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Abstract: Reservoir characterization plays a crucial role in modern reservoir management. It
helps to make sound reservoir decisions and improves the asset value of the oil and gas com-
panies. It maximizes integration of multi-disciplinary data and knowledge and improves the
reliability of the reservoir predictions. The ultimate product is a reservoir model with realistic
tolerance for imprecision and uncertainty. Soft computing aims to exploit such a tolerance for
solving practical problems. In reservoir characterization, these intelligent techniques can be
used for uncertainty analysis, risk assessment, data fusion and data mining which are applica-
ble to feature extraction from seismic attributes, well logging, reservoir mapping and engi-
neering. The main goal is to integrate soft data such as geological data with hard data such as
3D seismic and production data to build a reservoir and stratigraphic model. While some in-
dividual methodologies (esp. neurocomputing) have gained much popularity during the past
few years, the true benefit of soft computing lies on the integration of its constituent method-

ologies s rather than use in isolation

1 Introduction

With oil and gas companies presently recovering, on the average, less than a third of the oil in

proven reservoirs, any means of improving yield effectively increases the world's energy re-



serves. Accurate reservoir characterization through data integration (such as seismic and well
logs) is a key step in reservoir modeling & management and production optimization.
There are many techniques for increasing and optimizing production from oil and gas reservoirs:

o precisely characterizing the petroleum reservoir

¢ finding the bypassed oil and gas

e processing the huge databases such as seismic and wireline lo gging data,

e extracting knowledge from corporate databases,

¢ finding relationships between many data sources with different degrees of uncer-

tainty,

e optimizing a large number of parameters,

e deriving physical models from the data

e Optimizing oil/gas production.
This paper address the key challenges associated with development of oil and gas reservoirs.
Given the large amount of by-passed oil and gas and the low recovery factor in many reservoirs,
it is clear that current techniques based on conventional methodologies are not adequate and/or
efficient. We are proposing to develop the next generation of Intelligent Reservoir Characteriza-
tion (IRESC) tool, based on Soft computing (as a foundation for computation with perception)
which is an ensembie of intelligent computing methodologies using neuro computing, fuzzy rea-
soning, and evolutionary computing. We will also provide a list of recommendations for the fir
ture use of soft computing. This includes the hybrid of various methodologies (e.g. neuralfuzzy
or neuro-fuzzy, neuralgenetic, fuzzy-genetic and neural fuzzy-genetic) and the latest tool of
“computing with words” (CW) (Zadeh, 1999, Zadeh and Kacprzyk, 1999a and 1999b, and Zadeh

and Nikravesh, 2002). CW provides a completely new insight into computing with imprecise,



qualitative and linguistic phrases and is a potential tool for geological modeling which is based

on words rather than exact numbers.

The Role of Soft Computing Techniques: Soft computing is bound to play a key' role in the
earth sciences. This is in part due to subject nature of the rules governing many physical phe-
nomena in the earth sciences. The uncertainty associated with the data, the immense size of the
data to deal with and the diversity of the data type and the associated scales are important factors
to rely on unconventional mathematical tools suc;h as soft computing. Many of these issues are
addressed in a recent books, Nikravesh et al. (2003a, 2003b), Wong et al (2001), recent special
issues, Nikravesh et al. (2001a and 2001b) and Wong and Nikravesh (2001).

Intelligent techniques such as neural computing, fuzzy reasoning, and evolutionary compu-
ing for data analysis and interpretation are an hcreasingly powerful tool for making break-
throughs in the science and epgineen'ng fields by transforming the data into information and in-
formation into knowledge.

In the oil and gas industry, these intelligent techniques can be used for uncertainty analysis,
risk assessment, data fusion and mining, data analysis and interpretation, and. knowledge discov-
ery, from diverse data such as 3-D seismic, geological data, well log, and production data. It is
important to mention that during 1997, the US industry spent over $3 billion on seismic acquisi-
tion, processing and interpretation. In addition, these techniques can be a key to cost effectively
locating and producing our remaining oil and gas reserves. Techniques can be used as a tool for
1) Lowering Exploration Risk, 2) Reducing Exploration and Production cost, 3) Improving re-

covery through more efficient production and 4) AExtending the life of producing wells.



Artificial Neural Network: Although Artificial neural networks (ANN) were introduced in the
late fifties (Rosenblatt, 1962), the interests in them have been increasingly growing in ®cent
years. This has been in part due to new applications fields in the academia and indistry. Also,
advances in computer technology (both hardware and software) have made it possible to develop
ANN capable of tackling practically meaningful problems with a reasonable esponse time.
Simply put, neural networks are computer models that attempt to simulate specific functions of
human nervous system. This is accomplished through some parallel structures comprised of non-
linear processing nodes fhat are connected by fixed, variable or fuzzy weights. These weights es-
tablish a relationship between the inputs and output of each “Neuron” in the ANN. Usually
ANN have several “hidden” layers each layer comprised of several neurons. If the feed-forward
(FF) network (FF or concurrent networks are those with unidirectional data flow). The full tech-
nical details can be found in Bishop (Bishop, 1995). If the FF network is trained by back propa-
gation (BP) algorithms, they are called BP. Other types of ANN are supervised (self organizing)
and auto (hetro) associative networks.

Neurccomputing represents general computation with the use of artificial neural networks. An
artificial neural network is a computer model that attempts to mimic simple biological learning
processes and simulate specific functions of human nervous system. It is an adaptive, parallel in-
formation processing system which is able to develop associations, transformations or mappings
between objects or data. It is also the most popular intelligent technique for pattern recognition to
date. The major applications of neurocomputing are seismic data processing and interpretation,
well logging and reservoir mapping and engineering. Good quality seismic data is essential for
realistic delineation of reservoir structures. Seismic data quality depends largely on the effi-

ciency of data processing. The processing step is time consuming and complex. The major appli-



cations include first arrival picking, noise elimination, structural mapping, horizon picking and
event tracking. A detailed review can be found in Nikravesh et al. (2003a).

Feature extraction from 3D seismic attributes is an extremely important area. Most statistical
methods are failed due to the inherent complexity and nonlinear information content. Neural
networks can be used for segmenting seismic characters thus deducing information on the seis-
mic facies and reservoir properties (lithology, porosity, fluid saturation and sand thickness). A
display of the level of confidence (degree of match) between the seismic character at a given .
point versus the representative wavelets (centers of clusters) is also shown. Combining this i-
formation with the seismic model derived from the well logs while perturbing for different prop-
erties gives physical meaning of different clusters.

Neurocomputing has also been applied to reservoir mapping. In Wong et al.(1997) the authors
applied a radial basis function neural network to relate the conceptual distribution of geological
facies (in the form of hand drawings) to reservoir porosity. It is able to incorporate the general
property trend provided by local geological knowledge and to simulate fine-scaled details when
used in conjunction with geostatistical simulation techniques. are limited to two-point statistics

(e.g. variograms) and simple objects (e.g. channels).

Fuzzy Logic: In recent years, it has been shown that uncertainty may be due to fuzziness rather
than chance. Fuzzy logic is considered to be appropriate to deal with the nature of uncertainty in
system and human error, which are not included in current reliability theories. The basic theory
of fuzzy sets was first introduced by Zadeh (1965). Ulilike classical logic which is based on
crisp sets of "true and false", fuzzy logic views problems as a degree of "truth”, or "fuzzy sets

of true and false" (Zadeh 1965). Despite the meaning of the word "fuzzy", fuzzy set theory is not



one that permits vagueness. It is a methodology that was developed to obtain an approx;mate
solution where the problems are subject to vague description. In addition, it can help engineers
and researchers to tackle uncertainty, and to handle imprecise information in a complex situa-
tion. During the past several years, the successful application of fuzzy logic for solving com-
plex problems subject to uncertainty has greatly increased and today fuzzy logic plays an impor-
tant role in various engineering disciplines. In recent years, considerable attention has been
devoted to the use of hybrid neural network-fuzzy logic approaches as an alternative for pattern
recognition, clustering, and statistical and mathematical modeling. It has been shown that neural
network models can be use to construct internal models that capture the presence of fuzzy rules.
However, determination of the input structure and number of membership functions for the in-
puts has been one of the most important issues of fuzzy modeling.

Fuzzy logic provides a completely new way of modeling complex and ill-defined systems.
The major concept of fuzzy logic is the use of a linguistic variable, that is a variable whose val-
ues are words or sentences in a natural or synthetic language. This also leads to the use of fuzzy
if-then rules, in which the antecedent and consequents are propositions containing linguistic
variables.

In recent years, fuzzy logic, or more generally, fuzzy set theory, has been applied extensively
in many reservoir characterization studies. This is mainly due to the fact that reservoir geology is
mainly a descriptive science which uses mostly uncertain, imprecise, ambiguous and linguistic
information Fuzzy set theory has the ability to deal with such information and to combine them
with the quantitative observations. The applications are many, including seismic and strati-
graphic modeling and formation evaluation.

In Nikravesh and Aminzadeh (2001), the authors applied a neural-fuzzy approach to develop



an optimum set of rules for nonlinear mapping between porosity, grain size, clay content, P-wave
velocity, P-wave attenuation and permeability. The rules developed from a training set were used
to predict permeability in another data set. The prediction performance was very good. The study
also showed that the integrated technique discovered clear relationships between P-wave velocity

and porosity, and P-wave attenuation and clay content, which were useful to geophysicists.

Genetic Algorithms: Evolutionary computing represents computing with the use of some known
mechanisms of evolutioﬁ as key elements in algorithmic design and implementation. A variety of
algorithms have been proposed. They all share a common conceptual base of simulating the evo-
lution of individual structures via processes of parent selection, mutation, crossover and repro-
duction. The major one is the genetic algorithms (GAs) (Holland, 1975). Genetic algorithm (GA)
is one of the stochastic optimization methods which is simulating the process of natural evolu-
tion. GA follows the same principles as those m nature (survival of the fittest, Charles Darwin).
GA first was presented by John Holland as an academic research. However, today GA turn out to
be one of the most promising approaches for dealing with complex systems which at first nobody
could imagine that from a relative modest technique. GA is applicable to multi-objectives opti-
mization and can handle conflicts among objectives. Therefore, it is robust where multiple sol-
tion exist. In addition, it is highly efficient and it is easy to use.

Another important feature of GA is its ability to extract knowledge in terms of fuzzy rules.
GA is now widely used and applied to discovery of fuzzy rules. However, when the data sets are
very large, it is not easy to extract the rules. To overcome such a limitation, a new coding tech-
nique has been presented recently. The new coding method is based on biological DNA. The

DNA coding method and the mechanism of development from artificial DNA are suitable for



knowledge extraction from large data set. The DNA can have many redundant parts which is im-
portant for extraction of knowledge. In addition, this technique allows overlapped representation
of genes and it has no constraint on crossover points. Also, the same type of mutation can be ap-
plied to every locus. In this technique, the length of chromosome is variable and it is easy to in-
sert and/or delete any part

of DNA. Today, genetic algorithm can be used in a hierarchical fuzzy model for pattern extrac-
tion and to reduce the complexity of the neuro- fuzzy models. In addition, GA can be use to ex-
tract the number of the membership functions required for each parameter and input vﬁables,
and for robust optimization along the multidimensional, highly nonlinear and non-convex search
hyper-surfaces.

GAs work by firstly encoding the parameters of a given estimator as chromosomes (binary or
floating-point). This is followed by populating a range of potential solutions. Each chromosome
is evaluated by a fitness function. The better parent solutions are reproduced and the next genera-
tion of solutions (children) is generated by applying the genetic operators (crossover and muta-
tion). The children solutions are evaluated and the whole cycle repeats until the best solution is
obtained.

The methodology is in fact general and can be applied to optimizing parameters in other soft
computing techniques, such as neural networks. In Yao (1999), the author gave an extensive re-
view of the use of evolutionary computing in neural networks with more than 300 references.
Three general areas are: evolution of connection weights; evolution of neural network architec-

tures; and evolution of learning rules.



Most geoscience applications began in early 1990s. Gallagher and Sambridge (1994) presented
an excellent overview on the use of GAs in seismology. Other applications include geochemical
analysis, well logging and seismic interpretation.

In Huang et al.(1998), the authors used GAs to optimize the connection weights in a neural
network for permeability prediction from well logs. The study showed that the GA-trained net-
works (neuralgenetic model) gave consistently smaller errors compaied to the networks trained
by the conventional gradient descent algorithm (backpropagation). However, GAs were com-
paratively slow in convergence. The same authors initialized the connection weights in GAs -
ing the weights trained by backpropagation. The technique was also integrated with fuzzy rea-
soning, which gave a hybrid system of neural fuzzy-genetic (Huang et al., 1998). This improved
the speed of convergence and still obtained better results.

Another important feature of GAs is its capability of extracting fuzzy rules. However, this be-
comes unpractical when the data sets are large in size. To overcome this, a new encoding tech-
nique has been presented ecently, which is based on the understanding of biological DNA.
Unlike the conventional chromosomes, the length of chromosome is variable and it is flexible to

insert new parts and/or delete redundant parts.

Hybrid Systems: So far we have seen the primary roles of neurocomputing, fuzzy logic and evo-
lutionary computing. Their roles are in fact unique and complementary. Many hybrid systems
can be built. For example, fuzzy logic can be used to combine results from several neural net-
works; GAs can be used to optimize the number of fuzzy rules; linguistic variables can be used

to improve the performance of GAs; and extracting fuzzy rules from trained neural networks. Al-



though some hybrid systems have been built, this topic has not yet reached maturity and certainly
requires more field studies.

In order to make full use of soft computing for intelligent reservoir characterization, it is im-
portant to note that the design and implementation of the hybrid systems should aim to improve
prediction and its reliability. At the same time, the improved systems should contain small num-
ber of sensitive user-definable model parameters and use less CPU time. The future development
of hybrid systems should incorporate various disciplinary knowledge of reservoir geoscience and
maximize the amount of 'useful information extracted between data types so that reliable extrapo-

lation away from the wellbores could be obtained.

2 Intelligent Reservoir Characterization

In reservoir engineering, it is important to characterize how 3-D seismic information is related to
production, lithology, geology, and logs (e.g. porosity, density, gamma ray, etc.) ( Chawathe et
al. 1997; Schuelke et al. 1997; Monson and Pita 1997, Aminzadeh and Chatterjee, 1985).
Knowledge of 3-D seismic data will help to reconstruct the 3-D volume of relevant reservoir -
formation away from the well bore. However, data from well logs and 3-D seismic attributes are
often difficult to analyze because of their complexity and our limited ability to understand and
use the intensive information content of these data. Unfortunately, only linear and simple
nonlinear information can be. extracted from these data by standard statistical methods such as
ordinary Least Squares, Partial Least Squares, and nonlinear Quadratic Partial Least-Squares.
However, if a priori information regarding nonlinear input-output mapping is available, these

methods become more useful.



Simple mathematical models may become inaccurate because several assumptions are made
to simplify the models in order to solve the problem. On the other hand, complex models may
become inaccurate if additional equations, involving a more or less approximate description of
phenomena, are included. In most cases, these models require a number of parameters that are
not physically measurable. Neural networks (Hecht-Nielsen 1989) and fuzzy logic (Zadeh 1965)
offer a third alternative and have the potential to establish a model from nonlinear, complex, and
multi-dimensional data. They have found wide application in amlyzing experimental, industrial,
and field data (Rogers et‘ al. 1992; Nikravesh et al. 2003a, 2003b, 2001a, 2001b, 2001c, Wong
and Nikravesh, 2001, Wong et al. 2002, 1997). In recent years, the utility of neural network and
fuzzy logic analysis has stimulated growing interest among reservoir engineers, geolgists, and
geophysicists. In a recent study, Nikravesh and Aminzadeh (2001) used an artificial neural net-
work to further analyze data. It was concluded that to find nonlinear relationships, a neural net-
work model provides better performance than does a multiple linear regression model. Neural
network, neuro-fuzzy, and knowledge-based models have been successfully used to model rock
properties based on well log databases. Nikravesh et al. (1999 and 2001c) applied artificial new-
ral networks and neuro-fuzzy techniques successfully to find the relationships between 3-D
seismic attributes and well logs and to extrapolate mapping away from thev well bore to recon-
struct log responses.

Adams et al. (1999a and 1999b), Lewey et al. (1999), Nikravesh et al. (1999 and 2001c)
showed schematically the flow of information and techniques to be used for intelligent reservoir
characterization (IRESC) (Figure 1). The main goal will be to integrate soft data such as geo-
logical data with hard data such as 3-D seismic, production data, etc. to build a reservoir and

stratigraphic model. Nikravesh et al. (1999 and 2001c) were developed a new integrated meth-



odology to identify a nonlinear relationship and mapping between 3-D seismic data and produc-
tion-log data and the technique was applied to a producing field. This advanced data analysis
and interpretation methodology for 3-D seismic and production-log data uses conventional statis-
tical techniques combined with modern soft-computing techniques. It can be used to predict: 1.
mapping between production-log data and seismic data, 2. reservoir connectivity based on multi-
attribute analysis, 3. pay zone recognition, and 4. optimum well placement. Three criteria have
been used to select potential locations for infill drilling or recompletion (Admas et al., 199b, Nk-
ravesh et al., 1999 and 2001¢): 1. continuity of the selected cluster, 2. size and shape of the clus-
ter, and 3. existence of high Production-Index values inside a selected cluster with high Cluster-
Index values. Based on these criteria, locations of the new wells were selected, one with high
continuity and potential for high production and one with low continuity and potential for low
production. The neighboring wells that are already in production confirmed such a prediction
(Figure 2).

Although these methodologies have limitations, the usefulness of the techniques will be for
fast screening of production zones with reasonable accuracy. This new methodology, combined
with techniques presented by Nikravesh et al. (1999 and 2003c) and Nikravesh and Aminzadeh
(2001) can be used to reconstruct well logs such as DT, porosity, density, resistivity, etc. away
from the well bore. By doing so, net-pay-zone thickness, reservoir models, and geological repre-
sentations will be accurately identified. Accurate reservoir characterization through data integra-
tion is an essential step in reservoir modeling, management, and production optimization.

Figure 1 shows schematically the flow of information and Figure 3 shows techniques to be used
for intelligent reservoir characterization (IRESC). The main goal is to integrate soft data such as

geological data with hard data such as 3-D seismic, production data, etc. to build reservoir and



stratigraphic models. In this case study, we analyzed 3-D seismic attributes to find similarity
cubes and cl_usters using three different techniques: 1. k-means, 2. neural network (self-
organizing map), and 3. fuzzy c-means. The clusters can be interpreted as lithofacies, homoge-
neous classes, or similar patterns that exist in the data. The relationship between each cluster and
production-log data was recognized around the well bore and the results were used to reconstruct
and extrapolate production-log data away from the well bore. The results from clustering were

superimposed on the reconstructed production-log data and optimal locations to drill new wells

were determined.

3 Intelligent Reservoir Characterization (IRESC)

Our example is from a field that produces from the Red River Reservoir. A representative sub-
set of the 3-D seismic cube, production log data, and an area of interest were selected in the
training phase for clustering and mapping purposes. The subset (with each sample equal to 2
msec of seismic data) was designed as a section passing through all the wells as shown in Figure
4. However, only a subset of data points was selected for clustering puxposés, representing the
main Red River focus area. This subset covers the horizontal and vertical boreholes of produc-
ing wells. Figure 5 shows a schematic diagram of how the well path intersects the seismic traces.
For clustering and mapping, there are two windows that must be optimized, the seismic window
and the well log window. Optimal numbers of seismic attributes and clusters need to be deter-
mined, depending on the nature of the problem. Figure 6 shows the iterative technique that has
been used to select an optimal number of c]ustérs, seismic dtributes, and optimal processing
windows for the seismic section shown in Figure 4. Expert knowledge regarding geological pa-

rameters has also been used to constrain the maximum number of clusters to be selected. In this



study, seventeen seismic attributes, five inversion attributes, six pseudo log attributes in seismic
resolution and seven structure/trapping attributes, equaling a total of 35 attributes have been used
(Table 1).

Figures 7 through 10 show typical representations of these attributes in our case study.
Pseudo logs shown in Figure 10 are calculated/predicted based on techniques presented in Fig-
ure 3. For details regarding how this techniques can be used to predict pseudo logs from seismic
traces refer to the following references (Nikravesh et al. 2003a, 2003b, 2001a 2001b, Wong and
Nikravesh 2001, and Wohg et al. 2002). Table 2 shows the quantitative result for prediction of
pseudo logs. In this study, seven classes are used for classification purpose (Figure 11). A win-
dow of five samples was used as the optimal window size for the seismic traces, and a window
of seven samples was used for the pseudo logs. Seismic traces have been averaged based on
nine-points neighboring as shown in Figure 11, with the center point as location of the averaged
data. Software was developed to do the qualitative analysis and it was run on a personal com-
puter using Matlab™ software. Clustering was based on three different techniques, kmeans
(statistical), neural network, and fuzzy c-means clustering (Figure 3). Different techniques rec-
ognized different cluster patterns and one can conclude that the neural network predicted a dif-
ferent structure and patterns than the other techniques. Finally, based on a éualitative and quan-
titative analysis given the prediction from high resolution data using the technique presented in
Figure 3, specific clusters that have the potential to include producing zones were selected. In
this sub-cluster, the relationship between production-log data and clusters has been recognized
and the production-log data has been reconstructed and extrapolated away from the wellbore.

Finally, the production-log data and the cluster data were superimposed at each point in the 3-D

seismic cube.



Figures 12 through 14 show the prediction of a high-potential and a no-potential producing
D-zone (Averaged time sliced over entire D-zone) based on a conventional statistical technique
(K-mean clustering techniques only) with a degree of confidence (error bar at each point) based
on 1) seismic attributes only, 2) seismic attributes, inversion attributes, pseudo logs at seismic
resolution, and 3) seismic attrbutes, inversion attributes, pseudo logs at sesmic resolution and
structure/trapping information. Comparing Figures 12 through 14, one can conclude while the
changes on prediction is not significant, the degree of confidence increases by using more attrib-
utes and information in this case study (It is important to note that this is not always the case).
Figure 15 shows the prediction of high- and no-potential producing D-Zone using IRESC model
(Figure 3. Again, even though the prediction did not changed significantly, the confidence
level increased drastically compared to previous cases as shown in Figures 12 through 14. Fig-
ure 15 is geﬁerated using IRESC techniques (Figure 3) and based on all the attributes presented
in Table 1, seismic attrbutes, inversion attributes, pseudo logs at seismic resolution and struc-
ture/trapping information. It is important to note that while each color represents a certain clus-
ters and each cluster is represented by all seven chsses, it is possible that two same classified
classes may not have the same distribution of these seven classes. Figure 16 shows while one
can classify a point in space either as Abrahamson or Hanson, there are several possible distribu-
tions for Abrahamson or Hanson. This representation and information can be used to calculate a
better degree of confidence regarding prediction of know classes. Therefore, a better accuracy
on critical decision making processes and risk assessment analysis can be achieved. Often time
ih the initial phase of production (or during exploration phase), the number of observation wells
or producing wells are very small which makes the process of decision making and extrapolation

from around the wellbore to away from the wellbore very difficult and bss reliable. To over-



come this problem, one can used both expert knowledge (knowledge about similar fields) with
physical knowledge to create a so-called Virtual/Pseudo wells. Figure 17 shows a schematic
diagram how one can generate the virtual well by perturbing the existing well logs and using

physical model of the earth (field). Details of this process are given in a book edited by Nk-

ravesh et al. (2003a). Figure 18 was generated using IRESC techniques (Figure 3) and using

techniques presented in Figure 17 (expansion of the number of the wells using a Virtual/Pseudo
well generator using expert knowledge). Comparing the results in Figure 15, one can conclude
that both the prediction and the degree of confidence changed and increased significantly. Fig-

ure 19 shows both qualitative and quantitative analysis of the performance of the proposed tech-

nique. In this study, we have been able to predict the D1-Zone thickness whose its presence is

very critical to production from D-Zone. D1-Zone thickness it is in the order of 14 feet or less

and it is not possible to be recognized using seismic resolution information which is usually in-
the order of 20 feet and more in this area.

Figures 20 through 22 show the performance of the IRESC technique for the prediction of
classes (potential for production of high and no potential) and also the prediction of Phi*Dh
which is a representative of the production zone in Red Reviver reservoirs. We have also been
able to precisely predict not only the D-zone which is in the order of 50 feet, but both D1-zone
which is in the order of 15 feet and D2-Zone which is in the order of 35 feet. The technique can
be used for both risk assessment and analysis with high degree of confidence. To further use this
information, we use three criteria to select potential locations for infill drilling or recompletion:
1. continuity of the selected cluster, 2. size and shape of the cluster, and 3. existence of high Pro-
duction-Index values inside a slected cluster with high Cluster-Index values. Based on these

criteria, locations of the new wells can be selected.



4 Future Trends and Conclusions

This paper addressed the key challenges associated with development of oil and gas reservoirs,
given the large amount of by-passed oil and gas and the low recovery factor in many reservoirs.
We are proposed the next generation of Intelligent Reservoir Characterization (IRESC) tool,
based on Soft computing (as a foundation for computation with perception) which is an ensemble
of intelligent computing methodologies using neuro computing, fuzzy reasoning, and evolution-
ary computing. The IRESC addresses the fundamental problems of current complex problems
~ and its significant technical features are:

e Data Fusion: Integrating data from different sources

e Data Mining: Discovery of Knowledge

o Knowledge Engineering or Acquisition: Mapping the set of knowledge in a particular

problem domain and converting it into a knowledge base

o Knowledge Management: Incorporating subjective information and knowledge

e Uncertainty Management: Quantifying and handling risk and uncertainty

o Scaling: Effective use of data orders of magnitude scale differences

o Economy: Time requirements to build models and update them
We have also discussed the main areas where soft computing can make a major impact in geo-
physical, geological and reservoir engineering applications in the oil industry. These areas n
clude facilitation of automation in data editing and data mining. We also pointed out applications
in non-linear signal (geophysical and log data) processing. And better parameterization of wave
equations with random or fuzzy coefficients both in seismic and other geophysical wave propa-
gation equations and those used in reservoir simulation. Of significant importance is their use in

data integration and reservoir property estimation. Finally, quantification and reduction of uncer-



tainty and‘ confidence interval is possible by more comprehensive use of fuzzy logic and neural
networks. The true benefit of soft computing, which is to use the intelligent techniques in com-
bination (hybrid) rather than isolation, has not been demonstrated in a full extent. This section
will address two particular areas for future research: hybrid systems and computing with words.
Computing with Words: One of the major difficulties in reservoir characterization is to devise a
methodology to integrate qualitative geological description. One simple example is the core de-
scriptions in standard core analysis. These descriptions provide useful and meaningful observa-
tions about the geological properties of core samples. They may serve to explain many geologi-
cal phenomena in well logs, mud logs and petrophysical properties (porosity, permeability and
fluid saturations).

Computing with words (CW) aims to perform computing with objects which are propositions
drawn from a natural language or having the form of mental perceptions. In essence, it is inspired
by remarkable human capability to manipulate words and perceptions and perform a wide variety
of physical and mental tasks without any measurement and any computations. It is fundamentally
different from the traditional expert systems which are simply tools to “realize” an intelligent
system, but are not able to process natural language which is imprecise, uncertain and partially
true. CW has gained much popularity in many engineering disciplines Zadeh, 1996, 1999,
Zadeh and Kacprzyk, 1999a and 1999b, and Zadeh and Nkravesh, 2002). In fact, CW plays a
pivotal role in fuzzy logic and vice-versa. Another aspect of CW is that it also involves a fusion
of natural languages and computation with fuzzy variables.

" In reservoir geology, natural language has been playing a very crucial role for a long time. We
are faced with many intelligent statements and questions on a daily basis. For example: “if the

porosity is high then permeability is likely to be high”; “most seals are beneficial for hydrocar-



bon trapping, a seal is present in reservoir A, what is the probability that the seal in reservoir A is
beneficial?”; and “high resolution log data is good, the new sonic log is of high resolution, what
can be said about the goodness of the new sonic log?”

CW has much to offer in reservoir characterization because most available reservoir data and
information are too imprecise. There is a strong need to exploit the tolerance for such impreci-
sion, which is the prime motivation for CW. Future research in this direction will surely provide
a significant contribution in bridging reservoir geology and reservoir engineering. Given the
level of interest and the number of useful networks developed for the earth science applications
and specially oil industry, it is expected soft computing techniques will play a key role in this
field. Many commercial packages based on soft computing are emerging. The challenge is how
to explain or “sell” the concepts and foundations of soft computing to the practicing exploration-
ist and convince them of the value of the validity, relevance and reliability of reéults based on the

intelligent systems using soft computing methods.

References

1. Adams, R.D., J.W. Collister, D.D. Ekart, R.A. Levey, and M. Nikravesh (1999a), Evaluation of gas
reservoirs in collapsed paleocave systems, Ellenburger Group, Permian Basin, Texas, AAPG Annual
Meeting, San Antonio, TX, 11-14 April.

2. Adams, R.D., M Nikravesh, D.D.Ekart, J.W. Collister, R. A. Levey, and R.W Seigftied (1999b), Op-
timization of Well locations in Complex Carbonate Reservoirs, GasTIPS, vol. 5, no. 2, GRI (1999).

3. Aminzadeh, F. and S. Chatterjee, (1984/85), Applications of clustering in exploration sesmology,
Geoexploration, v23, p.147-159.

4. Bishop, C., Neural Networks for Pattern Recognition, Oxford University Press, NY (1995).



10.

11.

12.

13.

14.

15.

Chawathe, A., A. Quenes, and W.W. Weiss (1997), Interwell property mapping using crosswell ses-
mic attributes, SPE 38747, SPE Annual Technical Conference and Exhibition, San Antonio, TX, 5-8
Oct.

Cybenko, G., 1(989), Approximation by superposition of a sigmoidal function, Math. Control Sig.
System, v2, p. 303.

Gallagher, K. and Sambridge, M. (1994) Genetic Algorithms: A Powerful Tool for Large-Scale
Nonlinear Optimization Problems, Computers and Geosciences (1994) 20, 1229-1236.
Hecht-Nielsen, R. (1989), Theory of backpropagation neural networks, presented at IEEE Proc., Int.
Conf. Neural Network, Washington DC.

Holland, J. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann
Harbor (1975).

Huang, Y., P.M. Wong and T.D. Gedeon (1998), Prediction of Reservoir Permeability using Genetic
Algorithms, AI Applications (1998) 12, 67-75.

Huang, Y., P.M. Wong and T.D. Gedeon (1998), Neural-fuzzy-genetic Algorithm Interpolator in Log
Analysis, EAGE Conference and Technical Exhibition, Leipig (1998), paper P106.

Levey, R., M. Nikravesh, R. Adams, D. D. Ekart, Y. Livnat, S. Snelgrove, J. Collister (1999), Evalua-
tion of fractured and paleocave éarbonate reservoirs, AAPG Annual Meeting, San Antonio, TX, 11-
14 April.

Monson, G.D. and J.A. Pita (1997), Neural Network Prediction of Pseudo-logs for Net Pay and Res-
ervoir Property Interpretation: Greater Zafiro Field Area, Equatorial Guinea, SEG Annual Meeting
(1997). |

The Math Works™, 1995, Natick.

Nikravesh, M., F. Aminzadeh, and L. A. Zadeh (2003a), Intelligent Data Analysis for Oil Explora-

tion, Developments in Petroleum Science, 51; ISBN: 0-444-50685-3, Elsevier (March 2003).



16.

17.

18.

19.

20.

21.

23.
24.

25.

Nikravesh, M., L.A. Zadeh and V. Korotkih (2003b), Fuzzy Partial Differential Equations and Re-
lational Equations: Reservoir Characterization and Modeling, to be published in the Series Studies

in Fuzziness and Soft Computing, Physica-Verlag, Springer (Expected, August 2003).

Nikravesh, M., F. Aminzadeh and L.A. Zadeh (2001a), Soft Computing and Earth Sciences (Part 2),

Journal of Petroleum Science and Engineering, Volume 31, Issue 2-4, January 2001; Special Issue.

Nikravesh, M., F. Aminzadeh and L.A. Zadeh (2001b), Soft Computing and Earth Sciences, Journal

of Petroleum Science and Engineering, Volume 29, Issue 3-4, May 2001; Special Issue, 2001b.

Nikravesh, M., R. D. Adams and R. A. Levey (2001c), Soft computing: tools for intelligent reser-

voir characterization (IRESC) and optimum well placement (OWP), Journal of Petroleum Science

and Engineering, Volume 29, Issues 3-4, May 2001, Pages 239-262.

Nikravesh, M. and F. Aminzadeh (2001), Mining and fusion of petroleum data with fuzzy logic and
neural network agents, Journal of Petroleum Science and Engineering, Volume 29, Issues 3-4, May

2001, Pages 221-238.

Nikravesh, M., R.A. Levey, and D.D. Ekart (1999), Soft Computing: Tools for Reservoir Characteri-

zation (IRESC), presented at 1999 SEG Annual Meeting, Texas, 1999.

. Rogers, S.J., J.H. Fang, C.L. Karr, and D.A. Stanley (1992), Determination of Lithology, from Well

Logs Using a Neural Network, AAPG Bulletin, v76, 731p.

Rosenblatt, F. (1962), Principal of neurodynamics, Spartan Books.

Schuelke, J.S., J.A. Quirein, J.F. Sarg, D.A. Altany, and P.E. Hunt (1997), Reservoir architecture and
porosity distribution, Pegasus field, West Texas-An integrated sequence stratigraphic -seismic attrib-
ute study using neural networks, SEG 1997 meeting, Dallas, TX.

Wong, PM., D. Tamhane, and L. Wang (1997) A Neural Network Approach to Know ledge-Based

Well Interpolation: A Case Study of a Fluvial Sandstone Reservoir, Journal of Petroleum Geology

(1997) 20, 363-372.



26.

27.

28.

29.

30.

31

32.

33.

Wong, P. M, F Aminzadeh, and M. Nikravesh (2001), Soft Computing for Reservoir Characteriza-
tio'n, in Studies in Fuzziness, Physica Verlag, Germany

P.M. Wong and M. Nikravesh (2001), A thematic issue on “Field Applications of Intelligent Com-
puting Techniques,” Journal of Petroleum Geology, 24(4), 379-476; Special Issue.

Yao, X.: “Evolving Artificial Neural Networks,” Proceedings of IEEE (1999) 87, 1423-1447.

Zadeh, L.A. (1965), Fuzzy sets, Information and Control, v8, 33353.

Zadeh, L. A. (1999), From Computing with Numbers to Computing with Words -- From Manipul-
tion of Measurements to Manipulation of Perceptions, IEEE Transactions on Circuits and Systems,
45, 105-119, 1999.

Zadeh, L. and Kacprzyk, J. (eds.) (1999a), Computing With Words in Information/Intelligent Systems
1: Foundations, Physica-Verlag, Germany (1999a).

Zadeh, L. and Kacprzyk, J. (eds.) (1999b), Computing With Words in Information/Intelligent Systems
2: Applications, Physica-Verlag, Germany (1999b).

Zadeh, L.A. (1996) Fuzzy Logic = Computing with Words,” IEEE Trans, on Fuzzy Systems (1996) 4,
103-111.

. Zadeh, L. A. and M. Nikravesh (2002), Perception-Based Intelligent Decision Systems, AINS; ONR

Summer 2002 Program Review, 30 July-1 August, UCLA



- ‘Geological Data

Figure 1. Integrated Reservoir Characterization (IRESC).
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Figure 5. Schematic diagram of how the well path intersects the seismic traces.
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Table 1. List of the attributes calculated in this study.

1.Amplitude envelope

2 Amplitude welghted cosine phase 1-17; Seismic Attributes

3. Amplitude weighted frequency

4.Ampitudo weightod phase Structure and Trapping Attributes.
5.Apparent polarity

Six horizons and with four attributes out of seven attributes..

6.Average frequency
. Column A: line identifier
7.Cosine instantansous phase Column B: trace or cross-line identifier
Column C: easting in feet
9.Derivative instantaneous amplitude Column D: northing in fest
8.Derivative 1 Column E: l{orizon time in msecs
10.Dominant Frequency 2 Column F: time_resd, first order residual of horizon time, negative is high or above plane
11-t tanta F 3 Column G: aspect, angle of updip direction at horizon (present day)
-Instanianeous rrequency Column H: next deeper horizon time (used for calculation ofiso values)
12.Instantaneous Phase 4 Column I iso, incremental time to next horizon
13.Integrated absolute amplitude 5 Column J: iso_resd, first order residual of iso time, negative is thinner (faster) than plane
14.Integrate 6 Column K: iso_aspect, angle of updip direction (at time of burial)
15.Raw seismic 7 Column L: cum_iso_resd, cumulative iso_resd from Winnipeg to this horizon
16.Second derivative Instantaneous amplitude
17.Second derivative
18. Acoustic Impedance
19. Low Frequency of 18. - . 3 3
o P s 18-22; Inversion Attributes
21. Velocity
22. Density

23. computed_Neutron_Porosity
24.computed_Density_Porosity

26, computed Donsly 23-28; Pseudo Logs Attributes
27. computed_True_Resistivity
28. computed_Gamma_Ray
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Figure 10. Typical time slice of Pseudo logs a) porosity, b) Density, and c) Pwave/Transit Time
predicted in Seismic resolution



Classifications Based on Known Well Information

Assign Classes (Wells) to the Clusters.
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Clustering Classification
Well Name InLine-Xline Data
1. 'Jett 1-28"; 3 138
2.'Hansen 1-21"; 43 150
3. 'Lutes State 1-16"; 120 125
4. 'Abrahamson N-6'; 186 42
5.'Watson 06"; 191 53
6.'Hansen 16"; 209 30
7. 'Hilton B-6"; 222 54

Figure 11. Classification for Seven Classes



Table 2. Pseudo logs predicted at different location using techniques described in Figure 3.

Abrahamson N_6 , R E SC Watson O_6

Density Porosity  Pwave/Transit Time

2.7766
2.7067
2.6626
2.7093
2.7500
2.6316
2.6403

0.0127 50.5136
0.0877 50.9988
0.1049 51.7845
0.0161 52.8786
0.0701 53.8430
0.0942 54.3527
0.0810 54.5897

Hansen 1_6

Density

2.7513
2.7505
2.7021
2.7200
2.7231
2.7243
2.7253

Porosity  Pwave/Transit Time

0.0004 55.0493
0.0073 57.7750
0.0042 62.0145
0.0019 67.7557
0.0011 74.4667
0.0016 77.1229
0.0146 77.2692

Density Porosity

2.8289
2.6653
2.6425
2.6784
2.6841
2.6831
2.6931

0.0219
0.0882
0.1362
0.0613
0.0426
0.0447
0.0653

Pwave/Transit Time

57.9844
57.2391
56.3522
55.6178
55.1912
54.7947
54.4988

Hilton B_6
Density Porosity

2.7624
2.7504
2.7694
2.7563
2.7287
2.7113
2.6347

0.0038
0.0465
0.1221
0.0194
0.0313
0.0161
0.1544

Pwave/Transit Time

56.8415
55.9862
54.5060
53.5931
80.9843
80.6559
80.7769
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Well Name InLine-Xline Data Well Name InLine-Xline Data

1. "Jett 1-28"; 31 138 4. 'Abrahamson N-6; 186 42
2. 'Hansen 1-21"; 43 150 5. 'Watson 0-6'; 191 53
3. 'Lutes State 1-16"; 120 125 6. '"Hansen 1-6'; 209 30

7. 'Hilton B-6"; 222 54
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Figure 16. Each point in space in Figure 14 can be represented by seven classes as defined in
Figure 11.
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D Phi-h 6.480
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Predicted
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Figure 19. Qualitative and quantitative analysis and performance of IRESC technique for pre-
diction of the high-potential and no-potential producing D-Zone
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Figure 20. Qualitative and quantitative analysis and performance of IRESC technique for pre-
diction of D-Zone and Phi*Dh
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Figure 22. Performance of IRESC technique for prediction of Phi*Dh for C-Zone, D1-Zone
and D2-Zone and error bar at each point before and after drilling a new well



