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Abstract

Bio-mimetic Robotics often deploys locomotion mechanisms (swimming, crawling, flying etc...)
which rely on repetitive patterns for the actuation schemes. This directly translates inio peri-
odic forcing inputs for the dynamics of the mechanical system. Closed loop control is achieved by
modulating shape-parameters (e.g. duty cycle) which directly affect the mean values of the forcing
inputs. In this work, guided by an intuition inspired by linear systems theory, first a linear feedback
law is derived that stabilizes a linearization of the average system, i.e. the system subject only to
the average values of the forcing inputs, and then it is shown how this very feedback law can also
guarantee boundedness of solutions of the original system. Boundedness is proved my means of a
Lyapunov energy function easily derived in the linearized case. Unlike classical results found in
literature in the areas of averaging and perturbation theory, this work instead of focussing on the
existence of periodic limit cycles, simply restricts its attention on the boundedness of solutions,
which directly translates into the possibility of deploying input fuctions which are continuous but
not continuously differentiable.

1 Introduction

Recent developments in Bio-mimetic Robotics [1] led to a broad variety of bio-inspired autonomous
robots mimicking locomotion of real animals. Whether swimming, crawling or flying, locomotion mech-
anisms are often based on repetitive, i.e. periodic, patterns (slowly) modulated by a controller via some
regulatory parameters, e.g. frequency, duty cycle, etc...

As an example, consider a flapping wings Micromechanical Flying Robot (MFI) [4]. Forces and torques
arise from repetitive motion of wings. Periodicity of wing trajectories is modulated by the slow (com-
pared with the wing-beat frequency) variation of certain parameters. Such periodic forces and torques
represent the forcing inputs to the dynamics of a rigid body problem.

In these situations, the most intuitive approach to stabilization is considering the system as subject to
an equivalent (slowly varying) average input instead of a fastly oscillating one.

This intuition is directly imported from linear systems theory where mechanical systems display a linear
low-pass filtering behaviour which tends to respond mainly to the (slowly varying) average values of
the inputs while rejecting its high order harmonics content.

In what follows a general class of nonlinear nonautonomous systems is considered where the time
dependence is present in a parameterized family of periodic inputs. Via averaging methods, a nonlinear
but autonomous system is derived whose linearized equivalent, supposed to be controllable, will provided
a stabilizing feedback law. It will then proved, by means of Lyapunov energy functions, that this law
can also be used to bound the original nonlinear nonautonomous system.



2 Averaging
Consider the general class of nonlinear systems represented by:
z = F(z,u(d, t)) (1

where z € R" represents the state variable, d is a vector of parameters!, u(d,t) € R™ is a vector of
forcing inpus T-periodic in ¢, and F : R® x R™ — R" is a vector field corrisponding to the dynamics of
the robot.

Since mechanical systems of interest are in fact affine with respect to forces, F(z, u) is assumed to be
affine in u.

This property allows one to write the average system simply as:

T
-=%A F(z,u(d,s)) ds = F(z, (d)) 2)

where the bar operator represents the average operation over the period T and is defined as:
al [T
m@=-/u@@a (3)
T Jo

In order to allow linearization, the following two conditions are needed:

o F(z,u) is continuously differentiable with respect both arguments.
o @(d) is continudusly differentiable.

Note: assuming continuous differentiability of @(d) is far less restrictive than assuming continuous
differentiability of u(d,t), allowing thus piecewise differentiable functions such as triangular waves.
This is a considerable departure from literature.

Let there be a particular combination of parameters?, say d = dp, such that the average system has an
equilibrium in z = 0, i.e.:

0=F(0,@) where o= @(dp)

Consider now the average system linearized at the equilibrium:
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Ad = Az + BAd (4)
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do

T

(o,ﬁo)

Where Ad = d — dp.
When the linearized system is controllable?, it is always possible to find a feedback linear law Ad = — Kz
such that the system:

&=(A-BK)z

is exponentially stable.
Moreover, in such a case, for every positive definite @ there exist a positive definite P solution of the
Lyapunov equation:

P(A-BK)+(A-BK)TP=-2Q (5)

1Eventually modulated by a controller.
2Biomimetic robots are in general designed to work around a nominal set of values derived from the real world [4].
3This can be checked via the full rank test on B, AB, A%B...




Such a matrix can be used to define a positive definite energy function:

V(z) 24TPz (6)
whose time derivative along the trajectories of the average nonlinear system is given by:

V(z) = 2T PF(z,4(dy — Kz)) + FT(z,4(do — Kz))Pz )

which can be proved to be negative definite, at least in a bounded domain D C R" around the origin,
ie:

V(z) < -z7(2Q)z + O(||z||*) < —z"Qz Vz €D (8)

Therefore, the feedback law found for the linear case also stabilizes the nonlinear average system, at
least around the equilibrium.

Now, the original nonlinear system (1) does not even possess an equilibrium point. Next section will
show how the feedback law previously found will actually bound system (1) around the origin.

3 Boundedness via Lyapunov Energy Functions
Linear feedback d = dy — Kz, applied to the original system (1), leads to:
& = F(z,u(do — Kz,t)) & Fu(z,t) (9)

Thus far, no regularity condition was needed for u(d,t). In order to assure existence and uniqueness of
solutions in the sense of Caratheodory® [3] for the system (9), only continuity for u(d,t) is required.

For what follows, more than continuity, a local Lipschitz condition shall be assumed, i.e.:
3L : ||Fe(zyt) — Fe(ys )| £ Lllz—y|| Vz,ye D, Vt

It is possible to find families of periodic forcing inputs, e.g. triangular waves, such that @(d) is contin-
uously differentiable while u(d, t) is Lipschitz but not differentiable.

This is the main difference with theorems found in literature (see Section 10.3 in [2]): closed-loop vector
field F,(z,t) in system (9) only needs to be continuous in both z and ¢ in order to guarantee existence
and uniqueness in the sense of Caratheodory.

Clearly, there is no longer an equilibrium in 2 = 0. What is now plausible is that trajectories are
attracted by, or fall into, a bounded region Dy C D containing the origin z = 0.

The idea is extending theorems such as Theorem 4.18 in {2] (also reported in Appendix B), where the
fact that V(z,t) < 0in D — Dy implies that trajectories are attracted by Dy
3.1 Boundedness

Use V(z) = zT Pz as a candidate energy function and compute its time derivative along trajectories of

(9):
V(z,,t) = 2T Pz, + T Pz, = 2T PF,(z,,t) + FX (z¢,t) Pz, (10)

where, for sake of clarity, the notation z; simply stands for z(t), while F.(z,t) is defined in (9).

Checking that V(:z:, t) < 0 in a whole region surrounding the equilibrium for all t could often fail, yet
being true most of the time.

4Discontinuous inputs (PWM) can be included if solutions in the sense of Filippov [3] are considered.



In the case of systems forced by T-periodic inputs, this idea actually leads to a useful test.
Instead of checking the sign of V(z,t), consider:

t+T
AVe(@at) & [ Viaws)ds = Viaur,t+T) = Viwut (11)
i

which after substituting (10) becomes:

t+T
AVip(z,t) = / (T PF,(z,,5) + FT (2, 5)Pz,] ds (12)
t

Clearly, if AVp(z,,t) < 0 simply means that V(z¢47,t +T) < V(x4,t). Therefore after a period T, the
trajectory shall stay on a lower (or at most equivalent) energetic level, where energy levels of V(z) are
ellipsoids and their energy decreases down to zero as = approaches the origin, .

The purpose now is estimating the sign of (12) without actually knowing z, solution of the original
system (9), for s € [t, t + T).

To this end, consider for the moment only the first integrand of (12):

T PF,(5,8) = xf PF.(z,,8)+ T PF.(z,,s) — 2T PF,(z,,s)
= a] PFe(x4,5) + x5 — To)TPF.(zs, 8) + 27 P{F(xs, 8) — Fu(zy, 5))

The first addendum, once integrated over the [t, ¢ + T time interval, is nothing but the first term of
the right side of Eq.(7) multiplied by T , i.e.:

t+T t+T
/ I PF,(z,,s)ds = / zT PF(zy,u(do — K¢, 5))ds = Tzl PF(x,,@(do — K4))
t t

Therefore, (12) can be rewritten as:

AVp(zy,t) = T (z] PF(zy,%(do — Kz1)) + FT (x4, u(do — K2:)) P+
+ J7T [(zs — 2T PFe(s,8) + 2T P|Fe(za,8) — Fe(z, s)]] ds+
+Ji T [FT (%5, 5)Plzs = 2] + [Fel®s, 8) — Fe(e,5)|Pxy] ds

As long as the trajectory is confined in D, the following inequalities hold:

Yz, € D ".'Egll < 7p

Vz; € D,Vs€ R | Fe(zs,s)l| < "Fma::" (13)
Vte RVselt, t+T) lzs —ze)l < T ||Fmezll

Vry,zs € D,Vs€ R |Fe(zs, 8) = Fe(ze,s)]| < Lljzs - || £ LT || Fracll

where L is the previously defined Lipschitz constant and:

™D
| Fmaz|l

maxeep ||z|]
maXe(o,T), zeD | Fe(z, )

> e

Now use Eq.(7) together with inequality (8) for the first two addends:

AVp(zy,t) < -TzfQz.+
+fzt+T [[zs — 24)T PFe(zs, 5) + 2 P[Fe(zs,8) — Felz,8)]] ds
+ftt+T [FT (s, 8)Plxs — z4) + [Fe(zs, 8) — Fe(wy,5))Pze] ds

and inequalities (13) for the remaining addends:

AVr(zi,t) < ~T 2] TQx, + 2Tr p L|| P||| Frnaz || + 2T2|| P|[|| Frnaz ||



now define a positive constant b:

b2 2rpL||Pl| Frnazll + 211 Plll| Fraaz I (14)
and get the following:

AVp(ze,t) < T(—thQ:z:t +Tb) wvalid if z;€D Vset, t+T) (15)

In order to prove boundedness of solutions, define 2 and A set families and their boundaries as follow:

O 2 {zeR":|27Qz| < A}
Ay £{zeR:|zTPz| <A}
8 2 {zeR":|zTQz|| = A}
dAr & {z e R":|cTPx| =)}

(16)

Furthermore, define B, = {z € R" | ||z| £ r} and 8B, = {z € R™ | ||z|| = r}. It is now possible to
state and prove the boundedness property.

Lemma. For every positive r > 0, it is possible to find ¢ > 0 and Ty > 0 such that VT < Ty every
trajectory, solution of (9) and starting in A; at time to, is confined in B, fort > to.

Proof. The set D contains the origin at its interior, therefore 3rg > 0 such that B,, C D. Consider
71 = min{r, 7o}, clearly B,, C D. The A sets are concentric ellipsoids and therefore it is always possible
to find ¢ > 0 small enough such that ||z]| < r; Vz € A.

Define dist(Ac,0By,) as the distance between the set A and 8By, it is nonzero due to the previous
choice of c. By the third inequality of (13), for every T' < T} = dist(A., 8By, )/||Fmaz||, any solution
of (9) such that z; € A; at some time ¢ will be confined in B,, for a whole period T, i.e. =, € B,
Vs € [t, ¢t + T). Therefore, since B,, C D, for trajectories such that z, € A; at some time ¢, inequality
(15) holds valid.

The Q sets are also concentric ellipsoids, therefore a T > 0 small enough can always be found such
that Qpp C A; VT < T5, where b is defined in (14). For every point = which is not in the interior of
Q1s, lz7Qz|| > Tb holds true and in particular, given the validity of (15) for points in A, the following
holds true:

AVp(z,t) €0 Vz, € OA,

By defining Tp = min{Ty,T>} and by recalling definition (11), this simply means that for every T < Ty
Vizyer, t +T) < V(zy,t) Vz, € DA, i.e. whenever z, € 8A, then 2,1+ € A, and, by construction of
A, it can never leave B;, for all time in [t, t+T). This proves the Lemma since By; C B, and therefore
a trajectory stating in A, is allowed to pass its bounday but shall always make return in A, within a
period of time and never leave B,. (]

4 Conclusions and Future Work

In this work, a class of nonlinear nonautonomous systems is considered which is of interest in Biomimetic
Robotics. Such systems are time dependent in the sense that time periodic inputs are used as forcing
inputs a mechanical system.

A simple control law is derived from the linearization of the time-averaged equivalent system. Such a
control law is then fed-back into the original system and boundedness of solution is analyzed in relation
to the time period of the forcing inputs.

Differently from classical results in averaging and perturbation theory, which focus on the existence

of limit cycles, only local Lipschitz continuity for the forcing inputs is needed, instead of continuous
differentiability.



The approach is based on Lyapunov energy functions. The authors believe that such an approach
can also be extended to a larger class of systems, where forcing inputs are discontinuous, e.g. Pulse
Width Modulated (PWM) systems. The reason is that even if the original system is discontinuous, the
average system can still be smooth enough to be linearized and therefore a Lyapunov function can be
easily derived. In order to use this Lyapunov as a candidate one for the original nonlinear system, only
conditions for the existence of piecewise Lipschitz solutions of the original system are needed. This will
be part of future work.

Appendix A

Because of the linearization:
F(z,u(dy — Kz)) = (A - BK)z + G(z)
where the function G(z) satisfies:

IS@)
T

Therefore, for any v > 0, there exists > 0 such that

IG@I <vlzll,  Vilzll <7

as J|lz||—0

Hence,
V(z) zT PF(z,@(do — Kz)) + FT(z,#(dy — Kz))Px

zTP|(A -~ BK)z + G(z)] + [(A — BK)z + G(z)]" Pz

zT|P(A - BK) + (A - BK)T P|z + zT PG(z) + GT (z) Pz

-z7(2Q)z + T PG(z) + GT (z) Pz

—zT(2Q)z + 27|\ P|||z||?

Ao

Appendix B

Here is the theorem referred to by previous sections:
Theorem 4.18 [2]: Let D C R™ be a domain that contains the origin and V : [0,00] x D — R be a
continuously differentiable function such that

ar(llel)) < V(t,z) < aa(llal) (B-1)
2+ L fta) < ~Wa@), Vel 2 >0 (B-2)

Vt > 0 and Vz € D, where a; and ay are class K functions and W3(x) is a continuous positive definite
function. Take r» > 0 such that B, C D and suppose that

1 < azt(en(r)) (B-3)

Then, there exists a class ICL function 8 and for every initial state 2(to), satisfying ||z(to)|| < o3 '(aa (7)),
there is T > 0 (dependent on x(tp) and u) such that the solution of £ = f(t,z) satisfies

lz@)ll < Blllz(to)ll,t —to), Vto<t<to+T (B-4)

@)l < ezl (eu(r)), VE2to+T (B-5)

Moreover, if D = R™ and «; belongs to class K, then (B-4) and (B-5) hold for any initial state z(to),
with no restriction on how large u is.
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