Copyright © 2004, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

GIOTTO
GIOTTO TUTORIAL

by
M. A. A. Sanvido and Aaron Walburg

Memorandum No. UCB/ERL M04/30

16 August 2004

GIOTTO
GIOTTO TUTORIAL

by

M. A. A. Sanvido and Aaron Walburg

Memorandum No. UCB/ERL M04/30

16 August 2004

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

GIOTT

Giotto Tutorial

M.A.A. Sanvido, Aaron Walburg
Technical Memorandum UCB/ERL M04/30
University of California at Berkeley
giotto@ic.eecs.berkeley.edu
August 2004

Forward:

The Giotto! Development Kit (GDK) is a Java implementation of: (1) a compiler
for the embedded programming language Giotto, (2) a run-time environment for
java, (3) a distributed target machine called the embedded machine, and (4)
some ready-to-run examples. Giotto is being developed at the Electrical
Engineering and Computer Sciences Department of the University of California at
Berkeley.

Installation:
To install the GDK, run the installer for your platform on your machine. If you do

not have one, you may request a copy from the Giotto home page at:
http://www-cad.eecs.berkeley.edu/~giotto

1 Introduction:

As a tutorial, we will compile a virtual hovercraft program which utilizes Giotto to
generate java. The tutorial generates a program whereby a user may use the
mouse to click on a location of the screen which then serves as a target for the

! Copyright ©2004

The Regents of the University of California. All rights reserved.

2This work is supported by the National Science Foundation (NSF Award
Number CCR-00225610), the Defense Advanced Research Projects Agency
(DARPA), and Chess (the Center for Hybrid and Embedded Software Systems),
which receives support from NSF and the following companies: Daimler-Chrysler,
Hitachi, Honeywell, Toyota and Wind River Systems.

hovercraft, which will move to that selected location under its own power. The
program controls the left and right jet engines of this hovercraft. The tutorial will
guide us through programming revisions. With each revision more functionality is
added. The code revisions are listed below. These example files are located in
the “examples” directory and are listed below in order of increasing complexity:

hovercraft01.giotto - No simulation window.

hovercraft02.giotto - Simulation window active, but no control of the hovercraft.
hovercraft03.giotto - Simulation window active, computation made for the
current hovercraft location, but no control of the hovercraft is possible.
hovercraft04.giotto — Simulation window active; Hovercraft engines have thrust
set at equal power, therefore hovercraft has no turning capacity.
hovercraft05.giotto - Simulation window active; Hovercraft functions completely.

Compiling the Code:

Each of the following steps may be repeated for the above examples.
Step 1: Compiling and running a Giotto program.

Start the Giotto application by clicking on the Start Menu, then selecting

“Programs”, then “Giotto Development Kit", then “Start.” This opens the Giotto
window:

make Jan

7 T ucigiuno.fur_ac_tpnahty code hovercraft [amu] ™ ancmel” apme
i Program: %C:\Program Files\Giotto Development lﬂt\examplesmufer;rart.gicff

After having started the Giotto Development Kit (GDK) open the file
hovercraft01.giotto. In the Giotto application select “Open” from the “File”
menu and open the Giotto program entitled hovercraft01.giotto whichis
located in the “Examples” directory. Once the file has been loaded the program
will appear in the program editor.

To compile the program press the “Compile” button. The GDK will compile the
text in the program editor (upper GDK window) and print the compilation results
in the lower of the GDK window. The E code generated by the compiler can be
viewed by selecting “Show E Code" from the E code Menu:

Step 2: Linking the Giotto program with Java functionality code.

The generated E code is not linked with any particular functionality code unless a
code option has been checked. There are two code options located next to the
Compile button: “Make Java” and “Make C".

: maw Jan

Program_[C'Program Files\Giotio Development Kitexamples\nove

To link E code with external functionality, you need to check one or both of the
options in the top of the GDK window and if “C Code" is selected you may make
further code refinements. In this tutorial we will only consider java functionality,
and therefore you should check the java option to execute code on a java
platform.

Check the java option and set the compiler path:

A. Check the box labeled “make Java".

B. Before compiling, set the compiler path to: “." Do this by entering
“giotto.functionality.code.hovercraft” in the topmost field in the GDK interface.

The external java functionality classes will be loaded from the directory specified
in this topmost field:

iC otto.functionality code hovercraft I~ smim ™ awom

Program. ZC.\Program Files\Giotto Development Kit\examplesihave

C. Press the “Compile” button.

At this point the compiler loads the external functionality, i.e. the java classes
implementing the functionality, and generates E code that is linked with the
external functionality.

If you look again at the E code window (in the E code menu select “Show E
code”) you will see that the E code references to external java classes.

Although we will not be using these features in this tutorial there are also three
options available at the far right which relate to the “C Code” functionality: These
are “Simulink”, “Annotated”, and “Dynamic”. The Simulink option is used to
generate Simulink compatible C code functionality stubs. The Annotated option
specifies to the compiler to generate code considering the annotated worst-case
execution times, and code distribution. The Dynamic option allows the generation
of dynamically loadable E code. Please refer to [1,2,3,4] for more details.

ty cod

Step 3: Running E code

The linked E code can now be executed by the GDK. The GDK integrates an E
code interpreter (called an E machine) that executes the E code. To run compiled
E code select “Run” from the E code menu.

c. r

2 {C:\Program Filles\Giotto Development Kiexam

This will open a small window:

The window presents basic information about the state of the E machine. To run
the simulation press the “Simulate” button and the E Machine will start executing
the E code. You can stop the execution at any time by pressing the button again
(now labeled “Stop”).

Step 4: Developing the Controller for the Hovercraft.

Having successfully compiled your first Giotto program,
hovercraft01l.giotto, we may now compile code which will increase the
functionality of the hovercraft in successive steps which is revealed by running
the simulation at each stage. Repeat steps 1-3 using the successive code
examples. hovercraft02.giotto creates a simulation window, but no control
of the hovercraft. This Giotto program is essentially the same as
hovercraft01l.giotto with the addition of the java functionality specification.
We will sequentially add and modify the code, at first adding only forward thrust
to the hovercraft engines, and thereafter increasing the controller complexity to a
fully functional hovercraft simulation. In order to avoid having to code by hand
each of the steps you can simply open the files from the example directory. The
files are named hovercraftXX.giotto where “XX" is a number.

Explanation of hovercraft02.giotto code

The program is divided into four different sections: 1) A section defining the
actuator ports, 2) A section defining the output ports, 3) A section defining the
tasks, and 4) A section defining the drivers.

Defining the actuator ports:

actuator
real_port rightJet uses PutRightJet;
real port leftJet wuses PutLeftdJet;

An actuator is a port that directly accesses the hardware. In our specific case, the
actuators are the two engines connected to the hovercraft, i.e. the rightJet
and the 1eftJet. In order to access the hardware we need to specify the
external functionality to call. In our example are the java class PutRightJet
and PutLeftJet respectively.

Defining the outputs:

output
real port turn = real_zero;
real_port thrust = real_zero;
bool_port window = HovercraftWindow;

We need also to define storage location for the program. Output ports are
memory locations used by tasks in order to store global data. To define a
deterministic starting point of the program, each port has to be initialized. In our
particular case we define and initialize two ports, i.e. tuming capacity and thrust
which will be initialized by calling the external java class “real_zero". The third
port window is a port used only to open and close the simulator, i.e. the
HovercraftWindow class is responsible for opening the hovercraft simulation
window.

Defining the tasks:

At this point we need to define the actual task we would like to perform. A task
definition specifies the task name and the task input parameter, and the output
port bound to the task. In this firs example we will use only a simple idleTask that
will schedule an externally linked java class ldle.

task idleTask() output (turn, thrust) state () {
schedule Idle(turn, thrust)
}

Defining the drivers:

In Giotto any data has to be transported by means of “drivers”. A driver is a
function that transports data conditionally from source ports to destination ports,
where a port can be an output port, an actuator port, or a sensor port (we will
discuss sensor ports later). The transport is conditional and has to be performed
by an external Java function. In our first example we had simply called the
constant_true () conditional, and the dummy () functions, that do not perform
any functionality. In this particular example we only need two drivers: one to
transport data from the task outputs (turn, thrust) to the left engine and one for
the right engine.

driver leftMotor(turn, thrust) output (real_ port left) (
if constant_true() then dummy ()

)

driver rightMotor(turn, thrust) output (real_port right) ({
if constant_true() then dummy ()
}

At the end of the Giotto program, we still need to specify how the program
actually works and connect tasks and ports via the drivers. In Giotto we can have
different “modes” and we switch between them. A mode is a particular
connection of a task and ports via drivers. We will address this topic in the next
few sections. At this point, we only want to define one mode, i.e. the mode “idle”
and inform the system that when it starts should begin in the idle mode. In this
particular mode, we define three variables: running period, how and when the
actuator ports need to be updated by the drivers, and how often (frequency) the
idleTask has to be invoked. Note that the idleTask does not have any input, and
therefore no driver is needed to transport data to its input parameters.

start idle {

mode idle() period 1000 (
actfreq 1 do leftJet (leftMotor);
actfreq 1 do rightJdet(rightMotor);
taskfreq 1 do idleTask();

}

(Refer to the file "hovercraft02.giotto" for the above code.)

Step 5: Adding some sensors and a task to compute the hovercraft
position and error from the target.

Open, compile, and run hovercraft03.giotto. We've made the previous
program more complex by introducing three sensors that are capable of reading
the position of the hovercraft (positionX, positionY, angle), and three
sensors that read the input from a console in which an operator will set the
desired position and orientation of the hovercraft (targetX, targety,
targetAngle). Furthermore, we will add a task that will compute the distance
from the actual position to the destination.

At this point we still need to define the sensor that will provide the actual and
target position of the hovercraft to the system. Therefore, we will add the
following code to the beginning of the hovercraft program. Note that in the
previous code we did not define any sensors, and so we will have to add the
sensor definition to the hovercraft02.giotto. The sensors use the external java
functionality GetPos and GetTarg to get the values from the real sensors.

sensor
real_port positionX uses GetPosX;
real_port positionY uses GetPosY;

real_port angle uses GetPosA;
real port targetX uses GetTargX:;
real port targetY uses GetTargY;

real_port targetAngle uses GetTargh;

The output ports errorX, errorY, errorAngle, targetDirection must be
added to the output definition of the Giotto program.

real_port errorX := real_zero;
real_port errorY¥ := real_zero;
real_port errorAngle := real_zero;
real_port targetDirection := real_zero;

In hovercraft03.giotto we've added a new task called errorTask, the
task computes the distance of the hovercraft from the target position. The
distance is then stored in the output ports errorX, errorY, errorangle. In
addition, the task also computes the direction of the target in targetDirection. The
schedule defines the name of the external functionality to be called: in this case

the class Error.

task errorTask(real_port posX, real port posY, real_port posa,
real_port tgtX, real_port tgtY¥, real_port tgtA)
output (errorX, errorY, errorAngle, targetDirection) state 0 {
schedule Error (posX, posY, poshA, tgtX, tgtY, tgth,
errorX, errorY, errorAngle, targetDirection)

}

In order to complete this step we still need to define how the data has to be
transported from the sensors to the errorTask. To do so we define a driver
getPos that gets the sensor values and add to the idle mode the task
errorTask. Note that the task errorTask has a frequency of 2, and that the
task will call the get Pos driver in order to receive its inputs.

driver getPos (positionX, positionY, angle,
targetX, targetY, targetlAngle)
output (real_port posX, real port posY, real_port posa,
real_port tgtX, real_port tgtY, real port tgtd) ({
if constant_true() then
copy_real port6(positionX, positionY, angle,
targetX, targetY, targetAngle,
posX, posY, posA, tgtX, tgt¥, tgth)
}

And defined here is the modified idle mode:

mode idle() period 1000 {
actfreq 1 do leftJdet (leftMotor):;
actfreq 1 do rightJdet (rightMotor);
taskfreq 1 do idleTask(};
taskfreq 2 do errorTask(getPos);

}

(Refer to the file hovercraft03.giotto for the above code.)

Step 6: Introducing mode switches

The previous program hovercraft03.giotto did not implement any useful
control strategy besides computing the error position of the hovercraft. In this
step we want to equip the hovercraft with the capacity to move forward in a fixed
direction and be able to advance toward a point in front of it, i.e. we will restrict
the movement of the hovercraft to a single direction. To do so we need to
introduce a new mode and a mode switch. As explained before, a mode is a
collection of tasks running at different periods and a collection of drivers
transporting data from and to sensors, actuators, and tasks.

In order to provide this mobility to the hovercraft we add two mode switches to
the idle mode. A mode switch calls a mode driver which returns “true” if a switch
to another mode has to be completed. In our particular case we add a mode
switch to change from the idle mode to the forward mode, while another mode
switch remains in the idle mode. Moreover we have to add another mode. The
mode forward is very similar to the idle mode, except the idleTask is replaced

by the forwardTask.

start idle {

mode idle() period 1000 {
actfreq 1 do leftJet (leftMotor);
actfreq 1 do rightJet(rightMotor);
exitfreq 1 do idle(goldle);
exitfreq 1 do forward(goForward);
taskfreq 2 do errorTask(getPos);
taskfreg 1 do idleTask();

mode forward() period 200 ({
actfreq 1 do leftJet(leftMotor);
actfreq 1 do rightJet(rightMotor);
exitfreq 1 do idle(goldle);
taskfreq 2 do errorTask(getPos);
taskfreq 1 do forwardTask(getErr);

}

The mode switch drivers goIdle returns true if the position of the hovercraft has
reached the target, while goForward returns true if the target is straight in front
of the hovercraft.

driver goForward(errorX, errorY, errorAngle, targetDirection)
output () {
if Push2Target (errorX, errorY, erroraAngle, targetDirection)
then dummy ()
}

driver goldle(errorX, errorY, errorAngle, targetDirection)
output () {
if Goldle (errorX, errorY, errorAngle, targetDirection) then dummy ()

We still need to define the forwardTask, and the input driver getErr
responsible for transporting the data from the errorTask to the forwardTask.

task forwardTask(real port errX, real port errY, real_port errAngle,
real port dir)

output (turn, thrust) state () {

schedule Forward(errX, errY, errAngle, dir, turn, thrust)
}

driver getErr (errorX, errorY, errorAngle, targetDirection)
output (real_port errX, real_port errY,
real_port dir, real_port errd) {
if constant_true() then
copy_real port4 (errorX, errorY, errorAngle, targetDirection,
errX, errY, errdA, dir)

At this point we've implemented a controller capable of moving the hovercraft
from an idle position to a target directly in front of the hovercraft. After compiling
and running the E code interpreter (E machine), you will be able to play with the
hovercraft. In the simulation window, set the target position of the hovercraft by
using your mouse or enter the coordinates and orientation of the hovercraft in the
text fields. Note,however,that the hovercraft does not yet move.

(Refer to the file hovercraft04.giotto for the above code.)
Step 7: Full hovercraft program.

The final step is to implement the fully capable controller. The controller
introduces two more modes, one which empowers the hovercraft to turn in place
(toward the target), and another mode which properly orients the hovercraft to
acquire the target orientation. These two modes are used to move the hovercraft
in a straight line from the actual hovercraft position to the target. The first mode
turns the hovercraft in the direction of the target, then moves it forward to the
target. Once the target is reached, the second mode orients the hovercraft. The
full implementation is in the file hovercraft05.giotto.

In the full hovercraft program the hovercraft seeks the target at any coordinate.
Running the full simulation produces this initial window:

10

Use your mouse to select target coordinates on the screen (an empty blue circle
will appear):

The hovercraft then moves itself to those coordinates and orients itself at that
location in approximately the same direction:

Step 8: implementing external functionality in Java

Until now, we have assumed that all external java functionality code was
available. However, if you wish to develop your own application you need to be
able to develop your own code and make it E code linkable. The java
implementation of the E Machine expects all external functions to implement
special java interfaces for drivers and tasks. In this step we will briefly present
these interfaces. In order to compile and run the system, the compiler needs to
know where the classes are located (as was presented in step 3). However, to be
able to run, the classes must also be identified by the runtime system. To
achieve this you must add the functionality classes to the JVM class path of the
system®. Note that if you want to be able to save the E Code, all your classes will
also have to implement the Serializable interface.

Implementing a Port:

? Please refer to your particular JVM documentation to do so.

11

In Giotto all ports are stored in external java objects that implement the
PortVariable interface. The system predefines the Portvariable
implementations real port, int_port, bool_port, but you can implement
your own types by implementing the PortVariable interface. The method
copyValueFrom wuill implement the copy of the port values to the to object.

public interface PortVariable {
public void copyValueFrom(PortVariable to);

}

Implementing a Task:

In order to implement the functionality of a Giotto task you need to implement a
class with the interface TaskInterface. TaskInterface defines only a single
method run, which will be invoked by the E Machine during execution. The run
method accepts an argument of type Parameter. The parameters store all the
input and output ports defined by the Giotto task. The ports are numbered in the
order of appearance in the Giotto task definition, with the inputs coming first. To
implement your functionality you need to access the ports, perform your
computation and store the values back on the output ports. The system will then
automatically copy the output ports to the global ports, as defined by the Giotto
language semantic. For example, to access the first port you need to call
p.getPortVariable (0). This will return the Portvariable referencing to
the port. Once you have the reference to the Portvariable you can acquire
and set its value depending on the PortVariable type.

public interface TaskInterface {
public void run(Parameter parameter) throws StopException;
3

public class Parameter implements Serializable {

public PortVariable getPortVariable (int index);
public int getNops():

}

Now let's observe the implementation of the Forward task used in the hovercraft
examples. The run methods: read the input ports (0,1, and 3), compute the
control law, and write the output to the output ports (4, and 5).

public class Forward implements TaskInterface, Serializable ({

public void run(Parameter p) {
//access the input ports 0,1 and 3

float ex = ((real port)p.getPortVariable(0)).getFloatValue();
float ey = ((real_port)p.getPortVariable(l)).getFloatValue();
float dir = ((real_port)p.getPortVariable(B)).getFloatValue();

12

//computes the control law

float r, f£fp:;

r = (float)Math.sqgrt(ex*ex + ey*ey):
fp = (float)Math.cos(dir)* r*Kp;

if (fp<0) fp = O;

float tp = 0;

//write back the results to the output ports 4 & 5
((real_port)p.getPortVariable(4)).setFloatValue(tp);
((real_port)p.getPortVariable(5)).setFloatValue(fp);

}
Implementing an input driver:

The implementation of an input driver is similar to the task implementation. The
only difference is in the way the E Machine will call the method. In case of a task
the task will be wrapped in a Java thread while a driver will be called directly from
the E Machine thread. A driver transports data from its input to the outputs.
Similar to a task, the input and output ports are stored sequentially in the
parameter and accessed via their index.

public interface DriverInterface {
public void run(Parameter parameter);

}

The following drivers are predefined and used in the hovercraft examples:
Copy_int, copy_bool, copy_real, copy_real 2, copy_real_4,
copy_real 6.

Implementing a Sensor and an Actuator:

In order to access the sensor directly and drive an actuator directly we need
implement sensor and actuator drivers. These are essentially similar to input
drivers with the difference that they access external values.

For example, below is the implementation of the Get PosX driver used in the
hovercraft examples. The run method writes the value of the actual position of
the hovercraft (accessed via the Hovercraft.main.getPosX() call) in the first
PortVariable of the parameter.

public class GetPosX implements DriverInterface, Serializable {

public vecid run(Parameter parameter) f{
((real_port)parameter.getPortVariable(O)).
setFloatValue (Hovercraft.main.getPosX ());

}

——

13

Here is an example of the PutLeftJet driver, that actuates the left jet of the
hovercraft.

public class PutLeftJet implements Driverlnterface, Serializable {

public void run(Parameter parameter) ({
real_port f = (real_port)parameter.getPortVariable(0);
float limit = Hovercraft.LimitMotoxr (f.getFloatValue()):
Hovercraft.main.lm = limit;

Implementing a Mode Switch:

At last we only need to be able to implement the mode switches. This is done by
implementing the interface ConditionInterface. Essentially this interface is
similar to the DriverInterface with the only exception that the method run
returns a boolean. If the boolean is true the mode switch will be taken, otherwise
the next mode switch declared in the mode is tested. If no mode switches return
true, the Giotto program will remain in the same mode in the next period.

public interface ConditionInterface ({
public boolean run(Parameter parameter);

}
And here the implementation of the GoForward mode switch.

public class GoForward implements ConditionInterface, Serializable {
public boolean run(Parameter p) {

float ex = ((real_port)p.getPortVariable(0)).getFloatValue();

float ey = ((real_port)p.getPortVariable(l)).getFloatValue();

float ea = ((real_port)p.getPortVariable(2)).getFloatValue();

float ea2 = ((real_port)p.getPortVariable(3)).getFloatvValue();
float ter = (float)Math.sqgrt(ex*ex + ey*ey);

return (ter > 5) & (Math.abs(ea) < 0.1);

}

The same interface is used when implementing conditions in the Giotto drivers.
For example the definition of the 1leftMotor driver used the

constant_true () to test if the dummy class, which implemented the
DriverInterface class) had to be performed

driver leftMotor(turn, thrust) output (real_port left) {
if constant_true() then dummy ()
}

14

Copyright

Copyright ©2004
The Regents of the University of California. All rights reserved.

Permission is hereby granted, without written agreement and without license or
royalty fees, to use, copy, modify, and distribute this software and its
documentation for any purpose, provided that the above copyright notice and the
following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE

TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS
ANYWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

References

1. T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Embedded control systems
development with Giotto. In Proceedings of the International Conference
on Languages, Compilers, and Tools for Embedded Systems, pages 64—
72. ACM Press, 2001.

2. T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered
language for embedded programming. In T.A. Henzinger and C.M. Kirsch,
editors, EMSOFT 01: Embedded Software, Lecture Notes in Computer
Science 2211, pages 166—184. Springer-Verlag, 2001.

3. T.A. Henzinger and C.M. Kirsch. The Embedded Machine: Predictable,
portable real-time code. In Proceedings of the International Conference on
Programming Language Design and Implementation, pages 315-326.
ACM Press, 2002.

4. T.A. Henzinger, C.M. Kirsch, M.A. Sanvido, and W. Pree. From control
models to real-time code using Giotto. IEEE Control Systems Magazine,
23(1):50~-64, 2003.

5. C.M. Kirsch, M.A. Sanvido, T.A. Henzinger, and W. Pree. A Giotto-based
helicopter control system. In A. Sangiovanni-Vincentelli and J. Sifakis,

15

editors, EMSOFT 02: Embedded Software, Lecture Notes in Computer
Science 2491, pages 46-60. Springer-Verlag, 2002.

16

