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This document collects the lecture notes that ] used when teaching EECS 290n in the Fall of 2004.
This course is an advanced graduate course with a nominal title of Advanced Topics in Systems
Theory. This instance of the course studies models of computation used for the specification and
modeling of concurrent real-time systems, particularly those with relevance to embedded soft-
ware. Current research and industrial approaches are considered, including real-time operating
systems, process networks, synchronous languages (such as used in SCADE, Esterel, and State-
charts), timed models (such as used in Simulink, Giotto, VHDL, and Verilog), and dataflow mod-
els (such as a used in Labview and SPW). The course combines an experimental approach with a
study of formal semantics. The objective is to develop a deep understanding of the wealth of alter-
native approaches to managing concurrency and time in software.

The experimental portion of the course uses Ptolemy II as the software laboratory. The formal
semantics portion of the course builds on the mathematics of partially ordered sets, particularly as
applied to prefix orders and Scott orders. It develops a framework for models of computation for
concurrent systems that uses partially ordered tags associated with events. Discrete-event models,
synchronous/reactive languages, dataflow models, and process networks are studied in this con-
text. Basic issues of computability, boundedness, determinacy, liveness, and the modeling of time
are studied. Classes of functions over partial orders, including continuous, monotonic, stable, and
sequential functions are considered, as are semantics based on fixed-point theorems.

More details about this course can be found on its website:
http://embedded.eecs.berkeley.edu/concurrency
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Lecture 1: Current Trends in Embedded Soflware

Are Resource Limitations the Key Defining Factor
for Embedded Software?

o smali memory
o smali data word sizes
o reiatively siow ciocks

To deal with these problems, emphasize efficiency:
o wrile soffwars at a iow level (in assembly code or &}
o avoid operaiing systems with & rich suite of sarvices
o devalop spedialized computer archilectures

+ programmable DSPs

+ network processors

This is how embedded SW has been designed for 25 years

Lee 01:2




Why hasn’t Moore’s law changed
all this in 25 years?

Hints that Embedded SW Differs Fundamentally
from General Purpose SW

o object-oriented technigues are rarely used
= classes and inheritance
+ dynamic binding
o processors avoid memory hierarchy
+ virtual memory
= dynamically managed caches
o memory management is avoided
+ allocation/de-allocation
= garbage collection

i cell phanes, but maindy

ez,

To be fair, here are some appiications: 2.9.
sroviding 2 services akin to general purpose
Leg 0.4




More Hints: Fundamentally Different Techniques
Applied to Embedded SW.

 nesC/Tiny0S

method-call « developed for programming very small
modelsof programmable sensor nodes called “motes”
computation Click

: = created to support the design of software-based
- network routers

[ Simulink with Real-Time Workshop
actor-oriented » created for embedded control software and widely
modelsof ¢ used in the automotive industry

computation Lustre/SCADE

+ created for safety-critical embedded software (e.g.
; avionics software)

Alternative Concurrency Models:
First example: nesC and TinyOS

Typical usage patiem:
harowars interrupt
signatls 30 avent.

avent handler posis a
task.

tashs are executed when
mactine i idie,

tasks execuie atomicaily
w.e.t one another,

tasks can invoke
sommands and signal
avents.

hawdhware rdarupts can
intermpt 1aske,

exacily ong monitor,
implermented by disabling
intaoueis,

Leg 0.6




Alternative Concurrency Models:
Second example: Click

P ToekopdPReuate.

Mescal (Keulzer, el 3l )}

Typical
115808
pattern:
fueles hava
mush input,
mill cutput.
schedulers
nave puil
inpsud, push
GUtpUut.

thin wrappens
for hardweara
have puah
output or puli
Ut OrEy.

Observations about nesC/TinyOS & Click

Very low overhaad

Bounded stack sizes

Mo (unintended) race conditionsg

MG threads or procssses

Access {o timers

Can craate thin wrappers around hardware

OO 0 0 00

But rather speciaiized
= Unfamiliar to programmers
+ No preemption (tasks must be decomposed)

P, e 14 . L
Log 04 8




Alternative Concurrency Models:
Third example: Lustre/SCADE

Typicat usage pattern:

o spacify tasks alignedtoz
masier “clock” and subclocks

¢ clock caicuius checks for
censistency and deadiock

o decision iogic is given with
nierarchics: state machines.

Bt e

from hitpiiiwww estersi-technologies.com?

Observations about Lustre/SCADE

Vary low overhead

Bounded stack sizes

No {uniniended) race conditions

No threads or processas

Verifiable (finite) behavior

Certified compiler {for use in avionies)

0 0 0 8 O

But rather speciaiized
+ Unfamiliar to programmers
¥ No preemption
+ No time

Lee 04: 10




The Real-Time Problem

o Programming languages have no time in
their core semantics

o Temporal properties are viswed as
"non-functional”

o Precise timing is poorly supported by
hardware archileciures

o Operaling systems provide timed
behavior on a best-effort basis (a.g.
using priorities).

o Prioritles are widely misused in practice

Alternative Concurrency Models:
Fourth example: Simulink

-------------------- Pypical usags pattern :
i o maodel the contiruous dynamics |

3
i
Ematied
Subraem
i ot fo oode generaie the disorete i
Fite Waus n H 3 Tos = .
E] ¥ sonireiler
"a.
Cemstanl 1 )———j S
Gain n
In? Ol
Enzbled o medal (T = ma)
Sebuwtemi

B
Lo aatar) pead 1
-~ T

[T, ‘ntegratos Imegialart  Feabior

Lee §i: 12




Observations about Simulink

o Bounded stack sizes

o Detarministic {no race conditions)

o Timing behavior is explicitly given

Efficient code generator {for periodic discrete-time)

o Supports concurrent lasks

o threads or processes visible o the programmer
+ But cleverly leverages threads in an underlying O/S.

o

Q

But rather spacialized
» Periodic execution of all blocks
» Accurate schedulability analysis is difficult

Two Distinct Component
Interaction Mechanisms

Method-call based:

nesC/TinyOS | class name
\ data
Click ™
methods
call retum

{ Actor oriented:

Lustre/SCADE pyr—
Simulink \'g data (state)
: parameters

g ports

Input data Output data Loe ;14




Terminology Problem

Of these, only nesC is recognized as a "programimeng
fanguage

P wilt call them “platforms

A platform is a set of possible designs:
the set of all nesC/TinyOS programs
the set of all Click configurations
the set of all SCADE designs
the set of all Simulink block diagrams

-
o
W
(o]
Y
m

Platforms

A platform s
gdesigns.

Relations bebwveen
piatforms represent
Gesion processes,




Progress

Many useful technical
pmenia amount
i creation of new
platforms.

o microamhiteciures
o operaling systems
o virtus! machs
o processe
o l:m‘ﬂ!’fl.l."<

Better
Platforms

Platforms with
modsling properties
that reflect
raguiremenis of the
appiication, not
accidantal
progariies of the
impiem miati-&zx_




How to View This Design

invariant componants,

. Mats
Cwint

frvesas mien 4

Figure C.12: A block diagram generating a plucked string sound with a
fundmental and three harmonics.

heonnnongr)

i
s

From below: Synchronous congcurrent
composition of componenis

From above: Signal flow graph with linear, time-

ow
R+

«Q
e

0w

Actor-Oriented
Platforms

sior orieniad models
SOMBNSE oonourrant
componenis accuding

to 2 model of

oomp

programming modsl,




How Many More (Useful) Models of Computation
Are There?

Here are z few actor-oriented platforms:

o Labview {synchronous dalaflow)

o Moadelica (continuous-lime, constraint-based)
o CORBA event service (distributed push-pull)
o SPW (synchronous datafiow)

o OPNET {discrele svents)

o VHDL, Verilog (discrele events)

o SDL {process networks)

o)

P

Many Variants —
Consider Dataflow Alone:

Computation graphs [Karp & Miter - 1966]
Process networks [Kaehn - 1974}

Static dataficow [Dennis - 1874}

Dynamis datafiow [Arving, 1981]
K-ounded loops [Culiar, 1986}
Synchronous datallow [Lee & Messerschmitt, 1586]
Structured datadlow [Kodosky, 1988]

PGK: Processing Graph Method iKaplan, 1987]
Syrichrasous languass [Lusirs, Signal, 1880's]
Well-behaved datsflow iGao. 1992}

Booiean datafiow [Buck and Les, 1983]
RMuttidimensional SDF fLee, 1983]

Cyclo-static daiaflow [Lauwereing, 1884]
integer datafiow [Buck. 1894]

Boundedi dynasnic datafiow jLee and Parkg, 1898
Haierachronous Gatallow [Girauli. Lee, & Lee, 1287}

SO0 00 QO00CGCO0O00CQ0O0O0C

Lee 01:22




How to Choose a Platform:
Tools Focus

Ehabled

Subryrtam
B4—
Sine Wrve n
-4
Corstant
Gain n
’_’hl
Enabled
Sebordent

Integrator)  Pesition
=0

Spaed

Simple Cruse Contial Systam

Les 01 23

How to Choose a Platform:
Abstraction Focus

. Do the des:gn abstracttons scale? :
. Can 1t compltefcode generate to cost—effectlve so!uttons;?

These are the Primary Questions!

—
Enabled Cai made! (F = ma)
Subrptem ! £ "
T Sl
] 'y - B

e Aimam integrates Wlegutert  Fopiten
speed
@ "
Hbme 1) - L W
Speed
S ple Casme Conbal System
Bflaady s | L




The Meta Question

How can we objectively evaluate the
aliernatives?

Lee 01: 25

Meta Platforms
Supporting Multiple Models of Computation

Plolemy Classic and Plolerny il {UC Berkeley)
GME {(Vanderbilt)

Metropolis (UC Berkeley)

ROOM {Raliovnal)

SystemG {Synopsys and others)

O 0 O O 0

To varying degrees, each of these provides an absifraci
semantics that gels specialized to deliver & padicular

model of computation.

ROOM is evolving into an OMG standard {composiie

structures in LML 2)

Lee 01: 26




Conclusion

o Embedded software is an immature ischnology
o Focus on “platforms” not Ylanguages”
o Platforms have to:
¢ expose hardware (with thin wrappers)
¢ embrace time in the core semantics
¢ embrace concurrency in the core semantics
o AP!’s over standard SW methods won't do
o Ask about the “absiractions” not the "fools”

Many questions remain. ..

Les 01: 27
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Lecture Z: Threads

Prevailing Software Practice

o Processes for concurrent execution of muitiple apps
« Processes interact through files, pipes, sockets
o Threads for congurrency within an application
« Threads share memory, processes do not
o Remote procedure calls (RPC) for distributed apps
# Assumes reliable communication
o Middlewars {&.g. CORBA) built on top of RPC
» Inherits requirement for reliable communication
o Real-time operating systems (RTOS): thread scheduling
« Priority tweaking and bench testing




Problems with Threads:
Example: Simple Observer Pattern

public void addiistener(/istener) {.}

public void setvalue(newialue) {
myvalue = newvalue;

for (int 7 = 0; 1 < myListeners.length; i++) {

myListeners[i}.valueChanged{(newvalue)

Leyes

}
What’'s wrong with this?
Thanks {0 Mark S. Miller, HP Labs, for
the deilziis of this exampie. Les 023

Example: Simple Observer Pattern
With Mutual Exclusion (Mutexes) using Monitors

public synchronized void addiistener(77istener) {.}

public synchronized void setvalue(newvalue) {
myvalue = newvalue; '

for (int 7 = 0; i < myListeners.length; i++) {
myListeners{il.valueChanged(newvaiue)

3
r
pd

Javasoft recommends against this.
What's wrong with it?

Loe 02: 4




Mutexes using Monitors are Minefields

public synchronized void addiistener{7istensr) {.}

public synchronized void setvalue(newialue) {
myvaiue = newvalue;

for (int 7 = 0; 1 < myListeners.length; i++) {
mylisteners{i].valueChanged{(newvaiue)

(TS

valueChanged() may attempt to
acquire a lock on some other object
and stall. If the holder of that lock
calls addListener(), deadiock!

ruhlic A A Yeid addChangelistener (ChangeListensr listener) {
NamedOb) sontuiner = (NewedOn)) getCootuiner():
1r (container != mual) (
container .addChangel iataner (liscener) :
T
3if (_thangelisténscs == aull) |
chargelLintensra = nea Linkerdlast()
TehengelListensrs . ndd(0, liscener):
} visr 11 ('_chAngell3lencrs.Conlolns [11sCensr)) |
_changelistensrs.add!Q, listesper):
}

tt Code Reviev




Ptolemy Project Code Review
A Typical Story

Code review discovers that a method neads to be synchronized o ensure
that mudtiple threads do not reverse each other's actions.

Ne problems had baan detecied in 4 ysars of using the code.

Thiree days after making the changs, users started raponting deadivcks
caused by the new mulex.

Anaiysis and corregtion of the deadiock is hard.

But code review successfully identified the flaw.

REaNy vord addChangelisteser (Coungelistencr listener) (

oortainer = (NesedCb)) getContwaner ()s
1¥ ‘[conteinar 1® mwll) {
. -container.addChangel.istener (1150ener)
) edse &
32 -{_changelistenczo == agld) (
uhnngc!.xunuzn = new Linkedliot():

, .01 (0, 1 ):
) e1sc at ('_changeursteners.contal st 1Nt
Y L3, :

)
: »
L

Len 3%

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(7istenery {.}

public void setvalue(newvalue) {

synchronized{this) { while holding Jock, make copy

of listeners to avoid race
myvalue = newvalue; conditions
iisteners = mylListeners.clone{};

} notify each listener outside of
synchronized black to avoid
deadiock

for {int 7 = §; 1 tisteners.length; i++) {

Tisteners{i].va ¥ueCﬁanged(nPWValue)

}

} This still isn’t perfect.

What’s wrong with it?

Leeg 02: 8




Simple Observer Pattern:
Is it Even Possible to Make It Right?

public synchronized void addListener(Jistener) {.}

public void setvalue(newVaiue) {
synchronized{this) {
myvalue = newvalue;
Tisteners = myListeners.clone();

}

for (int 7 = 0; i < listeners.length; i++) {
Tisteners[i].valueChanged(newvalue)
1

e

Suppose twe threads calf setValue(). One of them will set the value fast,
leaving that value in the object, but listeners may be notified in the opposite
arder. The listaners may be alertad (o the value changas in the wrong order!

Lee 0Z: 8

A Stake in the Ground

Nontrivial concurrent programs based on threads and
mutexes are incomprehensible to humans.

& No amount of process improvement will help
- the human brain doesn’t work this way

« Formal methods may help
- scalability?
- understandability?
+ Better concurrency abstractions will help more

fee 02: 10




Diagnosing What's Wrong With Threads:
Some Notation

Set: S={a,b,c,... }

Natural numbers: N={1,2,3, ... }

Counting set: N, ={1,2,... ,M}

Nonnegative integers: N, = {0,1,2,3, ... }

Function: f: S—> §' (Domamn: § Codomain: §)
Finite sequence. s: N, > S, MeN

irfinite sequence. s: N> S

Set of functions: F=[S—> 5]

Set of finite sequences: S"=[N,> S, MeN]

Set of finite and infinite sequences: S =[N>S]Ju S

bee0Z: 11

A Model of Threads

Binary digits: B={0, 1}

State space: B™

instruction {atomic action), a:B”— B™
instruction {action) set: 4 c[B”— B™]
Thread (non-ferminating). (N> 4

Thread (terminating). 7:{1,...,n} >4, neN

A thread is a sequence of atomic actions.

fee 02: 12




Programs

A program is & firsle representation of a family of threads
{one for each inilial state b, ).

Machine control flow: ¢ : B> N, {e.g. program
countery where ¢ (b) =0 is interpreted as a “stop”
command.

Let m be the program iength. Then a program is:
p:{l,...,m} >4

A program is an orderad sequence of m instructions.

Lee 02 13

Execution (Operational Semantics)

Given initial state b, e B™, then execution is:
by=p(c(b))(by) =t(1)(by)
by=p(c(b))(b) =t(2)(b)

b,=p(c(b,))(b,,) =t()(d,.,)
c(b,)=0

Execution defings a parfial function {defined on a subset
of the domain} from the initial state o final stats:

e,: B™— B**
This function is undefined if the thread does not
terminate.

Lee 02: 14




Threads as Sequences of State Changes

@ initial state: b,

y t(i): B**— B™

m final state: b,

sequence |

» Time is irrelevant
» All actions are ordered
» The thread sequence depends on the program and the state

Lo 0Z: 15

Expressiveness

Given a finite action set: 4 c[B**— B
Execution: e, € [B™ — B™]

Can all functions in [B* — B™] be defined by a program?
Compare the cardinality of the two sets:

set of functions: [B** — B™")

set of programs: [{1, ... ,m} > 4, me N]

Lee 02: 16




Programs Cannot Define All Functions

Cardinality of this set: [{1, ... ,m} > 4, me N]is the
same as the cardinality of the set of integers {put the
elements of the set into a one-to-one correspondence
with the integers). The sei is countable.

This set is larger: [B™ — B™].

Proof. Choose the subset of constant funciions,
Cc[B™— B™]

This set is not countable (use Cantor's diagonal

argument to show this).

Y
®©
<Q

.1
-
-t

Simpler: Choose a Smaller State Space

Smaller state space {natural numbers): N={1,2,3,... }
Set of all functions: F=[N—> N]

Finite actionsell Ac[N—>N]

Set of all programs: [{1, ... ,m} > A4, me N]

Again, the set of all functions is uncountable and the set
of all programs is countable, so clearly not all functions
can be given by programs.

With a “good” choice of action sel, we get programs that
implement a2 well-defined subset ¢f funclions.

- Lee (2. 18




Taxonomy of Functions

Functions from initial state to final state;
F=[N->N]

Partial recursive functions:

PRc[N—>N]
(Those functions for which there is a program that
terminates for zero or more initial states).

Total recursive functions:

TRcPc[N->N]
(There is a program that terminates for all initial states).
Lan 0Z: 18
Church’s Thesis

Every function f: N> N that is computable by any
practical computer is in PR.

There are many "good” choices of finite action sets that
yield the same definition of PR.

Evidence that this set is fundamental is that Turing

machines, lambda calcuius, PCF {a basic recursive
programming language), and ali practical computer
instruction sets vield the same set PR

Loe G2: 20




Key Results in Computation

Turing. Instruction set with 7 instruclions is enough {0
write programs for all partial recursive functions,
s A program using this instruction set is called a Turing
machine

¢ A universal Turing machine is a Turing machine that can
execute a binary encoding of any Turing machine.

Church: Instructions are g smalil set of transformation
rules on strings called the lambda caloulus.

+ Equivalent to Turing machines.

Lee 02: 21

Turing Completeness

A Turing complete instruction set is a finite subset of PR
{and probably of TR) whose transitive closure is PR.

Many choices of underlying instruction sets Ac[ N> N]
are Turing complete and hence equivalent.

This can be genaralized to the larger state space B™ by
gncoding the intsgers in it.

Lee §2:22




Equivalence

Any iwo programs that implement the same partial
recursive function are equivalent.

= Terminate for the same initial states.

= End up in the same final states.

NOTE: Big problem for embedded software:
» All non-terminating programs are equivalent.

+ All programs that terminate in the same “exception” state

are equivalent.

Limitations of the 20-th Century
Theory of Computation

o Only terminating computations are handled.

This is not very useful...
But it gets even worse:

o Thers is no concurrency.

fee 02: 24




Concurrency: Interactions Between Threads

The operating system
(typically) provides:
* suspend/resume
= mutual exclusion
« semaphores

suspend ) &

another thread can
[ change the state
resume s ” Recall that for a thread, which
instruction execuies next
depends on the state, and what
it does depends on the siate.
Lee 02: 25

Nonterminating and/or Interacting Threads:
Allow State to be Observed and Modified

initial siate%

seguence

: é@ external input

i‘ D p(c(b)):B"—>B"

¥ environment ohserves staie

%%’@ environment modifies state

Lee (2: 28




Recall Execution of a Program

Given initial state b, e B, then execution is:
by=p(c(b))(by) =t(1)(by)
by=p(c(d))(b) =t(2)(b,)

b,=p(c(b,)(b,,) =t(n)b,,)
c(b,)=0

When a thread executes alone, execution iz a
composition of functions:

t(n)e...o1(2)1(1)

Interleaved Threads

Consider two threads with functions:
tl(])a tl (2), s t] (n)
12 (]): tz (2), ey 12 (m)

These functions are arbitrarily interleaved.

Worse: The i-th action executed by the machine, if it
comes from program c (b)), is:

t@=p(c(b,))
which depends on the state, which may be affected by
the cther thread.

Lee 2: 28




Equivalence of Pairs of Programs

For concurrent programs p, and p, {o be equivalent under
threaded execution to programs p,’and p,’ we need for
each arbitrary interleaving of the thread functions
produced by that interleaving to terminale and to
compose to the same function as all other interleavings
for both programs.

This is hopeless, except for trivial concurrent programs!

Lee 02: 28

Equivalence of Individual Programs

if program p, is to be executed in a threaded
snvironment, then without knowing what other programs
will execute with it, there is no way to determine whether
it is equivalent to program p,’ except to require the
programs to be identical.

This makes threading nearly useless, since it makes it
impossible to reason about programs.

toe G2: 20




Determinacy

For concurrent programs p, and p, to be determinate
under threaded exacution we need for sach arbifrary
interleaving of the thread functions produced by that
interleaving to terminate and to compose o the same
function as all other interleavings.

This is again hopeless, except for trivial concurrent
programs!

Moreover, without knowing what other programs will
execute with it, we cannot determine whether a given
program is determinate.

Lee 02: 31

Manifestations of Problems

o Race conditions

= Two threads modify the same portion of the state. Which one
gets there first?

o Consistancy

- A data structure with interdependent data is updated in multiple
atomic actions. Between these actions, the state is inconsistent.

o Deadiock

» Fixes to the above two problems result in threads waiting for
each other to complete an action that they will never complete.

Lee 02: 22




Improving the Utility of the Thread Model

Brute force methods for making threads useful:

+ Segmented memory (processes)
- Pipes and file systems provide mechanisms for sharing data.

« implementation of these requires a thread model, but this
implementation is done by operating system expert, not by
application programmers.

# Functions (no side effects)
« Disciplined programming design pattern, or...
+ Functional languages (like Concurrent ML)

» Single assignment of variables
» Avoids race conditions

r
w0

T

[&]
2
(5]
w

Mechanisms for Achieving Determinacy

Less brute force {but alsoc weaker}:

o Semaphores

o Mutual exclusion jocks {mufexes, monitors)

o Rendezvous

All require an atomic test-and-set operation, which is not

in the Turing machine instruction set.

Lee 02: 24




Mechanisms for Interacting Threads

Potential for
race conditions,
inconsistericy,
and dezdlock
severely
comprornise
software
roliability.

semaphore or monitor
used to stall a thread

race condition

rendazvous is mora
symmetric use of
aemaphores

These meihods
daia hack 1o the
18680’
{Diiksira).

Deadlock

“Acquire lock X" means the following atomic action:
if x is false, set it to true,
else stall until it is false.
where x is Boolean variable {a “semaphore”).
"Release lock X" means:
set x to false.
ancuire Jock X BrEREEER
s
acquire lock y ERERREEENR
stali

S SNGSEY scauire jock x

Les 02: 26




Simple Rule for Avoiding Deadlock [Lea]

“Always acquire locks in the same order.”

However, this is very difficult {o apply in practice:

o Method signatures do not indicate what locks they grab
{80 you need access {o all the source code of methods
you use).

o Symmetric accesses {where either thread ¢an init:ate
an interaction) become more difficult.

-
]
o
(%
4
©
P

Deadlock Risk can Lurk for Years in Code

FAZY
Crosegnflinn s r MGt thut eaintziss poeintars e other Sowmsfefilists.

Goxnsede Galisda, Jontuhbutoc: Kdewnd H. Yeo
1 §14: CrossRafiist.jova.v 1.78 2504784,2% 24:50:05 @8l Bup ¥
Rudase Ftoelegy Y1 N7

47% . FropozedRatang Gzesn {eal}

Axe Acoestndbaniey Sxnce {(daxt;

<)

public f£inal clas= CrossRefList implaments Sarializasble {

¢ class C Ref implements Serializoble(

P

;7 NOTE: It is ssmential that nhiz nathod not bhe
27 mymeloenlizse. winen Lt 12 ondied Ry | fxrCoetainws() .
27 wnich 3. Buav t synehzoninad <an lead to
J§ deadlonx. Foctunulaly, At 22 an ztanic avticn.
£! 8 it naed not he synohaonized.
privita Object _nearContainer() {
return _container;

)

private oynchrenized Object _farContainer() {
i£ (_far = null) return _!a:._m:(:ontatn-:() H
elss retusn null;
}
}
! Lee G2: 28




And Doubts Remain...

Fiis

#FList 22 o list that maintalins pcinters to other CrossRasfliste.

#rd R, Lew
J08/29 L4:50:00 ax) Tep £

inutor: B

v 1,73

{bort)

*® 7
public final class CrossReflist irplaments Serializable {

protected class CrossRef implemants Serializablef

private synchrenized void _dissociate() (
_unlink(); // Pamowe thi

£7OWOPE: Dumudloek zisk heon! 21
ra this Jrasshasl.
Hogawrar, ks @il
e tus threads simmltans:
£ owdel. A tte molwal {47280 wa Nave v
/i mectanize far doing what without fixscn

AL avaquiiieg weitae gecelxsion tha e

£ Twin thrasds nsnnot sine ¥ %Weld tharn
7 writs mooans.

if (_far != pull) _far._unlink(); /7

Yax hx
ue Wiii
y Tappen 38

r2ly modifying »

fed

a8

Les §Z: 38

What it Feels Like to Use the synchronized
Keyword in Java

Lee 02 40




Distributed Computing: In Practice, Mostly Based
on Remote Procedure Calls (RPC)

Force-fitting the

sequential

abstraction onic

panaiiai B
hardware. i

3 > remote procadure calt

i
i
H
4

Combining Processes and RPC —

Split-Phase Execution, Futures,
Asynchronous Method Calls, Callbacks, ...

These methods
are ot inast as
incomprehonsible
as consurrent
threads or
pGoEsSes,

“asynchronocus”
procedure call

N’"“""""J

TR

SRECRBR

Lee 02: 42




Summary

o Theory of computation supporis well only
» terminating
« non-concurrent
computation

o Threads are a poor concurrent model of computation
« weak formal reasoning possibilities
» incomprehensibility
= race conditions
# inconsistent state conditions
« deadlock risk

Les 02: 43
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Professor, UC Berkelay
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Lectura 3 Cvarview of Actor-Oriented Modals of Computation

Ptolemy Il: Framework for Experimenting with Alternative
Concurrent Models of Computation

Basic Pioiemy li infrastruciure: .

Domaln-polymorphic |
companent fbrany. ; %

Visuai editor supporting ao absiract syn:?ax'é

e (32
L2E D




The Basic Abstract Syntax

« Actors
« Attributes on actors (parameters)
* Ports in actors

» Links between ports

+ Width on links (channels)

* Hierarchy

Attributes

Concrete syntaxes:

« XML

* Visual pictures

+ Actor languages (Cal, StreamIT, ...)

Lee 0% 3

Hierarchy - Composite Components

3
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@
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&
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Abstract Semantics

of Actor-Oriented Models of Computation

axecution control

' £o=e N,
% Y 1oRetation

N i

data transport

Actor-Orianted Models of
Computation that we have
implemented:

+ dataflow {several variants}

« process networks

« distribited process networks
» Click {pustvpuil)

+ continuous-time

« CSP {rendezvous)

= giscrete events

« distributed discrate svents

+ synchronous/reactive

* time-driven (severai variants)

\!_Race!var
i(!nside port}

What is an Actor-Oriented MoC?

Traditional component interactions:

class name

data

metheds

call

Actor oriented:

actor name

data (state)

parameters

ports

Input data

Output data

retum

Lee 03: 8




Models of Computation
Implemented in Ptolemy |l

Gi - Pushipull component inleraction
Click —~ Fush/puil with method invocation
8P — concurrant threads with rendszvous
CT — continuous-tims modealing

DE - discreig-event sysiems

DOE ~ distributed discrets evenis

FSM ~ finile state machines

07 - discrets time {cycla driven)

Giotto - synchronous periedic

GR ~ 2-0 and 3-0) graphics

P — process networks

DN — distributed process natworks
SGF - synchronous datafiow

SR ~ synchronousiraachive

T - bmad muiiiasking

a3 tYe 7
Les 057

Discrete Event Models

DE Direstor implements
fmed semantics using an
entaueue

eative actors |

i

| Eventsource. |

i Tire ling ¥




Semantics of DE Signals

signal in

F

signal out

A signal is a partial function:

) Dala type
FiRXN > T ot of

valiies}

Real numbers
{zpproximated
by doubles)

Natural numbers (aliowing
for simultaneous events in
a signat}

Subtleties: Simultaneous Events

By defaull. an aclor produces events wilh: the same time as the input
event. But in this example, wea expect {and need) for the BoolaanSwiteh to
"saa” ing cutput of the Bernoull in the same “iring” where i sees the event
from the PoissonCiock, Events with identical time stamps are also orderad,
and reactions o such avents ioliow data precedsnce order.

Lee 0310




Subtleties: Feedback

{Date precedence analysis has o take into acoount the non-strictness of
this actor {that an culput can be produced daspite the iack of an input).

Discrete-Event Semantics

Cantor metric:

d(x,y)=1/2"

where r is the earliest ime where x and y differ.




Causality

Causal;

d(y,y)<d(x,x")

Strictly causal:

X .. Y d(y,y)<d(x,x")
x' ™Y Delta causat
3o <1,
d(y,y)<d6d(x,x")

A delta-causal component is a “contraction map.”

Semantics of Composition

i the components
are deterministic,
the composition is

deterministic.
x=y=>
F(x)=x

Banach fixed poini theorem:

» Contraction map has a unigue fixed point

« Execution procedure for finding that fixed point
» Successive approximations o the fixed point

iee 03 14




Zeno Systems

Theorerm if every directed cycle contains s delta-causal
component, then the system is non-Zeno.

Extension of Discrete-Event Modeling for
Wireless Sensor Nets

VisusiSenss exiands
e Plolamy H discrate-
event domain with
commuricatinon batwesn
actors regresenting
sensor nodes being
nmiedizted by a channsi.,
which is anciher astor.

moniels 2 low (bu
zero) probability of long
rangs links being viable.




Distributed Discrete Event Models

ime from incally
SourcE

advancing without "pemission” fron

This is tha "Chandy and Misra” style of distributed discrets events
{19781, which compared o Croguet and Time Warp [Jeffarsen,
1885), is "conservative.”

Lea 0% 17

Other Interesting Possibilities for Distributed
Discrete Events

o Time-Warp {(Jefferson)
+ Optimistic computation
= Backtracking

o Croguel (Reed)
= Optimistic computation
«+ Replication of computation
= Voting algorithm (Lamport)




Conclusion

o There are many aiternative concurrent MoCs
o The ones you know are the tip of the iceberg
o Ptolemy Hl is a iab for experimenting with them
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Lecturs 4; implementing Process Nelworks

Abstract Semantics
of Actor-Oniented Models of Computation

Actor-Orienied Models of
Computation that we have

implemented:
execution control data transport .
) ; « datafiow (several varianis)
/ » process networks
; / - distributed process networks
receiver.put(t) v

« Click (pushipull}
» continuous-lime
\ ; + CSP {rendezvous)
Y « discrete events

\,\ ¥ toRetation \{ "Rocaiver » gisiribuied discrete events
{ Actor ignside porty < gynchroncusfreactive

+ time-driven {several variants}

Leg 4. 2




Process Networks (PN)

R AT BRI
I-Ka-hn_. Macliueen, 1577

Distributed Process Networks

Transport mecharism between hosls is
privvided by (ha dirsgtor. Transparently provides
puaranteac dalivery and crdered messages.

Created by Domimgus Ragal, Thales Communicabons

~
fog . 4




Kepler: Extensions to Ptolemy Il for Scientific
Workflows

Coarse History

o Semantics for a very generst form of PN were given
by Gilies Kahn in 1874,
+ Fixed points of continuous and monotonic functions
o More limited but more sasily implemented form given
by Kahn and MacQuesn i 1877,
= Blocking reads and nonblocking writes.
o Many attemnpts to generalize the semantics o
nondeterministic systems
+ Kosinski [1978], Stark [1980s], ...
o Bounded memory execution strategy given by Parks
in 1995,
= Solves an undecidable problem.

Lo 04 8B




Notation: UML Static Structure Diagrams

Port

-_container : Enfity
+Port()

+Entity() +getContainer() : En
+getPortList() : List #_link(r : Relation)

"= ComponentEntity e . B
-

-

-_container : CompositeEntity -
+Componen{Entity(container : CompositeEntity, name : String}
+getContainer() : CompositeEntity

+isAtomic() : boolean

Lee 04: 7

Instance of ProcessThread Wraps Every Actor

«intorface» Intert
y.actor.E i Actor javalang. Thread

— actor.D
e pronEaze]) J “gelDimciory) : Dirociod  L+un)
oo
sprefvel) LT 4-1
iy
-+postiire()

H
iptotemy.kernel.util.PtotemyThread

plolemy.actor. Pro Director ﬂm‘wgg'ng
faciftios

+initiakueveCapacity : Parameter
+maximumQueueCapacity : Parametar '9

P Di inar : C. Enti name : String)
actortackad({raceiver : ProcessRocsiver)

wapa plolemy.actor. P Thread

-_actor : Actor

(raceiver : ProcessRecsver) [~ Groaies i infaze() |- director : ProcassDiroctor
addNewThread{thvead : ProcessThread) +ProcessThread(actor : Actor. director : ProcessDiactor)

A Nmartk 0 : book +getActor() : Actor

aawxcu:asu:pped%mdm [ +wracpu()
decreaseActiveCount
_gatActiveActonsCount() : int
_getBlockedActorsCount() : int

I

-reschveDeadock() " Lee D4:8




ProcessThread Implementation (Outline)

8

Lae 04

fire() Method of an Actor

ical

Typ

o

does depends or

ic: what i

morphi

.l.m

ane

the get{) methad biscks i

e, and

?|
v

Feirns

B

alw:

Lae O4: 10




Sketch of get() and send() Methods of IOPort

localke

;

Ports and Receivers

7
«lnterfacen o
Actor iCPort
ptolemy.actor.Director] +getDirsctory) : Directon +get{channelindex : int) : Token
+hasRoom(channelindex : int) : bool
+hasToken(ch lindax : int) : bool
f+sinput() : boolean
+isOutput() : boolean
+scnd(channelindex : int, token : Token)
«interfaces
Racoher
ereates 1
\

i \

1 +get(}: Toksn ‘

\  |+getContainery) : 1oPo(t

1 +hasRoom() : boolean \,

i\ |vhasToken() : boolean \

\ 1+putft: Token) Y

5‘ +setContainerport . IOPY

i

!

Lee 84:12




ki\'\“:wc\-:c\

Les 04: 13

get() Method (Simplified)

promeesesenem

R O R TR
s T

1\1%;« 2 AT s,

A

B

BRI O

?

R

305

. Lee G4 14




put() Method (Simplified)

. :
errelo viener § o
GONIOLZRY

.
~

2de

e $1Y o e
DUNBIOCNL

. By z .. o in @ i
Slocked = falss; 4

-3 &g HER
notifvalliil:

,..
n

®

©
»
-
m

Subtleties

o Director must be able o detect deadlock.
+ It keeps track of blocked threads

o Stopping sxecution is fricky
+ When to stop a thread?
# How to stop a thread?

o Non-blocking wiites are problematic inn practio
# Unbounded memory usage
% Use Parks’ strategy:
- Bound the buffers
* Block on writes when buffer is full
- On deadlock, increase buffers sizes for actors blocked on writes
- Provably executes in bounded memory if that is possible (subtle).

Leg 4. 16




Stopping Threads

“Why is Thread.stop deprecated?

Becauss it is inherantly unsafe. Stopning & thread causes i to unlock alf
the moriters that it nas locked. {The menitors are unlocked as tha
ThreadDeath exgeption propagates up the stack ) if any of the objects
praviously protected by these monitors were in an inconsistent state, other
threads may now visw these objects in an inconsistant state. Such objects
are said to be damaged. Whan threads aperate on damaged objecis,
arbiirary behavior can result. This behavior may be subtie and difficult to
datect, of it may be proncunced Unlike ather unchecked excaptions,
ThreadDeath kilis threads silently; thus, the user has no warning that his
program may be corrupted. The corruption can manifest itself at any time
after the astual damage occurs, even hours or days in the future.”

Java JDK 1.4 documentation.
Thread.suspend(} and resume{) are similarly deprecaied.
Thread.destroy() is unimplemented.

Lea 04:17

Properties of PN (Two Big Topics)

o Assuming “well-behaved” actors, a PN network is
determinate in that the sequence of tokens on each
arc is independent of the thread scheduling strategy.

+ Making this statement precise, however, is nontrivial.

o PN is Turing complete.
# Given only boolean tokens, memoryless functional

actors, Switch, Select, and initial tokens, one can
implement a universal Turing machine.

« Whether a PN network deadlocks is undecidable.
= Whether buffers grow without bound is undecidable.

Lee 04 18




Question 1:
Is “Fair” Thread Scheduling a Good ldea?

in the following model, whatl happeans i every thread is
given an equal opportunity to run?

Leas 04 10

Question 2:
Is “Data-Driven” Execution a Good ldea?

in the following model, if threads are allowed o run when
they have inpui data on connecled inputs, what will
happean’?




Question 3:
When are Outputs Required?

is the sxsculion shown for the following moded the "right”
execution?

Question 4:
Is “Demand-Driven” Execution a Good ldea?

in the following model, if threads are allowed to run when
another thread requires thelr ouiputs, what will happen’

Lag O4: 22




Question 5:
What is the “Correct” Execution of This Model?

Lea 04 23

Question 6:
What is the Correct Behavior of this Model?

Lae O34 24




Summary

o Process Networks (PN) are an aliractive concurrent
modei of computation.
o Basics of an implementation using monitors is
straightforward, bui there are some sublleties:
# How to detect deadlock
» How to keep memory usage bounded
» How (or whether) to get faimess
* What thread scheduling policies are correct?
» What does “correct’ mean?

tes 04: 25
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Lecture 5: Extending Plolemy i

Background for Ptolemy I

Sabrie! (19685-i891)
= Written in Lisp
» Aimed at signal processing
+ Synchronous dataflow (SDF) block diagrams
= Parallel schedulers
= Code generators for DSPs
= Hardware/software co-simulators
Piclemy Classio ($598- 1857}
= Wiritten in C++
+ Multiple models of computation
= Hierarchical heterogeneity G (1997-7
= Dataflow variants: BDF, DDF, PN L o
+ CHDUDSP code generators ¥ Java plotling package
= Optimizing SDF schedulers Tyoha {1998-1558)

+ Higher-order components = Itel/Tk GUI framework
Pilerny § (1996.-202%) P {1998-2000)
+ Written in Java + Java GUI framework

+ Domain polymorphism

+ Multithreaded

< Network integrated

* Modal models

< Sophisticated type system
« CT, HDF, Cl, GR, etc.

fee 052




Framework Infrastructure that Supports Diverse
Experiments with Models of Computation

Direcior fram a i

isual aditor suppor

The Basic Abstract Syntax

Attributes

« Actors
- Attributes on actors (parameters)
» Ports in actors

« Links between ports

= Width on links (channels)

» Hierarchy

Attributes

Concrete syntaxes:

« XML

« Visual pictures

= Actor languages (Cal, StreamiT, ...)

Lag 354




MoML
XML Schema for this Abstract Syntax

Piolemy H designs are represented n XML:

Ly namer”

amorolany

Lee 5. 6




Kernel Classes

Support the Abstract Syntax

NamedObj

CrossRefList
1.1
Port 1.1
w = 1.4
-_rotationsUst : CrossRefList 1.1
+Port() .
H-Port(w : Workspace)
.n [*Pot{containg : Ently, name : Sting) gy . Ralation
orts() :
jeisUinked(r : Relaion) : bootean o.n -_portList : CronsRefList
+isOpeque() : boden [+Retas
(HinkedRetagons() : Enumeraton 0.n |+Resseniname : Sting)
+ink(e : Ratation) namoa : Sting)
ferumiinis) : int WK |sarkePortsq): :
esctContainer(c : Entty) xcopd : Por) :
[+unlink(r : Relaan) .;,";‘Jmo:m ) .
m [+untinkAR()
j#_tnk(r : Retason) #_chockPortlp :
4" petPortList{) : CrossRefust

How can this be made safe?
o Workspace class

o ChangeRegquest class

o stopFire() method

Concurrency Management Supporting Dynamic
Model Structure

Changes to a model while the model is executing:
o Change parameter values
o Change model struciure

Lee 35: 8




Workspace

cintorface» 3
Namoabio ‘
WGY
% B
NamedObj p Workspate
e . |~_Grectory : LinkedList
._atributss : NamadList -_name : Sting
0 : W - _readers : Hashtable
-_readOnly : boolean
«_writer : Thread
Every Ob}""{:t :wmmo(m Sting)
QMMZ
(30‘.0. s po, i +dascriplon(dotall : inl) : Sting
f+directorylist() : List
aitribute, s dorotonding)
relation} has  [resReadccessd
an immutable  [[Sfytetccend
referenCe D @ [t naetoo
workspace, etRoadoniyd :boclean)
+waifobj : Object) -
" : int, indent : int, bracket : Iny : Sting

«interfacen

ChangeRequest

omcwnwr’f : ChangeListensr)

Otject | hang 0
. i D. geR :bocksn
Changes to g —— B, Changed : Changelistensn)
maadefare [T s : ChangeRequesy
raguasion by 5 -
reques{change I
13 (,hfu‘mt } SR N
20 dl’l "’t.«jﬁ' “ ht’ craales e
el b i !
#_chanpelisteners : List
[ -t
Chengeisquast exacites o changs | ‘](
w TSty change mquest to container
-_srorRepartsd : boolesn
-_sceplion : Exception
; :::ma:; Lh‘ «Irerface»
|-_persistent : bodsan
|-_source ; Object
[+ Chang oo 06 TSting)| Mottesof S
:“mchmg.ummmmr:cmal&hn-o +changeFaiied| : ChangeRequest, emor : Exception}

[+isPorsistant() : bcolun

hangal
wnmpﬁm(qu su(ng)
.swmm(w I.ko

waitF orCompletion)
[#_axwocute)

Lee 35: 10




When to Execute Change Requests

in many modeis of computation, there is a natural time! between
iterations.

tn PN, this is not a trivial guestion. ..

o All threads must be siopped {blocked)
¢ Onreads
« On writes to full buffers
« Or block themselves with a wait()

o What happens when the model structure changes during & call

YAty

10 gati)’?

Les 05 11

ProcessThread with Pauses for Mutations

whiletitesava) |
if (_director .isStopFireRequasted()) {
synchronized (_director) {
_director ._actorHasStopped() ;
while (_di:actor.isstopFireRequestad()) {
tzy {
workspace.walt(_diractor);
) catch {InterruptedException¥gx) {
break;
}

}
_director._ actorHasRestarted():

o6 5 12




Abstract Semantics

of Actor-Oriented Models of Computation

execution control data transport

firg(} Pt (
£1 \ . R
Y CtoPort \ <
N\ Y ‘ioRetation | Recsiver
N Actor {{inside port)

Actor-Oriented Models of
Computation that we have
impiemented:

+ dataflow (several variants)

+ progcess networks

« distributed process networks
» Click {push/puil)

* continuous-time

« CSP (rendezvous)

* giscrete events

= distributed discrele events

+ syncironous/reactive

» time-driven (several variants)

EA

Object Model for
Executable Components

tEntity
CompositeEntity

«interfaces «lntarfaces
Exscutable <3 | Actor
Ci
+firaf) +getDirectory) : Diractor
+initialize() +gotExecutivaDirector() : Diractof
*pmﬂra{)):boum  sinputPontList) : List — A
+prainitialize() +newRaceiver() : Recelver
|+stopFira() +outputPortList() : List
+terminate() A A
[+wrapup() ] -
Iy
!
..

Diractor AtomicActor

]
-

CompositeActor

Lee 35: 14




Object Model (Simplified) for
Communication Infrastructure

{OPont

0.1

==

£>f ol : Token) <3

o‘nl

shtortaces

+getf) : Token
+gatContainer() : I0Port

+hasRoom{) :
+hasToken{} : boolean

1

+satContsinarpor : I0Po1}

»

eintedoce»

Maibox

SDFRacelver

N

1.4

1.1 RFCQueue

AcrayFIFOQuous

Lee 08 15

Object-Oriented Approach to Achieving Behavioral

Polymorphism

«Interface»
Receiver

+gel() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+pul(t : Token)
+setContainer{port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

I0Port

producer
actor

consumer
actor

Receiver

fee 05: 16




Extension Exercise

Buiid & diractor that subclasses PNDirector to aliow ports to alter
the “blocking read” behavior. In particular, if a port has a parameter
named "teliTheTruth” then the receivers that your director creates
stould “tell the trih” when hasToken{) is called. Thaiis, instead of
always returning true, they shouid retum true only if there is a tokan
in the receiver.

Parameterizing the behavior of a racelver is a simple form of

communication refinement, a key principle in, for example,
Metropolis,

Les 00 17

Implementation of the New Model of Computation

package experiment;
import ..

public class NondogmaticPNDirector extends PNDirector {
public NondogmaticPNDirector(CompositeEntity container, String name)
throws IllegalActionException, NameDuplicationException {
super (container, name);
}
public Receiver newReceiver() {
return new FlexibleReceiver():;
}
public class FlexibleReceiver extends PNQueueReceiver {
public boolean hasToken() |{
IOPort port = getContainer();
Attribute attribute = port.getAttribute("tellTheTruth"):
if (attribute == null) (
return super.hasToken();
}
// Tell the truth...
return _queue.size() > 0;

Leg 05, 18




Ptolemy Il Software Architecture
Built for Extensibility

Ptolemy i packs
have carefully
construcied
depeandencies and
interiaces

bes 0518

<

Hierarchical Heterogeneity

Dhiractors are domain-spacific. A composite ao

ot i
with a director becomes opaque. The Manager i

main-independent

184

Opaque Transparen
Composite Composit
Acto

V- hiancce [y

D1: local director

fee 05 20




: ArsoCaure
Aol

» [iata golymorphic componants : frersrssasoned

« Behaviorally polymcerphic commnehfs rewrion

UML package
diagram of key
actor lihraies
included with
Polemy 4.

Polymorphic Components - Component Library Works
Across Data Types and Domains

Data polyrmorphisn:
« Add numbers (int, float, double, Complex)
+ Add strings (concatenation)
« Add composite types (arrays, recards, matrices)
# Add user-defined types

Rahaviorzl polymorntiss

&
»>

e

In dataflow, add when all connected inputs have data

In a time-triggered model, add when the clock ticks

In discrete-event, add when any connected input has data, and add
in zero time

In pracess networks, execute an infinite loop in a thread that blocks
when reading empty inputs

In CS:’, execute an infinite loop that performs rendezvous on input or
outpu

In push/pull, ports are push or pull {declared or inferred) and behave
accordingly

In real-time CORBA, priorities are associated with ports and a
dispatcher determines when to add

Lee (5:22 ]




Shared Infrastructure
Modularity Mechanisms

More Shared Infrastructure: Hierarchical
Heterogeneity and Modal Models

| example Plalemy I moded: hybrd cantra! syslem fae 05 24




Branding

Fiolgry H oo
Fig i&r..y i roda;

o WEINOME Wit

< halp menu contenis

¢ tibwary conianis

o Fila->Naw £nn Qonienis
o deinul rodel sinectyre

o el

=i objectives.

Ptolemy Il Extension Points

Define actors

Interface {0 foreign {ools {(e.g. Python, MATLAB)
interizcs {0 verification tools {s.q. Chic)

Define actor definition languagss

Define directors {and modeis of computation)
Lefine visugl edilors

Define textual syntaxes and edifors

Packaged, branded configurations

SO0 0 0 0 0 0 0

Al of our "domains”™ are axtensions buili on a core
infrastruchurs,

Leg 3526




Example Extension: VisualSense

« Branded

« Cuslomized
visualization

« Custornized model of
cornputation {an
exiansion of DE)

» Cuslomized astor
fibrary

» Maiivated saime
exiansions to the core
ie.g. classes, icon
editor),

=
"

o

[&]
o
V]
~1

Example Extensions: Self-Repairing Models

Concept demonsirabor
Hulit together with Bosing
iC show now o wiile
actors that adaptively
rELONS f oot
when e model structurs
changas.

HHS

Leeo 35 28




Example Extensions
Python Actors and Cal Actors

Fie e
star PrimeSieve ()
int Imput ==> int Qutput:

s . . 7
Cal iz an experimantal language '?a}--'
defining aciors that is anaiyzabie |

key behavioral properties. P e g
bwde=0

end

action [a) ==> (0] guard filcer(a) end

action [a) == (8] quazd not filtacia)
var £ = filter

do

filter ;= lembde(Integer b}z t(b) or favides(m, b) end;

| action (a) ae> [-1] mnd

bes OF: 20

Example Extensions
Using Models to Control Models

Pz iz an

componant,” or an actor that




Examples of Extensions
Mobile Models

Modei-based disiributed task management:

Yang Dhae
Streve Neusndorifer
Xizojun L

i

PushConsumer actor receives pushed
dala provided via SORBA, where the data
is an X#L model of 2 signad analysis
atgorithim,

MobileMode! actor accepis a StringVobken
containing an XML description of a
model, it then exenutes thati modef on 2
stream of input data,

Examples of Extensions
Hooks to Verification Tools

rabarti
Motsikeudis

,...
W

(4]

Pl
@
=y
13




Examples of Extensions
Hooks to Verification Tools

puue TO, 70, 62

Leas 05 33

Examples of Extensions
Hooks to Verification Tools

;uqd 1219 €000t 410 WHHUNFCS Beckaea EDU
-W‘Iﬂ Maﬂ;_gw 3. cerhoiey @ity sendam TR for yndutes
ROt au-ww-v’m

RTNINE RSN

I 2O Qem:ﬁ'.h # uBnersty of Citorny
AL MIGHTS RIDERVED
X [P W rean fhwx-rs;m!’w&m..,
acs Bgchz s read
3




Getting More Information: Design Document

PIOLEMY I

RETERGGENEQTS
CONCERRENT

MOELING AN

PTOLEMY I
RETERGOTNEQLS
CNCERRENT.
MUPELING AND

PICLEMY 1]

HETEROGENEOVS
CONCUBRENT
MIEBELING AND

DESIGN LN JAVH DEXRGN I 24174 LRENUGN IN 345
. Seriin G, 80 L S 85 s KA B i anvitianiudnges | B ek Mt e ina
o o, Mo Koct v Bt ~ DEORASRIERLEIRYE, Nreviahe vcedes Peyeevns |
VTHXME D IO W EXREATY | i ape 2L RHY L SN DKL ARCANTCTCRY | VRIS 15 F N EHE R IRRARS

o ; -
"+ st LI S S P RS T S
e i A e, "
e -

e XA £ s o
R AN

Lfnvasrreesals:

Voliime Z: Volime 3

Piolemy i provides considerabie infrastructure for
axperimeanting with models of computation.

Log 25: 26
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Lecture 6: Process Netwarks Semantics

PN Semantics
Where This is Going

A signal is a sequence of values
Define a prefix order:

all a
means that x is a prefix of y.

Actors are monofonic functions:

Stronger condition: Actors are condinuous functions
(intuitively: they dont wait forever {0 produce oulputs).

Lee 06: 2




PN Semantics of Composition (Kahn, '74)
This Approach to Semantics is “Tarskian”

if the components
are deterministic,
the composition is
deterministic.

AN
fe=x N\

Fixed point theorem:

» Continuous function has a unique least fixed point
» Execution procedure for finding that fixed point

+ Successive approximations to the fixed point

What is Order?

intuition:
0<1

5 1<
child < parent
child > parent
11,000/3,501 is a better approximation to = than 22/7
integer » is a divisor of integer m.
Set 4 is a subset of set B.

ot

‘.
(Ve

Which of these are partial orders?

Leg (6. 4




Relations

o AvrelationR fromAto Bis asubsetofAx B

o A function F from A to B is a relation where
(@a,b)e Rand (a,b’) e R=>b=b"

o A binary relation Ron A is a subset of 4 x 4

A binary refation R on A is reflexive if

YaeAd, (a,a)e R

o A binary relation R on A is symmeiric if
(a,b)e R=>(b,a) e R

o A binary relation R on A is antisymmetric if
(a,b)e Rand (b,a) e R=>a=b

o A binary relation R on A is fransitive if
(a,b) e Rand (b,c) e R=>(a,c) € R

(o]

Les OG: 5

Infix Notation for Binary Relations

o (a,b) e Rcan be writtenaR b

o A symbol can be used instead of R. for examples:
s<c Nx N is arelation.
#(a,b) € < iswritten a< b

o Afunctionfe (4,B) carnbewrittenf:4 > B

Lee 06: 6




Partial Orders

A partial order on the set 4 is a binary relation < that is:
Foralla, b,ce 4,

o reflexive: a<a

o antisymmetic: a<bandb<a=a=b

o ftransitive: a<bandb<c=a<c

A partially ordered set {poset) is a set 4 and & binary
relation <, written (4, ) .

£
(2]
8
~

Strict Partial Order

For every partial order < therg is a strict partial order <
where a<b Haadonlyif a<b and a#b.

A strict poset is a set and a strict partial order.

Lee 06: 8




Total Orders

Efements g and b of a poset (4, <) are comparable if
gither a<b or b<a. Otherwise they are incomparable.

A poset (4, <) is tolally ordered If every pair of elements is
comparable.

Totally ordered sets are also called finearly ordered sets
and chains.

A well-ordered set is a chain such that svery non-smply
subset has a least element.

Le 06: 9

Quiz

1. s the set of integers with the usual numerical ordering
a well-crdered set?

P

Given a set 4 and its powerset (set of all subsets)
P(A), is (P(A), c ) a posst? A chain?

For 4= {a, b, c} (a set of three lettars), find a well-
ordered subset of (P(4),<).

)

Lee 06: 10




Answers

1. Is the set of integers with the usual numerical ordering
a well-orderaed set?
No. The set itself is a chain with no least element.

Given a set 4 and its powerset (set of all subsets)
P(4), is (P(4), c ) a posel? A chain?
i is a poset, but not a chain.

N

3. Ford={a,b,c} (asetcf thres lstters), find a welil-
ordered subset of (P(4), ).
One possibility: {QD, {a}, {a, b}, {a, b, c}}

Lae 06: 14

Pertinent Example: Prefix Orders

Let 4 be a type {a set of values).
Let 4™ be the set of all finite and infinite sequences of
elements of 4, including the empty saequence L {(bottom).

prefix of b. That is, for ali n in N such that a(n) is defined,
then b(n) is defined and a(n) = b(n).

This 35 called a prefix order.

During execution, any output of @ PN actor is a well-

Lec 06: 12




Join (Least Upper Bound)

An upper hound of a subsel B ¢, 4 of a pusel (4, ) is an
element ae 4 suchthatforallbe Bwe haveb<a.

A least upper bound (LUB) or join of B is an upper bound
a such that for all other upper bounds a'we havea<a’

The join of B is written v B.

When the join of B exists, then B is said to be joinable.

Lee 06 13

Meet (Greatest Lower Bound)

A fower bound of a subset Bc 4 of a poset (4, 5)is an
element ae 4 suchthatforallbe Bwe havea<b.

A gregiest fower bound (GLB) or meet of Bis a lower
bound a such that for all other lower bounds o' we have
a'<a.

The meet of Bis written A B.

When the meei of B exists and is in B, then B is said {o be
wefl-founded. In this case, we call A B the “bottomy” of B

and often write it L.
Lee 06: 14




Example of Join and Meet

Exampie: Given a set 4 and its powerset {set of alt
subsets) P(4), then (P(4), c) is a poset. For any Bc P(A),
we have

v B = U B (the union of the subsels) and

A B = N B {the intersection of the subsets)

Les 06 16

Complete Partial Order

A complete partial order {CPO) is a well-founded partialty
ordered set whers every chain is joinable,

Exampla: (N, <) is not a CPO.
Example: (N U {wo}, <) is a CPO.

» The bottom element is the empty sequence.
# The join of any infinite chain is an infinite sequence.

s A"is the set of all finite sequences.

ieg 06; 16




Monotonici

Let(4,<)an

A function /1

-
-

Example: PP

-

o

...4..»»:‘;& .

PN Actors:

Set of signal

Actors are iy

CThis is a time

‘{Order Preserving) Functions

4 (B, <) be posels.
-A— B is calied monotonic if

agad = f(a)<f(a')
i actors are monotonic with the prefix order.

bes 06 17

-are Monotonic Functions on a CPO

53 with the prefix order is a CPQO.

annotonic functions:

at=a = f(a)t f(a')

idess causality condition,

Lee 36: 18




Example of a Non-Monotonic but Functional Actor

Unfair merge . 4 x A > A where (4, [ ) is & poset

a if aisinfinite
f(a,b)= {

ab otherwise

where the period indicates concatenation.

Exercise: show that this function is not monotonic under
the prefix order.

bLes 06: 18

Fixed Point Semantics

type 4

~gequence in A°

Start with the empty sequence.
Apply the {monotonic) function.
Apply the function again to the resull.
Repeat forever.

The result “converges” to the least fixed point.

fee 06: 20




Fixed Point Theorem 2

Lel 14— A4 bs a manotonic function on CPO 4.
Then f has aleast ixed point.

Take the “meaning” or "semantios”

of this process network {o be {hst

the (one and only) signal in the system
is the least fixed point of f.

Les Of: 21

Conclusion

P actors that gre “causal” are monotonic functions on
the CPO of sequeances with the prefix order.

The semantics of a PN modsl with an aclor feeding it
own output back to s input i the least fixed point of the
actor function.

haxt time: Give a procedure for finding the fixed point
ind generalize to arbitrary process nelworks.

n

fLeg 06: 22
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Lecture 7: Condinucus Functions and PN Compasition

PN Actors are Monotonic Functions on a CPO

- f(a)
~ /(@)

e

Set of signals with the prefix order is a CPQO.

Actors are monotonic functions:

Ca = f@Ef(a)

This is a timeless causalify condition.

leg 37:2




Continuous (Limit Preserving) Functions

Let (4, <)and (B, <) be Ci*0s,
A function f: 4 - B is called continuous if for all chains
Cc A,

FvO)=vf(C)

Notation: Given a function /. 4 — B, define a new
function f:P(4)—> P(B),whereforany Cc A4,

~

F(©)={be B|IceCst. f(c)=b)

La 07:3

Continuous vs. Monotonic

Fact: Every continuous function is monotonic.
» Easy to show (consider chains of length 2)

Fact: If avery chain in 4 is finite, then every monotonic
function /. 4 - B is continuous.

But: if 4 has infinite chains, the monotonic does not imply
continuous.

Log 07 4




Counterexample Showing that
Monotonic Does Not Imply Continuous

Letd=(Nu {o}, <) {aCPO).
Letf. 4 —> A be given by

1 if a is finite

f(a)={

2  otherwise

This function is obviously monotonic. But it is not
continuous. To see that. let C= {1, 2, 3, ...}, and note that
v C = o, Hencs,

fivO)=2
vf(O)=1

which are not equal.
Lea 07:5

Intuition

Under the prefix order, for any monotenic functions that is
not continuous, there is a continuous function that yields
the same result for every finds nput.

For practical purposes, we can assume that any
monotonic function is continuous, because the only
exceplions will be functions that wait for infinile input
hefore praducing output.

Lee 07 &




Fixed Point Theorem 1

et (4, £)be a2 CPG with bottom L
Let /- A > A be a monotonic function
Let C={f"(Ll),neN}

o If fis continuous, thenv C= f(v C)
o H vC= f(v (), thenv Cisthe least fixed point of f

intuition: The least fixed point of a continuous function
is pbtained by applying the function first to the emply
sequance, then to the resuit, then fo that result, etc.

Lea O7. 7

Proof (Continuous Part)

Note that Cis a chain in a CPO (show this) and hence
has a LUB v C.

let O'=Cu{Ll}andnotethatvC=v C.

Note further that f(C")=C and hence v f(C')=VvC
By continuly, v f(C') = f(vC") = f(vO)

Hence vC= f(vO)

QED { v Cis afixed point of [}

Lee O7: 8




Proof (Least Fixed Point Part)

NOTE: This part does not require continuity.

Let a be another fixed point: f(a)=a
Show that v Cis the least fixed point: v C<a
Since fis monotonic:

1<a

S <f(@=a

SHL) < Ka)=a
8o ais an upper dound of the chain C, hencevC<a.
Le2 07:9

Fixed Point Semantics

type 7

-sequence inT”

Start with the empty sequence.
Apply the {continuous} function.
Apply the function again {o the resuit.
Repeat foraver,

G 0 O 0

The result “converges” to the least fixed point.

tee d7: 10




Fixed Point Theorem 2

Let /14> 4 be a monotonic function on CPO (4, <).
Then f has a least fixed point.

intuition: If a function is monotonic {(but not continuous),
then it has a least fixed poini, but the execution
pracedure of starting with the empty sequence and
iterating may not convergs to that fixed point.

This is obvious, since monotonic but not continuous
means it waits forever to produce output.

Les 07 11

Example 1: Identity Function

LetA=T" and f: 4> A besuchthat Vae 4,
f(a)=a.

This is obviously continuous {(and hence monotonic)
under the prefix order.

Then the model below has many fixed points, but only
one least fixed point {the empty sequence).

Lee 07: 12




Example 2: Delay Function
LetA=T" and /.4 —> A besuchthat Ya e 4,
f(a)=t.a{concatenation), wherere T.

This is obviously continuous {and hence monocionic)
under the prefix order.

Then the modsl below has only one fixed point, the
infinite sequencs (1, 4,¢,...)

Why is this called a “delay?” in the feedback loop, i
functions like Const. Lo 07: 1

Multiple Inputs or Outputs

What about actors with multiple inputs or outputs?

Lee 07 14




Cartesian Products of Posets

Let (4, <)and (B, <) be CPOs.
Then 4 x B is a CPO under the pointwise order.

Pointwise order: (a,, b)) <(ay b,) © a,<a,and b, < b,

Contrast with lexicographic order:
(a), b)<(ay b)) @ a<a,ora,=a,and b, < b,

Exarcise (homework): Determing whether 4 x Bis a CPO
under the lexicographic order.

Lae 0715

More Cartesian Products and Projections

Let (4, <) be a CPO.
LetAndenote A xAx ... x A, n limes

Then (4", <) is a CPO under the pointwise order for any
natural number n.

Foranya={a,,...,a,} ed"and ie {1, ... n}, define the
profection on ito be:

n;(@)={a,...,a,}

Lo 7. 18




Composing Actors

8o far, our theory applies only to a single agtor in a
feadback loop:

What about more interesting modeis?

Cascade Composition

Consider cascade composition: .

if f,:4— B and f,: B— C are monotonic
{or continuous) functions on CPOs 4, B, C, then
1, ° f, I8 monotonic {or continuous) (show this},

Mence, the exacution procedurs works for cascade
compaosition.

tee 7. 18




Cascade Composition
Reduces to the Previous Case

Parallel Composition

Consider parallel composition:

if 1:A—>B and f,: C—> D are monotonic

{or continuous) functions on CPOs 4, B, C, D, then
/i x f, is monotonic {or continuous) on CP0Os

Ax B, CxD.

Lae O7: 20




Cartesian Products of Functions

if fi:4> B and f,: C— D then the Cartesian product
isfixf,: AxB—>CxD.

§ A,B, C,D are CPOs thensoare AxBantd CxD
under the pointwise order.

Parallel Composition
Reduces to the Previous Case

Lo
Lee (7:22




More Interesting Feedback Compositions

Assuming f| and f, are monotonic, is f; monotonic?
Assuming f] and f, are continuous, is f; continuous?
Assuming f] and £, are sequential, ig f; sequential?

Lee 07: 23

More Interesting Feedback Compositions

Assuming f, and f, are monotonic, is f; monotonic? ves
Assuming f, and f, are continuous, is f continuous? yes
Assuming f, and f, are sequential, is f; sequential? no

. Lee O7:24




Source and Sink Actors

Consider Actor1. its function is f: 4! > 4° where

A% s a singleton sef {a sel with one slement). Such a
function is always monotonic {and continuous, and
sequential).

Consider Actor2. lts function is f: 4 > 4. Such a
function is again always monotonic (and continuous, and
sequential). In fact, the function can only vield one
possible cutput sequence, since its domain has size 1.

Lea 07: 25

Composing Sources and Sinks

What about the following interconnection?

Leg 7: 26




Composing Sources and Sinks

Recall cascade composition:

Reorganized, this looks like cascade composition:

The codomain of £, and domain of f, are singleton sets,
s0 thers i3 no need {o show any signal.

Lee 07 27

Complicated Compositions

Simple procedure:

o
o]
<

Bring all n signails out as oulputs.

Feed back all n signals as inputs.

The resulting f: A" —» A" will be continuous if the
component functions are continuous.

Hence the model will have a least fixed point that can
be found by starting with all sequences being empty
and repeatedly applying the function f

Lae 03728




Conclusion

Contiruous functions compose, sequential functions do
not.

impiementing sequential functions is sasy (blocking
reads}. implementing continuous functions can be hard.

bLes 07: 28
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Lectura 8: Execation of Process Networks

Semantics of a PN Model is the Least Fixed Point
of a Monotonic Function

o Chain: C={f(L),7 (SN ..., /L), ...}

o Continuity: f(vC)= v f (&)

?

. /
I
.. f

y
Limits

iee 08:2




Applying This In Practice

Modal is a composition of actors
Each actor implements a monotonic function
The composition is a monotonic function
All signals are part of the “feeback”
Execution approximates the semantics by
¢ starting with empty sequences on all signals
¢ allowing actors to react to inputs and build output s

Actors execute in their own thread.
o Reads of empty inputs block.

c 0 O 0 0O

o

ignals

e 08: 3

Kahn-MacQueen Blocking Reads

Following Kahn-MacCQueen [1877], actors are threads
that implement blocking reads, which means that when

they attempt to read from an empty input, the thread
stalls.

# This restricts expressiveness more than continuity
= This still leaves open the question of thread schedu

ling

Lee 08 4




Blocking Reads Realize
Sequential Functions [Vuillemin]

Lelf: 4" - A™ be an n inpul, m output function.

Then [ is sequential if it is continuous and for any
a,bedrwherea<bthereexistsan ie {1, ... n},
where:

m; (@) = m;(b) = f(a) =1 (b)

intuitively: At all times during an exscution, there is an
input channe! that blocks further output. This is the Kahn-
MacQueen blocking read!

Lae OB: 5

Continuous Function that is not Sequential

Two input identity function is not sequential:

Letf: 42 > 42 suchthatforallae 42, f(a)=a.
Then [ is not sequential.

Lee 08 8




Cannot Implement the Two-Input Identity with
Blocking Reads

Consider the following connection:

This has a well-defined behavior, but an implementation
of the two-input identity with blocking reads will fail to find
that behavior.

Sequential Functions do not Compose

if f,:A—> B and f,: C— D are sequential then f, x f
may or may not be sequential. Simple example: suppose
£, and £, are identity functions in the following:

fLee 08. 8




Gustave Function
Non Sequential but Continuous

letd=T" whereT={{,f}.
Letf:43 > N* suchthatforalla e 43,

This function is continuous but not sequential,

Linear Functions [Erhard]

Function f: 4 —> B on CPOs is linear if for all joinable
sets Ccd, f(C) is joinable and

v f(C)= f(VO)

intuition: I¥ two possibie inpuls can be extended to a
common input, then the two corresponding outpuis can
be exianded {0 the commaon ouiput.

Fact: Sequential functions are lingar,
Fact: Linear functions are continuous {rivial)

Lee 08: 10




Stable Functions [Berry]

Functionf: 4 — B on CPOs is stable if it is continuous
and for all joinable sets Cc 4, f(C) is joinable and

A f” (O)= f(AC)  ~———— NOTE. meeil not joint

intuition: If two possible inputs do not contain
contradictory information, then neither will the two
correspanding outputs, '

Fact: Sequential functions are stable.

Lec J6: 11

Practical Questions

o When a process suspends, how should you decidg
which process to activate next?
o If a process does not {voluntarily) suspend, when
should you suspend i{?
o How can you snsure “fairness™? in fact, what does
“fairness” mean?
» All inputs to a process are eventually consumed?

= All outputs that a process can produce are eventually
produced?

= All processes are given equal opportunity to run? What
does “equal opportunity” mean?

- leeid8: 12




Consider a Simple Example

How can we prevent Actor2 from never suspending, thus
starving Actort and causing memory usage {o explode?

How can we prevent buffers from growing infinitely (data
is produced a higher rate than it is consumed)?

Naive answers:
= Fair execution: Give both actors equal time slices
+ Data-driven execution: When Actor2 produces, execute Actor1
« Demand-driven execution: When Actor1 needs, execute Actor2
« Bound the buffer between them and implement blocking writes.

Les 08 13

Undecidability [Buck, 1993]

Given the following four actors, and booclean data types
on the ports, you can construct a universal Turing

maching:

Consequence: The following questions are undecidable:
= Will a PN model deadlock?
#» Can a PN model be executed in bounded memory?

baniean
function

—Opes

dalay {produces
an initial token)

Lee 08: 14




Consequences

it is undecidable whether a PN muodel can execute in
bounded memory, so no terminating algorithm can
identify (for all PN modeis) bounds that are safe to use
on the channels.

A PN model tenmninates if every signal is finite in the least
fixed point semarntics.

it is undecidabie whether & PN model erminates.

Lea 08 15

A Practical Policy

o Define a correct execution (o be any execution for
which after any finite time every signal is a prefix of
the LUB signal given by the semantics.

o Define a usefuf execution {0 be a correct execution
that satisfies the following criteria:

;. For every non-terminating PN model, after any finite
time, a useful execution will extend at least one signal
in finite (additional) time.

If a correct execution satisfying criterion (1) exists that
executes with bounded buffers, then a useful
execution will execute with bounded buffers.

Lee (06; 16




Parks’ Strategy [Parks, 1995]

o Start with an arbitrary bound on the capacity of ail
buffers.

o Exeoute with both blocking reads and blocking wriles
{which prevent buffers from overflowing).

o If deadiock occurs and at least one actor is biockad on
a write, morease the capscity of at least one buffer to
unbicek at least one wrils.

¢ Continue executing, repsatedly checking for deadiock.

This is the strategy implemented in the PN domain in
Ptolemy H. Notice that it "solves” two undecidable
problems, but does so in infinite time.

Questions 1 & 2: (from lecture 4)
Is “Fair” Thread Scheduling a Good Idea?

A “useldl exsoution” will allow Ramp? o produce only
finite outpul.

iLee (8. 18




Question 3: (from lecture 4)
When are Outputs Required?

The “usaful exscution” is not changed by the mers act of
obsarving a signal.

Les OF 10

Question 4: (from lecture 4)
Is “Demand-Driven” Execution a Good ldea?

A useful execution of this is not frustrated by the lack of
daiz o Displaye.




Question 5: (from lecture 4)
What is the “Correct” Execution of This Model?

The PN Direcior optionally sllows you to specify an
overall bound on buffer sizes. This is a debugging tool,
not a change in the semantics!

Question 6:
What is the Correct Behavior of this Model?

A correct behavior of this model! (like the previous ong)
reqguires unbounded buffers.

Lee 08 22




A Deeper Question

How can procass networks be composed?

bes 08 23

Conclusion

o Processes with blocking reads realize zequentisl
funclions, a subset of monotonic funclions.

o Sequential functions are {regrettably) not
compositional.

o Deadlock and memaory requires are undecidable for
PN.

o Corract and useful exenutions can be practically
achieved despie this fact using Parke’ sirategy.

o Compositionality questions stili have {0 be addressed.

Lee 8. 24
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Computation for Embedded

Lecture 3: Convargence and Introdustion to Synchronous Models

The Convergence Question

¢ Correct execulion: after any finite ime every signal is a prefix of

the LUB signal given by ine semantics.
¢ Usefui exscution: a correct exacution that
1. Does not stop if at least one signal has not reach the LUB.
: Executes with bounded buffers if this is possible.
The Question: Does this execution “converge” to the LUB?

Lee 09. 2




Convergence in the Reals

Consider a seguence of real numbers:

S:N>R
This sequence is said to converge {0 a real number g if
for all open sels 4 containing a there exists an integer n
such that for all m > n the following holds:

s(m)e A4

Standard Topology in the Reals

An open neighborhiood around a in the reals is
{xeR|a-e<x<a+e}

for some positive real numbere.

An open set A in the reals is a subset of R such that for
all a € 4. there is an open neighborhood around a that s
a subset of 4.

The collection of open sats in the reals is called 5
iopoiogy.

Leg 00 4




Topology

Let X be any set. A collection 1 of subsets of Xis called a
topology if:

o Xand @ are members of t
o The intersaction of any two members oftisin
o The union of any family of members oftisin 1

For any topology 1, the members of 1 are called its open
sets.

The sat of open sels in the reals is a fopology.

Lee 38: 5

Scott Topology

Consider asel T and the set T of gl finite and infinite
sequences of elements of T.

Given a finite sequence t e T, an open neighborhood
around ¢ is the set

N={reT|rcs

Let 1 be the collection of all sets that arbitrary unions of
open neighborhoods.

Fact: 1 ig a topology.

Lee (9. 6




Limit of a Sequence of Sequences
(Convergence in the Scott Topology)

Consider a sequence of sequences;

s:No>T"
This sequancs is said to converge {0 a sequence a if for
all open sets 4 containing a there exists an integer n such
that for all m> n the following holds:

s(m)e A

intuition: For any finite prefix p = a, the sequenses ins
eventually alt have prefixp .

Lee 08:7

Consequences for Process Networks

o “Correct” executions of process networks do not
necessarily converge to the LUB semantics.

o This is because “correct” executions allow any signal
to be evaluated only to a finite prefix of the LUB
semantics.

o Butif leaving the execution at g finite prefix were
“incorrect,” then it would be incorrect for Plolemy i o
stap the exacution when you push ths sitop bution.
This would be counterintuitive.

Lee 9 8




Convergent Execution vs. Correct Execution

o A “oonvergent” exscution of the above modsd is
Impoes sibie with finite Memaory.

o A "correct” and “useful” execution is possible and
practical,

Which do you prefer?

Les 08: 8
Synchronous Languages
o Esterel
o Lustre
o SCADE {visual edifor for Lustre)
o Signal
o Statecharts {some varianis)
o Plolemy H SR domain
The modal of coms sutation i called synchronous
reactive (SR} |t has strong formal properties {many

key qusstions are decidabla).

Leg 8. 10




Thiz SCADE fool has a code

generatoer that produces C or ADA
Lustre/SCADE gﬁilﬁ: that is cu—-rﬂmﬁam with the DO-
1788 Lavai A slandard, which
aitows it io be used in critical
avionios appiicaiions (ses
htip i rica.org).

from pitpiwway estersitechnolzgies.com/f

SR Domain in Ptolemy Il

At each tick of a global "clock.” svery
signal has a vaiue or is absent.

o080 LIBTOTIEI AVAEIN
absent
2]
1
=

The iob of the SK director is to find the

vaiue at each tick,

19 &

Lee 38 1




The Synchronous Abstraction

o “Model time” is discrete: Countable ticks of a clock.
o WRT model time, computstion does not take time.

o All actors execute “simultaneously” and
“instantaneously” (WRT to model time).

o There is an obviously appealing mapping onio real
time, where the real time belween the ticks of the
clock is constant. Good for specifying periodic real-
time tasks.

o
o

Properties

o Buffer memory is bounded {obviously}.

o Hsance the model of computation is not Turing
complete.
# ... or bounded memory would be undecidable ...

o Causality loops are possibls, where at a Hek, ihe valus
of one or more signals cannot be determined.

Lae O 14
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Cycles

Note that there are cycles in this graph. so that if you
require that all inputs be known (¢ find the cufput. then
this cannot execute.

The "non strict” actors are key: They do not need o know
all their inputs to determine the outiputs.

N3nSinctL ogaFunsbond Nor S8 <thwray

iee 08: 17

Simple Execution Policy

At each tick. start with all signails "unknown.” Evaluaie
non-strict aciors and source aciors. Then keep evaluating
any actors that can be evaluated untii all signais become
known or uniii no further progress can be made.

Q: How do wsa Know this will work?

A: Legst fixed poin: semaniics.

Lee 09: 18




Conclusion and Open Issues

o “Correct” and “useful” executions of process networks
do not necessarily converge to the denotational
semantics of the model.

o Butinsisting on convergence may cause an execution
to fail on a finite memory machine that could have
executed forever.

o Synchronous/Reactive languages are promising
alternatives where termination and boundedness are
decidable.

Lee 09: 19
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Cycles

Note that there are cycles in this graph, so that if you
require that all inputs be known to find the output, then
this cannot execute.

The “non strict” actors are key: They do not need to know
all their inputs to determine the outputs.

NonStrictl.ogickuactond| NonSkDeloy

Lee 10: 3

NonSct.ogcFunctond |

Non-Strict Logical Or

The non-strict or (often called the “paralle! or”) can
produce a known output even if the input is not
completely know. Here is a table showing the output as a
function of two inputs:

input 1

i c F T

v - 4 £ T
o~

1K . £ F T
a
£

i F T

T T T T T

Lee 10: 4




Simple Execution Policy

At each tick, start with all signals “unknown.” Evaluate
non-strict actors and source actors. Then keep evaluating
any actors that can be evaluated until all signals become
known or until no further progress can be made.

Q: How do we know this will work?

A: Least fixed point semantics.

Lee 10: 5

The Flat CPO

Consider a set of possible values T= {¢,, ¢, ... }. Let
A=Tu{l, ¢}
where L represents “unknown” and g represents “absent.”

Let (4, <) be a partial order where:
o l<e¢

o foralltinT, L<¢

o all other pairs are incomparable

Lee 10: 6




Hasse Diagram for the Flat CPO

1

Note that this is obviously a CPO
chains have a LUB)

All chains have iength 2.

Lee 10: 7

Monotonic Functions on This CPO

In this CPO. any function £ 4 > 4 is monotonic if
f(D=a#l = f(b)=aforall bed

l.e., if the function yields a “known" output when the input
is unknown. then it will not change its minc about the
outpui once the input becomes known.

Since &ll chains are finite. every monotenic function is
continuous.

ifee 0.8




Applying Fixed Point Theorem 1

~type T

At each tick of the clock

o Start with signal value L
Evaluate f(1)

Evaluate f( f(L))

Stop when a fixed point is reached

o 0 O

—valueind=Tu {l,¢e}

Unlike PN, a fixed point is always reached in a finite

number of steps (one, in this case).

Lee 10: 8

Causality Loops

What is the behavior in the following cases?
o f is the identity function.
f is the logical NOT function.

o
o f is the nonstrict delay function with initial value 0.
o

£ is the nonstrict delay function with no initial value.

tee 10: 10




Causality Loops

What is the behavior in the following cases?

o f is the identity function: L

o f isthe logical NOT function: L

o f is the nonstrict delay function with initial value 0: 0
o f is the nonstrict delay function with no initial value: €

Lee 10: 11

Generalizing to Multiple Signals

(s,' g) (g,0) (& 1) (O, g) (1, ¢€)

(e, %W 0) (L, 1) -

\

(L, 1)
product CPO assuming T= {0, 1}.
o The Cartesian product of flat CPOs under pointwise
ordering is alsc a CPO.
o All chains are still finite.
o Can now apply to any composition, as done with PN.

Lee 10: 12




NonSttel agicFuncsaond,

Non-Strict Logical Or is Monotonic = ——

The non-strict or is a monotonic function f:4 x4 —> 4
where A= {L,¢, T,F } as can be verified from the truth
table:

input 1

i £ F T

L 4 4 4 T
N

Sig i A F T
[=%
£

L F F T

T T T T

Lee 10: 13

Compositional Reasoning

So far, with both PN and SR, we deal with composite
systems by reducing them to a monotonic function of all
the signals. An alternative approach is to convert an
arbitrary composition to a continuous function.

Lee 10: 14




Example to Use for Compositional Reasoning

ACKN
Consider an actor: | ‘

'
i

Assume g, b, ¢ € A. where 4 is a CPO.
Assume that the actor function f: 4 x 4 — 4 is continuous
Consider the following composition:

Awr

EEg

I —

We would like to consider this a function from a to c.

lee 10: 1&

First Option: Currying
(Named after Haskell Curry)

Given a function f: A x 4 - A , we can alternatively think
of this in stages as f,:4 —>[4—> 4] where [4 — A]is
the set of alf functions from 410 4.

For the following exampie, for each given value of awe
get a new function £, (a) for which we can find the least
fixed point. That least fixed point is the value of c.

1
A3

x

tee 10: 18




Actur

Example: Non-Strict OR _El 1 g:]

Suppose fis a non-strict iogical OR function. Then:

o If a=true. then the resulting function f (a) always
returns true, for all values of the input b.

In this case, the least fixed point yields c¢ = frue.

o If a=false, then the resulting function f| (a) always
returns b, for all values of the input b.

In this case, the least fixed point yields ¢= L.

Lee 10: 17

Second Option: Lifting | .
(Named after Heavy Lifting) —

Given a function f: 4 x A —> A . we are looking for a
function g:4 — A such that
c=g(a)

In the model we have b=cand c=f(a,b)so

gla)=f(a, g(a))

This looks like 2 fixed point problem. but the “unknown”
on both sides is g, a function not a value. If we can find
the function g that satisfies this eguation. then we can
use it always to calculate ¢ given a.

Lee 10: 18




Posets of Functions

Suppose (4, <) and (B, <) are CPUs.

Consider functions f,ge [4—>B].

Define the pointwise order on these functions 0 be
f<ge Vaed, f(a)< gla)

Let X< [ A4 — B ] be the set of all continuous total

functions frcm 4 to B.

Theorem: (X, <) is & CPO under the pointwise order.

Proof: See handout.

Lee 10: 19

Least Function in the CPO of Functions

Let X< [ 4 — B] be the set of all continuous total
functions from 4 1o B. Since Xis a CPO. it must have &
bottom. The botiom is a function L,: 4 — B where for all
acA,

1, (a)=1,€eB




Consequence of this

-
Theorem |

Given a continuous function f: 4 x 4 — 4 , the function
g : A — A such that

c=g(a)
is the least fixed point of a continuous function
F: XX

where X c [ 4 — 4 ] is the set of all continuous total
functions from 4 to 4.

We need to now determine the continuous function F.

Lee 10: 21

Consequence of this
Theorem (Continued) — |
We need to find a function that g satisfies:

gla)=f(a,g(a))
Let X [ 4 — 4] be the set of all continuous total
functions from A4 to 4 and let F be a continuous function
F:X-X.

Then g € Xis the least function such that F (g ) = g where
all aed,

(F(g)(a)=f(a,g(a))
The theorem, with fixed point theorem 1, tells us that ¥
has a least fixed point, and tells us how to find it.

Lee 10: 22




Example: Non-Strict OR il
P Ay

Suppose f'is a non-strict logical OR function. Then:
true if a=true

(F(g))a) = {

g(a) otherwise

The least fixed point of this is the function f given by:

true if a=true

g(a)= {

L otherwise

To find this, start with F (1), then find F (F (1)), etc.,
until you get a fixed point (which happens immediately).

Lee 10: 23

Showing that F is Continuous

Need to show that given a chain of continuous total
functions C={ g, &, ... } that:

F(vC)=VF(C)

Forallae A4:
(F(vO))a)= (a,(vC)@)
= f(av{g (@), gx@),-}) s
= v} @ (8@, 8,@-) T
=(VF(C)Xa)

Lee 10: 24




Conclusion and Open Issues

o In SR, fixed point semantics is simpier than in PN
bacsuse the CPO has only finite chains.

o The fancier techniques of Gurrying and Lifting can be
appiied equal weli to PN. but we introduce them here
because the simpler CPQ makes them easier {0
understand.

o The fixed point semantics of SR talks only about the
behavior at a tick of the clock. The behavior across
ticks of the clock will require a clock calcuius.

Lee 10: 25
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Event Sources and Sinks

_~ The Clock actor produces events at regular
" intervals. It can repesat any finite pattern of event

s

Mauwmlm% values and times.
g

Possen us Aol The PoissonClock actor produces events at random
- ”n intervals. The time between events is given by an

- L

e b | —— €Xponential random variable. The resulting output
.@.‘.’:t random process is called a Poisson process. it has
the property that at any time, the expected time until
the next event is constant (this is cailed the
memoryless property because it makes no difference
what events have occurred before that time).

Tings P P/_,,The TimedPlotter actor plots double-vaiued
“] events as a function of time.

Lee 11: 3

Actors that Use Time

8 file- /s Awarkspace/pt III(Eocléochoclplotcmh]nrnninsfdeﬂibrwail ing...
Fie View Help

public class WaitingTime ]
extends DEActor

P This actor measures the time that events &t one input have to wait for events at another.
& Specifically, there will be cne output event for each watter mnput eveat. But the output
event is delayed until the next arrival of an event at wartes. When one or more events
- arrive at waifee, then all cvents that have arrived at warter since the last waitee (or since

the start of the execution) trigger an output. The value of each output is the time that the

Rugutac Waikng Time watter event waited for wartee. The imputs have undeclared type, so anything is
@ acceptable. The cutput is always a DoubleToken.

Porsson Waiing Pme

Lee 11: 4




Execution of the Transportation System Model

Average weiting tine (inx::m busses): 0.5763014962128
hverage waiting tize (Regulsr busses): 0.4936700971564

N N D O .:l passenger
4 waitime

2t . ' s ;
o =
30 32 34 38 3B AL 4T 4 & Wﬂﬂnsﬂm-mﬂenmni .
250 < Foisson ®
= £ | Regular ®
§20
;;15 E
-5 -
° llnl lln e
.5 15 10 30
waiting tmag

Uses for Discrete-Event Modeling

o Modeling timed systems

transportation, commerce, business, finance, social,
communication networks, operating systems, wireless
networks,

esigning d

VHDL. Verilog

~1

ey PO
wal GiTLUis

O
9
M
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O

Musm systems (Max )
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Using DE to Model Real-Time Software

Consider a real-time program on an embedded computer
that is connected to two sensors A and B, each providing a
stream of data at a normalized rate of one sample per time
unit (exactly). The data from the two sensors is deposited
by an interrupt service routine into a register.

Assume a program that looks like this:

-

IR I
NIl 2T

e{True)

wait fcr new date from A;

wait a fixed amcunt of time T
opserve rsgistered qata Ifrom E;
average data from A and B;

fo—

Lee 11:7

The Design Question

Assume that there are random delays in the software
(due to muititasking, interrupt handling, cache
management, etc.) for both the above program and the
interrupt service routines.

What is the best choice for the value for T?

One way to frame the question: How old is the data from
B that will be averaged with the data from A?

Lee 11: 8




A Model that Measures for Various Values of T

Cloch CurentTime

This examgple llustrates a paradox that
anses when marging two event streams
of the same rate with with random delay
It plots & histogram of the tima between
when an event occurs and when it is
cbserved. i Rustrates that when thare
is a small fed tme offset between the
two periodic events, then a sirongly
bimedal distnbution results. When &
targer fiad delay ls used then the
secand mode is significanty reduced.

VanableDelay

Clock2 Sampiing Process
Av-r\.'mmhﬂ.me

,@-

Author Steve Neveraorte

InstanceOfSampier

InstancaOiSampler?

[ Be

InstanceOiSampierd

»—

instonee OB am plord
gie '

HistogramPlotor

instanceOfSamplers

2o

InstanceOSamplatE
This example (s liustralive of the
proclems faced by real-time muititasking
software when interacting witn physical

processes periodicaly, but with random
detays.
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Modeling Random Delay in Sensor Data

time stamp ¢

=3

Given an event with time stamp ron the
upper input, the VariableDelay actor

produces an output with the same value but

time stamp ¢ + ¢/, where ¢'is the value of

the

most recently seen event on the lower input.

The Rician actor, when
triggered, produces an
cutput event with a
non-negative random
value and with time
stamp equal to that of
the trigger event.

-
[o]
]

=y
5
-

o




Actor-Oriented Sampler Class
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Design in DE: Other Useful Actors

When a token is received Merge is deterministic in DE.
on the input port, it is N ‘-\
stored in the gueue. AN \
When the trigger port \-M \'«w
receives a token, the ,@, ,@
oldest element in the
queus is output. If there is _ Like a
no element in the queue s mosm " register in
when a token is received —m u[} digital
on the trigger port, then / circuits.
no output is produced. / Pravocs
/
Like the Queue, except \
that a serviceTime When triggered by an
parameter provides 2 input, output the previous
lower bound on the time input. Is this useful in
between outputs. feedback ioops?
Lee 11: 13
Signals in DE

A signal in DE is a partial functiona: T—> 4, where 4 is
a set of possible event values (a data type and an
element indicating “absent”), and T is a totally ordered
set of tags that represent time stamps and ordering of
events at the same time stamp.

In a DE model, all signals share the same domain T, but
they may have different ranges 4.

Lee 11: 14




Executing Discrete Event Systems

How to get fast execution when there are many events
in the event queue...

What to do when there are multiple simultaneous
events in the event queue...

(&1

Zeno Signals s e U ES o

15F
. .

101 | . . e -
: ! i

o | ]w

oo | , | AL
00 02 04 D0E OB 1C 12 14 16 18 20

| SiageEwn: Merge
vananneDetay
F | ‘o H
s A
R W

Thee mode! lusrates & Zono contibon, whiera an nfinite number of cwenis
& neace the Clotk actor i€ undbie 1o ever produse
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Conclusion and Open Issues

o The discrete-event model of computation is useful for
modeling and design of time-based systems.

o In DE models, signals are time-stamped events, and
events are processed in chronological order.

o Simultaneous events and Zeno conditions create
subtieties that the semantics will have to deal with.

itee 11: 17
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Lecture 12: Tags and Discrete Signals

Tags, Time Stamps, and Events

The DE Tag system

o T=RxN, real and natural numbers.

o Lexicographic order using natural ordering of R and N.
This is a totally ordered set.

o Event:apaire=(t,v) e Tx ¥V where V is a set of
values and ¢t= (7, n) is a tag.

o Time stamp: of an event eis 7= n,( 7,( e)) (projection)

o Index: of an event e is n = m,(m,(e)) allowing distinct
events with the same time stamp.

Note that events in a signal are totally ordered.

Lee 12: 2




Signals

Signal: a set s of events with distinct tags.
Equivalently. a signal s is a partial function

s:T->V

Lee 12: 3

Tag Sets

Asignal: s={ e}, e ... } = {(t;, V), (8, V)5 --- }
Its tags: w,(s)={ 1,1, ... }
A system: S={s,,s,,... } is asetof signals.

lts tags: #,(S)=m (s )UT(s) U ...

Lee 12: 4




Discrete Signals

A signal s is discrete if there is an’order embedding from
its tag set m,(s) to the infegers {under their usual order).

A system S (a set of signals) is discrete if there is an
order embedding from its tag set (s ) to the integers
{under their usual order).

Lee 12: &

Terminology: Order Embedding

Given twe posets 4 and B. an order embedding is a
functionf: 4 > B suchthatforaiig a'e 4,

a<a & f(a)< f(a')

Exercise: Show that if 4 and B are two posets, and
f:A— B is an order embedcing, then f is ane-to-one.
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Is the following system discrete?

TirrulPiole:

=1

Not Zeno, but Problematic

2
15[

4 |1}

00 02 04 0B 0B 10 12 14 1B 1B 20
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Discreteness is Not a Compositional Property

Given two discrete signais s, s' it is not necessarily true
that §= {s,s’} is a discrete system.

MR monCompasitional Time®ictier?

Putting these two signals
in the same model
creates a Zeno condition.

Lee 12: 10




Question 1:

Can we find necessary ana/or sufficient conditions o
avoid Zeno systems?

Lee 12: 11

Question 2:

in the following madel, if £, has no delay. should f; see
two simultanecus input events with the same tag? Should
it react to them at once. or separately?

]

In Verilog, it is nondeterministic. In VHDL. i sees a
sequence of two distinct events separatsd by "tela fime”
and reacis twics, once o sach input. In the Ptolemy 1l DE
domain, it sees the events together anc reacts once.

Lee 12: 12




Example

In the following segment of & model, clearly we wish that
the VariableDelay see the output of Rician when it
processes an input from CurrentTime.

Ciuck CurrentTione
g Y N VanableDulay
[ Rie:an i

Saufte trccess

Question 3:

What if the two sources in the foliowing mode! deliver an
event with the same tag? Can the cutput signai have
distinct events with the same tag?

Recall that we require that a signal be a partiai function
s:T—> V. where V is a set of possible svent values (a
data type), and T is a toiaily crdered set of fags.

l,.
[0]
@
-
Y
N
~




Question 4:

What does this mean?

4

b

The Merge presumably does not introduce delay, so what
is the meaning of this model?

Lee 12: 15

Mathematical Framework

Let the set of all signals be 4 =[T— V]where Tis a
totally ordered set and ¥ is a set of values. Let an actor

be a function f: 47— A™ . What are the constraints on
these functions such that:

Compositions of actors are determinate.
Feedback compositions have a meaning.
We can rule out Zeno behavior.

Lee 12: 16




Can We Re-Use Prefix Orders?

Since tags are totally ordered. signals can be thought of
as sequences. Can we just re-use PN semantics?

Lee 12: 17

Signals as Sequences of Events

A discrete signai s is 2 set of events with distinct tags
where there is an order embedding from the tags to the
integers. Thus, a signal is equivalently a sequence s’ of
‘events, a partial function

sS':N>TxV
where the 1ags are ordered,

n<m = w,(s'(n))< w,(s'(m))

Lee 12: 18




_ a-. - f(a)
Prefix Order on Signals T ,
a - f(a")

Consider using the prefix order on signais and requiring
actors to be monotonic functions:

aZa = f@Z f@)

Will this be an adeguate basis for DE semantics?

Lee 12: 18

First Problem: Ensuring that Tags are Distinct

Consider an acior:

—{

where, for each input event e it produces the output

((0, 0), 0), an event with tag (0, 0). The outpul sequence
does not have distinct tags. But the function is monotonic
in the prefix crder.

Simple solution: Do not allow actors 1o specify the index.
The output sequence bscomes:

(((0, 0), 0). (0, 1), 0). ((0,2),0), -..)

-
o

o

-
N
N
«Q




Example: Merge Actor

The output cannot be defined to be simply the union of
the input events, because the output may then have
duplicate tags.

Define the Merge actor so that if the inputs have events
with the same time stamp ¢

Sl = { ((ts 0)9 vl)! ((t, l)a vz)s )
Sz = { ((ta 0)» ql)i ((t’ l)a qz)! )

the output will interleave these as follows:

S3 = {"' ((t’ 0)9 vl)! ((ts 1)9 ql)* ((t’ 2): VZ), ((ta 3)’ q2)! L )

Lee 12: 21

Second Problem: Causality

Consider an actor:

where, for each input event e with time stamp t© it
produces an output event with time stamp t — 1. This
actor is monotonic in the prefix order, but could be used
to build time travel machines.

Looks like a prefix order alone won't do the job...

Lee 12: 22




Conclusion and Open Issues

o A discrete system is one where the there is an order
embedding from the set of tags in the system to the
integers.

o Monotonic functions on a prefix orcer does not appear
to be sufficient for DE semantics.

Lee 12: 23
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Mathematical Framework

Let the set of all signals be A=[T— V]where T=RxN
is a totally ordered tag set and ¥ is a set of values. Let

an actor

be a function f: 4* — A ™. What are the constraints on
these functions such that:

Compositions of actors are determinate.

Feedback compositions have a meaning.

We can rule out Zeno behavior.

Lee 13: 3

Metric

A metric on a set A4 is a function d: 4 x 4 - R where
forall a,b,ce A

1. d(a,b)=d(b,a)

2 d(a,b)=0&a=b

3. d(a,b)+d(b,c)=2d(a,c)

Exercise: Show that these properties imply that
forall a,bed, d(a,b)20

Metric space: (A, d)

Lee 13: 4




Variations on Metrics

Ultrametric. Replacs property 3 with:
3, max(d(a,b),d(b,c))2d(a,c)

Exarcisa: Prove that an ultrametric is a mefric.
Partial Metric: Replace properties 2 and 3 with:

x d(a,a)<d(a,b)
5. d(a,b)+d(b,c)-d(b,b)2d(a,c)

paray

In a partial metric, a is the “closest” object ic itsel

The Cantor Metric

Given the tag set T=R x N use only the time stamps. Let
d:[T->VIx[T>V]>R
such thatforalls, s'e [T V],

d(s,s')=1/2°

whare 1 is the time stamp of the least tag ¢ whare
s(f) #s'(¢). That is, either one is defined and the otner not
at t or both are defined but are not equal.

(s ]

. Lee 13:




The Cantor Metric is an Ultrametric

Need tc show that for all signals a,b,ce [T> V],
.. d(a,b)=d(b,a)

2 d(a,b)y=0<a=b

3. max(d(a,b),d(b,c))=2d(a,c)

(1) and (2) are obvious. To show {3), assume without
ioss of generality thatd (a, b)2d (b, c). This means that
a and b differ eariier than b and ¢. Suppose that

a and b differ first at time 1. Since a and b differ earlier
than b and c, then prior to 1. b and ¢ are identical. Thus, a
and ¢ must be identical prior to 1 so d(a,c) must be
smaller than or equai to d(a, d). QED

sn.
200
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| S S
Causality e N '
s = f(s")
Causal. For all signals s and s’

d(f(s),f(s')<d(s,s")

Strictly causal: For all signals s and s’

szs' = d(f(s),f(')<d(s,s")
Delta causal: Thare exists z real number < 1 such that
for all signais s and s’

s#s' = d(f(s),f(s')<6d(s,s")

Lec 13: 8




Examples

Simple functional actor:

Trigfuncion

This actor is causal but not strictly causal or delta causal.

Time delay with non-zero delay:

This actor is delta causal.

Lee 13: 9

Source and Sink Actors

Consider Actor1. Its function is f: 4! - 4° where
A% is a singleton set (a set with one element). Such a
function is always delta causal with 6 =0.

Consider Actor2. Its function is f|: 4° » 4. Such a
function is again always delta causal with § =0.

In fact, the function can only yield one possible output
signal, since its domain has size 1.

Lee 13: 10




Extending to Multiple Inputs/Outputs

Consider a function f: 47— 4™, where A =[T— V]

The input is a tuplie of signals (a,, a, ..., a,).

Extend the Cantor metric to handle tuples:
d(( al’ aza *er a;,)’( b]s b29 (AR ] bn))
=min(d (ay, b,), ...,d(a,, b,))
The resulting function is still an ultrametric.
Lee 13: 11

Example: Merge Actor

Recall that for input
5= {'“ ((ta 0): vl): ((ts 1), Vz), )

$;={.. (£, 0), qy), (5 1), 9, )
the output is:

$3= {o- (£, 0), ), (&, 1), 4y). (1, 2), ), (£, 3), 4): ---)
This actor is causal but not strictly causal, and the

operations on indexes do not appear in the semantics.

Lee 13: 12




Parallel Composition of Actors

If f, and f, are causai {strictly causa!, delta causal). then

SO IS fixf,.

Actot

xS,

What if £, is causal and f, is delta causal?

Lee 13: 13

Cascade Composition of Actors

If fianc f,are causal (strictly causal. delta causal), then

scisfi°fs.

What if £, is causal and f, is delta causal?

Lee 13 14




More Interesting Composition

If £, and f, are causal (strictiy causal, deita causai), then
so is the foliowing composition:

At

Actor2

)

s i
)\
\ £
\ At i

]

\
A

i
H

Question: What if £] is causal and f, is delta causail?

Lee 13: 18

Technicality

In the set S=[T— V']. we could have a signal s that has,
for exampie. an event at all integer time stamps (positive
and negative). and we could compare it against & signal
s’ that has no events at all.

d(s,s')=w

This is problematic. We can avoid these problems by
excluding from the set § ail signals that have infinite
distance from the empty signal. All such signals have an
earliest event.

Lee 13: 18




A

Feedback: Fixed Point Semantics oL h

Since monotonicity on the prefix order is not very useful,
we can't use fixed-point theorem 1.

Use instead fixed-point theorems on metric spaces.

Lee 13:17

Fixed Point Theorem 3 1 h

Let(S*=[T> V],d) be ameticspaceand f:S"—> 8"
be a strictly causal function. Then f has at most one fixed
point.

Proof. It is enough o show that

s#Ss' = f(s)#s or f(s)#s"
Suppose 1o the contrary that

szs'and f(s)=sand f(s)=s'
But this is not possibie because it would imply that

d(s,s")=d(f(s),f(s')<d(s,s").

a

Lee 13 18




Determinacy

Fixed-Point Theorem 3 takes care of determinacy. There
can be no more than one behavicr.

Can we find that behavior?

~
@
(4]
-
w
Ky
w

Fixed Point Theorem 4
(Banach Fixed Point Theorem) | — ]

Let(§"=[T— V], d) be a complete metric space and
f:8"— 8" be e deita causal furiction. Then f has a
unique fixed point, and for any points € §7, the foilowing
sequence converges to that fixed point:

$1=8,8=f(5),8,=1(s,), ...

This means no Zeno! Two issuss:
o Any starting point?

o Complete metric space?

tee 3. 20




Construction of a Fixed Point: Example .|

Suppose f is a deiay by one time unit. such that

s'=1(s)
where for each event e=(¢, v) € s where t=(1, n).
thereis anevente'=(t, v) e s’ where t'=(1+1, n).

Suppose we start with a "lucky guess” s = @. This is the
only fixed point, so we converge immediately.

Suppose we start with an “unlucky guess” s = {((0,0), 0)}.
As we iterate f, the event gets further out in the future,
and the signal "converges” tos= .

Lee 13: 21

Complete Metric Spaces

A Cauchy sequence {s,,s,, ...} is an infinite sequence
where

d(s,s,) —>0asnm-—>ow

A complete metric space (X, d) is one where every
Cauchy seguence has g limitin X.

Lee 13:22




Example 1

Consider a sequence {s,, s,, ...} where

s, = {((n, 0), v)}

Is this sequence Cauchy?

Does the sequence converge? To what?

Lee 13: 23

Example 1

Consider a sequence {s,, s,, ...} where

s, = {((n, 0), v)}

Is this sequence Cauchy? Yes
d(s,,s,)=1/2m=mn_ 0

Does the sequence converge? To what? Yes. To &
lim (s,) =9

Lee 13: 24




Example 2

Consider & sequence {s,, s,, ...} where

s,={(G,0),v)]ie {1,2,...,n}}

Is this sequence Cauchy?

Does the sequence converge? To what?

Lee 13: 25

Example 2

Consider a sequence {s,, §,, ...} where

5,={((G,0),v)|ie {1,2,...,n}}

Is this segquence Cauchy? Yes
d(s,,s,)=1/2mnmn+1_4 (

Does the sequence converge? To what? Yes. To

{(,0),v)|ie{l,2,...}}

Lee

13: 26




Example 3

Consider a sequence {s,, s,, ...} where
5,={({(t,0),v)|ie {1,2,...,n},1,=1-1/i}

Is this sequence Cauchy?

Does the sequence converge? To what?

iee 13:27

Example 3
Consider a sequence {s,, s,, ...} where

s, = {((t, 0), V) | i e {1,2,...,n}, 7= 1 - 1/}

is this sequence Cauchy? No
d(s,,s,)>1/72

Does the seguance converge? To what? No. Exercise.

Lee 13: 28




Completeness of DE Signals

The set of n-iupies ¢f discrete-svent signais under the Cantor metric
is 2 compiete metric space.

Procf {sketch;: We need to show that every Cauchy ssquence
converges. Given a Cauchy sequence {s,,s,, ...}, for any tag ¢ with
time stamp © > 0. there is a subsequence {s,,s,,,,...}. for some
n> 0, of signais that are identical up to and including tag ¢ Let s be
the seguence obtained by letting its vaiue at each tag ¢ oe that
identical value {or absence, if all signals in the subseguence have
no event at ¢). This is clearly a signal (or tuple of signais). Then itis
gasy toc show that the Cauchy seguence converges (o s.

Thanks to Adam Cataldo for this proof.

Lee 13: 28

Operational Semantics

-

Topoiogically sort actors according to paths that do
not increment tags.

2. Start with a set of events on signals taken from the
event queue that all have the same tag.

tierate 10 find & fixed-point value for all signals &t that
tag (absent or having a value).

(2

4. Continue with the next smallest tag in the event
queue.

Lee 13: 3C




Conclusions and Open Issues

o ignoring the index, strictly ceusal functions in a feedback lcop

7

o Delta causai functions in a feedback loop have exactiy one fixed
point, and that fixed point can be found by starting with any
initial signai{s) and iterating to the fixed point. This guarantees
ne Zeno.

o Convergence in DE is achieved wnen time stamps approach
infinity.

o Within a time stamp. use SR semantics and iterate to a fixed
poini.

Lee 13: 31
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Lecture 14: Dataflow Process Networks

Firings

Dataflow is a variant of Kahn Process Networks where &
process is compuied as a seqguence of atomic firings,
which are finite computations enabled by a firing rule.

in a firing. an actor consumes a finite number of input
tokens and preduces a finite number of outputs.

A possibly infinite sequence of firings is called a dataflow
process.




Firing Rules

Let F:S§*—> S™ be a datafiow process.

Let Uc S be a set of firing rules with the constraints:
1. Everyu e U is finite, and
2. No two elements of U are joinable.

This implies thatforalls e S7thereisatmostoneu e U
where u L s. (exercise)

When u T s there is a unique s'such that s=u.s’ where
the period denotes concatenation of sequences.

Lee 14: 3

Actar

Firing Function

Let f:S"—> S™ be a (possibly partial) firing function with
the constraint that for all u € U, f(u) is defined and is
finite.

Then the dataflow process F: §”— S™ is given by

f@).F(s') if thereisa ueU such that s =u.s'
L otherwise

n

F(s)={

where 1 , € S"is the n-tuple of empty sequences.
Note that this is self referential. Seek a fixed point F.

Lee 14: 4




Fixed Point Definition of Dataflow Process
(cf. Lifting Formulation in SR)

Define ¢:[S"> S"]>[S"—> S™] by:

f(@W).F(s') if thereisa u €U such that s =u.s'
1 otherwise

n

(@(F))(s) = {

Fact: ¢ is continuous (see handout). This means that it
has a unique least fixed point, and that we can
constructively find that fixed point by starting with the
bottom of the CPO. The bottom of the CPO is the
function F,: S” — S™that returns L ,.

Lee 14:5

Executing a Dataflow Process is the Same as
Finding the Least Fixed Point

Suppose s € §” is a concatenation of firing rules,
S=Up. Uy Uy

Then the procedure for finding the least fixed point of ¢

yields the following sequence of approximations to the

dataflow process:

FO (S) =1 n
Fy (5)= (¢ (Fy )(s) =S (uy)
F, (s)= (¢ (F,))s) =f(u). f(u,)

This exactly describes the operational semantics of
repeated firings governed by the firing rules!

Lee 14: 6




The LUB of this Sequence of Functions is
Continuous

The chain {Fy(s), Fy(s), ... } will be finite for some s
(certainly for finite s, but alsc for any s for which after
some point. no more firing rules match}. and infinite for
other s. Since each F; is a continuous function, and the
set of continuous functions is a CPO, then the LUB is
continuous, and hence describes a valid Kahn process
that guarantees determinacy. and can be putinto a
feedback ioop.

tee 14: 7

Example 1

Suppose V= {0, 1} and §= V™" is the set of finite and
infinite sequences of elements from V.

Consider a datafiow process with one input and one
output, F: § — § . lts firing rules are U c §S. The iollowing
are all valid firing rules:
U= {1}
U={(0)}
U= {(0), (1)}
U={(0,0),(0,1),(1,0), (1, )}

e 14: 8




A tos

Example 2 : Valid Firing Rule? ] 1 —

Suppose V=140, 1} and S= V™ is the set of finite and
infinite sequences of elements from V.

Consider a dataflow process with one input and one
cutput, F: § = § . lis firing rules are Uc S. Is the
following set a valid set of firing rule?

U= {1, (0), 1)}

Lee 14: G

Example 2 : Valid Firing Rule?

Suppose V'={0, 1} and §=V " is the set of finite and
infinite sequences of elements from V.

Consider a dataflow process with one input and one
outpul, F: § - § .lisfiring rules are Uc S. Is the
following set a valid set of firing ruie?

U= {L,(0), (1)}
No. There are joinable pairs.
intuition: The same input sequence can isad o multiple
executions. Nondeterminacy!




Example 3

Consider F: §2 — S . Its firing rules are U < §2. Which of
the following are valid sets of firing rules?

{((0), (0)), ((0), (1), ((1), (0)), ((1), (1)}
{((0), L), (1), L), (L, (), (L, (1))}
{((0), L), (1) (0)), (1), (1))}
{((0), L), (1), L)}

Lee 14: 11

o

Example 3

Consider F: §2 — § . lts firing rules are U c S 2. Which of
the following are valid sets of firing rules?

{((0), (0)), ((0), (1)), ((1), (@), ((1), (1)}

Yes. Consume one token from each input.
{((0), 1), ((1), L), (L, (O, (L, (1N}

No. Nondeterminate merge.

{((0), L), (D), O, (D, (1N}

Yes. Consume from the second input if the first is 1.

{((0), L), ((1), L)}
Yes. Consume only from the first input.

Lee 14: 12




Example 4 =¥

Consider F: §3 — § . !is firing rules are Uc S 3. Is the
following a valid set of firing rules?

{((, (0), L), ((0), L, (1)), (L, (1), (O))}

Lee 14: 1

W

Example 4 5&3‘

Consider F: 83 — § . lts firing rules are Uc §3. is the
foliowing a valid set of firing rules?

{((1), (0), L), ((0), L, (1)), (L, (1), (O))}

Yes. Dataflow version of the Gustave function!

Lae 14: 14




Conclusions and Open Issues

¢ Dataflow processes are Kahn processes composed of

atomic firings.

o Firing rules that are not joinable lead to simple fixed

point semantics.

Lee 14: 15
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Lecture 15; Generalized Firing Rules

Firing Rules from Last Lecture

Let F: §”— Sm be a dataflow process.

Let Uc S be a set of firing rules with the constraints:
1. Every u e U is finite, and
2. No two elements of U are joinable.

This implies that for all s e S” there is at mostoneu e U
where u L s. (exercise)

When u T s there is a unique s'such that s=u.s’ where
the period denotes concatenation of sequences.

Lee 156: 2




Concurrent Models of
Computation for Embedded
Software

Edward A. Lee

Professor, UC Berkeley
EECS 280n - Advanced Topics in Systems Theory
Fall, 2004

Copyright © 2004, Edward A. Lee. Al rights reserved

Lecture 15: Generalized Firing Rules

Aot

Firing Rules from Last Lecture

Let F: §7— Sm be a dataflow process.

Let Uc S be a set of firing rules with the constraints:
1. Everyu e U is finite, and
2. No two elements of U are joinable.

This implies that for all s e S”there is at mostoneu e U
where uC s. (exercise)

When # = s there is a unique s'such that s =u.s’ where
the period denotes concatenation of sequences.

Lee 15: 2




Source and Sink Actors

Sink actor: F: §7— §° with firing functionf: S7 — §°.

In this case, if §%= {o'} then f(u)= o is the single
element. Define concatenation in §° so that 0.0 = o
Then everything works (e.g., let o =1).

Source actor: F: §9— §™ with firing functionf: S0 — §».

Firing rules U = §9 (singleton set) have the constraints
trivially satisfied.

Lee 15: 3

Source Actors Too Limited?

With the above definitions, the dataflow process
produces the sequence f (o). f(c).f(o) ... where
U=S8°={o}.

If is non-empty, this is infinite and periodic. This may
seem limiting for dataflow processes that act as sources,
but in fact it is not, because a source with a more
complicated output sequence can be constructed using
feedback composition.

Ackx
F,

© Lee15: 4




More Generally:
Is a Single Firing Function Too Restrictive?

Not really. Use a self loop:

S5

Let the data type of the feedback loop be V'={1,2, ..., n}

Then the first argument to the firing function can
represent n different “states” of the actor, where in each
state the output is a different function of the input.

But how can you get this started?

Lee 15: 5

A Possible Problem: —
Sample Delay Actor

Can the sample delay be represented with the following
firing rules?

{L, (0, (1)}

Lee 15: 6




A Possible Problem: -
Sample Delay Actor L

Can the sample delay be represented with the following
firing rules?

{L (0), (1)}

No. These are not joinable.

Instead, we require that initial tokens on an arc be a
primitive concept in dataflow. This is implemented in
Ptolemy Il by outputting the initial token prior to any
firings.

tee16: 7

Firing Rules Defined by a State Machine

Feedback path data type: V={1, 2, ..., n } where there

are n states: 2 C
initial state i e V' = @_/ ‘;}@
o \Lﬁ_/

In each state i e V, there is a set of firing rules

U= {(i,...), (i5...), -.-}
where every member is finite and no two members are
joinable. Then the total set of firing rules is

U=U,v...uU,
Every member is finite and no two members are joinable.

Lee 15: 8




Example: Select Actor

o In the init state, read input from
the control port.

o In the waitT state, read input
from the trueln port.

o In the waitF state, read input

from the falseln port. Uir = {(Gnit, L, L, *)}
U, ir = {(waitT, *, 1, 1)}
U

waitF = {(waitlyl*a -L)}
shorthand to match any input token

Les 156: 8

Sequential Functions

Any sequential function can be implemented by a state
machine that in each state has firing rules that match the
state identifier in the state input port and match any token
in exactly one other input port.

Each state could also (in effect) implement a different
firing function (one firing function with the state identifier
as an input can model this).

Lee 15. 10




Generalize Further to get the Cal Actor Language

Partition the firing rules and associate a distinct firing
function with each partition of the firing rules. Each such
firing function is called an action.

This is similar to the pattern matching in some functional
languages such as Haskell. '

Lee 15: 11
Another Possible Problem: sty
Cannot Implement Identity Functions!

Will the following firing rules work?

{(®), ), (1), L), (L, (0)), (L, (N}

{((0), (0)), ((0), (1)), (1), (0), (1), (1))}

Lee 15: 12




Cannot Implement Identity Functions!

Will the following firing rules work?

{0, ), (D), D), (&, O, (L, (1)}

No. Nondeterminate merge.

{(0), (0)), ((0), (1)), ((1), (O)), (1), (1))}
No. Try feeding back one output to one input. E.g.:

dontly

£ 1B

Les 16: 13

Generalized Firing Rules

We previously defined the firing rules U < S * with:
1. Everyu € U is finite, and
2. No two elements of U are joinable.

We now replace constraint 2 with:
3. Forany two elements of u, ¥’ € U that are joinable, we
require that:
unu'=1,
S@) . f@)=f@).f(u)
l.e., when two firing rules are enabled, they can be
applied in either order without changing the output.

Lee 15: 14




Examining Rule 3

3. For any two elements of », ' € U that are joinable, we
require that:

unu'=1,

l.e., no two joinable firing rules have a common prefix.

S@ . f@)=f@W).f@W)

l.e., when two firing rules are enabled, they can be
applied in either order without changing the output.

Lee 15: 15

Applying Rule 3 to ldentity Functions

With these firing rules

U= {((0), 1), (1), 1), (L, (0)), (L, (1))}
andforallu e U,
S=u
rule 3 is satisfied. Exercise: Show that rule 3 is not

satisfied by the nondeterminate merge.
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Fixed Point Semantics Under Rule 3

Let O (s) = {u,, u,, ... , u,} < U be the set of all firing rules
that are a prefix of s. This could be empty. Then define

F@)-f @) f@,)F(s") if O(s) %D

1 otherwise

n

(@' (F))(s) = {

Where s = vQ (s).s'
(exercise to show that s’ always exists).

The function ¢'is continuous, and all previous results
hold.

Lee 15: 17

Conclusions and Open Issues

o Dataflow processes are Kahn processes composed of
atomic firings.

o Firing rules that are not joinable lead to simple fixed
point semantics.

o Simple semantics leaves out delays, two-input identity
functions, and other compositions.

o Generalized firing rules allow joinable pairs under
certain circumstances.
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Lecture 16: Statically Schedulable Datafiow

Acr

Execution Policy for a Dataflow Actor | i F /|

Suppose s € §* is a concatenation of firing rules,
S=Up. Uy Uy
Then the output of the actor is the concatenation of the
results of a sequence of applications of the firing function:
Fy()=1,
F, (s) = ($(Fy)Xs) =f (uy)
Fy (5) = (6 (F))) = (uy)- f ()

The problem we address now is scheduling: how to
choose which actor to fire when there are choices.

Leg 16: 2




Apply the Same Policy as for PN

o Define a correct execution to be any execution for
which after any finite time every signal is a prefix of
the LUB signal given by the semantics.

o Define a useful execution to be a correct execution
that satisfies the following criteria:
For every non-terminating PN model, after any finite
time, a useful execution will extend at least one signal
in finite (additional) time.
If a correct execution satisfying criterion (1) exists that

executes with bounded buffers, then a useful
execution will execute with bounded buffers.

Les 16: 3

Policies that Fail

o Fair scheduling
o Demand driven
o Data driven

L.‘_..,M,f!l;! Shoe




Adapting Parks’ Strategy to Dataflow

Require that the scheduler “know" how many tokens a
firing will produce on each output port before that
firing is invoked.

Start with an arbitrary bound on the capacity of all
buffers.

Execute enabled actors that will not overflow the
buffers on their outputs.

If deadlock occurs and at least one actor is blocked on
a enabled, increase the capacity of at least one buffer
to allow an actor to fire.

Continue executing, repeatedly checking for deadlock.
Lee 16: 5

But Often the Firing Sequence can be Statically
Determined! A History of Attempts:

0000000000000 00O0O0CO

‘Parameterized dataflow [Bhattacharya and Bhattacharyya 2001]

Computation graphs [Karp & Miller - 1966]

Process networks [Kahn - 1974]

Static dataflow [Dennis - 1974]

Dynamic datafiow [Arvind, 1881}

K-bounded loops [Culler, 1986]

Synchronous dataflow [Lee & Messerschmitt, 1986] today
Structured dataflow [Kodosky, 1986]

PGM: Processing Graph Method [Kaplan, 1987]
Synchronous languages [Lustre, Signal, 1980's]
Weli-behaved dataflow [Gao, 1992]

Boolean dataflow [Buck and Lee, 1963}
Multidimensional SDF [Lee, 1993}

Cyclo-static dataflow [Lauwereins, 1994]

Integer datafiow [Buck, 1994]

Bounded dynamic dataflow [Lee and Parks, 1895]
Heterochronous dataflow [Girauit, Lee, & Lee, 1997]
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Statically Schedulable Dataflow — SSDF
Historically called: Synchronous Dataflow (SDF)

If the number of tokens consumed and produced by the
firing of an actor is constant, then static analysis can tell
us whether we can schedule the firings to get a useful
execution, and if so, then a finite representation of a
schedule for such an execution can be created.

Lee 16: 7

Balance Equations

Let q,, g5 be the number of firings of actors A and B.

Let p¢. ¢ be the number of token produced and
consumed on & connection C.

Then the system is in balance if for all connections C
94Pc=948Cc
where A produces tokens on C and B consumes them.

Lee 16: 8




Relating to Infinite Firings

Of course, if g, = gz=, then the balance equations are
trivially satisfied.

By keeping a system in balance as an infinite execution
proceeds, we can keep the buffers bounded.

Whether we can have a bounded infinite execution turns
out to be decidable for SSDF models.

Lee 16: 9

Example

Consider this example, where actors and arcs are
numbered:

2

The balance equations imply that actor 3 must fire twice
as often as the other two actors.
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Compactly Representing the Balance Equations

SDF Director

g’

F—ZLI. 5
F |

1 E. 1,

production/consumption matrix balance eguations

1 -1 0 | 0 |
r={0 2 -1 d - Tg=0=|0 ;
q9=|9 .
} L9 * |
Ator 1 firing vector Les 16: 11
Example SDF Director
2
I i F;l.f;,' '2
1 ’l__ﬁ_’ % Js ’_21-—!.3
| | B | F.
; ) 3
A solution to balance eguations:
1 1 -1 0
g=|1 F=|0 2 =i I'g =0
2 2 0 -1

This tells us that actor 3 must fire twice as often as actors 1 and 2.
Lee 16: 12




SDF Director

J—w;.fz'
1 1 1 2 la

B.J F. A,

Example

ta

But there are many solutions to the balance equations:

1 0 2 -1 V2
g=|1|g=|0| g=|2| g=|-1| g=| =« Tg=0
2 0 4 =2 2z

We will see that for “well-behaved” models, there is a
unigue least positive solution.

Lee 16 13

Disconnected Models

For a disconnected model with fwo fF e ,r‘F
connected components, solutions to the -~ ;
balance equations have the form:

Solutions are linear combinations of the solutions for
each connected component:

[ 2n 2 0

I__1—200 i 1 0
1o 0 2 -1 q:m=n0+m1
2m 0 2

rq=0 Amf 4] LA

Lee 16: 14




Disconnected Models are Just Separate %
Connected Models

Define a connected model to be one where there is a
path from any actor to any other actor, and where every
connection along the path has production and
consumption numbers greater than zero.

It is sufficient to consider only connected models, since
disconnected models are disjoint unions of connected
models. A schedule for a disconnected model is an
arbitrary interleaving of schedules for the connected
components.

Lee 16: 15

Least Positive Solution to the Balance Equations

Note that if p., ¢, , the number of tokens produced and
consumed on a connection C, are non-negative integers,
then the balance equation,

94Pc=98Cc

implies: '
o g,is rational if an only if g, is rational.
o g,is positive if an only if g, is positive.

Consequence: Within any connected component, if there
is any solution to the balance equations, then there is a
unique least positive solution.

Lee 16: 16




Rank of a Matrix

The rank of a matrix I is the number of linearly
independent rows or columns. The equation

I'q=0

is forming a linear combination of the columns of G. Such
a linear combination can only yield the zero vector if the
columns are linearly dependent (this is what is means fo
be linearly dependent).

If I has a rows and b columns, the rank cannot exceed
min( a, b). If the columns or rows of I are re-ordered, the
resulting matrix has the same rank as I'.

Lee 16: 17

Rank of the Production/Consumption Matrix

Let a be the number of actors in a connected graph. Then
the rank of the production/consumption matrix I' must be
aora-1.

I" has a columns and at least a— 1 rows. If it has only a -
1 columns, then it cannot have rank a.

If the model is a spanning tree (meaning that there are
barely enough connections to make it connected) then I
has a rows and a - 1 columns. Its rank is a — 1. (Prove by
induction).
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Consistent Models

Let a be the number of actors in a connected model. The
model is consistent if I’ has ranka—1.

If the rank is a, then the balance equations have only a
trivial solution (zero firings).

When I" has rank a - 1, then the balance equations
always have a non-trivial solution.

Lee 16: 18

Example of an Inconsistent Model:
No Non-Trivial Solution to the Balance Equations

SOF Director
1 -1 0
I'={0 1 -1 ,
2 0 -1

P—;Ll‘a

This production/consumption matrix has rank 3, so there
are no nontrivial solutions to the balance eguations.




Dynamics of Execution

Consider a model with 3 actors. Let the schedule be a
sequence v: N, — B3 where B = {0, 1} is the binary set.
That is,

1 0 0
v(n)=|0|or|1|or|{0
0 0 1

to indicate firing of actor 1, 2, or 3.

Lee 16: 21

Buffer Sizes and Periodic Admissible Sequential
Schedules (PASS)

Assume there are m connections and let b : Ny > N ™
indicate the buffer sizes prior to the each firing. That is,
b(0) gives the initial number of tokens in each buffer, b(1)
gives the number after the first firing, etc. Then

b(n+1)=b(n)+I'v(n)
A periodic admissible sequential schedule (PASS) of
length K is a sequence

v({0)...v(K-1)

such that b(n) > 0 for each n e {0,...K—1}, and

b(K) = b(0) + T[w(0) +...+ v(K —1)] = b(0)
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Periodic Admissible Sequential Schedules

Let g=v(0)+...+ (K -1)
and note that we require that I'g =0 .

A PASS will bring the model back to its initial state, and
hence it can be repeated indefinitely with bounded
memory requires.

A necessary condition for the existence of a PASS is
that the balance equations have a non-zero solution.
Hence, a PASS can only exist for a consistent model.

Leg 16: 23

SSDF Theorem 1

We have proved:

For a connected SSDF mode! with g actors, a necessary
condition for the existence of a PASS is that the model
be consistent.
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SSDF Theorem 2

We have also proved:

For a consistent connected SSDF model with
production/consumption matrix I', we can find an integer
vector g where every element is greater than zero such

that
I'g= 0

Furthermore, there is a unique least such vector gq.

Lee 16: 25

SSDF Sequential Scheduling Algorithms

Given a consistent connected SSDF model with
production/consumption matrix I, find the least positive
integer vector g such that I'g =0.

Let K=1T g, where 1Tis a row vector filled with ones.

Then for each of n € {0, ... K- 1}, choose a firing vector
fr 1 - —0- P

0ol 11 0 The number

vm) =3 [s| |s- r  ofrowsin

v(n) is a.
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SSDF Sequential Scheduling Algorithms
(Continued)

.. such that b(n+1)=b(n)+Tv(n)>0 (each elementis

non-negative), where b(0) is the initial state of the buffers,

and
K-1

dvim)=q

n=0

The resulting schedule (v(0), v(1), ..., WK — 1)) forms one
cycle of an infinite periodic schedule.

Such an algorithm is called an SSDF Sequential
Scheduling Algorithm (SSSA).
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SSDF Theorem 3

If an SSDF model has a correct infinite sequential
execution that executes in bounded memory, then any
SSSA will find a schedule that provides such an
execution.

Proof outline: Must show that if an SSDF has a correct,
infinite, bounded execution, then it has a PASS of length
K. See Lee & Messerschmit [1987]. Then must show that
the schedule yielded by an SSSA is correct, infinite, and
bounded (trivial).

Note that every SSSA terminates.
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Creating a Scheduler

Given a connected SSDF model with actors 4,, ... , 4,:

Step 1: Solve for a rational ¢g. To do this, first let g, = 1.
Then for each actor 4,connected to 4,, let g;,= g, m/n,
where m is the number of tokens 4, produces or
consumes on the connection to 4,, and »n is the number of
tokens 4, produces or consumes on the connection to 4;.
Repeat this for each actor 4;connected to 4, for which we
have not already assigned a value to g,. When all actors
have been assigned a value g;, then we have a found a
rational vector ¢ such that g = 0.
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Creating a Scheduler (continued)

Step 2: Solve for the least integer g. Use Euclid’s
algorithm to find the least common multiple of the
denominators for the elements of the rational vector g.
Then multiply through by that least common multiple to
obtain the least positive integer vector ¢ such that

Fq=5
LetK=1T4.
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Creating a Scheduler (continued)

Step 3. Foreachne {0,..., K—1}:

1. Given buffer sizes b(n) , determine which actors have
firing rules that are satisfied (every source actor will
have such a firing ruie).

2. Select one of these actors that has not already been
fired the number of times given by ¢. Let v(n) be a
vector with all zeros except in the position of the
chosen actor. where its value is 1.

3. Update the buffer sizes:
b(n+1)=b(n)+Iv(n)
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A Key Question: If More Than One Actor is
Fireable in Step 2, How do | Select One?

bﬂfmaﬂ Semibesls Frym
-~ Dutafige Graph

Optimization criteria that might be applied:
o Minimize buffer sizes.
o Minimize the number of actor activations.

c Minimize the size of the representation
of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,
Software Synthesis from Dataflow Graphs, Kluwer
Academic Press, 1996.
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Minimum Buffer Schedule

CD to DAT sample rate conversion

21 2:3 8:7 5.7 ,
- b 7y I
160
-‘-'l: CABCDEF
Source: Shuvra Bhattacharyya Lee 16: 33

Code Generation (Circa 1992)

Block specification for DSP code generation in Piolemy Classic:

odeblock{std) { :

: initial wddress registers for coef and
delaylineove #Saddr{coef )+ Sval{coaflen)-1.r3
: insert here

mOVE svef(delasylineStart), rS
= delagline

e asval(stepSize)  xd = |

o g\,‘,-,;'.;(‘,.,.m; %0 macros defined by |

T x0,%1,8 the code generator |

MOVE 3

o ' ) ys{vsl+,y0

i

codeblock{ loop) €
it #5val({loopVal).Slabel{endloop)
macr x0-y0.b

b.x:(r3) -

#2(r32.b ga(rS e yo

alternative code
grm(ljr.\gp) i blocks chesen based
b RS Ch3)- on parameter values

=zir3}.h yz{rHle yo
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Scheduling Tradeoffs
(Bhattacharyya, Parks, Pino)

CD to DAT sample rate conversion

21 23 87 57
s y 1 1 i |
- )\ . ’
| IR R )
147 147 98 28 32 160
Schaduling strategy Code Data
Minimum buffer schedule, no looping 13735 |32
Minimum buffer schedule, with looping 9400 32
Worst minimum code size schedule 170 1021
Best minimum code size schedule 170 264

Source: Shuvra Bhattacharyya
Lee 16:35

Parallel Scheduling

It is easy to create an SSSA that as it produces a PASS,
it constructs an acyciic precedence graph (APG) that
represents the dependencies that an actor firing has on
prior actor firings.

Given such an APG, the paraliel scheduling problem is a
standard one where there are many variants of the
optimization criteria and scheduling heuristics.

See many papers on the subject on the Ptolemy website.
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Conclusions and Open Issues

o SSDF models have actors that produce and consume a fixed
(constant) number of tokens on each arc.

o A periodic admissible sequential schedule (PASS) is a finite
sequence of firings that brings buffers back to their initial state
and keeps buffer sizes non-negative.

o A necessary condition for the existence of a PASS is that the
balance equations have a non-trivial solution.

o A class of algorithms has been identified that will always find a
PASS if one exists.
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Lecture 17: Generalizations of SSDF

History of Dataflow Models of Computation

Computation graphs [Karp & Miller - 1966}

Process networks [Kahn - 1874]

Static datafiow [Dennis - 1974]

Dynamic dataflow [Arvind, 1881]

K-bounded loops [Culier, 1986]

Svnchronous dataflow [Lee & Messerschmitt, 1986]

Structured dataflow [Kodosky, 1986)

PGM: Processing Graph Method [Kaplen, 1987]

Synchronous languages [Lustre, Signal, 1980's]

Weii-behaved dataflow [Gao, 1992]

Booiean dataflow [Buck and Lee, 1983]

Multidimensional SDF [Lee, 1823] today
Cyclo-static dataflow [Lauwereins, 1894]

integer datafiow [Buck, 1994]

Bounded dynamic datafiow {Lee and Parks, 1985}
Heterochronous dataflow [Girault, Lee, & Lee, 1897]
Parameterized dataflow [Bhattacharya and Bhattacharyya 2001]

OO0 000000000 0000O0O0O
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Statically Schedulable Dataflow — SSDF
Historically called: Synchronous Dataflow (SDF)

DF Irector

o {

If the number of tokens consumed and produced by the
firing of an actor is constant, then static analysis can tell
us whether we can schedule the firings to get a useful
execution, and if so, then a finite representation of a
schedule for such an execution can be created.

Lee 17: 3

Balance Equations

el .

Let g, g5 be the number of firings of actors A and B.

Let p.., ¢, be the number of token produced and
consumed on a connection C.

Then the system is in balance if for all connections C

94Pc~98¢c
where A produces tokens on C and B consumes them.

Leg 17: 4




Multidimensional SSDF
(Lee, 1993)

Production and consumption
of N-dimensional arrays of
data:

(40, 48}
S——
(8. 8)

Bsalance equations and
scheduling policies
generalize.

Much more data paraiielism is
exposed.

Similar (but dynamic)
multidimensional streams have been
implemented in Lucid.

More interesting Example

Lm] etk QE'] > : e % aas {Eﬂlm

Two dimensional zemse

FFT constructed [ ] S R s ey
st P L= 1Py "tdB ~=k] ._nlst.—'
out of one- MDSDF SCHEDULE:

H H fft_of_squarez.PloatMatrixl, firing range: (0,0)
dimensional fft_of_squarez.FloatMatrixz, firing range: (0,0}
aC’{OFS fft_of_ square2.Multl, firing range: (0,0) - (15,15)

) fft_of_square2.PloatTocCxl, firing range: (0,0)
fft_of_square2.PPTCx2, firing range: (0,0} - {15,0)
fft_of_ squarez.FFTCxl, firing range: (0,0} - (0,127)

fft_of_squarez.CxToFloatl, Ifiring range: (0,0)
fft_of_squarez.DBl, firing range: (0,0)
fft_of_square2.Gainl, firing range: (0,0}
tft_of_squarez.showImgl, firing range: (©,0)

Figure 6. Screen dump
of 2D-FFT system, the
associated schedule,
and outputs.




MDSSDF Structure Exposes
Fine-Grain Data Parallelism

@L.M) ?M.N)
e _51'1’1) M(_MINJ)

Repeat: .. Transpose: T Parameter: (3,1,2)
Criginal Matrix o
(1,1,N) (1,M,N)
\ Ropeats Original Matrix Yot
ML—) \——r—\M Repeat |
L X —T L J.1.1)

7 N x .
N cemoniaise s A ©1,0)
(1,M,1) From this, a precedence

graph can be automatically

Downsampie constructed that reveals
.19 all the parallelism in the
v algorithm.
YN
However, such programs Transpose; T | Paramster: (1,32)
are extremely hard to ‘;“'('L,NJ)
write (and to read). Leg17- 7
= .

Extensions of MDSSDF

Extended to non-rectangular lattices and connections to
number theory:

P. K. Murthy. "Scheduling 7Techniques for Synchronous
and Multidimensional Synchronous Dataflow.” Technical
Memorandum UCB/ERL M86/79. Ph.D. Thesis, EECS
Department, University of California. Berkeley, CA
94720, December 1996,

Praveen K. Murthy and Edward A. Lee. "Multidimensional
Synchronous Dataflow " IEEE Transactions cn Signal
Processing. volume 50, no. 8. pp. 2064 -20783. July 2002.
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Cyclostatic Dataflow (CSDF)

(Lauwereins et al., TU Leuven, 1994)

Actors cycle througnh e regular production/consumpticn: pattern.

Baiance sguations Secome:

R-1 R-1
qAZnimodP = qBZmimon; R=lem(P,Q)
i=0 i=0

; cyclic production pattern |

fire A{ / fire 8{

/' channel
produce N, @ @ consume M

} no,...,np_l mo,...,mQ_l } o
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Heterochronous Dataflow (HDF)
(Girault, Lee, & Lee, 1997)

RTEN e, B . el

- . o | ’
| . —
| 3

1 I -,:::»’..u.l..»n——v e
: i .-
- g e
: i repme W e
P pe T
H R Eeasesd
. o ——
1 RO SR fr— "
1.
1 g
L )
e
T
®» - - '-’ -“ y
hod __T IR .
[ e :
— -
- - s :
. bt ST

An ccror consists of a state machine and

refinements To the states that define behavior.
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Related to "parameterized
Heterochronous Dataflow (HDF) dataflow” of Bhattacharya
(Girault, Lee, and Lee, 1997) and Bhattacharyya (2001).

o An interconnection of actors.
o An actor is either SDF or HDF.
o If HDF, then the actor has:
a state machine
a refinement for each state
where the refinement is an SDF or HDF actor
o Operational semantics:
with the state of each state machine fixed, graph is SDF
in the initial state, execute one complete SDF iteration
evaluate guards and allow state transitions
in the new state, execute one complete SDF iteration
o HDF is decidable if state machines are finite

but complexity can be high
Lee 17: 11

If-Then-Else Using Heterochronous Dataflow

imperative
equivalent:

Semantics of HDF:
-Execute SDF modsl for one complete iteration in current state
-Take state transitions to get a new SDF model,

Les 17: 12




If-Then-Else Using Heterochronous Dataflow

ModalModel

[T

T

imperative
equivalent:

Note that if these two refinements have the same production/consumption
parameters, then this is simpiy hierarchical SDF, where one static schedule

suffices.

Lee 17: 13

Hierarchical SDF Using Transition Refinements

£ == x|
?—-—-—-&F,.,L H 1
L 3

This only works under rather narrow constraints:

« Exactly one cutgoeing transition from any state is enabled.

impergtive
equivalent:

+ The transition refinements on all transitions have the same

production/consumption patterns.

« The state has no refinement.

Lee 17: 14




Conclusions and Open Issues

o Generalizations to SSDF improve expressiveness
while preserving decidability.

o Usable languages for many of these extensions have
yet to be created.
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Lecture 18: Boolean Dataflow

History of Dataflow Models of Computation

Computation graphs [Karp & Miller - 1966}

Process networks [Kahn - 1974}

Static dataflow [Dennis - 1974]

Dynamic dataflow {Arvind, 1981}

K-bounded loops [Culier, 1986]

Synchronous dataflow [Lee & Messerschmitt, 1986}

Structured dataflow [Kodosky, 1986)

PGM: Processing Graph Method [Kaplan, 1987}

Synchronous languages [Lustre, Signal, 1680's]

Weli-bshaved dataflow [Gao, 1892]

Boolean dataflow [Buck and Lee, 1983] today
Multidimensional SDF [Lee, 1893]

Cyclo-static dataflow [Lauwereins, 1994]

Integer datafiow [Buck, 1894]

Bounded dynamic dataflow [Lee and Parks, 1985]
Heterochronous dataflow [Girault. Lee, & Les, 1897)]
Parameterized aatafiow [Bhattacharya and Bhattacharyya 2001]  Friday
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Statically Schedulable Dataflow — SSDF
Historically called: Synchronous Dataflow (SDF)

SDF Director

If the number of tokens consumed and produced by the
firing of an actor is constant, then static analysis can tell
us whether we can schedule the firings o get a useful
execution, and if so, then a finite representation of a
schedule for such an execution can be created.

Lee 18: 3

Expressiveness Limitations in SSDF

SSDF cannot express data-dependent flow of tokens:
o li-then-else

o Do-while

o Recursion

Hierarchical SSDF can do some of this...

A more general solution is dynamically scheduled
dataflow. We now explore DDF, and in particular, how to
use static analysis to achieve similar results to those of
SSDF.
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Manifest Iteration in SSDF

| SOF Director

1 Repeat ‘

- [ DownSampla |
E S b—n g

R Rt md Shrirmidime Fiatbim e S
‘ wignirest ileraticn (wnere e

number of terations is a fixed

aumoer O eralll IS a TiXe

Do-While Using DDF ~ setest Switeh

| :
i 3 4y
t 1 [l ¥ .
i ! > P — ] A
5! A -
|
SampleDelay ]
TR

{truc)

...:..;_‘(“ YN ol iSO Oy e‘“f'g":‘;f‘\ ..—\(i
i NS Mmodgel uses congiiionai
sl iy oF febame fn Heraks
Pulilitly O7 1OKenNs 10 liefaie d
fimptinn a Aatacdenandaent
WL Q WQLG™RC T iuTlil
P, D 3 L (ow——
$iF i Et b it D s g
PELAT D W LG O.
Exercise: Can this be done with HDF? Hierarchical SDF?
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If-Then-Else in DDF

imperative
equivalent:

 Switch Select
3 /
, _T;_[—. 8. F—L’i / 6 |
. £t
[

Boolean-valued control signal

This model uses conditional
routing of tokens to route each
token in a stream through one
of two actors.

Lee 18: 7
Aside: Compare With
If-Then-Else Using Heterochronous Dataflow
Imperative
equivalent:
¥ = "'< {3e)is
B !*. | b= AT

Note that this is not quite the same as the previous version...

Semantics of HDF:

-Execute SDF modesl for one complete iteration in current state
-Take state transitions to get a new SDF model.

Lee 18: 8




Aside: Compare With
If-Then-Else Using Heterochronous Dataflow

o dulModel ]

Note that if these two refinements have the same production/consumption
parameters, then this is simply hierarchical SDF, where cne static schedule
suffices.

Hierarchical SDF Using Transition Refinements

ILa Moctalbotnl [ E
T e ) e A
i e
\ i =
¥ ] S—
‘ e
/{; h..( @ Yo vw |
| | 7 AN
- W '
{ j / S
e . Lo ()

| SOF Drecan i

L &
| i 1 H
i f gl
| a0y !
| !
i i
S
s ’ ]

This only works under rather narrow constraints:

«  Exactly one outgoing transition from any state is enabled.
The transition refinements on ail transitions have the same
producticn/consumption patierns.

« The state has no refinement. Lee1




Balance Equations

SDF Dtctor g

Let q,, g5 be the number of firings of actors A and B.

Let p., ¢c be the number of token produced and
consumed on a connection C.

Then the system is in balance if for all connections C

d4Pc~4pCc
where A produces tokens on C and B consumes them.

Lee 18: 11

If-Then-Else in DDF What consumption rate?

- 6

' P

£.f E.J.
l iy 7
mperative
equivalent: E. £

while (true} X
What production rate?

s The if-then-else model is not SDF.
y = t3x);  But we can clearly give a bounded
- ot%...,, Quasi-static schedule for it:
(1,7,2,b73,'1b74, 5, 6)

£ely); :///

guérd
Lee 18: 12




Symb Oh c Rat es Symboiic consumption rate.

/

£
3 j
1

| /
[-;‘f '3
. 1 |z’p’ - po i 1e
e
1 T

E.f .
iR 1 el
imperative
p F-;'_/;' A

equivalent:
whiie: ';;L("f' ' Symboli\c production rate.
b= £70); : ;
i:o(m) i Production and consumption rates
y = 300;  are given symbolically in terms of
e, the values of the Boolean control
} signals consumed at the control
. fe{y); port.
i
Lee 18: 13

Interpretations of Symbolic Rates

Switgh 5 p Select

T S , 1
ll_"l-p '-p’?

1

o General interpretation: p is a symbolic placeholder for
an unknown.

o Probabilistic interpretation: p is the probability that a
Boolean control input is frue.

o Proportion interpretation: p is the proportion of true
values at the control input in one complete cycle.

NOTE: We do not need numeric values for p. We

always manipulate it symbolically. e 15 14
ee 18!







The two connections above imply the following balance

equations:
9P~ 4q;
q,(1-p)=gq,
Lee 18: 15
Symbolic Rates
3
1 1
Fu 1
- | 12"’ 2 ) 3[_,"_5"% -
F. [, g — A s = F.J
. ! Py 1 E-L"T_J—_Pr-“l
Imperative B
equivalent: E. /) 2 i
While__{'.f‘fe), { Labeltixearcs
> = Z14i)?
P Production and consumption rates
vy = £3x0:  are given symbolically in terms of
o - fa0 the values of the Boolean control
) signals consumed at the control
fe{v):

port.

Lee 18: 16




Production/Consumption Matrix for If-Then-Else

3 Symbolic
i -l tiah .
YN variables:
1 | ’ -»—j’ e d: i 3l—4—" : | :
F;'~fl .'_’-‘: . 4 = I 5 i:{:'.fb
i R E»I-;.j; ’?_f’—m'—Tl }_.) _ P
F. [ p—k ’ Ps
1 -1 0 o 0 0 0] Balance squations:
0 p -1 0 0 0 o alance equations:
00 10 - 00 I'(p)g(p)=0
ray|0 17 0 -1 0 0 0
(p)= 0 0 0 1 -(-p) 0 0 NO’?&iiha‘t the
o o o o 1 -10| solutiong(p)now
depends on the
0 -1 0 0 0 0 1 . . -
symbolic variables p
0 0 0 0 -1 0 1
- - Lee 18: 17

Production/Consumption Matrix for If-Then-Else

3

L EL S
1 |;2”'"?.Jj. AR 3
‘L\"-flh "‘"’i 4 .
GENA AR v F
, l!m-ﬁ:.,ﬁ . s
E.f| . 3

The balance eguations have a soiution g(p)
it an only if T'(p) has rank 6. This occurs

if and only if p;, = pg . which happens to

be true by construction because signais

7 and & come from the same source. The

solution is given at the right.

q(p)=

Lee 18: 18




Strong and Weak Consistency

A strongly consistent dataflow model is one where the
balance equations have a solution that is provably valid
without concern for the values of the symbolic variables.

The if-then-else dataflow model is strongly consistent.

A weakly consistent dataflow model is one where the
balance equations cannot be proved to have a solution
without constraints on the symbolic variables that cannot
be proved.

Note that whether a model is strongly or weakly
consistent depends on how much you know about the

model.
Lee 18: 19
Weakly Consistent Model
1 3
1 E.f;
5
1 E.f,
[1 0 -1 0 0] This production/consumption
1 -1 0 0 0| matrix has full rank unless p = 1.
L(p)=0 p -10 0
0 -1 0 1 0 .
0 1-p 0 o -1 Unlesswe know f , this cannot

be verified at compile time.

Lee 18: 20




Another Example of a Weakly Consistent Model

1 2 ’ A . 5 8
1, T
E.f" 4 ‘ F;-'f;
F
‘ ]':-f‘-»—-j—’.“
7 LogicaiNot
E.f, 11

This one requires that actor 7 produce half true and half
false (that p = 0.5) to be consistent. This fact is derived
automatically from solving the balance equations.

Lee 18: 21

Use Boolean Relations

Symbolic variables
. LogicalNot
across logical b b
1 2

operators can be 1
related as shown. p,=1-p
b AND
1 and b3
2 p; =pr(b,b)
b :_}em L b o
b, p;=1-pr(b,b,)

Lee 18:22




Routing of Boolean Tokens

Symbolic variables

across switch and b
2
select can be
related as shown.
b,
b,

5.5
»li) > b,

1

b

4
bl

AL

D = pr(b, | b)+ pr(b; | b)

ps=pr(b,|b)
P, =pr(b, | b)

Lee 18: 23

Conclusions and Open Issues

o BDF generalizes the idea of balance equations to

include symbolic variables.

o Whether balance equations have a solution may
depend on the relationships between symbolic

variables.

Lee 18: 24
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Lecture 19: Scheduling Booilean Dataflow

Concurrent Models of
Computation for Embedded

Recall If-Then-Else Pattern ~ Symeetic consumption rate.

3
L E. T p -

F. 1 p—! . I

pl s . I-p, 73
7 : Bt : ) J’
E.f; u—l

The if-then-else model is strongly
consistent and we can give a
quasi-static schedule for it

(1,7.2,b?3, 1074, 5. 8)

guard

Solution tc
the symbolic
balance
equations:
S
1
Ds
q(p)=(1-p,
1
1
- 1 -




Quasi-Static Schedules & Traces
A quasi-static schedule is a finite list of guarded firings where:

o The number of tokens on each arc after executing the schedule
is the same as before, regardless of the outcome of the
Booleans.

o If any arc has a Boolean token prior to the execution of the
schedule, then it will have a Boolean token with the same value
after execution of the schedule.

o Firing rules are satisfied at every point in the schedule.

A trace is a particular execution sequence.

Lee 19: 3

Quasi-Static Schedules & Traces

3

! F,f-’

1 Lo 2 I,'LI_E Pl 16

Ej; "_""'i 4
[ 1-p, F

F.f|

tn

>

Solution to the symbolic balance equations:
g®»=0 1 p, 1-p, 1 1 1]

Quasi-static schedule: (1, 7, 2, b?3, Ib?4, 5, 6)
Possible trace: (1, 7, 2, 3, 5, 6)
Another possible trace: (1,7, 2, 4, 5, 6)

Les 19: 4




N .
t e i g be—

L
Proportion Vectors 1 il

o LetSbeatrace.E.g. (1,7,2,3,5,6)
o Let g, be arepetitions vector for S. E.g.
gs=l 1101 11f

o Let ¢ be the number of TRUEs consumed from
Boolean stream b,in S. E.g. £,;=1,f,5=1.

o Letn;¢be the number of tokens consumed from
Boolean stream b,in S. E.g. n,s=1,n,4=1.

o Let
- [t7,s/ R s

pS — :I «——— proportion vector

lys / g s

o We want a quasi-static schedule s.t. for every trace S
we haveI'(pg)gs =0 .

Lee 19: 5

Proportion Interpretation

Recall the balance equations depend on P, a vector with
one symbolic variable for each Boolean stream that
affects consumption production rates:

[(p)q(p)=0

Under a proportion interpretation, for a trace S, ['53
represents the proportion of TRUEs in S. We seek a
schedule that always yields traces that satisfy

['(ps)gs =0

- Lee19:6




Proportion Interpretation for If-Then-Else

o¥F L
L e
Looo

._
U
Oy o o

F 1o G I
. E. -

(-

>
<

oo oo o o~
—
co loocoocoo

1
°-l—°°p
ceo o0 o —
oo o -

0

0 -1

Quasi-static schedule: (1, 7, 2, b?3, 1b74, 5, 6)
Possible trace: §=(1,7, 2, 3, 5, 6) ‘
p=1 1f gs=l 11011 1f
Another possible trace: (1, 7, 2, 4, 5, 6)
p=[0 of gs=fl 1 0111 1f

Both satisfy the balance equations. eto7

SO 0 0 0o o

Limitations of Consistency

Consistency is necessary but not sufficient for a datafiow
graph to have a bounded-memory schedule. Consider:

2 )
1 2 KA 5 8
E.f P Nl g G S E.f
S L '} .
1/ 4 H &' Ja
I-p, 2 p, ¥4
7 l-?--.u- F;,j;' I,
F f b, by

[Gao et al. '92]. This model is strongly consistent. But
there is no bounded schedule
(e.g., suppose b,=(F,T,T. T, ..).

Lee 19: 8




Limitations of Consistency

Even out-of-order execution (as supported by tagged-
token scheduling [Arvind et al.] doesn’t solve the
problem:

"~

'F;'j;. [

It ot || ‘
E,/ / : . | “
."’ 2 - o
7 ! KA ! SampleDetay
7 bt ST

~

3,
27
s~

o

Lee 19: 9

Gao’s Example has no Quasi-Static Schedule

2 2
1 2 F;'/;
v Pq P

R ST
(1S gy NI e E.J,
, ] (4] b Es-f.; 2 Py l

i‘;.f, b3 by

Solution to the symbolic balance equations is
9(}3)=[2 2 p 1-p, 2 2 2]T
A trace S with N firings (N even) of actor 1 must have
gs=IN N t,;/2 (N-t,)/2 N N NJ

But this cannot be unless ¢, is even. There is no
assurance of this.
Lee 19: 10




Another Example

The model is strongly consistent. ; JE. 7

Solution to symbolic equations: E. [ b - .

a®=L 2 2p 1-p o L AL
E-.ﬁ_ 1 b

A trace S with N firings (N
even) of actor 1 must have:

gs=[N N t (N-1)/2 Nf

where ¢ is the number of TRUEs consumed. There
is no finite N where this is assured of being an
integer vector.

Lee 19: 11

Clustered Quasi-Static Schedules

Consider the clustered schedule:
n = 0;

- 4
O{OINE |

fire 1y N
fire E; e
fire 2; ////
if (k) ¢ >/
fire 3;
} else |
n -= 1;

This schedule either fails to terminate or yields an integer vector of

the form:
gs=[N N t (N-1/2 NT
: Lee 19: 12




Delays Can Aiso Cause Trouble

3
-1

E. ! :
Coa _..’_j—. k’_u.f Lol
K. ) »—-[ E.f,
| tp, !
) [Ty

7 ! rn
SsmplsDeiay

F. 1, pe= o (ool

This model is weakly consistent, where the balarice
eguations have a non-trivial solution only if p; = pg. in
which case the solution is:

Q(ﬁ)=[l 1 p;, 1-p, 11 I]T

tee 19: 13

Relating Symbolic Variables Across Delays

SaTio chviey

For the sample delay: —gmas—

What is the relationship between p, and p,?

Since consistency is about behavior in the limit, under the
probabilistic of the interpretation for the symbolic
variables. it is reasonable to assume p, = p,.

Is this reasonable under the proportion interpretation?

Lee 19; 14




Delays Cause Trouble with the Proportion Interpretation

3

1 |
1 2 ' "B S 3
I 1 - 1 1
ES o — E.f,
" SempieDoizy |
E.f, . o ol s

Solution to the symbolic balance equations is

¢@®=0 1 p, 1-p, 1 1 1]
A trace S with N firings of actor 1 must have

=[N N t,, W-t,;) N N NJ

But for no value of N is there any assurance of being
able to fire actor 5 N times. This schedule won'’t work.

Lee 19: 15
Do-While Relies on a Delay
— 2 3 ., —
Fl"jl ! i,_’._—.., I';'j; - > F.;"f.‘
f SampleDolay ‘P?'
Imperative
equivalent:
wnile (ftrue) o .
2= £10); Is this model strongly
T falses 1, consistent? Weakly
Uk By = 23(x)s consistent? Inconsistent?

Lee 19: 16
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Clustering Solution for Do-While

Ciustered Scheduie:

This schedule yields traces
S for which ps = ps = 1/N

and

gs=l N N N 1f
compare:
g®=0 1/p 1/p 1Up 1f

Lee 19: 19

Extensions

o State enumeration scheduling approach: Seek a finite
set of finite guarded schedules that leave the modei in
a finite set of states (buffer states), and for which
there is a schedule starting from each state.

o Integer datafiow (IDF [Buck "94]): Allow symbolic
variables 0 have integer values, not just Boolean
valugs. Extension is straightforward in concept, but
reasoning about consistency becomes harder.




Conclusions and Open Issues

o BDF and IGF generalize the idea of balance eguations
and introduce guasi-static scheduling.

o BDF and IDF are Turing complete, so existence of
guasi-static schedules is undecidable.

o Can often construct quasi-static schedules anyway.

o Tricks like clustered schedules make the set of
manageable models larger.

o Are Switch and Select like unrestricted GOTO?

o Fully usable languages have yet to be created.

Lee 12: 21




Concurrent Models of
Computation for Embedded
Software

Edward A. Lee

Professor. UC Berkelay
EECS 280n - Advanced Topics in Systems Theary

3 Fail. 2004
3
aa s B Cooyright € 2004, Edward A. Lee, All rights reserved
B
ek o
. : ‘ o )
8 Lecture 20: Continuous-Time Models
B EE
v o I}

Basic Continuous-Time Modeling

e Ts

(CT) Sahwer

wwigma 100

This model shows & nendinea” leedback i A
system that sxnibite chaotic behevicr 4

T Y o
olambda 260 e mdamd e tme e | time mode! describes
XY Phortor sbill CT direcior ubes & sophstoatea } ol i AAEE 4l
Tal S ails b W arantia
— Aty Meteriia) eqation SOVS an ordinary ciiferentia
o execute tha modal This particuiat . FANTY TN
eguation (ODE).

model & koW B3 @ Lotenz altrecior

‘Exmlm 1

sigma‘nd x*)

Exgross.on 2

{em boe-01 %12

 Cxpression 3

[

o2 D'

Inmgrae 1

t Bathor

S Lil

Btrange Aractor
egratr 2 =
J 10
upraior 3 r
i ot 1
sl
0
A=




Basic Continuous-Time Modeling

el This partcular
Je 5 Khoah a8 8 Lo%ens attranisr

rr—h m ardinary ¢ | equalion sower e PY WA Icio
= il el ar i (O =
- ] i 1<

F—————— o A o e
‘: .‘ ‘ T Strange Attracter H L &
M ‘ f(X(t),t) J. e 2 5 ! '

\-4: W
| e . st §

W0 =G0
x(?) = x(t,) + j x(7)dr

Basic Continuous-Time Modeling

ne staie rajectory is modeied as a vector function of time
x:T —>R" T'=[t,,©)cR

FO.0) - x(0) = 3(0)+ [#()de -

x(1) = f(x(1),1)
FiR"xT —>R"

Lee 20: 4
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Trapezoidal Method

x(1)

x(tnﬂ )

1‘ X(tn) l\x x

x(t,,0) = X(,)+ h(E(,) + £(2,.)) 2

w
(41
%)
o

-

Trapezoidal Method is Problematic with Feedback
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Forward Euler Solver
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Forward Euler on Simple Example




Runge-Kutta 2-3 Solver (RK2-3)

Given x(z,) and a time increment h. calcuiate

K= f(x)L,) )
K, = f(x(t,)+0.5hK 1, +0.50) """ x(t,+0.5h)
— PR— estimate of
K, = f(x(¢,)+0.75hK,,t, +0.75h) J'c(t,, +0.75k)
then let
t,,=t,+h
x(t,,)=x(t)+(2/9)hK, +(3/9)hK, +(4/9)hK,

Note that this is strictly (deita) causal, but requires three
evaluations of fat three different times with three different
inputs. - Lee 20: 11

Operational Requirements

In a software system, the blue bex below can be specified by a
program that. given x(7) and r calcuiates f(x(9), ¢t ) . But this requires
that the program be functionai (have ne side effects).

]
. . ‘ | *
 FOxle),1) —E %) = x(t) + [(2)dr -

|
i
{

x(1) = f(x(2),7)
f:R"xT > R"

Lee 20: 12




Adjusting the Time Steps
For time step given by ¢,,, =¢,+h . lst

K3 = f(x(tml )’tn+l)

e=h((-5/72)K,+(1/12)K, +(1/9)K, +(-1/8)K,)
If gis less than the "error tolerance” e, then the siep is
deemed “successiul” and the next time step is estimated
at:

h=083e/e

If eis greater than the “error tolerance.” then the time
step A is reduced and the whole thing is tried again.

Lee 20: 13
Comparing RK2-3 to Forward Euler
RIFL - ;
T v T feproximate = j;m;’ Approximats m
s} Forward Euler: vl 1,
301 1w 1
235 A1 | en} i
20 W eat K
15 ‘”.M <
of .‘., anf )
i ek i
20 05 10 15 o 25 10 ¢ ) 206 288 k44 30 0 308

For this example, RK2-3
is exact at 2.0, while
Forward Euler
undershoots by &
signhificant amount.

tee 20; 14




Accumulating Errors

in feedback systems. the errors of FE sccumulate more rapidly than
those of RK2-3.

~ f(),1) -E () = x(t,) + [#(e)dr |
x(1) = f(x(2),1)
f:R"xT —>R"
Lee 20: 15
Examining This Computationally

i
{
L
i
i
j

i
[ X

v f(x(@®),1) x x(2)=x(t,)+ ]J'c(r)dr

At each discrete time ¢, given a time increment

b= t,,-lT h, we can estimate x(z,, ,). by repeatedly
evaluating fwith different vaiues for the arguments. We
may then decide that h is {oo large and reduce it and
redo the process.

Lee 20: %




How General Is Th
Does it handlie:

Systems without feedback? yes

X

is Model?

o |
i %

M— T
] ]
[
i L

S

X x() = x(0)+ [#(r)dr i
I ]

'

(1) = f (x(2),2)

Lee 20: 17

How General Is T
Does it handle:

External inputs?

X

his Model?

yes

—,

| ]
—
Y

i

S

A gl x() = x(0)+ [3()dr -
— i 0 ?

P

|

x(t) = f(x(1),1) = g(u(?), x(2),7)

Lee 20: 18




The Model Itself as a Function

Note that the model function has the form:
F:[T->R"]->[T—>R"]
Which does not match the form:
f:R"xT > R"

U . ,
g i x() = x(0)+ [2(r)dr —E

— : 0

F S , : o

o bt S Bl e 1 0 i 1 4 1 e v i A e S 1 1 8 e e 1 -

(This assumes certain technical requirements on fand u

that ensure existence and unigueness of the solution.) 0
Lee 20: 19

Consequently, the Model is
Not Compositional!
In general, the behavior of the inside dynamical system
cannot be given by a function of form:
f:R"xT > R"

A Y A ! ix
N XL x() = x(2,) + j *(0)dr -

20 ‘ 1 |
To see this, just note that the cutput must depend only on
the current value of the input and the time to conform
with this form. 4 Lee 20: 20




So How General Is This Model?
Does it handle:

State machines? No... The model needs work...

o

X
) ‘ B
‘ E T 1 1 ! ; i
| A ) 1 o L
A A @) =x0)+ [#0)dr -
Tl | ‘ 0
| | |

I | , |
Since this model is itself a state machine, the inability to
put a state machine in the left box explains the lack of
composability.

Lee 20: 21

Start with Simple State Machines
Hysteresis Example

This model shows the use
of a two-state FSM to
7] | model hysteresis.

MudalModel o=

e I Semantically, the cutput of
e the ModalModel block is
e uivaie - 10 | discontinuous. If transitions
/\@ take zero time, this is
| modeled as a signal that

has two values af the same
time, and in a particular
order.

Lee 20: 22




Hysteresis Example

CorrectOutput

160 N 3
T sk -

oar 4 ;

| -nsf i

0l I

i ] Correct Output with Dots

| . . el 1 |
T 0sf; 1

ol / i 1 |
I Y i) | L% 0% cw 0w o o3 ars om0 |

imput <= 0 7 Gof
cutpuiVeive =~ «i.C s d {
/’\\ Aol Mooga, |

e gL e T Incorrect Qutput

state.cutpulvaice > 1.0 i Lo

045 050 0%5 OED OEs UTC U5 DED OES 4

Requirements

il i e e W 4
i ale )\ﬂ;.;lh}ie
# " ¢ § y
A oimrial ¢ 2slalu~Nis ~ S HE T~ + ]
C A~ Sigiial ay tid VE MOore tan one vaiue al a parucular




Both Requirements Are Dealt With By an

Abstract Semantics
Previously

Now we need:

Actor StatafulActor

f p— _.[ g —
;,_é_S'(:szeS s, €8 ’e s, €S
S=[T - R] S=[TxN —R]
f:R"xT —>R" f:ZxR"xT —>R"
VteT, s,(8)=f(5()1) g ZXR"XT>X

" state space

V(t,n)eTxN, s,(t,n)=?

The new function fgives outputs in terms of inputs and the current
state. The function g updates the state at the specified time.

Lee 20: 28

Abstract Semantics

teach te T the oulput is a sequence

StatafulActor
i g p———0 of one or more vaiues where given the
s, €8 5, €S cument state o(f) € T and the input 5,(7)
we evaluate the procedur
S=[TxN—->R _
[ , ] . 5(10) = £(o),5(1.0),1)
JiZxR"xT >R 0,(t) = g(0®),5,(10),1)

gIZX Rm XT—>Z Sz(t9l)=f(o-l(t),sl(t’l)’t)
o,()=glo,(®),5,.1),1)

until the state neo longer changes. We use

the final staie on any eveiuation at later

limes.

This deals with the first requirement.

Lee 20" 28




Conclusion and Open Issues

o The basic model assumea by many ODE solvers does
not tend itself easily to reasonable software
architectures.

o A generalized model supporis signals with multiple,
ordered values at a time value.

o An abstract semantics for componenis can be defined
that supports these multiple vaiues and aiso is
amenable to reasonable software realizations.

o Compositionality remains an open issue.

Lee 20: 27
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Basic Continuous-Time Modeling

Cortn 0 (CT) Soher
i Ths wodel sho feedbak
»mgeia 100 systaT th 1bte chaotc behavier
o lambda 250 u i3 Taw
ebi2d v

“f(x(t;,.t)j‘ J' s

Strange Attracter

(4]

< 4

s e

()= f(x(@0n0)
x(1) = x(ty) + [%(z)dr




Basic Continuous-Time Modeling

Tne swte trajectory is modeled as 2 vector function of time,
x:T—>R" I'=[t,,©)cR

N

<FED.) A3 =x0)+ [ -

H
i i !

H
p 13
N S —

x(1) = f(x(1),2)
f:R"xT —>R"

Lee 21: 3

ODE Solvers

Numerical sclution approximates the state irgjectory of the ODE by
stimating its value at discrete ime points:

<

o]

{t;st),-. 3T

Reasocnadle choices for these points depend on the function f.

5

o ' v 5 H B R T s 4 =1 :
Ua%ﬂg SUCHh Sowvers, signals are aiscrete-avent signa:

«
0




Requirements

We have two requirements:

o A signal may have more than one value at a particular
time, and the values it has have an order.

o The times at which the solver evaluates signals must
precisely include the times at which interesting events
happen, like a guard becoming true, or any point of
discontinuity in a signal (a time where it has more than
one value).

Lee 21: 6

Ideal Solver Semantics

Given an interval I =[t,,2,,,]and an initial value x(Z,)
and a function f : R™ xT — R" that is Lipschitz in x on
the interval (meaning that there exists an L > 0 such that

Viel, |f(@),0-7&@.0]<Ljx@)-x @)

then the following equation has a unique solution x
satisfying the initial condition where

Viel, x(t)=f(x().?)

The ideal solver yields the exact value of x(Z,,).

Lee 21: 6




Piecewise Lipschitz Systems

In our CT semantics. signals have multiple vaiues at the
times of discontinuities. Beiween discontinuities, a
necessary condition that we can impose is that the
function f be Lipschitz, where we choose the points at the
discontinuities to ensure this:

1 =[ti’ti+l]

/\/\//\/\/ s:RxN —>R"

x:R—>R"

t:" fis {i‘.’. {

i

RK2-3 Solver Approximates Ideal Solver

Given x(z,) and a time increment h, caiculate

Ko= f(t)t,) = 0,)
#___,.-Meatzmme [}
K, = f(x(t,)+0.5kK 1, +0.5h) x(t, +0.5h)
— ... -— E8timaie of
K, = f(x(z,)+0.75hK ,t, + 0.75h) (¢, +0.75h)
then let
tn+1 = tn + h

xX(t,,0) = x(t,)+(2/9)hK, +(3/9)hK, + (419K,

Note that this is strictly {dslta) causal, but requires three
evaluations of fat three different times with three different
inputs. Les 21: 8




Abstract Semantics

Stateful Actor

g »
s,eSL— s, €8

y avshiiate the nroraediire
> evailaic ine protelurc

S = [T Xiv —> R] ) 52(1,0) - f(O'(I),SI (l‘),t)
f 2xR"xT —> R o, (t)=gl(o(1),s,(1),1)

g: 2XR"xT > X s, = f(o,(2),5,(2),1)
o,(1) = g(o,(1),s,(2),1)

wiil +ha etate N IanAaar
Nl the sigie No iongae!

e C
} flm el oF ~ Ay gy i iy g ]y
he final siate on any evaiuati

times.
This deals with the first requirement.

L
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Generalizing: Multiple Events at the
Same Time using Transient States
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Contrast with Simulink/Stateflow
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Second Requirement: Simulation Times
Must Include Event Times

—var Has
Event thimy

Predictable Breakpoints: |
Known beforehand. |
Register to a Breakpoint Table in advance.
Use breakpoints to adjust step sizes. -

Unpredictable Breakpoinis: —
Known only after they have been missed. L
Requires being able to backirack and
re-execute with a smaller step size.




Event Times

In continuous-time models, Pioiemy il can use even: defeciors c identify

the precise lime at which an evert ocours:

AcdSubtract ZemCrore.ngDewens

=il aal ot

%

or it can use Moda! Models, where guards on the transitions specify

when events occur. in the iiterature, you can find two semantic
interpretfations © guards: enabling or triggering.

@7 e

)\__/'

ceoy

If oniy enabling semantics are provided. then it becomes nearly
impossibie 10 give models whose behavior does ot depsnd on the step-

size choices ¢ the solver,

Lee 21: 13

The Abstract Semantics Supports the
Second Requirement as Well

StatefulActor

1g —s

s,eSL—Is, €S
S=[TxN —R]
f:ExR"xT > R"
g ZXR"xT >Z

teach t e T the calculation of the
output given the input is separatec from
the calcuiation of the new state. Thus, the
state does not need to updatec uniil after
the step size has been dscided upon.

in fact. the variable step size solver relies
on this, since any cf severai integration
calculations may result in refinement of
the step size because the error is too
large.

This deals with the second requirement.

Lee 21: 14




However, Getting Compositional Semantics
Requires More Work

In general, to give the behavior of the inside solver in the
following form requires storing considerable state:

f:ZxR"xT - R"
g:EXR"xT > Z

t X
x(8) = x(ty) + [(r)dr i

The state space must include the state of all
components, since backtracking of the entire subsystem
may be required. Lee 21: 15

Third Requirement:

Compositional Semantics

We require that the system below yield an execution that
is identical to a flattened version of the same system.

That is, despite having two solvers, it must behave as if it
had one.

l
X

X x(f) = x(1,)+ ]x(r)dr

|
Vo
|
i
i
b |
j

Achieving this appears to require that the two solvers
coordinate quite closely. This is challenging when the

hierarchy is deeper.
Lee 21: 16




Hierarchical Executions
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Structure of the Spring-Masses Model
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Structure of the Spring-Masses Model

[ I
| | Seckybies mooil Prat Foslens va Time |

Thes node gives one ordinary differontial eguation
for the Oined peint magses atiached 12 a saning

A second differentis’ equaton nndels the decayng
sbokiness

State refinements are |
inactive when the FSM
is not in that state. An | |
arc into a state can L fore

1.0°16.20°20- {16209

Exprossin
{1.0°1.0+ 2.0'20 - 11.0+2.0"P1V20

specify a reset map. or | |

it can resume the N Vi 20 V2 are velociios,

refinement in the state | » A i
iy O Masses.

where it last left off.
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Consider Corner Cases

¢ When triggering transitions based on predicaies on
discontinuous signals, how should the discontinuity
affect the transition?

o What should samples of discontinuous signals be?




Recall Hysteresis Example
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Simultaneous Events: The
Order of Execution Question

# The ouiput of the Scale actor
has the same tag as iis input,
so ModelModel2 sees only two
values with opposite signs.

2

e O 98
Lee 21: 28

Alternative Interpretations

* Nondeterministic. Some hybrid systems languages
(e.g. Charon) declare this {0 be nondeterministic,
saying that perfectly zero time delays never occur
anyway in physical systems. Hence, ModalModel2
may or may not see the output of ModalModel before
Scale gets a chance to negate it.

« Delta Delays: Some models (e.g. VHDL) declare that
every block has a non-zero delay in the index space.
Thus, ModalModel2 will see an event with time
duration zero where the inputs have the same sign.




Disadvantages of These Interpretations

o Nondeterministic:
« Constructing deterministic models is extremely difficult
» What should a simulator do?

* Delta Delays:
« Changes in one part of the model can unexpectedly
change behavior elsewhere in the model.

Lee 21: 27

Nondeterministic Ordering

In favor
Physical systems have no true simultaneity
Simultaneity in a model is artifact
Nondeterminism reflects this physical reality
Against
It surprises the designer
counters intuition about causality
It is hard to get determinism
determinism is often desired (to get repeatability)
Getting the desired nondeterminism is easy
build on deterministic ordering with nondeterministic FSMs
Writing simulators that are trustworthy is difficult
It is incorrect to just pick one possible behavior!

Lee 21: 28




Consider Nondeterministic Semantics

IJ'“ ier nondeterminisiic semantics, we
ould modify ne moge! to explicitly

o (i . £ o
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OTOH: Nondeterminism is Easily Added in a
Deterministic Modeling Framework

|
o | |
e [ | ( ) a time when
i 75.%&.»_%;_"';;1 Display Brack Trace f_"\ the event source
: Lu yieids a positive
Although this can be done in i O\_J Bt ap
principle, HyVisual does not \ number. both

support this sort of Lerermmerememseree] transitions are
n minism. What execution K
hould it give? enabled.
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Sampling Discontinuous Signals

Continuous signal with sampie times chosen by the solver:

o]

joer

e iy I
"“*/ . : b i

PrtogrSan pier

Trmect oterd |

10 ‘ kil 1 {
- 05 '
Samples must be | ool .

| deterministically taken at t- or t+. |
! Our choice is -, inspired by
| hardware setup time
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Conclusion and Open Issues

o Compositionality across ieveis of the hierarchy
appears to require that sclvers coordinate rather
tightly. Does the abstract semantics adeguately
support this coordination? Is this abstract semantics
implementable in a cost-effective way?

o Whean considering discontinuous signals, have to
consider corner cases... Give them a well-defined
semantics, any well-defined semantics!

Lee 21: 38
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Synchronous Languages

o Esterel

o Lusire

o SCADE (visual editor for Lustre)
o Signal

o Statecharts (some variants)

o Piclemy ll SR domain

The model of computation is called synchroncus
reactive (SR). It has strong formal properties (many
key questions are decidable).

Lee 22: 2




The Synchronous Abstraction

o)

“Mode! time” is discrete: Countable ticks of a clock.
WRT model time, computation does not take time.

All actors executie “simuitaneously” and
‘instantanecusly” (WRT {o model {ime).

There is an obviously appealing mapping onto real
time, where the real time between the ticks of the
ciock is constant. Good for specifying periodic reai-
time tasks.

iee22:3

Simple Execution Policy

t sach tick, start with all signals “unknown.” Evaluate

non-strict actors and source actors. Then keep evaluating
any actors that can be evaluated until all signals become
known or until no further progress can be made.

Note that signais will resolve o a value or to “absent” if
there are no causality icops.

Lee 22: 4




Fixed Point Semantics

. type T

~valueind=Tu {l, ¢}
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luate f( £(L)

top when a fixed point is reached

A fixed point is always reached in a finite number of
steps (one, in this case).

w

r
0
o
P
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Synchronous/Reactive Actors

Key SR Actors

Pre
ItV u

Pre: When tne¢ mput is
progent, the output is
the previous present
mnaul valug

NonStrictDelay

o

NonStrictDelay Tho
outpul s eqgual o

the input in the previous
sicck tick.

When
—

r 3
wWhen: Wnen the botlom
input is present and
true, the ocutput equals
the input. Othervise,
the output is absent

Default
e

I ]
Getauwit: 1ne outnut agual
the loft inpul, #itis
present, ang the bottor
input othanwse

5

Current

current
value

v

Current: The cutputl eguals
the most recent present
inpul vaiug

EnabledComposite
S
r 3
EnabledCompaosite Composite
actor whose internat clock
ticks anly wnen the bottom
input 's present ang trie

Lee22: 6




Design in SR:
Example

8 coor.. 2 1O §

i

madraad
: X

Ths medsl fustraes the use of SR orivitive acons

to ma<e a CountDewn actor. This {comzosis) actor oubhuts
8 tus on U ready port when it s resdy o count.

U same tich of the cocs. the Sequence actor provides 1
withh a starting number. i then counts down tc Broon

esch subseguant tick of the clock. emittng true on ready
whal 1 @380 reaches s

EnabledCompoits  Countow: DispinCount

The throe dispieys show {lefl w nghth

Fis Hep Help

3 1
5 0
13 5
2 4
absent 3
iabsent 2
jabsent 1
labzent 0
pb3ent 3
2
1
0
2
L
o

-absent

-absent

-absent

‘ahsent

absent

- Reguested numbers 1o coun! down from
~ The count down fo thess nurmBens
- The enabie signe! %o the EnabledComossite sCtor,

in this example, the CountDown
composite issues a “ready”
signal to the EnabledComposite,
which then issues a numbser.
The CountDown composite
counts down from that number
to 0, then issues another ready.

true
false
§ true
(false
false
false
false
false
True
false
false
false
trus
false
‘false
true
True
true
true
true

tee22:7

Design in SR:
Example

This modal kustrates the use of SR primtve actors

b ek & CountCown actor. The (composts) astior Gutiuls
4 Tk 01 e ready port when it & neady to count. i

the sami i of the dock. the Saquence acior provdes it
with @ starting number. R hen counts down o 2o on

each subsequent tok of the cock, emittng rue on roady
when it agaln reacnes =7

Dis playConnt

=

”E“.Mc\““wlh CountDows

. T theo dispays snow (ef 'S nght)

the cotgposie,
this NonStctDeiay
behaves like Pre

¥ I wasre put at

the top ievei, 1
wous not

Note that this dispay fires only when the enabien
port raceives a trie toven. This ls because only then
i theire 2 tick of the cdock

Within this compoaite, a tok of the

chock only oocurs whah a Tue value

Is provided on the enadls inow port

in the eadosing modal. Thus, this
sunsystern has a clock thal s 1B subcisck
of that of the enciesing model,

- Requested numbers to count down frorm:
- The count down for these numoers.
- Tt anable signat for twe EnabledComoosite actar

The EnabledComposite
has a clock that ticks
only when the enable
input is present and true.
it issues the sequence
1,5, 3, 2, followed by

absent hencgeferth.

Lee 22: 8




Design in SR:
Example
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Design in SR:
Example
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Subitleties: Pre vs. NonStrictDelay

Pro Pre: True one-sample delay. The

initialVaiue)

297

Pre: When the input is
present, the outpul is
the previous presant
mput value.

NonStrictDelay

kow

NonStrictDeiay: The
output is equa! to

the input in the previous
clock tick.

behavior is not affected by insertion of an
arbitrary number of ticks with “absent”
inputs between present inputs.

NonStrictDelay: One-tick delay (vs. one-
sampie). The output in each tick equals
the input in the previous tick (whether
absent or not).

Lee 22: 11
[llustration of this Subtlety
SR Direcior
Fustraton of the difference betaeon
NonStrictDeay and Pre
SequenceP ot
{&J
SequenceFlotter SR
‘ ]

In this example. the original
signal is prasent only if every
third tick of the clock. The
output of the NonStrictDelay
is delayed by one click,
whereas the output the Pre
actor is delayed by one
(present) sample.

“K W et D - @ ® O
T T T T T T

ongmal ¢
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Consequences: Pre vs. NonStrictDelay

Pre

initialVaiue

Pra: When the nput is
present, the outpul is
the pravious presant
input value.

NonStrciDelay

wob

NonStrictDetay The
output is equal to
the input in the previous

Pre: This actor is strict. It must know
a— whether the input is present before it can
determine the output. Hence, it cannot
be used to break feedback loops.

NonStrictDelay: This actor is nonstrict. It
need not know whether the input is
present nor what its value is before it can
determine the output. Hence, it can be

clock tisk. used to break feedback loops.
Lee 22: 13
: Ths moda! bustrates the usa of SR primive actors
Use of et 10 make » CoutDown actor. Ths (composts) scior oulputs
" - au-:{:m*:mmnmﬂ:mmmm: L] )
NonStrictDelay e R T B

in Feedback

each subsaquent tex of the dock, smittng true on resdy
whan £ 202N reacnes 2erc,

/

EnablesCompashe  CeunDow

e

-

tﬁ_@

DispiayCount

s

Restart the count
whaneve” Vie 5a
input & not absent
Detault

sl

(which cnbesg®h If no
new start input s provided)

>

lequasted numbers to count down from

P thres dispiays show (kef! to nght):

tho count down for thase numbers
Ihe enable signal ‘or the EnsbledCamposite acwr.

The Default actor and
the feedback loop
ensure the
NonStrictDelay input is
never absent. Thus, it
behaves like Pre in this
modeal.
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Hierarchical Clock Domains

Like a conditional

If the internal component is an instance of the external,
then this amounts to recursion

Like a do-while
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Alternative Semantics:
The Clock is a Property of the Signal

In Lustre and Signal. a clock is a property of a signal, and
Pre and NonStrictDelay could (in theory) behave
identicaily. They would only “tick” when the clock of the
input signal ticked. ‘

However, this model has problems with decidability.
Clocks cannot always be inferred.

Lee 22: 17

Clock Calculus

o Let T be a well founded totally ordered set of tags.
o Lets:T- Vu {&} be a signal of type V. where ¢
means “absent.”
o tete:T- {-1,0,1} be a clock associated with s
where
s=e=>c(®)=0
s@=true=>c(t)=1
s(?) = false = c(f) = -1
f Vis not boclean, then when s(f) is present, ¢(¢) has
value or 1 or -1 {we will make no distinction).

Lee 2
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Operations on Clocks

Arithmetic on clocks is in GF-3 {a Galois field with 3
elements). as follows:
O+x=x 0-x=0
1+1=-1 1-x=x
-1+-1=1 -1.x=-x
-1+1=0
Lee 22: 19

Clock Relations: Simple Synchrony

Most actors r

eguire that the clocks on all signals be the
same. For exan

nple:

§|  AddSubract

4 L33 wreT, () =c()=ci()

—t -

This means that either all are present, or all are absent.

o

Lee 22: 20




Clock Relations: When Operator

Assuming that s, is & booiean-valued signal (which it
must be}, the clocks on signals interacting through the
when operator are related as follows:

83 el q=a-e0-50)
15
This means:
if s, is absent, then s, is absent.
If 5, is faise, then s, is absent.
If s, is true, then s,is the same as s,.

Consistency Checking

Consider the following model:

Sl AddSubtract

T p——VteT, c,z(t)=cf(t)=c§(t)

wnen f — s4
S
S3

These twe together imply that:
VieT, )+ (@) =-c,(t)ci()
where we have used the fact that

(-, (1) = (~c,() -3 (1))

VieT, c(t)=c () (~c,(t)-ci ()

o)

Lee 22:22




Interpretation of Consistency Result

Consistency check implies that:
VieT, c(®)1+ci(®)=-c,(O)ci(t)

S AdaSubtract
i —
When S4
.
S3
S
This means:

s, is absent if and only if 5, is absent.
if s,is present, then s, is true.

Logic Operators Affect Clocks

The output of the When actor has a ciock that depends
on the Boolean control signal. Clocks of Boolean-valued
signals reflect the signal value as foliows:

VteT,
Sy 5,  ,()=—c,(})
o 5 o= OO (<6 @+ e +D=1)

S

I8 a®=@On0) (@0 -e -1+

S

Lee 22; 24




Token Routing Also Affects Clocks

Switch and Select affect the ciocks as foilows:
VteT,

¢, (1) =c; (e, ()1~ ;) — ()1 +¢; (1))

e RN ONORP0
s, (e (-Des) =)

Ty C3(8)=—c, (), (1) + )¢, (2)
¢, (1)=c, (A - c,(D)e, (2)
;)= (?)

Lee 22: 25

Example 1 Using Switch and Select

BnolTaansm:r. S3 BocloanSalect

—P——

G F S
S4 ‘r 6
NOT

What can you infer about the clock cf s¢?

c()=0

Lee 22: 26




Example 2 Using Switch and Select

sl i

grooleanSelect

What can you infer about the ciocks?

¢(®)=0 and
either ¢;(#)=0 or 1+¢((#)=0

This means that s, is absent and s, is either absent or

false.
Les 22: 27
What About Delays?
Clock relations across the delays
Pro become dependent on the tags. E.g.. if

Sl » initidVaoue L sz

777

Pre; When the mput is
prasent, the output is
the previous present
input value

NonStictDelay
S S

NonStrictDelay: The
output s equal to

the input in the previous
Clock tiek.

Tis the natural numbers, then we get a
ncnlinear dynamical system:

cl(t)=c;(t) and

¢(0) = initial state

c(t+1) = (1= (D)) +¢,@)
&) (1) =t ()e(t)

This makes clock analysis very difficuit,
in general.

‘..
@
o
N
N

N
(¢4




Default Operator

Defauit: The oulput ecuals the ieft input, if it is present,
and the bottom input otherwise:

Default

o . 3 VieT, c(t)=c(t)+c,()1-cX (@)
I

This means the clock of s, is equal to the clock of s, , if it
is present, and o the clock of s, otherwise.

Lee 22: 20

SIGNAL Clock System

in the SIGNAL language. the ciock system is richer:
o LeiTbe a partially ordered set of tags.

o Asignals: T VU {€} of type Vis a partial function
defined on & totally orderec subset of T, where again e
means “absent.”

Lee 22: 3C




Default Operator in SIGNAL is Nondeterministic

In SIGNAL semantics, the following model has many
behaviors:

Sequence Detault Display
u[(t.z. 3 ;: > D
Sequence?

The two generated sequences have independent clocks
(defined over incomparable values of € T), and the
output sequence is any interleaving that preserves the
ordering.

Lee 22: 31

Guarded Count in SIGNAL

Instead of i
generating a s e
“ready” signal, in (- ﬁmﬁm @j:}(m;x
SIGNAL, the count mm@m&n o count
hitting zero can be ot
synchronized with Comparean?
the input being il
Synchronim
present. 5 =
wmmm
e

Lee 22: 32




Conclusion and Open Issues

o When clocks are a property of the model, the result is structured
synchronous models, where differences between clocks are
explicit and no consistency checks are necessary.

o When clocks are a property of a signal, the result is similar to
Boolean Dataflow (BDF). It is arguable that clock operators like
“when,” “default,” “switch,” and “select” become analogous to
unstructured gotos. Clock consistency checking becomes
undecidable.

o When further extended as in SIGNAL to partially ordered clock
ticks, models easily become nondeterministic.

Les 22: 33
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Lecture 23: Time Triggered Models

Computation for Embedded

The Synchronous Abstraction
Has a Serious Drawback

o “Model time” is discrete: Countable ticks of a clock.

o WRT model time, computation does not take time.

o All actors execute “simultaneously” and
“instantaneously” (WRT to model time).

As a consequence, long-running tasks determine the
maximum clock rate of the fastest clock, irrespective

of how frequently those tasks must run.

Les 23. 2
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Uniformly Timed Schedule
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Concurrent Uniformly Timed Schedule

With preemptive muititasking, the rate at which A and B
can be invoked is limited only by total computation:

thread 1:§ E E : l'li I!ll high priority
- o [[ﬂi“]] o
o Lee23: 7

Ignoring Initial Transients,
Abstract to Periodic Tasks

‘/ssmpIeTlme =8

_-sampleTime = 1

sampleTime =1 A
'n.-

In steady-state, the execution follows a simple periodic
pattern:

thread 1

i
thread 2: [' | | I

lee 23: 8




Requirement 1 for Determinacy: Periodicity

interlock

i n
thread‘!:E b EIII l
T LAt
IIIII sampleTima: 1 |sampleTime: 1
b ~ B

[f the execution of C runs longer than expected, data
determinacy requires that thread 1 be delayed
accordingly. This can be accomplished with semaphore
synchronization. But there are alternatives:

o Throw an exception to indicate timing failure.

o “Anytime” computation: use incomplete results of C
Lee 23: 8

sampleTime: 8
C

thread 2.

Requirement 1 for Determinacy: Periodicity

]

interlock

thread 1: samplechme: 8

sampieTime: 1 |sampleTime; 1
thread 2: P

L —

If the execution of C runs shorter than expected, data
determinacy requires that thread 2 be delayed
accordingly. That is, it must not start the next execution

of C before the data is available.

Lee 23: 10




Semaphore Synchronization Required Exactly
Twice Per Major Period

thread Eliiil! ] | ill ii
thread 2: [ I l I I I I I |
L. i - i~
v

Note that semaphore synchronization is nof required if
actor B runs long because its thread has higher priority.
Everything else is automatically delayed.

San1plecTime‘ 8

sampleTime: 1 [sampleTime: 1

Lee 23: 11

Requirement 2 for Determinacy: Data Integrity

tbread;lillili lilllll
BN i il S S

sampieTime: 1 lsampleTime: 1
thread 2: - - 5

LS S
During one execution of C, it is essential that any data it

reads from its inputs not depend on any executions of A
that are concurrent with that execution of C. This is
because execution times are estimaies, so when the
preemption occurs within the code of C is best modeled

as random.

sampleTime: 8
C

Lee 23: 12




Simulink Strategy for Preserving Determinacy

ZOH sampleTime: 8

v'

thread 1:Ei

thread 2:

Smubnk Muitiaskng Dracior |
—— —)

sampleTime: 1

In “Multitasking Mode,” Simulink requires a Zero-Order
Hold (ZOH) block at any downsampling point. The ZOH
runs at the slow rate, but at the priority of the fast rate.

The ZOH holds the input to C constant for an entire

execution.

Lee 23: 13

Giotto Strategy for Preserving Determinacy

frequency: 1
- l]. | I

First execution of C operates on initial data in the delay.
Second execution operates on the result of the 8-th
execution of A.

Delay c¥

N —
frequency. 8

Lee 23: 14




Giotto: A Delay on Every Arc

frequency: 1

thread 1: @8

IS

e 11111177 T

—_— frequency: &
Since Giotic has a delay on every connection, there is
no need to show it. It is implicit.

Is a delay on every arc a good idea?

Lee 23: 15

Note that Neither the Simulink nor the Giotto
Strategy Works for Our Example

SOF Dirwcivr
]

A FFT CompuTorcty: |
dataflow A |
director

The data from the AudioCapture actor is buffered in a
FIFO queue for the FFT actor. There is no danger of
data being overwritten by the AudioCapture actor. The
Simulink strategy would present only the first of each 8
samples from the AudioCapture block to the FFT biock.

Lee 23: 16




One-Time Interlock for Dataflow

No ZOH
block is
required!

For dataflow, a one-time interlock ensures sufficient data
at the input of C:

thread 1: high priority

© ' «—periodic interlocks

thread 2:  one-time interlock low priority

Lee 23: 17

Aside: Ptolemy Classic Code Generator Used
Such Interlocks (since about 1990)

SSDF model, parallel schedule, and synthesized DSP assembly code

odeblock{ntd) {
poinitialize sddress regleters for coof and
delaylineove sgadar{ooel ) Sval(cowllend-1.v3
2 inpert here
sref{delaglinelitart) .r5

asval{ncepSize) %l
Srof{urror). w0

B.x0
xz(r¥).b yilriie yo

codebilock{ loop) {
#sval{ioopVal} . Slabwel{endloop)

WElrS)+.y0

B0

It is an interesting (and rich)
research problem to minimize
interlocks in complex multirate
applications. Lee 23: 18




Aside: Ptolemy Classic Development Platform
(1990)

An SSDF
model, 2 “Thor”
mode! of a 2-
DEP
architecturs, a
ic analyzer’
e of the

K1
i

code debugger
windows, cne
for each
processor.

Aside: Application to ADPCM Speech Coding

(1993)

Naote
updatied
DsP
debugger
interface
with
host/DSP

interaction.




Aside: Heterogeneous Architecture with DSP and
Sun Sparc Workstation (1995)

"% ISP card in 2 Sun Sparc
o Workstation runs a portion of a
' Ptolemy model; the other portion

Consider a Low-Rate Actor Sending Data to a
High-Rate Actor

sequential
schedule

sampieTime: 1 sampleTime: 4

Note that data precedences make it impossibie to
achieve uniform timing for A and C with the periodic non-
concurrent schedule indicated above.

Lee 23: 22




Overlapped lterations Can Solve This Problem

SOF Direcer
thread 1:
et ¢

thread 2: 4 R .
L%
sampleTime: 1 sampleTime: 4

This solution takes advantage of the intrinsic buffering
provided by dataflow models.

For dataflow, this requires the initial interlock as before,
and the same periodic interlocks.

Lee 23: 23

Simulink Strategy

Dalay ZOH De!ay_l ZOH Delay‘ ZOH

—

tnread‘f:lE !lll EI
The Delay provides just one initial sample to C (there is

Tt !
no buffering in Simulink). The Delay and ZOH run at the

rates of the slow actor, but at the priority of the fast ones.

sampleTime: 1 sampleTime: 4

Part of the objective seems to be to have no initial
ransient. Why?

Lee 23: 24




Giotto Strategy

Delay2 Deley DelayZ Delay Delay2 Delay

thread 1:

thread 2:

sampleTime: 1 sampleTime: 4

Giotto uses delays on all connections. The effect is the
same, except that there is one additional sample delay
from input to output.

Lee 23: 25

Discussion Questions

o What about mere complicated rate conversions (e.g. a task with
sampleTime 2 feeding one with sampleTime 3)?7

o What are the advantages and disadvantages of the Giotto
delays?

o Could concurrent execution be similarly achieved with
synchronous languages?

o How does concurrent execution of dataflow compare to Giotto
and Simulink?

o Which of these approaches is more attractive from the
application designer's perspective?

o How can these ideas be extended to non-periodic execution?
(modal modeis, Timed Multitasking, xGiotio)

Lee 23: 26




Conclusions and Open Questions

o Giotto, Simulink, and TM, all achieve data determinism
with snapshot of inputs and delayed commit of outputs.

o Giotto introduces a unit delay in any communication.
Simulink introduces a unit delay only on downwards
sample rate changes.

o By exploiting uses of Pre in synchronous languages,
concurrent execution can be similarly achieved.

o Dataflow does not introduce a unit delay.
o Considerable confusion remains.

Lee 23: 27
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Lecture 24: The Tagged Signal Madel

Tags, Values, Events, and Signals

o AsetofvaluesV and asetoftags T

o Aneventisee TxV

o Asignalsisasetofevents.le.scTxV

o The set of all signals S=P(Tx V)

o A functional signalis a (partial) functions: T— V
o Atuple of signalss e S”

o The empty signal A= e S

o The empty tuple of signals A e S

Lee24: 2




Processes

A process is a subset of signals Pc §”

§ 8 .
P BcS

S, S,

The sort of a process is the identity of its signals. That is,
two processes P, and P, are of the same sort if

Vie{l.,n}, #,(R)=m(B)

projection

Lee 24: 3

Alternative Notation

Instead of tuples of signals, let X be a set of variables.
E.g.

X =1{5),5,,53,5,}

S S X
P Bc[X —»S]=§

s, S,

This is a better notation because it is explicit about the
sort. This notation was introduced by [Benveniste, et al.,
2003]. We will nonetheless stick to the original notation in
[Lee, Sangiovanni 1998].

Lee 24: 4




Process Composition

To compose processes, they may need to be augmented
to be of the same sort:

s s
L — 53
P Bcst B=PxS'cS®
s, Sa
S5 51 s
P, PcS P =8*xP cS*
Ss Sg
Lee 24: 5

Process Composition

To compose processes, they may need to be augmented
to be of the same sort:

P]'=Plx.5'4 CSs\
Q=BNF=RxP

.\ P, B =8*xP, CSS/

Lee 24:6




Connections

Connections simply establish that signals are identical:

8 ’/Q\ Ky

%—045—{855””4(5) 75(8)}
27—{SES8|12'2(S) 7,(8)}

N
O=FnNnPn C4,s NC,,

Lee 24:7

Projections (Hiding and Renaming)

Given an m-tuple of indexes: I e{l,...,n}"

the following projection accomplishes
hiding and/or renaming:

7, (P) = (7 3,1y (P)sers T 1y (P))

Leg 24: 8




Example of Projections (Hiding)

Projections change the sort of a process:

= 3
/ s, fiﬁ\g\ 1=(1,3,6,8)
\ s, s, /‘ Q=7,(BNBNC,nC,,)cS*
\ 6 [Pl Sz /

lLee 24: 8

Inputs

Given a process P c S, an input is a subset of the same
sort, 4 c S, that constrains the behaviors of the process
to

P=PnA4
An input could be a single event in a signal, an entire
signal, or any combination of events and signals. A
particular process may “accept” only certain inputs, in
which case the process is defined by Pc S and
B c P(S"), where any input 4 is required to be in B,

AeB

Lee 24: 10




Closed System (no Inputs)

A process P c S with input set B c P(S*) is closed if
B={S"}

This means that the only possible input (constraint) is:
A=5"

which imposes no constraints at all in
P'=PnA

Lee 24: 11

Functional Processes

Model for a process P c § " that has m input signals and
p output signals (exercise: what is the input set B?)

o Define two index sets for the input and output signals:
Ie{l,.,n}", Oe{l,.,n}’
o The process is functional w.rt. (I, O) if
Vs,s'€ P, 7, (s)=7,(s") = m,(s)=7,(s")

o In this case, there is a (possibly partial) function
F:8" > 8% st VseP, n,(s)=F(n,(s))

Lee 24: 12




Determinacy
A process P with input set B is determinate if for any input
AeB

|Pn 4| e{0,1}

That is. given an input, there is no more than one
behavior.

Note that by this definition, a functional process is
assured of being determinate if all its signals are visible
on the output.

Lee 24: 13

Refinement Relations

A process {with input constraints) (P', B') is a refinement
of the process (P, B) if

Bc B
and

VAeB, PNAcPnA

That is. the refinement accepts any input that the process
it refines accepts. and for any input it accepts. its
behaviors are a subset of the behaviors of the process it
refines with the same input.

Lee 24: 14




Tags for Discrete-Event Systems

For DE, let T=R x N with a total order (the lexical order)
and an ultrametric (the Cantor metric). Recall that we
have used the structure of this tag set to get nontrivial
results:

If processes are functional and causal and every
feedback path has at least one delta-causal process,
then compositions of processes are determinate and we
have a procedure for identifying their behavior.

Lee 24: 15

Synchrony

o Two events are synchronous if they have the same
tag.

o Two signals are synchronous if all events in one a
synchronous with an event in the other.

o A process is synchronous if for in every behavior in the
process, every signal is synchronous with every other
signal.

Lee 24: 16




Tags for Process Networks

o The tag set Tis a poset.
o The tags T (s) on each signal s are totally ordered.

o A sequential process has a signal associated with it
that imposes ordering constraints on the other signals.
For example:

§ = {(Vl,vtm ) (vl,2’t1,2)""}

$; = {(VZ,latZ,l)’(v2,23t2,2 ),...}3 B {(vs’l’t3’l ) (v3,2,t3,2),...}
Sy = (3,241, (%,242)5-}

L <lija L <lyap by <Uiajs B3>l 2jm

Lee 24: 17

Tags Can Model ...

o Dataflow firing

o Rendezvous in CSP

o Ordering constraints in Petri nets
o efc. (see paper)

Lee 24: 18




The Tagged Signal Model can be used to Define
Abstract Semantics

An Abstract Semantics

A Finer Abstract Semantics

Lee 24: 19

Tagged Signal Abstract Semantics

Tagged Signal Abstract Semantics:

signal is @ member of a set of signals,
where the set depends on the model of

& "process” Is a subset of the computation and resolved data type of

signals with which it interacts. the connection

Pc S xS, \ o ;’/

S
s, €S, —-—« — 5, €8,

\
‘.“
port may be an input or an output,
or neither or both. It is irrelevant.

This outlines a general absiract semantics that gets specialized.
When it becomes concrete you have a modef of computation.

Lee 24: 20




A Finer Abstraction Semantics

Functional Absiract Semantics:

a process is now & function from
input signals to ocutput signals.

F:5-8 X

« FunctionaiProcess

seSi— F —se5,

port is now either an
input or an output {or both}.

This outlines an abstract semantics for deterministic
producer/consumer actors.

Lee 24: 21

Uses for Such an Abstract Semantics

Give structure to the sets of signals

e.g. Use the Cantor metric to get a metric space.
Give structure to the functional processes

e.g. Contraction maps on the Cantor metric space.
Develop static analysis techniques

e.g. Conditions under which a hybrid systems is
provably non-Zeno.

y oo
Porson it

Lee 24: 22




Another Finer Abstract Semantics

Process Networks Abstract Semantics:

sets of signals are monoids, which allows
us to incrementally construct them. E.g.

* stream

* avent sequence

* rendezvous paints ...

A process is a sequence of
operations on its signais where the
cperations are the associative
operation of a monoid

PcSxS, N\

“u ThreadProcess
/ -

|
'process is not necessarily functional port is either an
(can be nondeterministic). input or an output or both.

This outlines an abstract semantics for actors constructed as
processes that incrementally read and write port data.

Lee 24: 23

Concrete Semantics that Conform with the Process
Networks Abstract Semantics

Communicating Sequential Processes (CSP) [Hoare]
Calculus of Concurrent Systems (CCS) {Milner]

Kahn Process Networks (KPN) [Kahn]
Nondeterministic extensions of KPN [Various]

Actors [Hewitt]

o 0 0 0 O

Some Implementations:

o Occam, Lucid, and Ada languages

o Ptolemy Classic and Ptolemy il (PN and CSP domains)
o SystemC

o Metropolis

Lee 24; 24




Process Network Abstract Semantics in Ptolemy Il

r

/ actor contamns ports
Interfa 7
«interface»
Actor _— 1oPort
ptolemy.actor.Director, rgetDirsctor) : Director +gat{channelindex : int) : Token
+hasF ( lindex : int) : book
+hasToken(channellndex : int) : boolean:
+isinput() : boolean
i+isOutput{) : boolean
+send(channelindex : int, token : Token)
alntarface»
creates \
/ \
| ™ *: \
i +gely) : Token y \
: +getContainery) : I0Pot \
/ +hasRoom() : boolean \, L - - 1
i +hasToken() : boolean ) port contains recetvers .
! +putft : Token) : .
i Ml’@v__ i receiver implements communication
director creates | N\

: monoid operation to i
. incrementally construct signals |

Tee 24: 25

receivers

Several Concrete Semantics
Refine this Abstract Semantics

ioPort
0.1 0..n|
sintorfacos
NoRoomException) Recehver
ﬂt e
+got)) : Tokan
or83Tokan() : bookoan
1. Joputtr : Tokan) 3
: IOPort)}
AR
Malibox
A
—_—
i !
i FIFOQ! ArrayFIFOQu:
cT CSPI DN Rarak I uouo yFil cuo
Lee 24: 258




Process Network Abstract Semantics in Metropolis

Nodel
P2 X
process P{ interface reader extends Port{ interface writer oxtends Port{
port reader X; update int read(); update void write(int i);
port writer Y; eval int n{); eval int space();
thread(){ } }
while(true){ “medium M implements reader, writer{
int storage; ;
z = f{X.read()); ¢ intn, space;
Y.write(z); void write(int 2){
m await(space>0; this.writer ; this.writer) ;
‘ n=1; space=0; storage=z; :
)
Thanks to word read(){ ... } %
Doug Densmore 3 : Lee 24: 27

Leveraging Abstract Semantics for Joint Modeling of
Architecture and Application

MyMapNetlist

B( ) B( ) B ) E( -)
B( ) B( ) K ) K )

B( )  B( ) E( ) E( )
B( ) B{ - ) E( ) K )

MyFncNstlist

The abstract semantics provides natural
points of the execution (where the monoid
operations are invoked) that can be
synchronized across modeis. Here, this is
used to model operations of an application
on a candidate implementation
architecture.

Lee 24: 2




A Finer Abstract Semantics

Firing Abstract Semantics:

a process stiil 2 function from

input signals to cutput signals, signals are in monoids (can be
but that function now is defined incrementally constructed) (2.g.
in terms of a firing function. streams, discrete-event signals).

F:8->8,

“\ FiringActor

s, €8] —E{—szesz

port is still either an
input or an output.

The process function F is the least fixed point of a functional
defined in terms of f.

Lee 24: 29

Models of Computation that Conform to the Firing
Abstract Semantics

o Dataflow models (all variations)
o Discreie-event models

o Time-criven models (Giotto)

In Ptolemy U, actors written to the firing abstract
semantics can be used with directors that conform
only to the process network abstract semantics.

Such actors are said to be behaviorally polymorphic.

Lee 24: 3C




Actor Language for the
Firing Abstract Semantics: Cal

Cal is an experimental actor language designed to provide statically
inferable actor properties w.r.t. the firing abstract semantics. E.g.:

actor Select (} S, A, B ==> Qutput:

action £: I[sel}, A: [v] ==> [v)
guard sei end

action S: {sel], b: [v) ==> [v)
guard not sei end
end

Inferable firing rules and firing functions:

U= {((true),(v), 1):ve Z}, £y +{(true), ML) o)
U, = {{(false), L, (v)) : v e Z}, £; :{(false), L, (v)) > ()

Thanks to Jorn Janneck, Xilinx Lee 24: 31

A Still Finer Abstract Semantics

Stateful Firing Abstract Semantics:

a process still a function from

input signals to output signals, signals are monaids (can be
but that function now is defined incrementally constructed) (e.g.
in terms of two f\“"°"°“s- streams, discrete-avent signals).
/
F . Sl _+ S 2 \\ /

v StatefulActor /

f : Sl xZ—> SZ __-state space \'port is still either an
g: Sl xY = Z/ input or an output.
The function £ gives outputs in terms of inputs and the current state.
The function g updates the state.
Les 24: 32




Models of Computation that Conform to the Stateful
Firing Abstract Semantics

o Synchronous reactive
o Continuous time
o Hybrid systems

Stateful firing supports iteration to a fixed point, which is required for
hybrid systems modeling.

In Ptolemy I, actors written tc the stateful firing abstract semantics
can be used with directors that conform only to the firing abstract
semantics or to the process network abstract semantics.

Such actors are said to be behaviorally polymorphic.

Lee 24: 33

Where We Are

Tagged Signal Semantics
m\




Where We Are

Tagged Signal Semantics
’,/"'—‘_——N ._..__‘__\‘
_—" Process Networks Semarw\\

: "‘ﬁ‘ o

S

Lee 24: 35

Related Work

Abramsky, et al., Interaction Categories
Agha, et al., Actors

Hoare, CSP

Mazurkiewicz, et al., Traces

Milner, CCS and Pi Calculus

Reed and Roscoe, Metric Space Semantics
Scott and Strachey, Denotational Semantics
Winskel, et al., Event Structures

Yates, Networks of real-time processes

o 0 0 0 0 0 0 O O
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Conclusion and Open Issues

o The tagged signal mode! provides a very general
conceptual framework for comparing and reasoning
about models of computation,

o The tagged signal model provides a natural mode! of
design refinement, which offers the possibility of type-
system-like formal structures that deal with dynamic
behavior, and not just static structure.

o The idea of abstract semantics offers ways to reason
about multi-model frameworks like Ptolemy Il and
Metropolis, and offers clean definitions of behaviorally
polymorphic components.
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Concurrent Models of
Computation for Embedded
Software

Edward A. Lee
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Lecture 25: Actor-Oriented Type Systems

Does Actor-Oriented Design Offer Best-Of-Class SW Engineering
Methods?

Abstraction
+ procedures/methods
- classes
Modularity
- subclasses
- inheritance
- interfaces
polymorphism
- aspects
Correctness
type systems

Lee 20: 2




Example of an Actor-Oriented Framework: Simulink

[5) cruisenont rolonaf i fEnahiled Subsystemi *

17} eruisecontrotonoff *

Fie Et View Souaton Fomat Took Heb DSES WET® )
D& 2 RE S ]
Enabled

Sutmatem Enabiv

Gai R n i Hame Ready 100% 0de45
Enadled
S basic abstraction
U mechanism is
Foy hierarchy.
fpessy G ==
Lee 20: 3
Observation

By itself, hierarchy is a very weak
abstraction mechanism.




Tree Structured Hierarchy

Does not represent container container
common cfass
dEﬁnitiOﬂS On!y hierarchical

instances. component

Multiple instances
of the same
hierarchical l | 1 1B ] | "
compenent are
copies.

EE EEEEE B

leaf components: instances of an OO0 ciass

Lee 20: 5

Alternative Hierarchy:
Roles and Instances

| | | | m— | | 1

one definition, l I l l
multiple containers
class instance instance
role hierarchy instance hierarchy
(“design-time” view) (“run time” view)

Lee 20: 8




Role Hierarchy

component are
represented by classes

with muitipie

containers.

This makes higrarchical
omponents more like
leaf components.

higrarchical

class

Lee 20: 7

A Motivating Application: Modeling Sensor Networks

Making these objects
instances of a ctass rather
than copies reduced the XML
representation of the mode!
from 1.1 Mbytes to 87
kBytes, and offered a number
of other advantages.

This channst has range given by the
*range” parsnwter and probability of
dalivary given by the "probabilty”
parameter

-! Cnannel

Model of Massime Franceschetti's "small
world” phenomencn with 49 sensor nedes.

These 48 sensor nodss are
actors that are instances of
the same class, defined as:




Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

Now that we have classes, can we bring in more of the
modern programming world?

subclasses?

inheritance?

interfaces?

subtypes?

aspects?

Lee 20: 8

Example Using AO Classes

{ v et oh ; oy .
Thie moge! bustrates the mechansms 3 Plokemy § e St et st W et
for defining claeses and subcasves with nherfance

51 ro— i
! \
NOBYSINERAE  Thuy poior s 8 cass Cebnborn, HC.CHRC DY e bt he S, Ly

HIOWT Dy vow Sk 403 serwes o3 @ Cevar el To Ceate o

T S ‘o nsnoe of s Fask, MO O Pe Cass gefadan anc seect z nn
locilziass “Creake nstance” {or hpe OF K] To sec e 058 cofnton, 0ok s du execution
definition

Thes 8 &0 ngive InstaceONowyEnewaw
ol he above cass
Qelnibon LOGK

Lol u 2om ptve

SequuncePom
mEe  sww he

subiass cetnnon.

Sriewuv
This 1@ &% NS WA __J instance

ol the buse Cless
for the above cass
cehndion

inherite¢ractors o,
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Inner Classes

This modet fhustrates G

b s clegacs

are important to
achieving modularity.

Encapsuiation implies
that local class
definitions can exist
within class definitions.

mhentance, usng custom looas to visualy
Local class definitions poivdiasiisos oy ko

m A key issue Is then to
‘ define the semantics of
inheritance and
roeOBuidzssOBneC OVETTIdES.

The BassClass defnition inciudes an innar cless and
4 Gubciasa of that innsr clasa, pius ingtancos of aach.

| \

THE BASSCUES BEMARE AGIRRN BH UK thdS Wid:
1 200, 01 I3 10T % Dlus stanees of aush?

@W

mwwaumdhm
uumm

= B T
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Ordering Relations
containment relation
limited form
of multiple

H "
.......

Mathematically, this structure is a doubly-nested diposst, the formal
properties of which help to define a clean inheritance semantics. The

iple we f is that loca/ ! .
principle we follow is that local changes override global changes Lee 20: 12




Formal Structure: Containment

o Let D be the set of derivable objects (actors,
composite actors, attributes, and ports).

o Letc: D —» D be a partial function (containment).

o Letc*c D x D be the transitive closure of ¢ (deep
containment). When (x, y) € c*we say that
x is deeply contained by y.

o Disallow circular containment (anti-symmetry):

(x,y)ec’ = (y,x)gc”

So (D, c*) is a strict poset.

Lee 20: 13

Containment Relation

Top

containment W

Lee 20: 14




Formal Structure: Parent-Child

o Let p: D — D be a partial function (parent).

o Interpret p(x) =y to mean y is the parent of x, meaning
that either x is an instance of class y or x is a subclass
of y . We say x is a child of y.

o Let p*c D x D be the transitive closure of p (deep
containment). When (x, y) € p*we say that
x is descended from y.

o Disallow circular containment (anti-symmetry):
(x,y)ep' > (»x)ep"

Then (D, p*) is a strict poset.

Lee 20: 15

Parent-Child Relation

parent-chiid relation

T

l @

Lee 20: 16




Structural Constraint

We require that
(x,y)ep' = (x,y)&c” and (y,x)ec’

(x,y)ec" = (x,y)¢p” and (y,x)ep’

That is, if x is deeply contained by y, then it cannot be
descended from y, nor can y be descended from it.

Correspondingly, if x is descended from y, then it cannot
be deeply contained by y. nor can y be deeply contained
by it.

This is called a doubly nested diposet [Davis, 2000]

Lee 20: 17

Labeling

o LetL be a set of identifving iabels.
o Letl: D — L be a labeling function.

o Require that if ¢(x) = c(y) then I(x) # I(y).
(Labels within a container are unique).

Labels function like file names in a file system. and
they can be appended to get “full labels” which are
unique for each object within a single mode! (but are
not unigue across models).

Lee 20: 18




Derived Relation

o Letdc D x D be the least relation so that (x, y) e d
implies either that:
(x, y)ep*
or

(c(x), ¢() ed and I(x)=1()

x is derived from y if either:
x is descended from y or
x and y have the same label and the container of x is
derived from the container of y.

Lee 20: 19

Derived Relation

Top
,
containment relation
BasoClzxs ﬁm»

//

[, By - ]
Z e :
B
/
[' knw% b IR LANCRL Y OADHCLER b LRI N 15

| LT e

derived relation i
/T TN
/|
‘ ’
i ;
2 i

u:nmmcmu

this object 1s derived from
more than one other object
multiple inheritance. Lee 20: 20




Implied Objects and the Derivation Invariant

We say that y is implied by z in D if
(0,2) ed and (y,2) ¢ p*.

l.e., y is implied by z if it is derived but is not a
descendant.

Consequences:

o There is no need to represent implied objects in a
persistent representation of the model, unless they
somehow override the object from which they are
derived.

Lee 20: 21

Implied Objects

containment W
@4 parent-child relation

implied by

© Lee 20: 22




Derivation Invariant

If x is derived from y then for all z where ¢(z) = y, there
exists a z' where ¢(z") =x and I(z) = I(z") and either

1. p(z) and p(z') are undefined, or
2. (p(2), p(z) € d, or
3. p(z) =p(z") and both (p(z), y) ¢ c*and (p(z"), x) ¢ c*

l.e. z' is implied by z, and it is required that either

1. z'and z have no parents

2. the parent of z is derived from the parent of z’' or

3. z'and z have the same parent, not contained by x or y

Lee 20: 23

Persistent Representation

@ This is ail that is required to be
stored in a file to represent the
asarcuCinnerCiass model. All other objects are
implied.

Lee 20: 24




Values and Overrides

o Derived objects can contain more than the objects
from which they derive (but not less).

o Derived objects can override their value.

o Since there may be multiple derivation chains from one
object to an object derived from it, there are multiple
ways to specify the value of the derived object.

o A reasonable policy is that more local overrides
supercede less local overrides. Ensuring this is far
from simple (but it is doable! see paper and/or
Ptolemy [l code).

Lee 20: 25

Advanced Topics

o Interfaces and interface refinement

o Types, subtypes, and component composition
o Abstract actors

o Aspects

o Recursive containment

Lee 20: 26




Example of a simple type lattice:

a,: Int=value

p;int

subtype
relation

Contravariant

p;: Double

py Double  Boolean

a,: Double = value

Covariant

Py Int

General
String
Scalar
Long Complex

Defining Actor Interfaces:
Ports and Parameters
parameters:
a, = value Example:
a, = value
input ports
output port ArrayPeakSearch
danindex akvaiuss
P
p2 M’Tflx:.;!:‘l:;x:;‘;v}\n.xy{;ru}é'x'r.h ’
inputioutput  port 2 = Zh
port — o ol
ctartingny. B
endndax. Mexrt
LTI ook vore
Meamt | add | Recowe | proforacs|  meb | caad |
Lee 20: 27
Actor Subtypes
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Actor Subtypes (cont)

ay: Tnt = value Subtypes can have:
o Fewer input ports
o More output ports

Dy int
D3 Double
Of course, the types of
subtype || Remove (ignore)
relation || or add parameters these can ha‘VG
co/contravariant

relationships with the

Remove
(ignore) py it supertype.
input
ports p.: Double
Add output ports

Lee 20: 29

Observations

o Subtypes can remove (or ignore) parameters and aiso add new
parameters because parameters always have a default value
(unlike inputs, which a subtype cannot add)

o Subtypes cannot modify the types of parameters (unlike ports).
Col/contravariant at the same time.

o PortParameters are ports with default values. They can be
removed or added just like parameters because they provide
default values.

Are there similar exceptions to co/contravariance in OO languages?

Lee 20: 30




Composing Actors

A connection implies a type constraint. Can:

check compatibility
perform conversions

infer types
out: int in: Int
out: Int in: Double
Source out. int in: Unknown  Sink

The Ptolemy Il type system does ali three. Lee 20: 31

What Happens to Type Constraints When a Subclass
Adds Connections?

Type resolution results may be :
different in different subclasses of DerivedClass "
the same base class (connection T
with let-bound variables in a 3
Hindley-Milner type system?)
T, <=1,
Y.
'C, ' . 'r |
7,<=1, ) y
Source ) Sink
BaseClass

Lee 20: 32




Abstract Actors?

Suppose one of the
contained actors is an
interface only. Such a
class definition cannot
be instantiated (it is
abstract). Concrete
subclasses would
have to provide
implementations for
the interface.

Is this useful?

Lee 20: 33
Implementing Multiple Interfaces
An Example
EnergyConsumer interface has a single Filter interface for a
output port that produces a Double stream transformer
representing the energy consumed by a firing. component.
in: Event
in: Double
energy: Double out: Double
~ ¢
Event is a peculiar typ: su'b?lpe 7/
that can yield a token relation :
of any type. It is the ) ‘ EnergyConsumingFilter
bottom of the type composed interface.
lattice. in: Doubl
in: Uouble out: Double

power: Double

Lee 20: 34




A Model Using
Such an Actor

in: Double

Sink

in: Double out. Double

ower. Double

EnergyConsumingFilter

out. Double

Source in: Double

EnergyTabulator

Lee 20: 35

Heterarchy? Multi-View Modeling? Aspects?

Abstract
Abstract Sink EnargyConsumer
Y Fiter
Source FunctionMode! EnergyModel Energy Tabulator
Source Sink EnergyConsumIngFllter EnergyTabulator
This is multi-view modeling, s this an actor-onented Is this what Metropolis does
similar to what GME version of aspect-oriented with function/architecture

{Vanderbilt) can do. programming? models? Lee 20: 36




Recursive Containment
Can Hierarchical Classes Contain Instances of
Themselves?

—_—

class’ ‘ \J

role hierarchy

Note that in this case, unrolling intance hierarchy
cannot occur at “compile time”. Lee 20: 37

Primitive Realization of this in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

" § x(0! X(0)
o g X2 X(1)
x(1 X(2)

recursive reference

x(3] X(3)




Conclusion

o Actor-oriented design remains a relatively immature
area, but one that is progressing rapidly.

o It has huge potential.

o Many questions remain...

Lee 20: 39









