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Abstract

In this paper we apply the Kikuchi approximation method to the problem of
joint decoding of a low-density parity-check (LDPC) code and a partial response
(PR) channel. The Kikuchi method is in general more powerful than the conven-
tional loopy belief propagation (BP) algorithm, and can produce better approx-
imations to an underlying inference problem. We will first review the Kikuchi
approximation method and the generalized belief propagation (GBP) algorithm,
which is an iterative message-passing algorithm based on the Kikuchi method.
We will then show that for the specific code and channel considered, the Kikuchi
method outperforms the best conventional iterative method.

1 Introduction

Iterative decoding techniques, such as the decoding algorithms for turbo codes (see [2])
and low-density parity-check (LDPC) codes (see [3, 5]), have enjoyed much attention in
the recent years due to their apparent ability to efficiently produce good approximations
to the optimal maximum a posteriori (MAP) estimates. In applications such as magnetic
storage where a target bit-error-rate (BER) needs to be achieved, these codes can operate
at much lower SNRs than any other practical error-correcting approach. Operation at
lower SNRs, in turn, translates to achieving higher bit densities on the same storage
device. At high densities, any efficient decoding technique must properly model and
address the issue of intersymbol interference (ISI). The ISI in magnetic recording channels
are conventionally described using partial response (PR) models, in which the channel is
modelled as a finite impulse response (FIR) filter. “Turbo equalization” is an iterative
technique in which information is passed back and forth between soft decoders for the -
ISI channel, and a preceding error-correcting code. As we will see later in Section 3, this
corresponds to an implementation of the well-known belief propagation (BP) algorithm
of [9] on a graph with cycles.

In this paper we propose to use a more powerful iterative algorithm, known as the gen-
eralized belief propagation (GBP) algorithm based on Kikuchi approximation method.
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We will briefly introduce the Kikuchi approximation method and the GBP algorithm in
Section 2. Readers are referred to [8] and [11] for more details. We will then apply this
method to a particular “turbo equalization” problem, which was addressed using conven-
tional methods in [4]. We will show that the Kikuchi based GBP algorithm outperforms
the best iterative method based on the belief propagation algorithm.

2 Kikuchi Approximation Method

We will now give a short description of the Kikuchi approximation method for calculating
the desired marginals of a product distribution. Let x := (zo,--- ,zxy—1), where for each
i€ [N]:={0,---,N — 1}, z; is a variable taking value in [g;] := {0,--- ,q; — 1}, with
2> 2. ,

Let R be a collection of subsets of [N]; we call each r € R a region. We assume that
each variable index i € [N] appears in at least one region r € R.

Associated with each region r € R is a nonnegative kernel function, a,(x,), depend-
ing only on the variables that appear in r. Then the corresponding R-decomposable
(Boltzmann) product distribution is defined as

B(x) = % I] o (x) (1)

TER

Here Z is the normalizing constant and is called the partition function. For a subset
s C [N], we denote by By(x;) := lem\s B(x) the s-marginal of B(x). We are interested
in finding one or more of the B,(x,)’s for 7 € R, and/or the partition function Z.

Let b(x) denote a probability distribution on x. We define the variational free energy

for the problem as
F(b(x)) :== U(b(x)) — H(b(x)) . (2)

where U := > b(x) [],er @r(x-) is the average energy and H := - b(x) log(b(x)) is
the entropy of the system.

It can be shown that F(b) is uniquely minimized when b(x) equals the Boltzmann
distribution B(x) of (1), and we have

Fo:=minF (b(x)) = F(B(x)) = —log(Z2). 3)

The Kikuchi approximation method proposes to solve a related constrained minimiza-
tion problem of the following form (see [8] for details):

{Br(x,)} =~ {b}(x,)} := arg {br(:rc?)i}léAg F}z{({br(xr)}) ) (4)

Here FX({b,}), known as the Kikuchi free energy, see e.g. [8], is defined as

F}{{({br(xr)}) = ZZ b, (xr) Er (%) + ZZ ¢ br(x) log(b-(xr)) (5)

r€R xr T€ER Xy



where ¢,’s are constants known as the overcounting factors, and are uniquely defined
given the collection R of regions. Also, A¥ is a set of constraints to enforce consistency
between the b,.’s, and is defined as

AE .= {{b,(x,,), r€R} : Vi,bueR st. tC u,Zbu(xu) = by(x;)

Xu\t

and Vu € R, Zbu(xu) =1} (6)

Xu

We will refer to the constrained minimization problem of (4) as the Kikuchi ap-
prozimation problem, where it is understood that the desired marginals {Br(x,,)} are
approximated by the minimizers {b}(x,)}

As discussed in [10], belief propagation is an algorithm that tries to solve a simple
class of Kikuchi approximation problems known as the Bethe case. When using a suitable
choice of the collection R of the regions, the Kikuchi beliefs {b}(x,)} of (4) can better
approximate the true marginals {B,(x,)} of the product distribution than the beliefs
obtained from the conventional belief propagation algorithm, see e.g. [8] for discussion
and examples.

2.1 Graphical Representations of the Kikuchi Problem

The standard technique to solve a constrained optimization problem such as that of (4)
is to form the Lagrangian, where for each constraint of (6) a multiplier will be defined.
These multipliers (or a function of them) play the role of ‘messages’ in an iterative
message-passing algorithm, see [8] for details. We will describe one such algorithm called
GBP in Section 2.2 below.

As with the belief propagation algorithm, graphical models can be used to represent
a Kikuchi problem and serve as the basis for such iterative message-passing algorithm
to solve that problem. We therefore define a graphical representation of a Kikuchi prob-
lem as a graph, whose edges correspond to the consistency constraints that define AX.
Clearly such representations are not unique, since redundant constraints (and the corre-
sponding edges) may be freely added or removed. It is therefore advantageous to find
the minimal such graphical representation; algorithms on such minimal graphs have the
fewest messages and are hence the least complex per each iteration. A detailed discussion
of graphical representations of a Kikuchi problem can be found in (8].

2.2 Generalized Belief Propagation Algorithm

Generalized belief propagation (GBP) is a message-passing algorithm that tries to solve
the Kikuchi constrained minimization problem (4).

Let G be a graphical representation of the Kikuchi problem (4). We associate with
each (region) vertex r of G a belief function b.(x,). We also associate with each edge
(p — r) of G a message function my,(x,). For eachr € Rdefine D(r) :={s€ R : s C r},
and Pg(r) := {s € R : (s — r) an edge in G }. At each iteration, belief b,(x,) is updated
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Figure 1: Block Diagram of the Serial Concatenation of an LDPC code and a PR channel.
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where constant k is chosen to normalize b, so it will sum to 1, and a message m,,(x,) is
updated to satisfy the edge-constraint pr\r bp(xp) — br(x,) =0, i.e.

Zx,,\, Bo(%p) ( I1; ePa(p) Misp (x,,)) ( Hde'l)(p) Hs’GPG(d)\({p}UD(p)) Mgq (xd))

Br(xr) ( Iserornip Msr (x')) ( [Lientr yers@nirionen mp'd(xd))
(8)

where k' is any convenient constant. Note that the common terms from the numerator
and denominator of (8) can be cancelled, but to avoid even longer expressions we will
not write the explicit form here.

As shown in [8], the fixed points of (7) and (8) above are precisely the stationary-
points of the constrained minimization problem (4).

Mpr (X;) = K

3 Joint Decoding of LDPC Code and PR Channel

Consider a partial response channel precoded by a low-density parity check code, as
depicted in Figure 1.

We identify the LDPC code by its parity check matrix H,,«, where n is the blocklength
of the code, and m is the number of parity checks. Therefore a codeword x := (21, -« ,Zp)
satisfies H - x = 0. The partial response channel is identified by a transfer polynomial
h(D) := Y ;_, hi D}, where v is the degree of the channel. For example, the EPR4 channel
depicted is identified by h(D) = 1+ D — D? — D3. Therefore the output of the channel
is related to its input by y(D) = h(D)z(D), in the Z-transfer domain. We will assume
an additive white Gaussian noise (AWGN) with variance 2. The objective is to find
the maximum likelihood estimates of the transmitted code symbols z;’s given the noisy -
observations z = (z,-- - , 2,).

It is clear that this problem can be described as that of finding the marginals of a
product function, as posed in Section 2. Let P(x) denote the joint distribution of the
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codeword x given the observations. Then
1 c n . .
P(x) = 'Z-Hl(Hj -x = 0) [[ p(ilx) 9)
j=1 =1
1 [+ n v
= > [11@H; x=0) [ pala = 3 _hymicy) (10)
=1 i=1 =0

where H; denotes the jth row of the parity check matrix H, and p, is the probability
2

density of the noise. In particular, for the AWGN of variance 02, we have py(n) = ke 23.

The best performing method discussed in [4] involves iteration between BCJR decod-
ing of the PR channel (see [1]), and the Gallager-Tanner decoding of the LDPC code
" (see [3]). This corresponds to the standard BP algorithm performed on the graph of
Figure 2, with three classes of nodes: the ‘bit-nodes’ corresponding to the bits z; of the
LDPC code; the ‘check-nodes’ corresponding to the parity checks of the LDPC code;
and ‘PR-state-nodes’ corresponding to the states of the PR channel. The corresponding
regions are, respectively, {i}; {j : H;; = 1}; and {¢ — j : h; # 0}, for all possible values
of <.

To apply the Kikuchi approximation method for this problem, we used the poset
obtained by the cluster variation method. Specifically, we appended all the intersection
of the above regions to form the collection R of regions. Notice that good LDPC codes do
not have small loops of size 4, so no two check-nodes can intersect in more than one index.
However, the check-nodes can have nontrivial intersections with the PR-state-nodes. We
considered a specific example from [4], with a rate 7/8 LDPC code with block-length
n = 495, and with an EPR4 channel. The resulting poset had 495 bit-node regions -
(singletons), 62 check-node regions (each of size 24, since the LDPC code is regular with
24 bits per check), 495 PR-state-node regions (each of size 4, since the channel is EPR4),
and a total of 659 nontrivial intersection regions, with nonzero overcounting factors.
Of these 659 regions, 494 correspond to the intersections of neighboring PR-state-node
regions (each of size 3). The remaining 165 regions (with sizes 2 or 3) are the new regions

)
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Figure 3: Simulation results for joint decoding of LDPC/PR

that make the difference from the belief propagation algorithm.

The full Hasse diagram on this collection of regions has 1711 vertices, and 3973 edges.
The minimal graph for this collection has 1711 vertices and 2951 edges. For comparison,
the corresponding graph for the original problem, before addition of the intersection
regions, which corresponds to the loopy BP algorithm, has 2476 edges.

Simulation results are reported in Figure 3 below. ‘BCJR+LDPC’ data points are
averaged over 500 simulation runs, with 8 iterations between the BCJR and LDPC al-
gorithms, where the LDPC algorithm consisted of 20 iterations. ‘GBP’ data points are
averaged over 50 simulation runs, with 8 full iterations of the GBP algorithm for each
run.

These results suggest that, as expected, the GBP algorithm considered performs
better than the BCJR+LDPC method. Our new technique appears to be particularly
well suited to the low SNR regime, which is the one that is most important for current
magnetic recording applications.



4 Acknowledgments

This work was supported by grants from (ONR/MURI) N00014-1-0637, (NSF) SBR-
9873086, (DARPA) F30602-00-2-0538, California Micro Program, Texas Instruments,
Marvell Technologies and ST MicroElectronics.

References

[1] L.R. Bahl, J. Cocke, F. Jelinek, and J.Raviv. ' “Optimal decoding of linear codes
for minimizing symbol error rate”, IEEFE Transactions on Information Theory,
20(2):284-287, March 1974.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima. “Near shannon limit error-correcting
coding and decoding: Turbo-codes”. In Proceedings of the IEEFE International Con-
ference on Communications, number 2, pages 1064-1070, Geneva, May 1993.

[3] R.G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.

[4] B. Kurkoski, P. Siegel, and J. Wolf. “Joint message-passing decoding of ldpc
codes and partial-response channels”, IEEE Transactions on Information Theory,
48(6):1410-1422, June 2002.

[5) D.J.C. MacKay and R.M. Neal. “Good codes based on very sparse matrices”.
In Cryptography and Coding: 5th IMA Conference, number 1025, pages 100-111.
Springer-Verlag, Berlin, 1995.

(6] R.J. McEliece and M. Yildrim, “Belief Propagation on Partially Ordered Sets,” 15th
MTNS International Symposium, 2002

[7] P. Pakzad and V. Anantharam, “Belief Propagation and Statistical Physics,”, Proc.
CISS Mar. 2002.

[8] P. Pakzad and V. Anantharam, “Estimation and Marginalization using Kikuchi
Approzimation Method,”, Submitted for publication in Neural Computation.

[9] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, San Mateo, CA: Morgan Kaufmann, 1988.

[10] J.S. Yedidia, W.T. Freeman and Y. Weiss, “Bethe Free Energy, Kikuchi Appro:m—
mations, and Belief Propagation Algorithms,”, MERL T.R., 2000.

[11] 'J.S. Yedidia, W.T. Freeman and Y. Weiss, “Constructing Free Energy Approzima- ~
tions and Generalized Belief Propagation Algorithms,”, MERL TR2002-40, August
2002.



