, July 2002.

[26] K. Murphy, Y. Weiss, and M. Jordan. “Loopy belief propagation for approxi-

mate inference: An empirical study”. In Proceedings of Uncertainty in Artificial
Intelligence, volume 15, pages 467-475. Morgan Kauffmann, 1999.

[27] M. Opper and O. Winther. “From naive mean field theory to the TAP equations”.

In Advanced Mean Field Methods, pages 7-20. MIT Press, Cambridge, MA, 2001.

[28] P.Pakzad and V. Anantharam. “Conditional independence for signed measures”.

Available online at http://inst.eecs.berkeley.edu/ payamp/signedci.pdf.
169

[29]

[30]

[31]

[32]

33]

[34]

[35]

[36]

[37]

[38]

P. Pakzad and V. Anantharam. “Estimation and marginalization using kikuchi
based methods”, Submitted for publication in Neural Computation.

P. Pakzad and V. Anantharam. “Belief propagation and statistical physics”.
In Proceedings of the Conference on Information Sciences and Systems (CISS),

Princeton, NJ, March 2002. Paper No. 225.

P. Pakzad and V. Anantharam. “Minimal graphical representation of kikuchi
regions”. In Proceedings of the 40th Allerton Conference on Communication,

Control, and Computing, pages 1585-1594, Urbana, Il, October 2002.

P. Pakzad and V. Anantharam. “A new look at the generalized distributive law”.

To appear in IEEE Transactions on Information Theory, June 2004.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988.

T. Plefka. “Convergence condtition of the TAP equations for the infinite-
ranged Ising spin glass model”, Journal of Physics A: Mathematical and General,

15(6):1971-1978, June 1982.

T. Richardson. “The geometry of turbo-decoding dynamics”, JEEE Transactions
on Information Theory, 46(1):9-23, January 2000.

T. Richardson, A. Shokrollahi, and R. Urbanke. “Design of capacity-approaching
irregular low-density parity-check codes”, IEEE Transactions on Information
Theory, 47:619-637, February 2001.

T. Richardson and R. Urbanke. “The capacity of low-density parity-check codes
under message-passing decoding”, IEEE Transactions on Information Theory,

47:599-618, February 2001.

G.R. Shafer and P.P. Shenoy. “Probability propagation”, Annals of Mathematics

and Artificial Intelligence, 2:327-352, 1990.
170

[39] D. Sherrington and S. Kirkpatrick. “Solvable model of a spin-glass”, Physical
Review Letters, 35(26):1792-1795, December 1975.

[40] R.P. Stanley. Enumerative Combinatorics, volume I. Wadsworth & Brooks/Cole,
Monterey, CA, 1986. ' |

[41]) R.M. Tanner. “A recursive approach to low complexity codes”, IEEE Transac-
tions on Information Theory, (27):533-547, September 1981.

[42] D. Thouless, P. Anderson, and R. Palmer. “Solution of ‘solvable mpdel of a
spin-glass”’, Philosophical Magazine, 35(3):593-601, 1977.

[43] J.M. van den Hof and J.H. van Schuppen. “Positive matrix factorization via
extremal polyhedral cones”, Linear Algebra and its Applications, 293:171-186,
1999.

[44] M.J. Wainwright and M.I. Jordan. “Graphical models, exponential families, and
variational inference”. Technical Report 649, U.C. Berkeley, Dept. of Statistics,
September 2003.

[45] J. Walrand and P. Varaiya. High-Performance Communication Networks. Mor-
gan Kaufmann, San Francisco, CA, 1996.

[46]) Y. Weiss. “Correctness of local probability propagation in graphical models with
loops”, Neural Computation, 12:1-41, 2000.

[47] M. Welling and Y.W. Teh. “Belief optimization for binary networks: a stable
alternative to loopy belief propagation”. In Proceedings of the International

Conference on Uncertainty in Artificial Intelligence, pages 5564-561, 2001.

[48] S. Wicker. Error Control Systems for Digital Communication and Storage. Pren-

tice Hall, Upper Saddle River, NJ, 1995.
171

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Yedidia, W. Freeman, and Y. Weiss. “Bethe free energy, Kikuchi approxima-.
tions, and belief propagation algorithms”. Technical Report TR2001-16, Mit-
subishi Electronic Research Lab., May 2001.

J. Yedidia, W. Freeman, and Y. Weiss. “Constructing free energy approximations
and generalized belief propagation algorithms”. Technical Report TR2002-35,
Mitsubishi Electronic Research Lab., August 2002.

J. Yedidia and A. Georges. “The fully frustrated ising model in infinite dimen-
sions”, Journal of Physiecs A: Mathematical and General, 23(11):2165-2171, June
1990.

E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. “High throughput low-
density parity-check architectures”. In Proceedings of IEEE Globecom2001 ,‘ pages
3019-3024, San Antonio, TX, November 2001.

E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. “Vlsi architectures for itera-
tive decoders in magnetic recording channels”, IEEE Transactions on Magnetics,

(2):748-755, March 2001.

A.L. Yuille. “CCCP algorithms to minimize the bethe and kikuchi free energies:

Convergent alternatives to belief propagation”, Neural Computation, (14):1691~
1722, 2002.

N.L. Zhang and D. Poole. “Exploiting causal independence in Bayesian network
inference”, Journal of Artificial Intelligence Research, 5:301-328, 1996.

172

