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Abstract

The complexity of two-level logic minimization is a topic of interest to both CAD specialists
and computer science theoreticians.

In the logic synthesis community, two-level logic minimization forms the foundation for
more complex optimization procedures that have significant real-world impact. At the same
time, the computational complexity of two-level logic minimization has posed challenges since
the beginning of the field in the 60’s; indeed some central questions have been resolved only
within the last few years, and others remain open. This recent activity has classified some logic
optimization problems of high practical relevance, such as finding the minimal sum-of-products
form, and maximal term expansion and reduction.

This paper surveys progress in the field, with self-contained expositions of fundamental
early results, an account of the recent advances, and some new classifications. We include an
introduction to the relevant concepts and terminology from computational complexity, as well
a discussion of the major remaining open problems in the complexity of logic minimization.

1 Introduction

Computer-aided design specialists {10, 24] and computer science theoreticians [18] alike investigated
the computational complexity of logic minimization problems. The motivation lies both in their
practical importance for design automation [3, 2, 20], and in their paradigmatic nature in the
landscape of computational complexity classes.

Even though logic synthesis has grown increasingly sophisticated, building complex optimization
scenarios that include multi-level and multi-valued logic realizations [5] up to regular fabrics of
newer kinds [13], two-level logic minimization (good old time PLAs) retains a central role as a key
procedure in more complex logic optimization packages.

Therefore an in-depth investigation of two level logic minimization has a special place in studying
the complexity of logic synthesis problems. The history of classifying the complexity of two-level
logic minimization accompanies the field of computational complexity from its beginnings in the
60s [7] to now. This history extends to a result of only a few years ago settling a conjecture open
for more than 20 years, namely, that the following problem is ©5-complete [23, 22]: “given a sum-
of-producte (SOP) form of a logic function, is there an equivalent SOP form with at most a given
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number of terms?”. This result spawned the complexity classification of the main optimization
problems routinely solved by software packages like ESPRESSO, such as maximal term expansion
and reduction. With this recent activity, important theoretical achievements are linked with state-
of-the-art exact or heuristic algorithmic practice.

The relevant material is scattered in various sources and some key older items are hard to find
and/or inaccurate in their original version. This paper presents the progress of the field with a
self-contained exposition that sets the record straight, states precisely the results, and introduces
the most valuable proof techniques. The CAD practitioner should gain an updated understanding
of the complexity of relevant fundamental problems, while the theorist will find a gentle survey of
this literature.

The remainder of this paper is organized as follows. Sec. 2 introduces basic definitions relating
to logic functions. Sec. 3 is a brief introduction to the relevant complexity classes and to their
canonical complete problems. Sec. 4 discusses the relation between two-level minimization and
covering problems, by introducing Gimpel’s reduction that shows the NP-completeness of two
versions of this problem. Sec. 5 reports a revised version of Masek’s proof that SOP minimization
is N P-complete when the input is given by the full truth table of a completely specified function.
Sec. 6 discusses the complexity of two-level minimization and various sub-problems used in the
major logic minimization suites (i.e., ESPRESSO), when the input is given as a sum-of-products.
Many of these problems turn out to be 5-complete. Sec. 7 reviews past achievements and major
open problems.

2 Minimization of Boolean Functions

Let f be a Boolean function. An implicant of f is a conjunction C of literals that implies f. For a
conjunction C we denote by lit(C) the set of literals appearing in C. In this notation, if C; and C»
are conjunctions with li£(C,) C lit(Cs), and C, is an implicant of f, then C, also is an implicant
of f. A

A conjunction C' covers those assignments with no variable set in contradiction to its setting
in C. We write C; C C> to mean that the minterms covered by C; are a subset of the minterms
covered by Cs. Note that C; C C, is equivalent to lit(Cy) D lit(Ca).

An implicant C is a prime implicant (or just a “prime”) if the only conjunction C’ D C that is
an implicant of f is C itself. An essential prime implicant is a prime implicant that covers some
assignment that is covered by no other prime implicant.

An implicant is also called a product or term, and a disjunction of products of literals is called
a sum-of-products (SOP). We write ¢ = Vjejt; to mean the SOP formula ¢ with terms ¢; for i € I.
Formula ¢ is equivalent to formula ¢, written ¢ = ¢', if and only if the two SOPs cover exactly the
same points (i.e., the functions computed by ¢ and ¢' are the same).

3 An Introduction to Computational Complexity

In this section we introduce the main concepts from computational complexity needed in the paper.
We refer to [6, 14, 1] as standard references.

For the purposes of this paper, a computational problem is formalized as a decision problem.
Given as input a string (the instance), the solution to a decision problem is either “yes” or “no.”
The set of strings whose answer is “yes” completely specifies the problem, and is sometimes called
the language associated with the decision problem.



If © is a finite alphabet, and L C =* is a language, we define the complement langiage, denoted
L, as the set of strings that are not in L (in other words, L = £* — L). In most reasonable schemes
for encoding instances of real-world problems as strings, some strings do not correspond to valid
encodings of any instance. For this reason, we often abuse notation slightly and use L to refer to
only those strings in £* — L that are valid encodings of some instance. This is standard and does
not affect any of the results we cite or prove.

Example 3.1 CNF-SAT is the problem of deciding if a given Boolean ezpression in conjunctive
normal form (CNF) has a satisfying assignment. Given a reasonable rule to encode CNF ezpres-
sions, the language CNF-SAT will contain all strings in T* that encode CNF ezpressions that
are satisfiable. The complement problem CNF-SAT is the problem of deciding if given CNF is
unsatisfiable. The language CNF-SAT contains all strings that encode CNF ezpressions that are
unsatisfiable. As noted above, strings in L* that do not encode any CNF expresszon are neither in
CNF-SAT nor in CNF-SAT.

Computational complexity studies the computational resources required to solve problems. For-
mally, an algorithm for a decision problem is a Turing Machine that accepts exactly those strings
in the associated language, and rejects those not in the language!. We are primarily interested
in the worst-case running time of such an algorithm, as measured in steps taken by the Turing
Machine. This measure is polynomially related to the running time of the all other commonly used
computational mechanisms (for instance a C program running on a Von Neumann computer).

A complezity class is a set of languages. As we are interested in running time, an important
class is P, the set of languages possessing algorithms that run in time that is a polynomial in the
length of the input. Another important class of languages is N P, the set of languages possessing
algorithms that run in nondeterministic polynomial time. For this paper, we will use the following
alternate definition:

Definition 3.1 A language L is in the class NP if and only if there is another language R in the
class P and an integer k for which:

L={z:3y,lyl < lal*, (z,y) € R}.

For example, CNF-SAT is a language in N P. This is true because we can define the language R in
P to consist of those pairs (¢, A) for which ¢ is a CNF formula, and A is a satisfying assignment
for ¢. We see that CNF-SAT = {¢ : 3A, (¢, A) € R}, which shows that CNF-SAT is in NP. It can
be seen from the above definition that NP is exactly those languages whose “yes” instances possess
succinct witnesses that can be verified in polynomial time.

To understand the importance of NP in studying the running time required for various problems,
we must describe the central notions of reductions and completeness in computational complexity.
A reduction from language A to language B is a transformation T that maps “yes” instances of A
to “yes” instances of B and “no” instances of A to “no” instances of B. Formally T is a function
from A to B that satisfies z € A & T(z) € B. Intuitively, a reduction T from A to B that runs in
polynomial-time implies that B is at least as hard as A.

Let C be a complexity class. A language L is C-hard if every language in C reduces to L in
polynomial time. Such a language may be regarded as “at least as hard” as any language in C.

'Some problems are undecidable and possess no such algorithm, but they are not of interest here.



A language.L that is C-hard and also in the class C is called C-complete. Such a language may
be regarded as a “hardest” language in C. Complete languages are very useful because they allow
one to reason about an abstract complexity class by studying a concrete, natural computational
problem. Perhaps the most well-known example of a complete problem is CNF-SAT:

Theorem 3.1 (Cook (see [6])) CNF-SAT is NP-complete.

The importance of the class NP in studying the time complexity of problems stems from (1) the fact
that many natural problems are known to be NP-complete, and (2) the widely-believed assumption
that P # NP. If any NP-hard problem is in P then P = NP, and so showing that a problem is
NP-hard amounts to a proof (subject to the above assumption) that the problem does not have
any polynomial time algorithm.

We now describe some complexity classes beyond P and NP that we will need to correctly
classify some of the problems we encounter in this paper. '

In general, for a complexity class C, we can define the complement class, denoted coC, to be the
set of all complements of languages in C; i.e., coC = {L : L € C}. The complement of P is just P
again, but the complement of NP is the class coN P, which is believed to be different than NP.
Using the fact that P is closed under complement, and Definition 3.1 we have

Definition 3.2 A language L is in the class coNP if and only if there is another language R in
the class P and an integer k for which:

L= {z:Vy,lyl < |zI¥,(z,9) € R}.

The canonical coNP-complete language is SOP-VALIDITY (also called DNF-TAUTOLOGY). This
language consists of all strings encoding SOP expressions that are satisfiable by all truth assign-
ments, or “valid.” From Theorem 3.1 we know that CNF — SAT is coNP-complete, and a simple
reduction (mapping CNF formula ¢ to SOP expression —~¢) then shows that SOP-VALIDITY is
coNP-complete.

Both NP-complete and co-NP complete problems are “hard” in the sense that they cannot
have polynomial-time algorithms under the assumption P # NP. Still, it is useful to maintain
the distinction, because in practice heuristics attacking NP problems can stop once they find a
witness; and this positive feature cannot be exploited for a coNP-complete problem (assuming
NP # coNP.)

A more esoteric class that we will need is the class DP, which is defined in terms of NP and
coNP: '

Definition 3.3 The class DP is the set of languages L that can be ezpressed as
L={z:z€ A andz € B}

where A is a language in NP and B is a language in coNP.

The canonical complete language for DP is the language SAT-UNSAT, which consists of all pairs
(¢1, @2) where ¢, is a satisfiable CNF expression, and ¢ is an unsatisfiable CNF expression. Note
that DP contains all of NP (because given a language L in NP, it can be seen to lie in DP by taking
A = L and B = £*) and DP also contains all of coNP (because given a language L in coNP, we
can take A = £* and B = L). Thus a problem that is DP-hard is both NP-hard and coNP-hard
(although the converse is not necessarily true).



3.1 Oracles and the Polynomial Hierarchy

We say that a Turing Machine is equipped with an oracle L, when it has available a subroutine
that charges one unit of computation to answer whether a given string is in L. For example, a
Turing Machine equipped with a CNF-SAT oracle can in a single step determine whether a CNF
expression generated in the course of its computation is satisfiable, by “querying” its oracle. We
define complexity classes involving oracles using a standard shorthand: if C and B are complexity
classes, then CB is the class of languages decided by a machine of the type that defines C, augmented
with a oracle language in B. This is not a precise definition, but the meaning should be clear for
the classes we apply this to. '

An example of an oracle complexity class is PNP_ This class includes all languages decidable
by a Turing Machine running in polynomial time that is equipped with a CNF-SAT oracle, since
CNF-SAT is in NP.2 An example of a language in PV is the language consisting of all m-tuples
of CNF expressions for which an odd number of them are satisfiable. Given such an instance
(¢1, 2, .- ,$m), we can make m queries to the CNF-SAT oracle to determine exactly which of the
m expressions are satisfiable, and accept if the number of satisfiable expressions is odd.

A refinement of PVP is the class VP, in which the queries to the oracle are required to be
nonadaptive. That is, no query depends on the outcome of previous queries, and so the computation
can always be organized as follows: first compute in polynomial time a set of polynomially-many
oracle queries, then perform the queries “in parallel,” and finally decide whether to accept or reject
the input with a polynomial-time computation on the input and the outcomes of the parallel queries.

The example above in fact lies in Plf’ P, Clearly P""’ P is contained in PVP, and we observe that

DP, NP and coNP are all contained in Plf’ P. Complexity theorists believe that all of these classes
are distinct.

Just as it is meaningful to augment a polynomial-time deterministic Turing Machine with an
oracle, we can also augment a polynomial-time nondeterministic Turing Machine with an oracle.
This gives rise to an infinite hierarchy of complexity classes collectively called the Polynomial
Hierarchy (PH). We describe the levels of the PH below using the shorthand for oracle classes, and
follow that with an alternate (formal) definition that generalizes Definition 3.1.

=P Nf=P
sP=NP 1Tf =coNP
»F = NP"P 1§ = coNPNP

£P = NPE1 TP = coNPE-

Definition 3.4 A language L is in the class T if and only if there is another language R in the
class P and an integer k for which

L= {.’E : (3yl)(Vy2)(3y3) v (Qyt')v Iytl < lek for all i: [(12, Y1,Y2s - '1;yi) € R]}a

where the sequence of quantifiers aliernates, ending with Q = 3 if i is odd, or Q =V if i is even.

2In fact PCNF-SAT = pNP jecause for any Turing Machine running in polynomial time that is equipped with
any language L € NP as an oracle, we can build another Turing Machine running in polynomial time equipped with
a CNF-SAT oracle that decides the same language. The new Turing Machine simply applies the polynomial-time
reduction from L to CNF — SAT prior to making each of its oracle calls.
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Definition 8.5 A language L is in the class IIT if and only if there is another langiage R in the
class P and an integer k for which

L= {m : (Vyl)(Elyg)(Vya) v (le)7 Iyz' < lmlk fOT' all ia [(:ZI, Y.Y25-.. 3yi) € R]}a
where the sequence of quantifiers alternates, ending with Q =V if i is odd, or Q@ = 3 if i is even.

A few facts can be immediately gleaned from these definitions. First II” = coZF for all .
Second, for each i, F contains II7 | and =F ,. In particular, 4’ contains both NP and coNP, and
it is not much more difficult to show that it contains in addition all of the other classes we have
considered, namely DP, PIIIV P and PP, The most important class in the PH for this paper will

indeed be T5; an example of a natural problem in this class follows:

Example 3.2 The language EQUIVALENT FORMULAS consists of those pairs (¢, k) where ¢ is
a Boolean ezpression for which there ezists an equivalent Boolean expression ¢' of length at most
k.

This language is in ©F because we can define a language R that lies in P as follows: R accepts
those tuples ((¢, k), ¢', A) for which ¢ and ¢' are Boolean formulas, ¢' has length at most k, and ¢
agrees with ¢' on assignment A. We then see that

(¢, k) € EQUIVALENT FORMULAS & (3¢')(VA)[((¢, k), ¢', A) € R).

It is not known whether EQUIVALENT FORMULAS is £8-complete or not, although many people
believe that it is. Some natural problems have been shown to be complete for various levels of the
PH above the first level (see the surveys (16, 17]), although not nearly the same number as are
known to be NP-complete.

The canonical complete problems for the PH are “quantified satisfiability” problems. The
instances of these problems are Boolean expressions ¢ built on a set of Boolean variables U;X;
where X; = {z;; : 1 £ j < m;} for positive integers m;. The language k£ — QBF consists of those
expressions for which

(HXI)(VX2) U (QXk)[¢(X1 y X25-0 0, Xk)]a

where the sequence of quantifiers alternates, ending with @ = 3 if k is odd, or Q = V if k is even.
Here “(3X;)" is to be read as “there exists an assignment of values to the variables z; 1, -, Zim,”,
and “(VX;)” is to be read as “for all assignments of values to the variables z; 1, -+, Zim,”.

Theorem 3.2 (see [14]) For all k > 1, the problem k-QBF is £} complete.

4 Two-Level Logic Minimization

We begin our examination of the complexity of two-level logic minimization by considering several
variants of the problem of finding a minimum SOP representation of a specified Boolean function,
described below:

INCOMPLETE TRUTH TABLE MIN SOP

INSTANCE: Onset and offset of incompletely specified function f (i.e., disjoint sets A, B C {0,1}"),
and a positive integer k.

QUESTION:Is there a SOP representation of f (i.e., a SOP formula ¢ for which z € A = ¢(z) =1
and z € B = ¢(z) = 0) with at most k£ terms?



FULL TRUTH TABLE MIN SOP

INSTANCE: Onset and offset of completely specified function f (i.e., disjoint sets A, B C {0,1}"
with AU B = {0,1}?), and a positive integer k.

QUESTION:Is there a SOP representation of f (i.e., a SOP formula ¢ for which z € A = ¢(z) =
and z € B = ¢(z) = 0) with at most k£ terms?

ONSET TRUTH TABLE MIN SOP

INSTANCE: Onset of completely specified function f (i.e., a set A C {0,1}"), and a positive integer
k.

QUESTION:Is there a SOP representation of f (i.e., a SOP formula ¢ for which ¢(z) =1 < z € A)
with at most k& terms?

All three of these problems are in NP because given a “candidate” SOP ¢ with at most & terms,
one can determine whether it is a representation of f, in polynomial time in the size of the instance.
For the first and second problems, this simply requires evaluating f at all of the points in A and
B. For the third problem, we can check that ¢ is a representation of f as follows: we explicitly
construct the set {z : ¢(z) = 1} by adding the minterms covered by each term in ¢ one at a time
and only once. If at any point our set size exceeds |A|, we know that ¢ is not a representation of
f; otherwise if at the end our set equals A, we know that ¢ is indeed a representation of f.

In fact all three of these problems are NP-complete. We will give proofs of this fact for
the first and the third problem in this section. The NP-completeness proof for the problem
FULL TRUTH TABLE MIN SOP is contained in Section 5. We first discuss the “covering prob-
lems” which play an important role in the reductions.

4.1 Covering problems and INCOMPLETE TRUTH TABLE MIN SOP

A classical exact procedure for finding the minimum SOP representation of a Boolean function f is
due to Quine-McCluskey [12]. This procedure first computes all of the prime implicants of f, and
then finds a minimum cardinality subset of these prime implicants that cover all of the minterms
of f.

The first part of this procedure requires polynomial time in the size of the onset of f [19](and so
is efficient for any of the three variants of TRUTH TABLE MIN SOP that we consider above). The
second part of the Quine-McCluskey procedure is a special case of the well-known N P-complete
problem below: .

MINIMUM COVER

INSTANCE: Collection C of subsets of a finite set S, and a positive integer k£ < |C|.
QUESTION:Does C contain a cover for S of size at most k; i.e., is there a subset of C' C C with
|C’| < k such that every element of S belongs to at least one member of C'?

MINIMUM COVER has been shown to be N P-complete in Karp’s seminal paper [9]. It is also
well-known that the problem remains N P-complete even when we restrict the subsets in C to all
have size exactly three [6].

Now it might be the case that when we restrict to the subproblem of MINIMUM COVER con-
sisting of only those instances arising from the Quine-McCluskey procedure, the problem becomes
tractable. A couple of papers [7, 15] investigated this question and gave transformations that show
that even this subproblem remains N P-complete. We summarize here their main results.

It will be convenient to represent covering problems as matrices, or covering tables. The elements
of S index the rows, and the columns are indexed by the subsets of C. Entry (4, 5) is 1 if subset j
contains element i, in which case column j is said to cover row i. Formally,



Definition 4.1 Let X and Y be finite sets. A function A: X xY — {0,1} is a covering table iff
eVzeX IyeY: A(z,y) =1
eVyeY Jze X: A(z,y) =1

A subset Z C Y is called a cover of X ifVz € X Jz € Z: A(z,2) = 1.

As noted, a Boolean function f, possibly incompletely specified, gives rise to a covering table.
Adapting terminology from [15], we denote by PI(f) the prime implicants of f and by Ag-1(1),py(s)
the covering table whose rows are the the minterms of f and whose columns are the prime implicants
of f, called also the Minterm-Prime (MP) table of f.

Despite the fact that a MP table seems to possess additional structure, it turns out that every
covering table can arise as the MP table of an incompletely specified function:

Theorem 4.1 Let A: X x Y — {0,1} be a covering problem, such that A has no equal rows,
and let k = |Y|. Then there is an incompletely specified Boolean function f : D — {0,1} with
D C {0,1}* for which Ag-11),Pi(s) equals A (possibly after renaming rows and columns).

Proof. We define the unate function f as follows. The offset contains a single point: the all zeros
point. The onset contains one minterm for each row of A: the minterm whose coordinates are
exactly that row of A.

It is easy to verify that the primes of f are exactly those points with a single 1, with all zeros
raised to “”.3 Thus |PI(f)| = k. Moreover, the j-th column of A equals the column of A F-1,PI(S)
labeled with the prime p that has a 1 in the j-th position. This is because for each %, the i-th row
of A corresponds to a minterm of f that is covered by p if and only if entry A(7,7) = 1. O

Example 4.1 Consider the following covering table A with X = {1,2,3} and Y = {1,2,3}:

11213
1o]1]1
21101
3111110
The above transformation gives the incompletely specified function f that has f~1(0) = {000} and
f~1(1) = {011,101,110}. The primes of f are: 1 — —,—1—,— -1 and Ag-1y,p1(s) 18
1-—|-1-|--1|
011 0 1 1
101 1 0 1
110 1 1 0

The following problem formalizes the second step in the Quine-McCluskey algorithm:

MINTERM-PRIME MINIMUM COVER
INSTANCE: Minterm-Prime table A: X x Y — {0,1}, and a positive integer k < |Y].
QUESTION:Does A contain a cover of size at most k; i.e., is there a cover Z C Y with |Z| < k?

Th. 4.1 can be interpreted as a reduction from an instance of MINIMUM COVER to an instance
of MINTERM-PRIME MINIMUM COVER, which gives:

3In this section we use an alternative notation for implicants: a string of 0’s, 1’s, and -’s. A 0 (resp. 1) in location
i means that literal Z; (resp. z;) appears in the implicant.

8



Theorem 4.2 MINTERM-PRIME MINIMUM COVER is N P-complete.

Also using Th. 4.1 we have a reduction from MINIMUM COVER to INCOMPLETE TRUTH
TABLE MIN SOP, giving:

Theorem 4.3 INCOMPLETE TRUTH TABLE MIN SOP is N P-complete.

This can be interpreted to mean that there are in fact no “better ways” to solve the problem
of INCOMPLETE TRUTH TABLE MIN SOP than Quine-McCluskey - any alternative approach
must also be N P-hard.

4.2 ONSET TRUTH TABLE MIN SOP

The transformation in Th. 4.1 cannot be used directly to prove that ONSET TRUTH TABLE MIN
SOP or FULL TRUTH TABLE MIN SOP are NP-complete. The reason is that it produces
a function f whose number of variables k is equal to the number of columns of the original
covering table A. A completely specified function consistent with f might have exponentially
many minterms, and would certainly have an exponentially large truth table. Thus a reduc-
tion to ONSET TRUTH TABLE MIN SOP or FULL TRUTH TABLE MIN SOP based directly
on Th. 4.1 would not be a polynomial-time reduction.

However, a different transformation than the one in Th. 4.1 will allow us to prove N P-hardness
of ONSET TRUTH TABLE MIN SOP. The same authors [7, 15] describe how to produce a com-
pletely specified function that in a certain sense still represents the original covering table:

Theorem 4.4 Let A: XxY — {0,1} be a covering problem, such that A has no row that dominates
another ¢, and let n = |X|. Then there is a completely specified function g : {0,1}"*2 - {0,1}
whose MP table equals A after removal of the essential prime implicants and of the minterms they
cover (possibly after renaming rows and columns).

Proof. We construct g in several steps. We first construct a function g’ whose variables are
21,22y:++32n-

e For each i € {1,...,]|X|}, define minterm ¢; = z;...2;_1ZiZit1 ... Zn-
e For each j € {1,...,|Y]}, define Q; = [;.4(; j)=0 %-

e Let p1,p2,...,Pm be an enumeration of all minterms covered by the @Q; for some j, that are
not among the ¢;. We may assume that the first £ of these minterms have an even number of
negated variables, and the remaining m — ¢ have an odd number of negated variables.

o We define ¢ whose variables are 2y, 29, ...,2p42 as follows:

n m £ m
g9 = Z QiZn+12n42 + Zpizn+1zn+2 + Zpizn+1?n+2 + Z PiZn+12n+2
i=1 i=1 i=1 i=0+1

We can verify that the prime implicants of g are exactly:

® QjZni12n42 for each j, and

‘A row dominates another if the 1’s in the first row are a superset of the 1's in the second. We can remove
dominant rows in polynomial-time. The resulting covering problem is equivalent to the initial one.



® pizpy fori=1,2,...,¢, and
® pizpyofori=~0+4+1,042,...,m.

The last two of these sets of primes are actually essential prime implicants. After removing these
essential prime implicants and the minterms that they cover, we are left with minterms ¢;z,412n42,
and prime implicants Q;jzn41224+2. Notice that A(4, 5) = 1iff g;2n12n42 is covered by Q;2n412n+2,
and hence the MP table of g is equivalent to A after removal of the essential prime implicants and
the minterms they cover. O

Example 4.2 Starting with the covering table A from Ex. 4.1, we have q1 = Z12223, g2 = 212223,
g3 = 212023 and Q) = z3, Q2 = 22, Q3 = z3.

There are 4 minterms covered by the Q; that are not among the q;. They are py = zy2923,
P2 = 212923, p3 = 212223 and Py = Z1Z223. In this ezample all of the p; have an even number of
negated variables, so we obtain:

3 4 4
9= Z qizazs + Epizﬂs + E:Dmfs-
i=1 i=1 i=1

The primes of g are: 212425, 202425, 232425, 21222324, 21222324, 21222324, and Z1Z22324, of which
all but the first three are essential. After removing the essential prime implicants and the minterms
they cover, we are left with minterms Z,20232425, 2122232425, 2120232425 and primes 212425, 222425,
23z425. This portion of g’s MP table is shown below:

| 1--11| -1-11}—--111|
01111 0 1 1
10111 1 0 1
11011 1 1 0

which can be seen to equal the covering table A.

Czort [4] described how to use this construction to prove that ONSET TRUTH TABLE MIN
SOP is N P-complete.

Theorem 4.5 ONSET TRUTH TABLE MIN SOP is NP-complete.

Proof. We have already argued that ONSET TRUTH TABLE MIN SOPisin NP. We reduce
from the variant of MINIMUM COVER in which every set has size exactly 3 (which remains N P-
complete). An instance of this problem gives a covering table A in which each column has exactly
three ones. Our reduction outputs the function g coming from the transformation in Th. 4.4.

We critically use the fact that A has only three ones per column to ensure that the onset of g
has size polynomial in the size of A. Using the terminology of the proof of Th. 4.4, the onset of
g has n + 2m points. Each Q; has exactly n — 3 variables, and so it can cover at most 23 points.
Thus m is at most |Y|23. So the onset of g has at most |X| + 16|Y’| points, which is polynomial in
the size of A.

There are exactly m essential prime implicants of g, and the remaining MP table is equivalent
to A. Thus g has a SOP representation with at most k£ terms iff A has a cover of size at most
k — m. This completes the reduction. O
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5 FULL TRUTH TABLE MIN-SOP is NP-complete

Masek [11] showed that the problem of finding a minimum SOP representation is NP-complete
even when the input is given as a fully specified truth table. For this problem, an input of size n
specifies a function of only logn variables. An efficient algorithm for this problem (one that runs
in polynomial-time in the size of the input) is therefore allowed ezponential time in the number of
variables. It is further evidence of the hardness of this problem that even under these favorable
circumstances, an efficient solution is unlikely.

The heart of Masek’s reduction® is a method for “embedding” any Boolean circuit C of size
n into a O(logn)-dimension Boolean hypercube. Roughly speaking, the gates of the circuit are
embedded by setting a cluster of adjacent vertices to one; specified vertices in this cluster are the
input and output vertices. These clusters are the gadgets used in the reduction. Wires between
an input vertex and an output vertex belonging to different gadgets are embedded by setting
the hypercube vertices along a path between them to one. The gadgets and wires are separated
sufficiently so that no product in a SOP cover of the resulting function can cover vertices belonging
to different gadgets, or distinct wires.

By an interpretation described in more detail below, every SOP cover assigns truth values
(TRUE or FALSE) to the input and output vertices according to how they are covered. Each
gadget is designed so that it is covered most efficiently (i.e. by the fewest products) when it
“computes” the intended function of its inputs. Similarly, the wires are designed so that they are
covered most efficiently when they “transmit” a consistent truth value from their source to their
destination. The final gadget in the embedding has a single input, and is most efficiently covered
when that input has value TRUE. By connecting the output of the embedded circuit to this gadget,
we ensure that the function on O(logn) variables defined by this embedding has a small SOP cover
if and only if the circuit C is satisfiable.

We will describe the desired embedding with the aid of an adjecency diagram, whose vertices
correspond to nodes of the hypercube that are set to one, and whose edges connect exactly those
pairs of nodes that differ in exactly one bit. As a final step we will argue that the adjacency diagram
we produce is realizable in a hypercube of O(logn) dimensions.

As mentioned, the basic components of the embedding are gadgets with distinguished I/O nodes,
and wires between them. In our embedding, every I/O node will be adjacent to a node belonging
to a wire. Given a SOP cover, we say that an I/O node is TRUE if it is covered by a product that
also covers the adjacent wire node, and FALSE otherwise.

In counting the number of terms in a SOP cover for our embedding, we would like to be able to
count the terms that cover each component separately, and then sum them to get the total number.
This is not quite possible, because some product may simultaneously cover nodes in a gadget and
an adjacent wire. To avoid double counting this product, we adopt the following convention: for a
product covering both an I/O node and the adjacent wire node, we charge 1/2 to the gadget and
1/2 to the wire. This simple accounting trick will simplify the exposition that follows significantly.

The AND/OR gadget. The AND/OR gadget has two inputs, 7; and %2, and two outputs, which
“compute” the AND and OR of the two input truth values, respectively. It has the adjacency
structure shown in Fig. 1.

Lemma 1 Given a SOP cover C, let = and y be the truth values assigned to the I/0 nodes labelled
i1 and io in the figure, respectively. Then C covers the AND/OR gadget with 11 terms if it assigns

50ur exposition in this section largely follows Czort [4], with some simplifications.
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Figure 1: AND/OR gadget.

truth values z Ay and z V y to the I/0 nodes labelled 0y and oy, respectively. Otherwise C covers
the AND/OR gadget with more than 11 terms.

Fig. 2 shows one possible cover of an AND/OR gadget. In this example, z is FALSE and y is
TRUE. Note that the two terms that extend outside the dotted line each contribute 1/2 to the
overall sum of 11, according to our accounting convention.

The GENERATOR gadget. The GENERATOR gadget has a single input ¢;, and three out-
puts, which “generate” three copies of the input truth value. It has the adjacency structure shown
in Fig. 3.

Lemma 2 Given a SOP cover C, let z be the truth values assigned to the I/0 node labelled i, in
the figure. Then C covers the GENERATOR gadget with 7 terms if it assigns truth values T to the
1/0 nodes labelled 01, 02, and o3. Otherwise C covers the GENERATOR gadget with more than 7
terms.

Fig. 4 shows two possible covers of a GENERATOR gadget, each using 7 terms. In the first cover,
z is TRUE; in the second cover z is FALSE.

The WIRE gadget. The WIRE gadget has no I/0 nodes of its own; it is used to connect two
I/0O nodes belonging to GENERATOR or AND/OR gadgets. A WIRE gadget is simply a path
between the two I/O nodes. The length of the wire is the number of nodes in the path, not counting
the I/O nodes at either end. WIRE gadgets of length 2 and 3 are shown in Fig. 5.

Lemma 3 A SOP cover C covers a WIRE gadget of length k with at most k/2 terms if either

12



Figure 2: Cover of AND/OR gadget.

e the wire has even length and C assigns the same truth values to the I/0 nodes connected by
the wire, or

e the wire has odd length and C assigns opposite truth values to the I/O nodes connected by
the wire. .

Otherwise C covers the WIRE gadget with more than k/2 terms.

Fig. 6 shows covers of the two WIRE gadgets. The first cover uses 1 term, and assigns TRUE to
the I/O nodes connected by the wire. The second cover uses 3/2 terms and assigns TRUE to the
1/0 node on the left and FALSE to the I/O node on the right.

Building the adjacency diagram. We now describe how to attach these gadgets together to
“simulate” a given Boolean formula f(z1,22,...%n). We assume that f has fan-in 2, fan-out 1
AND and OR gates, and WLOG that all the negations occur at the leaves. In fact we will simulate
both f and its complement; the added symmetry is needed, for example, because we do not have
a separate AND gadget at our disposal, but only a combined AND/OR gadget.

The final adjacency diagram will be coverable by at most N terms if and only if f is satisfiable,
where N is the sum over all gadgets in the diagram of the optimal cover numbers given in the
previous three lemmas.

We first create a set of “variables” sufficient to supply the variable values at the leaves of the
formula. For each i, let n; be the number of occurrences of the variable z; as a leaf of the f.
Because we are simulating f and its complement, we need to supply 2n; occurrences of z;; however
we also know that there will be an equal number of positive and negative occurrences of z;, which
will make the construction easier. If n; = 1, a single odd-length wire will supply a positive and
negative occurrence of z;, one at either end of the wire.

If n; = 2, we use two GENERATOR gadgets. We connect the input I/O nodes of these two
GENERATOR gadgets with an odd length wire, and we connect the third outputs of these two

13



Figure 3: GENERATOR gadget.

generator gadgets with an odd length wire. The remaining 4 outputs (two belonging to each of
the GENERATOR gadgets) provide two copies each of positive and negative occurrences of z;.
For n; > 2, we repeat this process: pick an output supplying a positive occurrence of z; and
connect a fresh GENERATOR gadget to it with an even length wire, and similarly, pick an output
supplying a negative occurrence of z; and connect a fresh GENERATOR gadget to it with an
even length wire. Finally connect the third outputs of each of these two fresh GENERATOR
gadgets with an odd length wire. After connecting 2(n; —1) GENERATOR gadgets in this fashion,
we have, altogether, n; 1/O nodes that supply positive occurrences of z; and n; I/O nodes that
supply negative occurrences of z;. Fig. 7 shows a cover of the adjacency diagram of an example
of generators for n; = 3; the generator gadgets supply 3 copies of variable z; and 3 copies of its
complement. In the pictured cover z; is TRUE for all copies and Z; is FALSE for all copies.

We can now construct the “gates” that simulate the gates of f. For each AND or OR gate g in
the lowest level of the formula we have an AND/OR gadget. Let z¢ and a:g- (where a,b € {0,1})
be the two literals that are inputs to gate g in the formula f. We attach the two input I/O nodes
of the AND/OR gadget to I/O nodes supplying the literals z¢ and :n;’- with two even length wires.
We also add an additional AND/OR gadget that will compute the the complement of g. We attach
the two input I/O nodes of this AND/QR gadget to I/O nodes supplying the literals z}'“ and
z}7® with two even length wires. Finally, if ¢ was an AND gate, we attach the second output (the
“OR” output) of the first AND/OR. gadget to the first output (the “AND” output) of the second
AND/OR gadget with an odd length wire. If g was an OR gate, we attach the first output (the
“AND” output) of the first AND/OR gadget to the second output (the “OR” output) of the second
AND/OR gadget with an odd length wire. The remaining two outputs supply the value g(z¢, zg)
and its complement —g(z¢, z5).

Now, we move on to the next level of gates, using the outputs from the previous level as the
inputs for for the current level, and so on. The final gate’s output is attached to an odd length
wire, and the complementary output is attached to an even length wire.

Realizing the adjacency diagram. In the previous section we have built an adjacency diagram
with m = O(|f|) gadgets. These gadgets have certain points that play the role of input nodes, and
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Figure 5: WIRE gadget.

certain points that play the role of output nodes. In the above construction we have used odd-
length wires to connect input nodes to input nodes, and also to connect output nodes to output
nodes. We have used even length wires to connect output nodes to input nodes.

In this section we describe how to map the points of the adjacency diagram from the previous
section into points of a hypercube of dimension O(logm). This mapping will realize the adjacency
diagram: a pair of nodes in the adjacency diagram will be mapped to two nodes in the hypercube
that differ in exactly one bit if and only if there is an edge in the adjacency diagram between those
two nodes. In order to construct this realization, we need to allow ourselves the freedom to choose
wirelengths that may differ from the ones in the adjacency diagram; however the odd/even parity
of their lengths (which is what matters) will be preserved.

As an example of a realization of the adjacency diagrams of the AND/OR and GENERATOR
gadgets in a hypercube of dimension 6, see Fig. 8. This embedding will play an important role in

Figure 6: Covers of WIRE gadget.
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Figure 7: Cover of generators supplying 3 copies of variable z; (and 3 copies of its complement).

the “global” realization momentarily.

We first describe how to map all-of the nodes belonging to AND/OR and GENERATOR gadgets
into the hypercube. For each of the m gadgets in the diagram, we assign a unique even parity ID
string of £ = [log, m] + 1 bits. Our hypercube will have dimension 2£ + 12, and for convenience
we routinely refer to nodes of hypercube with 4-tuples whose fields have bitlengths ¢,4,6 and 6
respectively. For gadget i that has been assigned ID id(:), we map the node labelled with the
6-bit string z in Fig. 8 to the hypercube node (id(z),2d(i), z, 000000). The fact that this is a valid
embedding so far follows from the validity of the embeddings in Fig. 8.

We now turn to the wires in the adjacency diagram. Note that, from the previous paragraph
and Fig. 8, all of the input I/O nodes are embedded at hypercube nodes with even parity, and all of
the output I/O nodes are embedded at hypercube nodes with odd parity (our construction requires
to connect input points to input points and output points to output points with odd length wires,
and output points to input points with even length wires, this implies that the parity - number
of ones in the encoding vectors - of the outputs must be the same and opposite to the parity of
inputs). For each wire, we will describe a sequence of adjacent points whose endpoints are the I/O
nodes that the wire connects. By the above observation regarding the parity of the various I/O
node labels, the length of these embedded wires will retain the required even/odd parity that they
have in the adjacency diagram (even if their lengths may change).

A wire between gadgets i and j with ID’s id() and id(j) respectively is embedded as follows.
Let z and y be the 6-bit labels of the I/O nodes we are connecting, belonging to gadget ¢ and j,
respectively. The wire will contain the following hypercube nodes:

1. (éd(4),4d(s), z,000000)

16



1o

011011

010111

101

Figure 8: Embedding of GENERATOR (left) and AND/OR (right) gadgets.

(id(3), 3d(s), z, 110000)
(id(3),id(5), z, 110000)
(id(3),4d(j), z, 111100)
(id(3),d(5), y, 111100)
(id(3),4d(j), y, 111111)
(id(j),3d(j), y, 111111)
(id(5), id(5), y, 600000)

©® N @ oA W N

In addition, we include the hypercube nodes along an arbitrary shortest path between each of these
points, changing one bit a time. For example, between the first two points in the above list, we can
include hypercube node (id(2), id(4), =, 100000), and then between the second and third points, we
include as many additional hypercube nodes as the Hamming distance from id(i) to id(j) minus
one, and so on.

There are two special wires in our adjacency diagram that do not terminate at I/O nodes; these
are the odd length wire connected to the output of the final gate of the circuit, and the even length
wire connected to its complement output. We may take this even length wire to be a length 0 wire
(and therefore we need to add no new nodes to our embedding). For the odd-length wire, which
is connected to some node with 6-bit label z in some gadget i with label id(z), we add the single
hypercube node (id(%),%d(z), z, 100000), thus forming a wire of length 1.

The validity of the overall embedding may be verified by a case analysis. The main effort
involves verifying that we have not introduced any “unintended” adjacencies in our embedding (to
that purpose the second and fourth field of the encoding vectors play a role, especially to enforce
that there is no spurious adjacency between points across wires). We obtain the following lemma:
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Lemma 4 The embedding just described realizes the adjacency diagram of the Boolean formula f
in a O(log|f|)-dimension Boolean hypercube.

QOur main theorem is:

Theorem 5 In the above embedding of f, let N be the sum of
e the total length of wires divided by 2, and
e the number of AND/OR gadgets times 11, and
e the number of GENERATOR gadgets times 7.

Then the function whose onset is ezactly those hypercube nodes in the above embedding has a SOP
cover of size N if and only if the function f.is satisfiable.

Proof. If f is satisfiable, we can have each gadget and each wire behave “as intended,” and
this defines a cover with exactly N products, using Lemmas 1, 2 and 3.

In the other direction, suppose we have a cover C with exactly N products. Then by Lemmas
1, 2 and 3, every gadget must behave “as intended” - for if even a single gadget did not, the sum
number of products of the cover would exceed N. We conclude that the output of the f is one for
some setting of its input variables. This setting is determined from the truth values C' defines at
the input I/O nodes. The fact that C optimally covers the special odd length wire extending from
the final output node implies that f evaluates to TRUE for this setting of the variables. O

Observe that if we write down the complete truth table of the function on 2¢ + 12 variables
whose onset is exactly those hypercube nodes in the above embedding, it will have length 2908 1)
which is polynomial in |f|. The mapping from formula f to this truth table is straightforward to
compute, and thus the overall transformation can be computed in polynomial time in |f|. This
observation together with the Th. 5 gives us:

Theorem 5.1 FULL TRUTH TABLE MIN SOP is NP-complete.

6 SOP Minimization Problems are £{-complete

In this section we discuss logic minimization problems whose input is a sum-of-products form,
whereas in the previous formulations the input was a truth table. The prototypical such problem
is MIN SOP-2-SOP asking, given a SOP formula ¢, what is the smallest SOP ¢' equivalent to
¢ 5. Can this problem be in NP? It cannot, if one believes (as complexity theorists do) that
co-NP is different from NP - because MIN SOP-2-SOP can easily be seen to be co-NP-hard’.
In fact, MIN SOP-2-SOP exhibits the 3 V quantifier alternation of Ef — it asks if there exists a
short SOP ¢'(z) such that for all z, ¢'(z) = ¢(z) - so we might expect it to be T5-complete.
Indeed, MIN SOP-2-SOP was conjectured to be complete for 25 in a seminal 1976 paper by
Stockmeyer [18].

S MIN SOP-2-SOP, called also MIN DNF in the computational complexity literature, is a specialized version of the
problem MIN FORMULA where the input is a generic Boolean formula. The latter problem motivated the definition
of the polynomial hierarchy.

7 A satisfiable DNF ¢ has an equivalent DNF of size 0 iff ¢ is a tautology, and one can check whether a DNF is
satisfiable in polynomial time.

18



For over 20 years it was an open problem to prove completeness for MIN SOP-2-SOP, until
Umans proved it in his dissertation [23, 22]. Moreover, he proved the ):f -completeness for a number
of other logic minimization problems that model the most common operations performed in modern
logic minimization packages (see espresso [2]), like maximal expansion and reduction of implicants.

Just as NP-complete problems probably require exponential time, £¥ = NPNP complete
problems probably require exponential time with access to an NP oracle, so P -completeness
allows us to classify what can or cannot be done in polynomial time with access to an NP oracle.
Notice that almost every heuristic, approximate, or exact method for solving logic minimization
problems employs a tautology subroutine. If we assume the presence of such a subroutine, ) g
completeness plays exactly the role of NP-completeness for ordinary optimization problems: it
distinguishes the intractable from the efficiently solvable.

We will review now the complexity of MIN SOP-2-SOP and of various logic minimization steps
used in the major logic minimization suites. when the input is given as a sum-of-products.

6.1 Complexity of Term Expansion and Reduction

The ezpand step in ESPRESSO attempts to expand as much as possible the set of minterms covered
by a given term, by removing literals from that term. One way to formalize the computational
problem underlying this routine is as follows:

SHORTEST IMPLICANT CORE
INSTANCE: A SOP formula ¢ = V;est;, j € I, and an integer k.
QUESTION:Is there an implicant ¢; of ¢, with lit(t;) C lit(t;), of length at most k?

Theorem 6.1 SHORTEST IMPLICANT CORE is ©f-complete.

The proof is by reduction from 2-@QBF and can be found in {23, 22].

A variant of this problem asks not for a minimum length implicant ¢ for which lit(t;) C lit(t;)
but rather a minimal length (in other words, prime) implicant ¢; for which lit(2}) C li¢(t;). Usually
this latter variant is used in practice; in complexity terms it is also “easier” since it lies in the class
PNP_ as can be seen from the following algorithm. For each literal in term t;, we use an N P query
to determine if ¢; with that literal deleted remains an implicant of ¢. If so, delete that literal and
repeat from the resulting expanded term the process of deleting literals. Otherwise (no expanded
term with a deleted literal is an implicant of ¢), the term is a prime. Overall the running time is
at most quadratic in the number of literals in ;.

In a similar manner, we can formalizes the step of reduce in ESPRESSO. This procedure attempts
to reduce as much as possible a given term by adding literals, while still covering the given function.

LONGEST IMPLICANT EXTENSION (TERM REDUCTION)

INSTANCE: A SOP formula ¢ = Vieyt;, a j € I, and an integer k.

QUESTION:Is there an implicant t_’j of ¢, with lit(t;) 2 lit(t;), such that ¢ = Viep\(j3ti V t'j and t’J
has length at least k7

It is noted in [23, 22] that this problem is in the class Plllv P. This is true because ¢; can contain

literal £ if and only if the conjunction ; A £ is an implicant of V;¢ n{j)ti- For each literal ¢, an NP
query will tell us whether the above condition holds. Thus with polynomially many parallel NP
queries we can determine exactly which literals can be added to ¢; to form ¢}
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6.2 Complexity of Minimum SOP

This is the key problem introduced at the beginning of the section and asking, for a given a
SOP formula ¢, what is the smallest SOP ¢’ equivalent to ¢. The size of the SOP can be
measured by number either of literals or of terms, yielding respectively MIN LIT SOP-2-SOP
or MIN TERM SOP-2-SOP.

MIN LIT SOP-2-SOP
INSTANCE: A SOP formula ¢ and an integer k.
QUESTION:Is there a SOP ¢’ with at most & occurrences of literals and for which ¢' = ¢?

Theorem 6.2 MIN LIT SOP-2-SOP is £5 -complete.

The proof is by reduction from SHORTEST IMPLICANT CORE and can be found in {23, 22].
Given an instance (¢ = Vierti, j, k) of SHORTEST IMPLICANT CORE, the general idea of the
reduction is to construct a SOP ¢' from ¢ in which every term except one corresponding to ¢; must
occur in any equivalent SOP. The size of the minimum SOP equivalent to ¢’ is then determined by
the size of the smallest implicant core contained in that term.

As noted in [23, 22], the proof also shows that a seemingly easier SOP minimization problem,
which requires only minimality term-by-term, is also ©f-complete: given ¢ = t; Vo V... Vi,
and a bound k, find an equivalent SOP ¢', with at most k occurrences of literals, of the form
¢ =1, Vith V... Vi, such that for all 4, lit(t]) C lit(t;).

The second main variant of MIN SOP-2-SOP asks for an equivalent SOP that is minimum with
respect to terms (rather than occurrences of literals).

MIN TERM SOP-2-SOP
INSTANCE: A SOP formula ¢ and an integer k
QUESTION:Is there a SOP ¢’ with at most k terms and for which ¢’ = ¢?

Theorem 6.3 MIN TERM SOP-2-SOP is TX -complete.
The proof can be found in [22](Th. 5.5, page 44), by reduction from SHORTEST IMPLICANT CORE.

6.3 Complexity of Irredundant Cover

The following problem formalizes the step of irredundent in ESPRESSO, namely, remove as many
terms as possible from a given SOP:

IRREDUNDANT COVER
INSTANCE: A SOP formula ¢ = Vjert; and an integer k.
QUESTION:ISs there a subset I’ C I such that ¢ = Vierpt; and |I'| < k?

Theorem 6.4 IRREDUNDANT COVER is 2; -complete.
The proof can be found in [22](Th. 5.7, page 50), by reduction from SHORTEST IMPLICANT CORE.

6.4 Complexity of Detecting Implicants

The most most basic logic containment operation is to check if a conjunction ¢ is an implicant of

SOP ¢:

IMPLICANT
INSTANCE: A SOP formula ¢ and a term ¢&.
QUESTION:Is ¢ an implicant of ¢?

20



Theorem 6.5 IMPLICANT is coNP-complete.

Proof. This problem is in coNP because the complement problem of determining whether ¢ is
not an implicant of ¢ can be solved by guessing a point covered by ¢ but not ¢.

We show it is coNP-complete by reducing from SOP-VALIDITY. Given SOP ¢ which is an
instance of SOP-VALIDITY, we produce the instance (¢,1) of IMPLICANT. It is clear that 1 is
an implicant of ¢ if and only if ¢ is a tautology. O

The next problem formalizes the step of detecting essential implicants. Here we want to deter-
mine if a term ¢; of a SOP ¢ covers some point that no other term in ¢ covers.

ESSENTIAL IMPLICANT
INSTANCE: A SOP formula ¢ = Viert; and j € 1.
QUESTION:Is ¢ # ¢/, where ¢’ = Vi (j1ti?

Theorem 6.6 ESSENTIAL IMPLICANT is NP-complete.

Proof. The problem is in NP, because one can guess a point and verify that it is covered by ¢;
but is not covered by V;en (;}ti (note that checking whether a given point is covered by a term is
a polynomial-time operation).

Completeness is shown by reduction from CNF-SAT. Let ¥(z1, ..., Z) be an instance of CNF-SAT.
Introduce a new variable z and construct the SOP formula ¢ = 2V (2 A —7). Set j so that ¢; is the
term z in this SOP.

We claim that « is satisfiable iff 2 is essential (i.e., ¢ # ¢' = (2 A ~)). If 4 is satisfiable, then
there exists some (a1, ..., @) for which 4(a1,..,an) = 1; this implies that (zA —vy) does not cover the
extension of this point that sets z = 1, while z clearly does cover it. This means that z is essential. In
the other direction, if -y is not satisfiable, then (2A—) is equivalent to 2, and so z is not essential. O

Another basic operation is that of detecting prime implicants:

PRIME IMPLICANT
INSTANCE: A SOP formula ¢ and a term ¢.
QUESTION:Is ¢ a prime implicant of ¢?

Theorem 6.7 PRIME IMPLICANT is DP-complete.

Proof. It is in DP because ¢ is a prime implicant iff ¢ is an implicant (a problem in co-NP as
noted above), and every shortening of ¢ by deleting one literal is not an implicant (a problem in
NP).

We show it is D P-hard by reduction from SAT-UNSAT. Let (¢, ¢') be an instance of SAT-UNSAT
(both ¢ and ¢' are CNFs). We produce the following SOP (z is a fresh variable): ¢" = (-zA-¢)V
(z A =¢'). Our instance of PRIME IMPLICANT is (¢", 2).

We claim that z is a prime implicant of ¢" iff ¢ is satisfiable and ¢' is unsatisfiable. If ¢' is
unsatisfiable, then it is clear that z is an implicant of ¢”; at the same time if ¢ is satisfiable, then
z must be prime, because 1 is not an implicant of ¢”. In the other direction, if z is an implicant of
¢" then ¢' must be unsatisfiable; and if z is also prime then 1 cannot be an implicant of ¢" which
implies that ¢ must be satisfiable. O
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6.5 Complexity of Shortest Implicant

A relaxation of SHORTEST IMPLICANT CORE is to look for a shortest implicant of SOP ¢, not
necessarily obtained by expanding a term of ¢.

SHORTEST IMPLICANT
INSTANCE: A SOP formula ¢ = V;cst; and an integer k
QUESTION:Is there an implicant t; of ¢ of length at most £?

One would expect that this problem is 2; -complete tco, since it is in 2; , like the others.
However, it turns out it is likely easier than TP -complete, by exploiting the following fact, proved
by Umans in [23, 22]: any shortest implicant of ¢ may be obtained from some term ¢; of ¢ with at
most logn additions of literals and at most logn deletions of literals. As a consequence to decide
SHORTEST IMPLICANT it requires only O(log?)-limited non-determinism and a single coNP
query. Given an instance (¢ = t; Atz A ... Atn, k), one guesses an index i, a set I of logn literals
to add, a set D of logn literals to delete and construct a candidate conjunction C = (¢; UI) \ D.
We answer “yes” if C is well-formed, has length at most k, and a query to a coNP oracle indicates
that it is an implicant of ¢.

Moreover, Umans showed in [23, 22] that this problem is in fact complete for a new complexity
class including the problems solvable by O(log n) limited non-determinism and a smgle interaction
with a coNP oracle, denoted by GC(log? n,coNP) and lying between coNP and £f. This result
indicates that while the problem is unlikely to be £5-complete, it is also unlikely to be any “easier”
than the above algorithm indicates; in particular it is not likely to be in coNP.

Theorem 6.8 SHORTEST IMPLICANT is GC(log?n, coN P)-complete.

The formula and circuit versions of SHORTEST IMPLICANT instead are ©f-complete (see again [23,
22)).

6.6 Complexity of Complementation

In ESPRESSO, given a SOP cover of the offset and dcset, a SOP cover of the offset is computed,
because the maximal expansion of a cube is obtained by checking that it does not intersect any
cube of the offset. Therefore given a SOP ¢, it is important to compute a small SOP representation
of the complement of ¢. This problem is captured as follows

MIN SOP COMPLEMENT

INSTANCE: A SOP formula ¢ and a integer k in unary (i.e., & is given in the input by a string of &
ones).

QUESTION:Is there a SOP formula ¢’ with at most k occurrences of literals for which ¢’ = —¢?

Note that if k¥ were represented in binary, then we would not readily be able to show that the
problem is even in £¥, since there are SOP formulas ¢ whose complement requires ezponential size
in ¢. However, we can avoid this difficulty if k is represented in unary. In that case, the input has
size at least k and then the problem lies in 22 , since any potential ¢’ has size only polynomial in
the size of the input.

In fact Schaefer and Umans [16] show that this problem is £f-complete:

Theorem 6.9 MIN SOP COMPLEMENT is T% -complete.
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Proof. In [16] they show that a problem called SHORT CNF is vJ-complete. In this problem
the input is a SOP formula ¢ and an integer k represented in unary; the question is whether there
is a CNF formula ¢’ with at most k& occurrences of literals for which ¢’ = ¢. It is clear that this
occurs if and only if there is a SOP formula ¢"” with at most k occurrences of literals for which

@" = —¢, since the negation of a SOP formula ¢” can be represented by a CNF formula of the same
size, and vice versa. O

6.7 Complexity of State Assignment

A finite state machine (or “finite state transducer”) is specified by a transition function é : @ x
{0,1}* = @ x {0,1}%, where Q is a finite set of states, and {0,1}® is the set of inputs, and {0,1}
is the set of outputs. Equivalently, we may specify the transition function with a function '

f:Qx{0,1}* x Q x {0,1}* = {0,1},

with the property that f(q,4,q’,0) = 1 iff 8(g,%) = (¢, 0). It is desirable to express f as a small
SOP. To do this we need a state encoding function e : Q@ — {0,1}™. Then we may ask for a
minimum SOP ¢ representing the function f. defined by ®

fe(e(g),ire(d),0)=1 &  flg,i,q',0) =1.
The decision problem associated with this optimization is:

STATE ASSIGNMENT

INSTANCE: A SOP ¢ representation of a function f. specifying a finite state machine with states
Q, and an integer k.

QUESTION:Is there an integer m' and an encoding function €' : Q — {0, l}"" for which fo has a
SOP representation ¢’ with at most & terms®?

It had been shown by K. Keutzer and D. Richards [10] that STATE ASSIGNMENT is coNP-
hard (lower bound) and contained in 32 (upper bound). A complete account of the early results
on the complexity of this problem is available in [24]. In the degenerate case in which there is only
a single state STATE ASSIGNMENT becomes MIN TERM SOP-2-SOP. We thus obtain the new
result:

Theorem 6.10 STATE ASSIGNMENT is £ -complete.

The practitioner may protest that lumping together two-level minimization and state assignment
in the same complexity classes is highly unsatisfactory since the latter problem is much harder
than the former in practice. This is but one example where the coarse classification afforded
by the classes of the Polynomial Hierarchy would benefit from some refinement that captures
the observed difference in the difficulty of problems within the same class. The classification
of NP-complete problems according to their approximability is an example of such a refinement;
however here it seems that approximability would not separate, e.g. MIN SOP-2-SOP from STATE
ASSIGNMENT, as MIN SOP-2-SOP is already extremely hard to approximate [22, 21].

8This is the relational representation of a finite state machine; alternatively one may use a functional representation
by means of a multiple-output function whose outputs correspond to all the encoded next state and external output
variables.

9We can also consider the variant in which ¢’ must have at most k literals.
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7 Conclusions

Two-level logic minimization is the quintessential problem in digital design automation. In this
paper we have presented a consistent account of the computational complexity of the decision
problems capturing two-level logic minimization. We hope that this provides a coherent picture of
results scattered in many sources and fills a few gaps in the older literature.

The major points to take away are:

e When the function is ezplicitly described by its onset and offset (or even just its onset),
the problem of finding a minimum SOP representation is NP-complete. This problem is
essentially a covering problem, and NP-completeness follows by either the Gimpel reduction
in Sec. 4, or the more involved Masek reduction in Sec. 5.

e When the function is implicitly described by a SOP form, the complexity of finding a minimum
SOP representation is ©f-complete. This means that (subject to accepted assumptions from
computational complexity) no polynomial-time algorithm can solve this problem even when
charging only a single time step for every call to a TAUTOLOGY subroutine.

e When the function is implicitly described by a SOP form, many of the sub-problems used in
the major logic minimization suites (i.e., ESPRESSO) turn out to lie between NP and 2; , and
several are £5-complete.

In closing we mention two very natural problems whose complexity remains open:

MIN CIRCUIT-2-CIRCUIT
INSTANCE: A Boolean circuit C and an integer k.
QUESTION:Is there a Boolean circuit C’ of size at most k that computes the same function as C?

This problem is in £ and conjectured to be ££-complete. In fact even when C and C' are
required to be circuits of depth 3 (i.e. sum-of-products-of-sums, or product-of-sums-of-products),
no proof of =F-completeness is known. '

The “explicit” version of this problem is:

FULL TRUTH TABLE MIN CIRCUIT
INSTANCE: Onset and offset of a completely specified function f and an integer k.
QUESTION:Is there a Boolean circuit C of size at most £ that computes f?

This problem is in NP and it is not known whether it is NP-complete or not. This problem
has some interesting connections to other questions in computational complexity, that have been
outlined in [8].
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