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Abstract

The prevailing abstractions for software are better suited
to the traditional problem of computation, namely trans-
Jformation of data, than to the problems of embedded sofi-
ware. These abstractions have weak notions of concurrency
and the passage of time, which are key elements of embed-
ded software. Innovations such as nesC/TinyOS (developed
Jfor programming very small programmable sensor nodes
called "motes™), Click (created to support the design of
software-based network routers), Simulink with Real-Time
Workshop (created for embedded control software), and
Lustre/SCADE (created for safety-critical embedded soft-
ware) offer abstractions that address some of these issues
and differ significantly from the prevailing abstractions in
software engineering. This paper surveys some of the ab-
stractions that have been explored.

1 Introduction

Embedded software has traditionally been thought of as
“software on small computers.” In this traditional view, the
principal problem is resource limitations (small memory,
small data word sizes, and relatively slow clocks). The so-
lutions emphasize efficiency; software is written at a very
low level (in assembly code or C), operating systems with a
rich suite of services are avoided, and specialized computer
architectures such as programmable DSPs and network pro-
cessors are developed to provide hardware support for com-
mon operations. These solutions have defined the practice
of embedded software design and development for the last
25 years or so.

Of course, thanks to the semiconductor industry’s ability

9This paper describes work that is part of the Ptolemy project. which is
supported by the National Science Foundation (NSF award number CCR-
00225610), the Defense Advanced Research Projects Agency (DARPA),
and Chess (the Center for Hybrid and Embedded Sofiware Systems),
which receives support from NSF and the following companies: Daimler-
Chrysler, Hitachi, Honeywell, Toyota and Wind River Systems.

to follow Moore’s law, the resource limitations of 25 years
ago should have almost entirely evaporated. Why then has
embedded software design and development changed so lit-
tle? It may be because extreme competitive pressure in
products based on embedded software, such as consumer
electronics, rewards only the most efficient solutions. This
argument is questionable, however, since there are many ex-
amples where functionality has proven more important than
efficiency. We will argue that resource limitations are not
the only defining factor for embedded software, and may
not even be the principal factor now that the technology has
improved so much.

Resource limitations are an issue to some degree with
almost all software. So generic improvements in software
engineering should, in theory, also help with embedded
software. There are several hints, however, that embed-
ded software is different in more fundamental ways. For
one, object-oriented techniques such as inheritance, dy-
namic binding, and polymorphism are rarely used in prac-
tice with embedded software development. In another ex-
ample, processors used for embedded systems often avoid
the memory hierarchy techniques that are used in general
purpose processors to deliver large virtual memory spaces
and faster execution using caches. In a third example, auto-
mated memory management, with allocation, deallocation,
and garbage collection, are largely avoided in embedded
software. To be fair, there are some successful applications
of these technologies in embedded software, such as the use
of Java in cell phones, but their application remains limited
and is largely confined to providing the services in embed-
ded systems that are actually more akin with general pur-
pose software applications (such as database services in cell
phones).

There are further hints that the software solutions for em-
bedded software may ultimately differ significantly from
those for general purpose software. We point to four re-
cent cases where fundamentally different software design
techniques have been applied to embedded software. All
four define concurrency models, component architectures,
and management of time-critical operations in ways that are



significantly different from prevailing software engineering
techniques. The first two are nesC with TinyOS [24, 17],
which was developed for programming very small pro-
grammable sensor nodes called “motes,” and Click [32, 31],
which was created to support the design of software-based
network routers. These first two have an imperative fla-
vor, and components interact principally through procedure
calls. The next two are Simulink with Real-Time Workshop
(from The MathWorks), which was created for embedded
control software and is widely used in the automotive in-
dustry, and SCADE (from Esterel Technologies, see [4]),
which was created for safety-critical embedded software
and is used in avionics. These next two have a more declar-
ative flavor, where components interact principally through
messages rather than procedure calls. There are quite a few
more examples that we will discuss below. The amount of
experimentation with alternative models of computation for
embedded software is yet a further indication that the pre-
vailing software abstractions are inadequate.

Embedded systems are integrations of software and
hardware where the software reacts to sensor data and issues
commands to actuators. The physical system is an integral
part of the design and the software must be conceptualized
to operate in concert with that physical system. Physical
systems are intrinsically concurrent and temporal. Actions
and reactions happen simultaneously and over time, and the
metric properties of time are an essential part of the behav-
ior of the system.

Software abstracts away time, replacing it with ordering.
In the prevailing software abstraction, that of imperative
languages such as C, C++, and Java, the order of actions
is defined by the program, but not their timing. This pre-
vailing imperative abstraction is overlaid with another ab-
straction, that of threads or processes,! typically provided
by the operating system, but occasionally by the language
(as in Java).

We will argue that the lack of timing in the core abstrac-
tion is a flaw, from the perspective of embedded software,
and that threads as a concurrency model are a poor match
to embedded systems. They are mainly focused on provid-
ing an illusion of concurrency in fundamentally sequential
models, and they work well only for modest levels of con-
currency or for highly decoupled systems that are sharing
resources, where best-effort scheduling policies are suffi-
cient.

Of the four cases cited above, not one uses threads as
the concurrency model. Of the four, only one (Simulink)
is explicit about timing. This may be a reflection of how
difficult it is to be explicit about timing when the most basic
notion of computation has abstracted time away. To be fair,

"Threads are processes that can share data. The distinction between the
two is not important in our discussion, so we will usc the term “threads™
generically to refer to both.

the others do provide mechanisms to managing time-critical
events. TinyOS and Click both provide access to hardware
timers, but this access is largely orthogonal to the semantics.
It is treated as an 1/O interaction.

There are, of course, software abstractions that admit
concurrency without resorting to threads. In functional lan-
guages (see [27] for example), programs are compositions
of declarative relationships, not specifications of an order of
operations. But although declarative techniques have been
used in embedded software (e.g., Simulink and SCADE),
functional languages have found almost no usage in em-
bedded software. Thus, whether a language is imperative
or declarative probably has little bearing on whether it is
useful for embedded software.

Embedded software systems are generally held to a much
higher reliability standard than general purpose software,
Often, failures in the software can be life threatening (e.g.,
in avionics and military systems). We argue that the prevail-
ing concurrency model based on threads does not achieve
adequate reliability. In this prevailing model, interaction
between threads is extremely difficult for humans to under-
stand. The basic techniques for controlling this interaction
use semaphores and mutual exclusion locks, methods that
date back to the 1960s. These techniques often lead to dead-
lock or livelock conditions, where all or part of a program
cannot continue executing. In general purpose computing,
this is inconvenient, and typically forces a restart of the pro-
gram (or even a reboot of the machine). However, in em-
bedded software, such errors can be far more than inconve-
nient. Moreover, software is often written without sufficient
use of these interlock mechanisms, resulting in race condi-
tions that yield nondeterministic program behavior.

In practice, errors due to misuse (or no use) of
semaphores and mutual exclusion locks are extremely diffi-
cult to detect by testing. Code can be exercised in deployed
form for years before a design flaw appears. Static analysis
techniques can help (e.g. Sun Microsystems LockLint), but
these methods are often thwarted by conservative approxi-
mations and/or false positives.

It can be argued that the unreliability of multi-threaded
programs is due at least in part to inadequate software engi-
neering processes. For example, better code reviews, better
specifications, better compliance testing, and better plan-
ning of the development process can help solve the prob-
lems. It is certainly true that these techniques can help.
However, programs that use threads can be extremely diffi-
cult for programmers to understand. If a program is incom-
prehensible, then no amount of process improvement will
make it reliable. For example, development schedule exten-
sions are as likely to degrade the reliability of programs that
are difficult to understand as they are to improve it.

Formal methods can help detect flaws in threaded pro-
grams, and in the process can improve the understanding



that a designer has of the behavior of a complex program.
But if the basic mechanisms fundamentally lead to pro-
grams that are difficult to understand, then these improve-
ments will fall short of delivering reliable software.

All four of the cases cited above offer concurrency mod-
els that are much easier to understand than threads that in-
teract via semaphores and mutual exclusion locks.

Simulink and SCADE are based on a synchronous ab-
straction, where components conceptually execute simul-
taneously, aligned with one or more interlocked clocks.
SCADE relies on an abstraction where components appears
to execute instantaneously, whereas Simulink is more ex-
plicit about the passage of time and supports definition of
tasks that take time to execute and execute concurrently
with other tasks. In both cases, every (correctly) compiled
version of the program will execute identically, in that if it
is given the same inputs, it will produce the same outputs.
In particular, the execution does not depend on extraneous
factors such as processor speed. Even this modest objective
is often hard to achieve using threads directly.

TinyOS and Click offer concurrency models that are
closer to the prevailing software abstractions, since they rely
on procedure calls as the principle component interaction
mechanism. However, neither model includes threads. The
key consequence is that a programmer can rely on the atom-
icity of the execution of most program segments, and hence
does not usually need to explicitly deal with mutual exclu-
sion locks or semaphores. The result again is more compre-
hensible concurrent programs.

2 Concurrency and Time

In embedded software, concurrency and time are essen-
tial aspects of a design. In this section, we outline the po-
tential problems that software faces in dealing with these
aspects.

Time is a relatively simple issue, conceptually, although
delivering temporal semantics in software can be challeng-
ing. Time is about the ordering of events. Event z happens
before event y, for example. But in embedded software,
time also has a metric. That is, there is an amount of time
between events x and y, and the amount of time may be an
important part of the correctness of a system.

In software, it is straightforward to talk about the order
of events, although in concurrent systems it can be difficult
to control the order. For example, achieving a specified total
ordering of events across concurrent threads implies inter-
actions across those threads that can be extremely difficult
to implement correctly. Research in distributed discrete-
event simulation, for example, underscores the subtleties
that can arise (see for example [12, 28]).

It is less straightforward to talk about the metric nature
of time. Typically, embedded processors have access to ex-

ternal devices called timers that can be used to measure the
passage of time. Programs can poll for the current time, and
they can set timers to trigger an interrupt at some time in the
future. Using timers in this way implies immediately having
to deal with concurrency issues. Interrupt service routines
typically preempt currently executing software, and hence
conceptually execute concurrently.

Concurrency in software is a challenging issue because
the basic software abstraction is not concurrent. The basic
abstraction in imperative languages is that the memory of
the computer represents the current state of the system, and
instructions transform that state. A program is a sequence
of such transformations. The problem with concurrency is
that from the perspective of a particular program, the state
may change on its own at any time. For example, I could
have a sequence of statements:

X = 5;
print x;

that results in printing the number ”6” instead of "5”. This
could occur, for example, if after execution of the first state-
ment an interrupt occurred, and the interrupt service routine
modified the memory location where x was stored. Or it
could occur if the computer is also executing a sequence of
statements:

X = 6;
print x;

and a multitasking scheduler happens to interleave the exe-
cutions of the instructions of the two sequences. Two such
sequences of statements are said to be nondeterminate be-
cause, by themselves, these two sequences of statements do
not specify a single behavior. There is more than one be-
havior that is consistent with the specification.

Nondeterminism can be desirable in embedded software.
Consider for example an embedded system that receives in-
formation at random times from two distinct sensors. Sup-
pose that it is the job of the embedded software to fuse the
data from these sensors so that their observations are both
taken into account. The system as a whole will be nonde-
terminate since its results will depend on the order in which
information from the sensors is processed. Consider the fol-
lowing program fragment:

// Block for data
// Discounted average
// Display the result

y = getSensorbDataf{};
Xx=0.9*x+ 0.1 *y;
print x;

This fragment reads data from a sensor and calculates a run-
ning average using a discounting strategy, where older data
has less effect on the average than newer data.

Suppose that our embedded system uses two threads, one
for each sensor, where each thread executes the above se-
quence of statements repeatedly. The result of the execution



will depend on the order in which data arrives from the sen-
sors, so the program is nondeterminate. However, it is also
nondeterminate in another way that was probably not in-
tended. Suppose that the multitasking scheduler happens to
execute the instructions from the two threads in interleaved
order, as shown here:

y = getSensoxrbDatal(); // From thread 1
Y = getSensorbData(); // From thread 2
x=0.9 *x 4+ 0.1 *y; // From thread 1
X =0.9*x 4+ 0.1 *vy; // From thread 2
print x; // From thread 1
print x; // From thread 2

The result is clearly not right. The sensor data read by
thread 1 is ignored. The discounting is applied twice. The
sensor data from thread 2 is counted twice. And the same
(erroneous) result is printed twice.

A key capability for preventing such concurrency prob-
lems is atomicity. A sequence of instructions is atomic
if during the execution of the sequence, no portion of the
state that is visible to these instructions changes unless it is
changed by the instructions themselves.

Atomicity is provided by programming languages and/or
operating systems through mutual exclusion mechanisms.
These mechanisms depend on low-level support for an indi-
visible test and set. Consider the following modification:

acquireLock() ; // Block until acquired
Yy = getSensorDataf()}; // Block for data

X =0.9* x4+ 0,1 *y; // Discount old value
print x; // Display the result
releaseLock() ; // Release the lock

The first statement calls an operating system primitive?
that tests a shared, boolean-valued variable, and if it is false,
sets it to true and returns. If it is true, then it blocks, waiting
until it becomes false. It is essential that between the time
this primitive tests the variable and the time it sets it to true,
that no other instruction in the system can access that vari-
able. That is, the test and set occur as one operation, not as
two. The last statement sets the variable to false.

Suppose we now build a system with two threads that
each execute this sequence repeatedly to read from two sen-
sors. The resulting system will not exhibit the problem
above because the multitasking scheduler cannot interleave
the executions of the statements. However, the program is
still not correct. For example, it might occur that only one
of the two threads ever acquires the lock, and so only one
sensor is read. In this case, the program is not fair. Suppose
that the multitasking scheduler is forced to be fair, say by
requiring it to yield to the other thread each time release-
Lock() is called. The program is still not correct, because

S - . . .

=Mutual exclusion locks may also be provided as part of a programming
language. The “synchronized” keyword in Java, for example, performs the
same function as our “acquircLock™ command.

while one thread is waiting for sensor data, the other thread
is blocked by the lock and will fail to notice new data on its
Sensor.

This seemingly trivial problem has become difficult.
Rather than trying to fix it within the threading model of
computation (we leave this an exercise), we will show that
alternative models of computation make this problem easy.

Suppose that the program is given by the diagram in fig-
ure 1.> Suppose that the semantics are those of Kahn pro-
cess networks (PN) [30, 37] augmented with a nondetermin-
istic merge [1, 15]. In that figure, the components (blocks)
are called actors. They have ports (shown by small trian-
gles), with input ports pointing into the blocks and output
ports pointing out. Each actor encapsulates functionality
that reads input values and produces output values.

In PN semantics, each actor executes continually in its
own thread of control. The Sensorl and Sensor2 actors
will produce an output whenever the corresponding sensors
have data (this could be done directly by the interrupt ser-
vice routine, for example). The connections between actors
represent sequences of data values. The Merge actor will
nondeterministically interleave the two sequences at its in-
put ports, preserving the order within each sequence, but
yielding arbitrary ordering of data values across sequences.
Suppose it is “fair” in the sense that if a data value appears
at one of the inputs, then it will “eventually” appear at the
output[45]. The remaining actors simply calculate the dis-
counted average and display it. The SampleDelay actor pro-
vides an initial “previous average” to work with (which pre-
vents this program from deadlocking for lack of data at the
input to the Expression actor). This program exhibits none
of the difficulties encountered above with threads, and is
both easy to write and easy to understand.

We can now focus on improving its functionality. Notice
that the discounting average is not ideal because it does not
take into account ow old the old data is. That is, there is

3We give this program using a visual syntax to emphasize its concurrent
semantics. and because visual syntaxes are commonly used for languages
with similar semantics, such as SCADE and Simulink. But the visual syn-
tax makes this no less a program.

SampleDelay Print

. Expression
09°x+0.1%y

Sensor1

Merge
™~
>

sesez I

Figure 1. Process network realization of the
sensor fusion example.




no time metric. Old data is simply the data previously ob-
served, and there is no measure of how long ago it was read.
Suppose that instead of Kahn process networks semantics,
we use discrete-event (DE) semantics [12, 35]. A modified
diagram is shown in figure 2. In that diagram, the meaning
of a connection between actors is slightly different from the
meaning of connections in figure 1. In particular, the con-
nection carries a sequence of data values as before, but each
value has a time stamp. The time stamps on any given se-
quence are nondecreasing. A data value with a time stamp
is called an event.

The Sensorl and Sensor2 actors produce output events
stamped with the time at which their respective interrupt
service routines are executed. The merge actor is no longer
nondeterministic. Its output is a chronological merge of the
two input sequences.* The TimeGap actor produces on its
output an event with the same time stamp as the input but
whose value is the elapsed time between the current event
and the previous event (or between the start of execution
and the current event if this is the first event). The expres-
sion shown in the next actor calculates a better discounted
average, one that takes into account the time elapsed. It im-
plements an exponential forgetting function.

The Register actor in figure 2 has somewhat interesting
semantics. Its output is produced when it receives a trigger
input on the bottom port. The value of the output is that
of a previously observed input (or a specified initial value
if no input was previously observed). In particular, at any
given time stamp, the value of the output does not depend
on the value of the input, so this actor breaks what would
otherwise be an unresolvable causality loop.

Even with such a simple problem, threaded concurrency
is clearly inferior. PN offers a better concurrency model in
that the program is easier to construct and to understand.
The DE model is even better because it takes into account
metric properties of time, which matter in this problem.

4 A minor detail is that we have to decide how 1o handle simultaneous
input events. We could, for example, produce them both at the output with
the one from the top input port preceding the one at the bottom input port.
The semantics of simultancous cvents is considered in detail in [35).

Register Print
Sensort J—
Marge Expression
x* exp(-1) +y* (1.0 -exp(-}))
Sensor2
TimeGap

Figure 2. Discrete event realization of an im-
proved sensor fusion example.

In real systems, the contrasts between these approaches
is even more dramatic. Consider the following two program
fragments:

acquireLockA();
acquireLockB() ;
X =5;

print x;
releaseLockB();
releaseLockal() ;

and

acquireLockB() ;
acquireLockA() ;
X = 5;

print x;
releaseLockA() ;
releaseLockB() ;

If these two programs are executed concurrently in two
threads, they could deadiock. Suppose the multitasking
scheduler executes the first statement from the first program
followed by the first statement from the second program.
At this point, the second statement of both programs will
block! There is no way out of this. The programs have to
be aborted and restarted.

Programmers who use threads have tantalizing simple
rules to avoid this problem. For example, “always acquire
locks in the same order” [33]. However, this rule is almost
impossible to apply in practice because of the way programs
are modularized. Any given program fragment is likely to
call methods or procedures that are defined elsewhere, and
those methods or procedures may acquire locks. Unless we
examine the source code of every procedure we call, we
cannot be sure that we have applied this rule.

Deadlock can, of course, occur in PN and DE programs.
If in figure 1 we had omitted the SampleDelay actor, or in
figure 2 we had omitted the Register actor, the programs
would not be able to execute. In both cases, the Expres-
sion actor requires new data at all of its input ports in order
to execute, and that data would not be able to be provided
without executing the Expression actor.

The rules for preventing deadlocks in PN and DE pro-
grams are much easier to apply than the rule for threads.
For certain models of computation, whether deadlock oc-
curs can be checked through static analysis of the program.
This is true of the DE model used above for the improved
sensor fusion problem, for example. So, not only was the
model of computation more expressive in practice (that is, it
more readily expressed the behavior we wanted), but it also
had stronger formal properties that enabled static checks

*In principle, it might be possible to devise a programming language
where the locks that are acquired by a procedure are part of the type sig-
nature of the procedure, much as in Java where the exceptions that are
thrown by a procedure are part of its type signature. However, we know of
no language that docs this.



| interface provided I

*. Component 1

interface used

[command invoked }\_/v event handled
| command implemented b event signaled

interface provided

. .; i ,-Comvppnentz . ”,

] interface used l

Figure 3. A representation of a nesC/TinyOS
configuration.

that prove the absence of certain flaws (deadlock, in this
case).

We will next examine a few of the models of computa-
tion that have been used for embedded systems.

3 Imperative Concurrent Models

As mentioned above, TinyOS and Click have an imper-
ative flavor. What this means is that when one component
interacts with another, it gives a command, “do this.” The
command is implemented as a procedure call. Since these
models of computation are also concurrent, we call them
imperative concurrent models of computation.

In contrast, when components in Simulink and SCADE
interact, they simply offer data values, “here is some data.”
It is irrelevant to the component when (or even whether) the
destination component reacts to the message. These mod-
els of computation have a declarative flavor, since instead
of issuing commands, they declare relationships between
components that share data. We call such models of com-
putation declarative concurrent models of computation.

We begin with the imperative concurrent models of com-
putation.

3.1 nesC/TinyOS

TinyOS is a specialized, small-footprint operating sys-
tem for use on extremely resource-constrained comput-
ers, such as 8 bit microcontrollers with small amounts of
memory[24]. It is typically used with nesC, a programming
language that describes “configurations,” which are assem-
blies of TinyOS components[17].

A visual rendition of a two-component configuration is
shown in figure 3, where the visual notation is that used in

[17]. The components are grey boxes with names. Each
component has some number of interfaces, some of which
it uses and some of which it provides. The interfaces it pro-
vides are put on top of the box and the interfaces it uses
are put on the bottom. Each interface consists of a number
of methods, shown as triangles. The filled triangles rep-
resent methods that are called commands and the unfilled
triangles represent event handlers. Commands propagate
downwards, whereas events propagate upwards.

After initialization, computation typically begins with
events. In figure 3, Component 2 might be a thin wrap-
per for hardware, and the interrupt service routine associ-
ated with that hardware would call a procedure in Com-
ponent 1 that would “signal an event.” What it means to
signal an event is that a procedure call is made upwards in
the diagram via the connections between the unfilled trian-
gles. Component 1 provides an event handler procedure.
The event handler can signal an event to another compo-
nent, passing the event up in the diagram. It can also call
a command, downwards in the diagram. A component that
provides an interface provides a procedure to implement a
command.

Execution of an event handler triggered by an interrupt
(and execution of any commands or other event handlers
that it calls) may be preempted by another interrupt. This
is the principle source of concurrency in the model. It is
potentially problematic because event handler procedures
may be in the middle of being executed when an interrupt
occurs that causes them to begin execution again to handle
a new event. Problems are averted through judicious use
of the atomic keyword in nesC. Code that is enclosed in
an atomic block cannot be interrupted (this is implemented
very efficiently by disabling interrupts in the hardware).

Clearly, however, in a real-time system, interrupts should
not be disabled for extensive periods of time. In fact, nesC
prohibits calling commands or signaling events from within
an atomic block. Moreover, no mechanism is provided for
an atomic test-and-set, so there is no mechanism besides the
atomic keyword for implementing mutual exclusion. The
system is a bit like a multithreaded system but with only
one mutual exclusion lock. This makes it impossible for the
mutual exclusion mechanism to cause deadlock.

Of course, this limited expressiveness means that event
handlers cannot perform non-trivial concurrent computa-
tion. To regain expressiveness, TinyOS has tasks. An event
handler may “post a task.” Posted tasks are executed when
the machine is idle (no interrupt service routines are being
executed). A task may call commands through the inter-
faces it uses. It is not expected to signal events, however.
Once task execution starts, it completes before any other
task execution is started. That is, task execution is atomic
with respect to other tasks. This greatly simplifies the con-
currency model, because now variables or resources that are
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Figure 4. An sketch of the sensor fusion prob-
lem as a nesC/TinyOS configuration.

shared across tasks do not require mutual exclusion proto-
cols to protect their accesses. Tasks may be preempted by
event handlers, however, so some care must be exercised
when shared data is accessed here to avoid race conditions.
Interestingly, it is relatively easy to statically analyze a pro-
gram for potential race conditions [17].

Consider the sensor fusion example from above. A con-
figuration for this is sketched in figure 4. The two sensors
have interfaces called “reading” that accept a command a
signal an event. The command is used to configure the sen-
sors. The event is signaled when an interrupt from the sen-
sor hardware is handled. Each time such an event is sig-
naled, the Fuser component records the sensor reading and
posts a task to update the discounted average. The task will
then invoke the command in the print interface of the Printer
component to display the result. Because fig:Simulink ex-
ecute atomically with respect to one another, in the order
in which they are posted, the only tricky part of this imple-
mentation is in recording the sensor data. However, tasks in
TinyOS can be passed arguments on the stack, so the sensor
data can be recorded there. The management of concur-
rency becomes extremely simple in this example.

In effect, in nesC/TinyOS, concurrency is much more
disciplined than with threads. There is no arbitrary inter-
leaving of code execution, there are no blocking operations
to cause deadlock, and there is a very simple mechanism
for managing the one nondeterministic preemption that can
be caused by interrupts. The price paid for this, however,
is that applications must be divided into small, quickly exe-
cuting procedures to maintain reactivity. Since tasks run to
completion, a long-running task will starve all other tasks.

3.2 Click

Click was originally developed for designing software
implementations of network routers on general purpose
computers running Linux [32, 31]. It has been recently
adapted for designing software for specialized network pro-
cessors [47], and has proven to offer effective abstractions

for this style of embedded software, at least. The ab-
stractions have a great deal of potential for any embedded
software that deals with multiple converging asynchronous
streams of stimuli.

As with nesC/TinyOS, in the Click model, connections
between components represent method bindings. Click
does not have the bidirectional interfaces of TinyOS, but
it has its own twist that can be used to accomplish simi-
lar objectives. In Click, connections between ports can be
push or pull. In a push connection, the method call orig-
inates with the source of the data. That is, the producer
component calls the consumer component. In a pull con-
nection, the method call originates with the consumer. That
is, the consumer component calls the producer component
to demand data. It is worth noting that there are middleware
frameworks with similar push/pull semantics, such as the
CORBA event service [44, 40]. These, however, are aimed
at distributed computation rather than at managing concur-
rency within a single CPU. Click executes in a single thread,
and we will see that this simplifies the design of Click appli-
cations compared to what would be required by distributed
models.

Figure 5 shows a Click model using the visual notation
from [31). Boxes again represent components, and ports are
shown either as rectangles (for output ports) or triangles (for
input ports). If a port is filled in black, then it is required to
link to a push connection. If it is filled in white, then it
is required to link to a pull connection. If it has a double
outline, then it is agnostic, and can be linked to either type
of connection.

A component with just a push output port, like Sen-
sorl and Sensor2 in figure 5, can function as a thin wrap-
per around hardware that will produce data. Conceptually,
the component autonomously ® initiates a reaction by push-
ing data on its output port, which means calling a method
in a downstream component. That method in the down-
stream component may itself trigger further reactions by ei-
ther pushing data to output ports or pulling data from input
ports.

SCurrently, Click accomplishes this by repeatedly cxccuting a task that
polls the hardware, instcad of an interrupt scrvice routing. but it does not
seem hard to adapt the model leverage interrupt service routines, if desired.

Ve pushoulput r‘:"}pull output port

I Sersor1 H
Queues Exg Snk I
[serer g [T

sh input port -~
pushinput po agnostic input port

/ agnosticoutput port

pull input port /

Figure 5. A representation of a Click program.



In the example shown in figure 5, the components down-
stream of Sensor] and Sensor2 are Queues. They have push
inputs and pull outputs. When a method is called to push
data into them, that method simply stores the data on a
queue. When a method is called to pull data from their out-
puts, either a datum is provided or a null value is provided
to indicate that no data are available.

Click runs in a single thread, so the push and pull meth-
ods of the queue component will be atomic with respect to
one another. Thus, no special care needs to be taken to man-
age the fact that callers from the left and from the right will
both access the same (queue) data structure.

In the example shown in figure 5, the Sink component
has a single pull input. This component might, for example,
have a task on the Click task queue that is repeatedly exe-
cuted and pulls data from the input port. The upstream com-
ponent, labeled Expr, has agnostic input and output ports.
Because of the way it is connected, these ports will be used
as pull ports. A pull from the Sink will cause the Expr com-
ponent to pull data from the queues. Notice that it can im-
plement a scheduling strategy (such as round robin) to ac-
cess the queues fairly.

It is easy to see how the example in figure 5 could be
adapted to implement the sensor fusion problem. Once
again, the representation is simple and clear, with no partic-
ularly difficulties due to concurrency. The primary mech-
anism for avoiding deadlock is the style that a pull should
return null if no data are available. The danger of livelock
is largely eliminated by avoiding feedback loops, although
several interesting models include feedback loops that do
not livelock because of the logic contained in components
(see [31] section 2.6). Data races do not occur acciden-
tally because methods execute atomically. Nonetheless, on
a coarser level, nondeterministic interactions like those in
the sensor fusion example are easy to define. Indeed, these
kinds of interactions are common in the application domain
that Click targets, network routers.

3.3 Others

There are many other models with imperative concurrent
semantics. Here we briefly mention some that have been
applied to the design of embedded systems.

3.3.1 Bluespec

In a Bluespec [2, 43] model, components not only con-
tain methods, but also activation rules and execution con-
straints. Each activation rule describes an atomic state up-
date in the system, which can be performed whenever the
associated execution constraints are satisfied. Bindings be-
tween methods enable complex state updates to be specified
compositionally as a group of methods.

Conceptually, state updates in a Bluespec system occur
sequentially. However, in some cases activation rules op-
erate on independent portions of the system state, in which
case they are called conflict free. These conflict-free rules
represent parallelism in a system and can be executed con-
currently. Bluespec discovers conflict free rules through
static program analysis and generates run-time scheduling
logic for selecting sets of rules which

Livelock in Bluespec models is prevented by a require-
ment that no method can cause itself to be executed through
a sequence of method invocations. This requirement is
guaranteed through static analysis of component composi-
tions. Deadliock in Bluespec models cannot generally be
avoided, since it is possible that a state in execution is
reached where there are no activation rules whose execu-
tion constraints can be satisfied.

Bluespec has seen significant application in the specifi-
cation of digital logic circuits [25, 26]. Current compilers
map a composition to a synchronous circuit that executes
an activation rule in a single cycle. Methods are converted
into combinational logic, which is guaranteed to be acyclic
given the constraints on re-entrant methods. In each cycle
every rule executes concurrently, but the results are gated so
that only the state updates corresponding to a set of conflict-
free rules are committed to the system state.

Bluespec models can also be synthesized directly into
sequential software, which can be used to efficiently sim-
ulate synthesized digital logic systems. In software, it is
more efficient to make scheduling decisions for activation
rules initially and to only execute code corresponding to a
single activation rule at a time. In comparison with direct
simulation of synthesized digital logic, this technique offers
significant speedup for many applications, since only com-
mitted activation rules are actually executed. Additionally,
given coarse-grained activation rules, it seems possible to
execute more than one rule in software concurrently.

3.3.2 Koala

Koala [49, 48] is a model and language for components with
procedure-call interfaces and a visual syntax with “pro-
vides” and “requires” ports that get connected. It has been
proposed for use in the design of consumer electronics soft-
ware specifically. As with nesC/TinyOS and Click, in a
Koala model, connections between components represent
method bindings. Communication occurs through method
arguments and return values and the interaction between
communicating components is primarily sequential. Koala
allows components to contain arbitrary code and perhaps to
encapsulate arbitrary operating system threads.

A “configuration” is an interconnection of components
plus configuration-specific code in something called a
“module.” To get hierarchy, the configuration can export



its own requires and provides interfaces, and these can be
mediated by the module. E.g., the module can translate a
particular provided method into a sequence of calls to pro-
vided methods of the components (e.g. to initialize all the
components). The module is configuration specific, and is
not itself a component, so it does not pollute the component
library. The module can also provide services that are re-
quired by the components. For example, a component may
require values for configuration parameters, and the module
can provide those values. Partial evaluation is used to avoid
introducing overhead in doing things this way.

Modules offer a much richer form of hierarchical ab-
straction than either nesC or Click provide. Modules are
also used to implement primitive components, thus provid-
ing the leaf cells of the hierarchy.

Each “requires” interface must be connected to either
a module or a “provides” interface (input port). A “pro-
vides” interface, however, can be connected to zero or more
“requires” interfaces. An example is given in [49] where
components require a particular hardware interface (an 12C
bus) that must be provided by a configuration. Operating
system and scheduling services also interact with compo-
nents through requires and provides interfaces. Thus, the
language provides clean mechanisms for relating hardware
requirements to software services.

A limited form of dynamic binding is provided in the
form of “switches,” which work together with a module to
direct procedure calls. These can be used at run time to di-
rect a method call to one or another component. Switches
can also be used with “diversity interfaces” (see below), in
which case, partial evaluation will likely lead to static bind-
ing and the elimination of some components from a config-
uration (components that are not used).

“Diversity” means one definition, multiple products.
Koala’s features support this well, particularly through its
partial evaluation and static binding, which avoid the over-
head often incurred by making components flexible. The
authors compare the use of “requires” interfaces to property
lists in more conventional component architectures with
set() and get() methods, and point out that set() and get()
make it more difficult to optimize when properties are set
at design time. Instead of “providing” interfaces that must
be filled in by the configuration (e.g. set()), Koala compo-
nents have “required” interfaces that the configuration must
provide. These are called “diversity interfaces.”

Koala components can provide “optional interfaces”
(fashioned after COM’s query interface mechanism), which
are automatically extended with an isPresent function,
which the component is required to implement. E.g., the
presence of an interface may depend on the hardware con-
figuration. A component may also require an “optional in-
terface” (which is, to be sure, odd terminology), in which
case the component can query for whether a configuration

has a matching “provides” interface.

The hierarchical structure, components with provides
and requires interfaces, and bindings concepts come from
the architecture description language Darwin [41] but the
modules and diversity schemes are new.

4 Declarative Concurrent Models

As mentioned above, Simulink and SCADE have a
declarative flavor. The interactions between components
are not “imperative” in that one component does not “tell
the other what to do.” Instead, a “program” is a declaration
of the relationships among components. In this section, we
examine a few of the models of computation with this char-
acter.

4.1 Simulink

Simulink was originally developed as a modeling envi-
ronment, primarily for control systems. It is rooted in a
continuous-time semantics, something that is intrinsically
challenging for any software system to emulate. Software
is intrinsically discrete, so an execution of a Simulink “pro-
gram” often amounts to approximating the specified behav-
jor using numerical integration techniques.

A Simulink “program” is an interconnection of blocks
where the connections are the “variables,” but the value of
a variable is a function, not a single value. To complicate
things, it is a function defined over a continuum. The In-
tegrator block, for example, takes as input any function of
the reals and produces as output the integral of that func-
tion. In general, any numerical representation in software of
such a function and its integral is an approximation, where
the value is represented at discrete points in the continuum.
The Simulink execution engine (which is called a “solver”)
chooses those discrete points using sometimes quite sophis-
ticated methods.

Although initially Simulink focused on simulating con-
tinuous dynamics and providing excellent numerical in-
tegration, more recently it acquired a discrete capabil-
ity. Semantically, discrete signals are piecewise-constant
continuous-time signals. A piecewise constant signal
changes value only at discrete points on the time line. Such
signals are intrinsically easier for software, and more pre-
cise approximations are possible.

In addition to discrete signals, Simulink has discrete
blocks. These have a sampleTime parameter, which spec-
ifies the period of a periodic execution. Any output of a dis-
crete block is a piecewise constant signal. Inputs are sam-
pled at multiples of the sampleTime.

Certain arrangements of discrete blocks turn out to be
particularly easy to execute. An interconnection of discrete



blocks that all have the same sampleTime value, for exam-
ple, can be efficiently compiled into embedded software.
But even blocks with different sampleTime parameters can
yield efficient models, when the sampleTime values are re-
lated by simple integer multiples.

Fortunately, in the design of control systems (and many
other signal processing systems), there is a common de-
sign pattern where discrete blocks with harmonically re-
lated sampleTime values are commonly used to specify the
software of embedded control systems.

Figure 6 shows schematically a typical Simulink model
of a control system. There is a portion of the model that
is a model of the physical dynamics of the system to be
controlled. There is no need, usually, to compile that spec-
ification into embedded software. There is another portion
of the model that represents a discrete controller. In this
example, we have shown a controller that involves multiple
values of the sampleTime parameter, shown as numbers be-
low the discrete blocks. This controller is a specification for
a program that we wish to execute in an embedded system.

Real-Time Workshop is a product from The MathWorks
associated with Simulink. It takes models like that in figure
6 and generates code. Although it will generate code for
any model, it is intended principally to be used only on the
discrete controller, and indeed, this is where its strengths
come through.

The discrete controller shown in figure 6 has fast run-
ning components (with sampleTime values of 0.02, or 20
ms) and slow running components (with sampleTime val-
ues of 0.1, or 1/10 of a second). In such situations, it is not
unusual for the slow running components to involve much
heavier computational loads than the fast running compo-
nents. It would not do to schedule these computations to
execute atomically, as is done in TinyOS and Click (and
SCADE, as discussed below). This would permit the slow
running component to interfere with the responsivity (and
time correctness) of the fast running components.

Simulink with Real-Time Workshop uses a clever tech-
nique to circumvent this problem. The technique exploits
an underlying multitasking operating system with preemp-
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Figure 6. A representation of a Simulink pro-
gram.

tive priority-driven multitasking. The slow running blocks
are executed in a separate thread from the fast running
blocks, as shown in figure 7. The thread for the fast run-
ning blocks is given higher priority than that for the slow
running blocks, ensuring that the slow running code cannot
block the fast running code. So far, this just follows the
principles of rate-monotonic scheduling [38].

But the situation is a bit more subtle than this, because
data flows across the rate boundaries. Recall that Simulink
signals have continuous-time semantics, and that discrete
signals are piecewise constant. The slow running blocks
should “see” at their input a piecewise constant signal that
changes values at the slow rate. To guarantee that, the model
builder is required to put a zero-order hold (ZOH) block at
the point of the rate conversion. Failure to do so will trig-
ger an error message. Cleverly, the code for the ZOH runs at
the rate of the slow block but at the priority of the fast block.
This makes it completely unnecessary to do semaphore syn-
chronization when exchanging data across these threads.

When rate conversions go the other way, from slow
blocks to fast blocks, the designer is required to put a Unit-
Delay block, as shown in figure 6. This is because the ex-
ecution of the slow block will typically stretch over several
executions of the fast block, as shown in figure 7.7 To en-
sure determinacy, the updated output of the block must be
delayed by the worst case, which will occur if the execution
stretches over all executions of the fast block in one period
of the slow block. The unit delay gives the software the
slack it needs in order to be able to permit the execution of
the slow block to stretch over several executions of the fast
one. The UnitDelay executes at the rate of the slow block
but at the priority of the fast block.

This same principle has been exploited in Giotto [23],
which constrains the program to always obey this multi-
rate semantics and provides (implicitly) a unit delay on ev-
ery connection. In exchange for these constraints, Giotto

T'his schedule is simplified, showing only the invocations of the meth-
ods associated with the blocks that produce outputs.

preempted

priority~

Figure 7. A simplified representation of a
Simulink schedule.



achieves strong formal structure, which results in, among
other things, an ability to perform schedulability analysis
(the determination of whether the specified real-time behav-
ior can be achieved by the software).

The Simulink model does have some weaknesses, how-
ever. The sensor fusion problem that we posed earlier does
not match its discrete multitasking model very well. While
it would be straightfoward to construct a discrete multi-
tasking model that polls the sensors are regular (harmonic)
rates, reacting to stimulus from the sensors at random times
does not fit the semantics very well. The merge shown in
figure 2 would be challenging to accomplish in Simulink,
and it would not benefit much from the clever code genera-
tion techniques of Real-Time Workshop.

4.2 Discrete-Event

In figure 2, we gave a discrete-event model of an im-
proved sensor fusion algorithm with an exponential forget-
ting function. Discrete-event modeling is widely used in
electronic circuit design (VHDL and Verilog are discrete-
event languages), in computer network modeling and sim-
ulation (OPNET Modeler® and Ns-2°, for example), and in
many other disciplines.

In discrete-event models, the components interact via
signals that consist of events, which typically carry both a
data payload and a time stamp. A straightforward execu-
tion of these models uses a centralized event queue, where
events are sorted by time stamp, and a runtime scheduler
dispatches events to be processed in chronological order.
Compared to the Simulink/RTW model, there is much more
flexibility in DE because discrete execution does not need
to be periodic. This feature is exploited in the model of fig-
ure 2, where the Merge block has no simple counterpart in
Simulink.

A great deal of work has been done on efficient and dis-
tributed execution of such models, much of this work orig-
inating in either the so-called “conservative” technique of
Chandy and Misra [13] or the speculative execution meth-
ods of Jefferson [28]. Much less work has been done in
adapting these models as an execution platform for em-
bedded software, but there is some early work that bears
a strong semantic resemblance to DE modeling techniques
[39, 19]. A significant challenge is to achieve the timed se-
mantics efficiently while building on software abstractions
that have abstracted away time.

4.3 Synchronous Languages

SCADE [4], a commercial product of Esterel Technolo-
gies, builds on the synchronous language Lustre [22]. Of
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Figure 8. A simple feedback system illustrat-
ing the fixed point principles of synchronous
languages.

the flagship synchronous languages, Esterel [5], Signal [21],
and Lustre, Lustre is the simplest in many respects. All the
synchronous languages have strong formal properties that
yield quite effectively to formal verification techniques, but
the simplicity of Lustre in large part accounts for SCADE
achieving a widely covetted certification for use in safety
critical embedded avionics software by European agencies.

The principle behind synchronous languages is simple,
although the consequences are profound [3]. Execution fol-
lows “ticks” of a global “clock.” At each tick, each variable
(represented visually by the wires that connect the blocks)
may have a value (it can also be absent, having no value).
Its value (or absence of value) is defined by functions as-
sociated with each block. That is, each block is a function
from input values to output values. In figure 8, the variables
z and y at a particular tick are related by

z = f(y), and

y = g(z).

The task of the compiler is to synthesize a program that,
at each tick, solves these equations. Perhaps somewhat sur-
prisingly, this turns out to be not difficult, well-founded, and
reasonably efficient.

An interesting issue with Lustre is that it supports multi-
ple rates. That is, the master clock can be “divided down”
so that certain operations are performed on only some ticks
of the clock. There is a well-developed formal “clock cal-
culus” that is used by the compiler to analyze systems with
such mulitirate behavior. Inconsistencies are detected by the
compiler.

In SCADE, the functions associated with blocks can be
defined using state machines. They can have behavior that
changes with each tick of the clock. This offers an expres-
sive and semantically rich way to define systems, but most
interestingly, it also offers opportunities for formal verifi-
cation of dynamic behavior. As long as the state machines
have a finite number of states, then in principle, automated



tools can explore the reachable state space to determine
whether safety conditions can be guaranteed.

The nondeterministic merge of figure 1 is not directly
supported by Lustre. The synchronous language Signal [21]
extends the principles of Lustre with a “default” operator
that supports such nondeterministic merge operations. The
timed behavior of figure 2 is also not directly supported by
Lustre, which does not associate any metric with the time
between ticks. Without such a metric, the merging of sensor
inputs in figure 2 cannot be done deterministically. How-
ever, if these events are externally merged (for example in
the interrupt service routines, which need to implement the
appropriate mutual exclusion logic), then Lustre is capable
of expressing the rest of the processing. The fact that there
is no metric associated with the time between ticks means
that Lustre programs can be designed to simply react to
events, whenever they occur. This contrasts with Simulink,
which has temporal semantics. Unlike Simulink, however,
Lustre has no mechanisms for multitasking, and hence long
running tasks will interfere with reactivity. A great deal of
research has been done in recent years in “desynchroniz-
ing” synchronous languages, so we can expect in the future
progress in this direction.

4.4 Dataflow

As with the other models of computation considered
here, components in a dataflow model of computation also
encapsulate internal state. However, instead of interact-
ing through method calls, continuous-time signals, or syn-
chronously defined variables, components interact through
the asynchronous passing of data messages. Each message
is called a token. In this section, we will deal only with mod-
els where messages are guaranteed to be delivered in order
and not lost. For these models it is common to interpret the
sequence of tokens communicated from one port to another
as a (possibly infinite) stream. It is not uncommon to use
visual representations for dataflow systems, as in figure 9.
In that figure, the wires represent streams, the blocks repre-
sent dataflow actors, and the triangles represent ports. Input
ports point into the block, and output ports point out. Feed-
back is supported by most variants of dataflow semantics,
although when there is feedback, there is risk of deadlock.

There are many variants of dataflow semantics. We con-
sider a few of them here.

4.4.1 Kahn Process Networks

Figure 1, discussed above, has the semantics of Kahn pro-
cess networks (PN) [30, 37] augmented with a nondeter-
ministic merge [1, 15]. In PN semantics, each actor exe-
cutes (possibly forever) in its own thread of control. The
connections between actors represent streams of tokens. In
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Figure 9. A diagram representing dataflow-
oriented components.

Kahn/MacQueen semantics [30], the way that threads inter-
act with the ports has a key constraint that guarantees de-
terminacy. Specifically, a thread is not permitted to “ask”
an input port whether there are available tokens to read. It
must simply read from the port, and if no tokens are avail-
able, the thread blocks until tokens become available. This
behavior is called “blocking reads.” Correspondingly, when
the thread produces an output token, it simply sends it to the
output port and continues. It is not permitted to ask the out-
put port whether there is room for the token, or whether
the ultimate recipient of the token is ready to receive it.
These simple rules turn out to sufficient to ensure that ac-
tors implement monotonic functions over streams, which
in turn guarantees determinacy [29]. Determinacy in this
case means that every execution of the PN system yields
the same stream on tokens on each connection. That is, the
PN system determines the streams.

In figure 1, the Merge actor will nondeterministically in-
terleave the two sequences at its input ports, preserving the
order within each sequence, but yielding arbitrary ordering
of data values across sequences. This behavior is not mono-
tonic. In fact, it cannot be implemented with blocking reads
in a single actor thread. Extensions of PN that support such
nondeterministic operations turn out to be especially use-
ful for embedded software, and have been an active area of
research [1, 15].

A key issue with PN models is that they may dead-
lock. They may also consume unbounded memory buffer-
ing tokens between actors. It turns out that it is undecid-
able whether a PN model deadlocks or executes in bounded
memory. This means that no algorithm exists that can al-
ways answer these questions in finite time. Nonetheless,
there are simple execution policies that guarantee that if a
particular PN system can be executed without deadlock in
bounded memory, then it will be executed without dead-
lock in bounded memory [46]. The undecidable problem is




solved by a runtime policy, which does not need to solve the
problem in bounded time. A practical implementation this
policy is available in the Ptolemy II system [14].

4.4.2 Dennis Dataflow

In a distinct family of dataflow models of computation, in-
stead of executing a (possibly infinite) thread, a compo-
nent executes a sequence of distinct firings. This style of
dataflow model was introduced by Dennis in the 1970s [16],
and was applied to the design of high performance computer
architectures for several years. Semantically, the sequence
of firings, of course, can be considered to be a thread with
a limited mechanism for storing state, so at a fundamental
level, the distinction between PN and Dennis dataflow is not
great [37]. But it turns out to be particularly convenient to
formulate dataflow systems in terms of firings. A great deal
of formal analysis of the system is enabled by this abstrac-
tion.

A firing is enabled by satisfaction of a firing rule. The
formal structure of firing rules has considerable bearing on
the formal properties of the model as a whole [34]. Each
firing reads a short sequence of input tokens and produces
a short sequence of output tokens. The firing of a dataflow
component might also update the internal state of a com-
ponent, affecting the behavior of the component in future
firings.

There are two common ways of implementing dataflow
models. One possibility is to implement a centralized run-
time scheduler that selects and executes actors whose fir-
ing rules are satisfied. A second possibility is to statically
analyze the dataflow graph and construct a static, finite de-
scription of the schedule. The latter approach is preferable
for embedded software, since the static analysis also yields
execution time and memory usage information. However,
for general dataflow models, it turns out to be undecidable
whether such static schedules can be constructed [8]. A
suite of decidable special cases of dataflow have been devel-
oped over the years, however, and some of these are quite
promising for embedded software systems.

4.4.3 Decidable Dataflow Models

A simple special case of dataflow models restricts actors so
that on each port, they produce and consume a fixed, pre-
specified number of tokens. This model of computation has
been called synchronous dataflow (SDF) [36], but to avoid
confusion with the (significantly different) synchronous
languages (see [22] for example), it would perhaps better
be called statically schedulable dataflow (SSDF). Indeed,
the key feature of this model of computation is that simple
static analysis either yields a static schedule that is free of
deadlock and consumes bounded memory, or proves that no
such schedule exists [36].

Because of the constraint that actors produce and con-
sume only fixed, pre-specified numbers of tokens on each
firing, SSDF by itself cannot easily describe applications
with data-dependent control structure. A number of exten-
sions enrich the semantics in various ways.

Boolean dataflow[8][11] (BDF) and integer-controlled
dataflow[9] (IDF) augment the model by permitting the
number of tokens produced or consumed at a port to be
symbolically represented by a variable. The value of this
variable is permitted to change during execution, so data-
dependent control flow can be represented. Static analysis
can often still be performed, but in principle, it is unde-
cidable whether a BDF or IDF program can execute with-
out deadlock in bounded memory. Nonetheless, for many
practical programs, static analysis often yields a proof that
it can, and in the process also yields a quasi-static sched-
ule, which is a finite representation of schedule with data-
dependent control flow.

The fact that BDF and IDF are undecidable formalisms,
however, is inconvenient. Static analysis can fail to find
a schedule even when such a schedule exists. Cyclo-
static dataflow (CSDF) [7] offers slightly more expressive-
ness than SDF by permitting the production and consump-
tion rates at ports to vary periodically. SDF can also be
combined hierarchically with finite state machines (FSMs),
and if the state transitions are constrained to occur only
at certain disciplined times, the model remains decidable.
This combination has been called heterochronous datafiow
(HDF) [20]. Parameterized SDF [6] offers similarly expres-
sive variability of production and consumption rates while
remaining within a decidable formalism. Most of these vari-
ants of dataflow are available in the Ptolemy II system [14]
or in Ptolemy Classic [10].

45 PECOS

A final model that we consider shares a number of fea-
tures with the previous, but also has some unique proper-
ties. In a PECOS [50, 18, 42] model, there are three types
of components: active, event, and passive. These compo-
nents are composed hierarchically with the constraint that
an active component must occur at the root of the tree. Ac-
tive components are associated with an independent thread
that is periodically activated. Event components are similar
to active components, except they are triggered by aperi-
odic events occurring in the system. Event components are
generally associated with sensors and actuators in the sys-
tem and are triggered when a sensor has data or an actuator
requires data. Passive components are executed by the ele-
ment that contains them.

Connections between represent a variable in shared
memory that is read and written by the components con-
necting to it. Each passive component is specified by a



single execute () method that reads the appropriate in-
put variables and writes the correct output variables. The
simplest PECOS mode! consists of an active component at
the toplevel, containing only passive components. The en-
tire execution occurs in the single thread, and consists of
sequenced invocations of the execute () methods.

Active and event components are specified by an
synchronize () method, in addition to the execute ()
method. In order to avoid data races, variables for com-
municating with active and event components are double
buffered. The synchronize () method is executed by
the component’s container to copy the input and output vari-
ables. The execute () method that actually performs pro-
cessing only access the variable copies.

5 Conclusion

The diversity and richness of semantic models for em-
bedded software is impressive. This is clearly a lively
area of research and experimentation, with many innova-
tive ideas. It is striking that none of the concurrent models
of computation considered in this paper rely on threads as
the principle concurrency mechanism. Yet prevailing indus-
trial practice in embedded software often does, building the
software by creating concurrent threads and using the mu-
tual exclusion and semaphore mechanisms of a real-time
operating system to manage concurrency issues. We argue
that these mechanism are too difficult for designers to un-
derstand, and that except in very simple systems, should not
be used in raw form. At a minimum, a design pattern corre-
sponding to a clean concurrent model of computation (such
as process networks or synchronous component composi-
tion) is required to achieve truly reliable systems. But better
than informal use of such design patterns is the use of lan-
guages or frameworks that enforce the pattern and provide
proven implementations of the low-level details. We have
outlined the key features of a few such promising languages
and frameworks.
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