
Smartseer: Continuous Queries over Citeseer

Jayanthkumar Kannan, Beverly Yang, Scott Shenker,
Puneet Sharma, Sujata Banerjee, Sujoy Basu, Sung Ju Lee

Report No. UCB/CSD-05-1371

January 2005

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Smartseer: Continuous Queries over Citeseer
Jayanthkumar Kannan, Beverly Yang, Scott Shenker,

Puneet Sharma, Sujata Banerjee, Sujoy Basu, Sung Ju Lee

January 2005

1 Introduction

In the field of Computer Science today, a research contribution
is only “timestamped” if and when it is selected for publica-
tion in a conference or journal. Not only does the process of
submission and publication have a long time cycle, but it is
also highly unpredictable: a small number of over-worked (or
lazy) program committee members shoulder the responsibility
of determining which papers will have a lasting impact on the
field, and which will not, in the time span of just a few hours.
In contrast, in other fields such as Physics, a research contri-
bution is recognized as soon as its preprint is made available,
and the impact of the contribution is determined over a long
period of time by the number of citations it receives. Thus, the
process of publicizing and evaluating research contributions is
much less error-prone and possibly faster as well.

To remedy the situation in Computer Science, we envision a
publicly availablepreprint library in which users can sub-
mit technical reports to timestamp their contributions, and
perform searches over preprint content. We name this sys-
tem “SmartSeer,” after the well-known CiteSeer repository of
technical documents. The objective of SmartSeer has guided
us in laying down two important requirements: support for
rich continuousqueries and the ability to useopportunistic
infrastructure.

One key enabling mechanism required for such a preprint li-
brary is a mechanism for users to be notified of new docu-
ments that fall in their area of interest and expertise. For this
purpose, Smartseer offers support for rich continuous queries
over documents, in which users may register queries and re-
ceive notifications when relevant documents are inserted into
the system. Today, researchers are alerted to new publications
via conferences and journals; in an environment focused on
preprints, researches must rely on these continuous queries to
discover new, relevant work. Naturally, real-time (orimmedi-
ate) queries are also supported.

Based on the current experience with Citeseer and the scale
of a preprint library across all scientific fields, it is clear that
Smartseer has to be distributed for scalability and fault toler-
ance reasons. In fact, Citeseer supports continous query func-
tionality, but this functionality has been disabled (as has been
crawling) due to excessive load. Though distributed, ideally
SmartSeer could be under centralized control, with all ma-
chines under a single management at a single site with plenty
of bandwidth between them. Such a configuration would al-
low a web service-like highly optimized design. Unfortu-

nately, no such centralized resources are likely to be available
for Smartseer. Instead, encouraged by the Planetlab model,
we envision that various organizations would donate individ-
ual machines, housed at their respective sites, to the Smart-
Seer effort. SmartSeer must “make do” with this loosely cou-
pled, unreliable, distributed machines – in other words, creat-
ing what we call an “opportunistic infrastructure” over what-
ever resources are available.

Existing work for answering continous queries in a dis-
tributed fashion are either based on tighly coupled systems
(like Telegraph) or allow only simple keyword-based queries
(Scribe etc). Smartseer uses a DHT-based design for continous
queries, building off similar approaches for answering imme-
diate queries (MIT paper). It also supports more expressive
queries by allowing simple subqueries since it turns out that
some queries of interest to users require such expressiveness.
Other desirable features for SmartSeer include mechanisms
for perform distributed crawling, inexact text matching etc:
we consider such issues orthogonal to our main thrust, and re-
search topics in their own right. Smartseer has been deployed
and tested over Planetlab.

Although Smartseer has been designed with a specific applica-
tion in mind, it also offers design insights into executing conti-
nous queries over DHTs. A simple model shows that when im-
plemented over a DHT, continuous queries have intrinsically
different characteristiscs and scaling properties compared to
immediate queries. Morever, latency expectations for contin-
uous queries are typically less stringent compared to immedi-
ate queries, and our system allows for optimizations that ex-
ploit this characteristic. We also believe Smartseer also offers
design guidelines for larger scale system such as web alerts,
news alerts, etc.

Paper Outline. In this paper, we present the basic archi-
tecture of the SmartSeer system (Section 2), along with an
analysis of the new technical challenges faced by our system
(Section 3). We then validate our design decisions using sim-
ulation analysis of real-life workloads (Section 4). Finally, we
report on our initial experience in deploying SmartSeer as a
publicly available service (Section 5). Our goal for this pa-
per is not only to describe the technical aspects of SmartSeer,
but also to raise awareness of and participation in the current
SmartSeer collaboration.

1

2 Basic Architecture

Smartseer supports keyword search over text documents and
metadata using standard information retrieval techniques.
Queries consist ofsearch terms, which are keywords that ap-
pear in an optionally specified context (e.g., “title:smartseer”
specifies the keyword “smartseer” appearing in the title of
the document). Boolean conjunctive and disjunctive queries
are supported, as well as simple subqueries for more complex
constraints. For example, we may ask for documents by all co-
authors of Jane by the query “author:(author:Jane).” Because
support for OR queries and especially subqueries is relatively
complex, we focus primarily only on the support of simple
conjunctive queries.

Our basic design is based on the simple observation (pointed
out in Telegraph) that executing continuous queries can be
thought of running immediate queries with the role of docu-
ments and queries reversed. Queries are stored in the system,
and on the arrival of a new document, queries that match the
document are notified of the same.

2.1 DHT-based Architecture

There are three primary design choices for a loosely coupled
distributed system for continous queries: mirroring, partition-
by-ID, and partition-by-keyword. In the query mirroring ap-
proach, all documents and continous queries are stored on all
nodes, and a new document or immediate query is sent to
a randomly chosen mirror. The partition-by-query approach
partitions the continous queries or documents among the
nodes, and a new document or immediate query is sent to all
nodes. The partition-by-keyword method builds a distributed
index of the keywords in the continuous queries or documents
using a DHT. As it turns out, support for certain kinds of
continuous queries requires the ability to support immediate
queries as well. Thus, the design choice for Smartseer is dic-
tated by the constraints imposed by both kinds of queries.

Firstly, we rule out the mirroring option: though it might work
for smaller data sets, it does not scale to Smartseer’s require-
ments. For example, the current CiteSeer database has over
700GB worth of document data. Not only would we expect a
preprint library to exceed this size by orders of magnitude (es-
pecially if topics outside of Computer Science are included),
but in an opportunistic infrastructure we need to make use
of the available resources, which will likely not be powerful
servers with terabytes of storage. Query mirroring also may
not be suitable for Smartseer if a huge volume of continous
queries are registered.

Secondly, notice that in the partition-by-keyword approach,
during the insertion of a new document, only nodes that store
queries containing keywords belong to the document need to
be contacted. In contrast, in the partition-by-ID approach, ir-
respective of the number of nodes in the system, all of them
will have to be notified of the arrival of the new document.
We expect that queries will mostly use words that occur in the
meta-data of the document and the abstract of the document.

W1

W2

W3

Q1,Q5

Q6, Q8, Q9

Q10,Q11,Q13,Q15

New Document

Query Node

Document Node

AND Query

Figure 1: Basic Architecture

For this expected common case, the partition-by-keyword ap-
proach provides better scaling bandwidth since the number of
nodes that needs to be contacted will be typically lower (as-
suming that the infrastructure consists of order of hundreds of
machines).

For these reason, Smartseer is based on a DHT design to
achieve partition-by-keyword. Basing the design upon DHT
allows us to build a self-organizing, self-healing system over
opportunistic infrastructure. As we will describe later, Smart-
Seer employs standard P2P techniques in its architecture, and
extends these techniques to cover the functionality we wish to
support.

2.2 Continuous Queries

Our architecture for supporting continuous queries is a simple
extension of the conventional architecture used for executing
immediate queries over DHTs. For now, we focus on simple
conjuctive queries that involve multiple terms of the form “au-
thor:name” and “text:databases” etc.

Every DHT node is responsible for maintaining a list of
queries whose keys fall into the keyspace of that node. In par-
ticular, smartseer nodes participate in a distributed hash table
(DHT), using the Bamboo DHT, which is based on Pastry.
Distributed hash tables provide a simpleput/getinterface that
allow applications to insert and retrieve objects by key over
distributed, unreliable storage. Nodes in a DHT are automat-
ically assigned a region of an identifier space for which they
are responsible. Responsibility of terms is assigned by hash-
ing a term, and assigning it to the node responsible for the
space in which the hash falls.

The key of a query is defined to be the hash of themost selec-
tive term ts in the query. We say that the query isregistered
on termts, because it is stored at the node responsible forts,
and will be processed only if a document containsts. Statis-
tics about selectivity of the different terms can be obtained
in our system by querying the node responsible for storing the
inverted list ofdocumentsthat contain the term. Thus, for con-

2

junctive queries, a query and its metadata is stored only at a
single node. This is unlike document indexes, where only the
ID is stored in many inverted lists, queries areregisteredon
only a single term.

Now,we describe the document insertion process. This pro-
cess is shown in Figure 1. When a new document is inserted,
all nodes that are responsible for some term in the document
are contacted. We refer to the node inserting the document as
thedocument insertionnode, and each of the nodes contacted
as thequerynodes. When a document is inserted into the sys-
tem, one node serves as the document insertion node, and is
responsible for handling all actions associated with the insert.
A document insertion node may simply be the document to
which a document is initially uploaded, or it may be chosen
for particular properties. The document insertion node will
parse the document intotokens, which are then transformed
into terms via stop-word filtering and stemming (filtering and
stemming is performed for query terms as well).

Due to the fact that the entire query is stored at the query
nodes, each continuous query can be processedlocally – there
is no need to ship inverted lists as with immediate queries.
However, to process a query locally, a node needs to know
whether the keywords in the query appear in the document.
We discuss this need shortly. Second, by registering on the
most selective term, we seek to maximize load-balancing,
and minimize wasted processing. If queries were registered
on common terms, then the node(s) responsible for the most
common terms would have disproportionately high load, and
would process many spurious results. These spurious results
would occur because the size of the inverted list for popular
keywords would tend to be higher.

To enable a node to process its continuous queries on the in-
sertion of a new document, we must somehow send sufficient
information about the document over to these nodes. For ex-
ample, if the query “cat dog aardvark” were stored on the node
responsible for “aardvark,” that node must also know whether
“cat” and “dog” appear in the document, before it can deter-
mine whether the query is satisfied by the document. As a
baseline technique, we may choose to send the entire docu-
ment to each node inN , who can then use the keyword in-
formation present in the document to evaluate the continuous
queries. Clearly, sending the entire document may not always
be a wise choice with respect to efficiency. In Section 3, we
discuss different approaches to processing continuous queries.

2.2.1 OR queries and Complex queries.

OR queries are registered on every term, rather than the least
selective. When a document is inserted into SmartSeer, if it
contains any terms in the OR query, then the query will be
processed. If the document contains more than one term in
the query, the query may be processed multiple times.

Continuous complex queries are slightly more complicated.
Firstly, on query insertion, the subquery is run as animmedi-
ate query, and the subquery is said to have beentranslated.

The translated sub-query is an OR-query consisting of all the
results returned by the subquery. Once all sub-queries have
been translated, the query is now registered at all terms or one
of them (depending on whether it is a OR query or an AND
query). In addition, the original subquery itself is registered,
so that so that new results to the subquery are obtained. Such
new results are sent to the node(s) responsible for storing par-
ent query.

Consider our example from the previous section: YEAR:2004
AUTHOR:(networks AUTHOR=Bob). The original subquery
is “networks AUTHOR=Bob” and the translated subquery
is “AUTHOR:AuthorX OR AUTHOR:AuthorY OR AU-
THOR:AuthorZ.” Say a new document is inserted in 2004, in
which one of the authors is AuthorZ. Assume that the query is
registered on all terms in the translated subquery. This doc-
ument will cause the translated subquery to be processed,
which, when found to have been satisfied, will in turn trig-
ger the original query for processing. If the translated sub-
query were not registered, then for every document inserted,
we would have to re-evaluate the entire subquery and query
expression as described in the previous section. The translated
subquery is essentially a “materialized view” of the results of
the subquery.

However, registering the translated subquery is not sufficient.
Say Carol has never written a paper with Bob before on net-
works, until recently. When their document is inserted, Carol
now satisfies the subquery, and suddenly all of Carol’s docu-
ments from 2004 now satisfy the query. From this example,
we can see how with subqueries, old/pre-existing documents
can be returned as continuous query results when a different
document is inserted.

As noted in previous literature, negated predicates are prob-
lematic for materialized views, for which continuous queries
are a special case. In particular, a negated subquery could re-
quire that certain results for a continuous query be “recalled.”
As there is no clean way to handle this problem, SmartSeer
does not allow negated terms in continuous complex queries.

2.3 Immediate Queries

We employ the standard approach to supporting immediate
keyword queries over DHTs. We use aninverted index, where
for every term in the corpus, there exists aninverted listof
postingsspecifying the documents in which this term appears,
and the number of occurrences of the term within each docu-
ment.

To distributed this inverted index, SmartSeer employs the
“partition by keyword” approach (cite MIT paper) where
nodes are responsible for a subset of terms appearing in the
corpus, and each node manages the inverted lists correspond-
ing to those terms. Thedocument insertionnode described in
the previous section is also responsible for updating document
indices.

When a user submits a query to the system, again, one node
serves as thequery insertionnode. For each term in the query,

3

the query insertion node retrieves the corresponding inverted
list by hashing the term and again using the DHT to find
the node responsible for the inverted list. These lists are then
merged to answer the query. Note that optimizations such as
those described in (cite MIT paper) can be employed to de-
crease bandwidth consumption in this step.

In our system, the document index update is piggybacked on
the query notification message. Because a queryq is stored on
a node responsible for at least one term inq, q is necessar-
ily co-located with the inverted list of that term. As a result,
when a new document is inserted into the system, the nodes
that manage the inverted lists relevant to that document are
the same set of nodes that manage all queries with at least
one keyword appearing in the document. Therefore, to update
document indices on the insertion of a new document, we do
not need to contact any nodes outside of those query nodes
notified.

2.3.1 OR queries and Complex queries.

OR queries are handled in a fashion similar to AND queries,
except that a document is returned as a result if it is found to
appear inany inverted list, rather than all.

When a query contains a subquery term, we first execute the
subquery to retrieve a list of documentsD that satisfy the sub-
query. From these documents, fields of the appropriate type
are extracted. An OR query is then created that represents the
materialized, ortranslated, version of the original subquery.
This translated version is then executed to retrieve a list of
documentsD′ that satisfy the term.D′ acts as an inverted list
for this term, and may then be used in processing the original
query.

For example, say a user submits the following query:
“YEAR:2004 AUTHOR:(networks AUTHOR:Bob)” – in
other words, all papers written in 2004, for which at least
one author has co-written a paper with Bob containing the
keyword ’networks.’ Say the only authors that wrote a pa-
per containing ’networks’ with Bob were AuthorX, Au-
thorY and AuthorZ. The translated version of this subquery
is thus AUTHOR:AuthorX OR AUTHOR:AuthorY OR AU-
THOR:AuthorZ. Clearly, given the existing data (at the time
the query is first submitted), this translated subquery is equiv-
alent to the original subquery.

To execute the above query, SmartSeer will first execute the
subquery, to get all documentsD written by Bob containing
the term ’networks.’ Given these documents, SmartSeer will
then extract the authors from these documents (AuthorX, Au-
thorY, and AuthorZ), and create the translated OR query as
described above. SmartSeer will then execute the translated
subquery, to retrieve all documentsD′ by one or more of these
three authors. SmartSeer will also retrieve the inverted listI
for “YEAR:2004.” By taking the intersection ofI andD′, the
final result is produced.

2.4 Expressiveness

It is clear from the discussion so far that continous queries
and immediate queries are executed in our system based on
a rendezvous mechanism: documents and queries that share a
keyword both update the same DHT node, and a match is dis-
covered. This rendevzous mechanism has the following con-
sequences regarding the expressiveness of the queries.

Range queries are especially hard to implement in this mech-
anism, since all nodes that store keys in the range have to be
notified. For immediate queries, contacting all nodes in this
range in unavoidable. If required, range queries can be imple-
mented by some form of multicasting (which would require
high bandwidth). Other limits on the expressiveness of queries
in Smartseer (as compareed to a query language like SQL)
are that conditions that involve comparison of attributes in the
relation cannot be supported efficiently. The same holds for
similarity search operations similar to supported by Citeseer
today (these however can be supported better by a pSearch-
like architecture at the expense of accuracy).

In general, our stance on these limits of expressiveness is that
solutions that do not have such limits are orthogonal to the
objective of Smartseer, and can be plugged into our system
if required. Currently, Smartseer has two options for dealing
with such expensive queries. The first option is that if there are
other simpler predicates in the query that are already directly
supported in our system, then we decompose the query into an
“easy” part and “hard” part: the “easy” part is registered in the
DHT, and the “hard” part is verified on a hit. For example, for
conjunctive continuous queries that have a subquery as one of
its terms, if there are other simple terms in the query, then reg-
istering the query on one of these other terms might be a more
efficient solution. We expect this option to be sufficient for the
workload that Smartseer is geared towards. The second option
is store such expensive queries on a smaller set of machines,
to which all new documents are sent.

2.5 Sample Queries

In order to motivate the need for expressive queries in Smart-
Seer, we list some sample queries below. One kind of query
are queries based on the document text (e.g.,documents con-
taining the words “tcp” and “wireless”). We expect these to
be relatively simple queries. Users of the system will also
be interested in tracking citations to their papers. One way
for an user to do this would be: if he wants to be notified
of new citations to one of his papers, say with ID=X, then
he could insert the following continous query: “X in Docu-
ment.CITATIONS”. If an user would like to track citations
to all his papers, he can insert one such query for each of
his papers. Or he could use subqueries and insert the fol-
lowing query: “X in Document.CITATIONS and X IN (AU-
THOR=AUTHOR NAME)”. Thus, subqueries could be cer-
tainly of use to users of Smartseer. For another example, con-
sider an user who is interested of keeping track of new papers
written by his co-authors: the query “Document.AUTHOR =

4

Y and Y in AUTHOR (AUTHOR=X)” would notify the user
of papers written by co-authors of X.

3 Design Issues in Continuous Queries

While much work has focused on supporting immediate key-
word queries in a peer-to-peer setting (cite lots of papers),
we do not know of any prior work on continuous keyword
queries. Here, we discuss the challenges in supporting con-
tinuous keyword queries, and a number of techniques we use
to address these challenges. Later in Section 4, we evaluate
our techniques over realistic workloads, and show that proper
choice of technique can greatly improve the efficiency of han-
dling continuous queries.

The baseline method for executing continous queries parallels
the one typically used in immediate queries: the document in-
sertion node fetches the inverted list of queries stored under all
terms in the document, and then triggers further action. We re-
fer to this baseline method as the “fetch queries” method. We
first discuss the need for improving on this baseline method,
before discussing further optimizations.

3.1 Scaling Properties

In this section, we analyze the bandwidth consumption in an-
swering continous queries. Firstly, we assume that the method
used in answering continous queries is similar to that used in
answering immediate queries over DHTs: fetch the inverted
lists of queries stored on each term in the document, and
merge these lists.

A detailed analysis on the lines of the MIT paper can be used
to estimate the bandwidth required in such a method. The
bandwidth required to handle immediate queries (at the rate
of I) over N documents over a DHT isα × NI × WqWd

(whereα is a contant depending on the distribution of terms in
queries and documents,Wq andWd are the number of terms
in queries and documents respectively). As a first approxima-
tion, the bandwidth required to handleC continous queries
when new documents arrive at a rateR, isα×RC×WqFWd.
If all the queries are conjunctive queries,Wq can be dropped,
F is a factor representing the fraction of words in a document
that are actually used in queries.

Substituting typical values (rate of new documents is set at
1000-10000 documents per day) suggests that the cost of han-
dling new documents is 3 orders of magnitude easier than
answering immediate queries. Thus the negative result in the
MIT paper for immediate queries over DHTs might not hold
for continous queries. Note however, that this bandwidth is
still high, and optimizations that cut down on this bandwidth
are useful.

However, we wish to point out that DHT systems for answer-
ing continous queries differ in one main aspect from those
for answering immediate queries: the former indexes queries,
while the latter indexes documents. Since queries are typically
much smaller than a document, it is feasible to store theen-
tire query at its terms, instead of its identifier. Thus, the in-

verted lists at each term stores all the queries registered at that
term. With this kind of storage, when a new document is in-
serted, theentire document is sent to the nodes storing the
inverted lists. Since these nodes store all terms in the query,
and are informed of all terms in the document, then it can
perform notification. The possibility of such strategies (which
we will discuss later) leads to the following important fact.
The bandwidth consumed by a DHT-based immediate query
system increases without bound as the size of the document
corpus increases. On the other hand, as the number of conti-
nous queries increases, the entire document could be sent over
instead of sending the queries, thus the bandwidth consumed
is at most the cost of sending the entire document to all the
nodes in the system.

3.2 Joining Document and Query Metadata

To answer a continuous query on the arrival of a new docu-
ment, the first challenge is to somehow join information re-
garding terms in the query and terms in the document. Two
characteristics of continous queries help us improve over the
“fetch queries” method: the entire query is stored in the in-
verted list and latency is not a stringent constraint. The pri-
mary objective of optimizing the document insertion process
is to reduce bandwidth, which is the main bottleneck resource.
We also wish to split the storage and communication load
nearly equally across all the nodes in the system. Also, all
these optimizations are geared towards conjunctive queries,
since an OR query can be notified right away. Apart from the
“fetch queries” option, there are three other possible options:

• Send Document:The document insertion node sends
the entire document to the nodes containing contin-
uous queries relating to terms in the document (the
“query” nodes’). The query nodes then check for match-
ing queries, and trigger further action.

• Term-by-Term Dialogue: In a term-by-termdialogue,
the query node sends a message to the document node
asking about the presence of a set of terms in the docu-
ment, and the document insertion node responds with a
bit vector – one bit per requested term – specifying the
presence of each terms. We say that a term isresolvedif it
the query node includes it in the dialogue, and the docu-
ment insertion node responds regarding its presence. On
one extreme, the query node can resolve all distinct terms
appearing in the queries in a single message; at the other
extreme, the query node can resolve a single term at a
time. Due to packet header overhead,batchingterms is
desirable.

• Send Bloom Filter: The document insertion node sends
a bloom filter of all its terms to the query nodes. Since
the bloom filter has no false negatives, the query node
can discard queries that have a term corresponding to a0
in the bloom filter. Thus, the query nodes prune down the
set of queries stored in the inverted list to a potentially

5

smaller set. At this point, the query nodes can send all
these queries to the document insertion node, or initiate
a term-by-term dialogue.

Note that each of these methods is more efficient than the
“Send Queries” option since the query metadata (e.g., infor-
mation on the user who registered the query, feedback infor-
mation used to tune relevance ranking, etc.) is typically much
larger than the terms comprising the query. As a result, rather
than shipping an entire query over to the document insertion
node, it always makes sense to instead batch all terms into a
single round of a term-by-term dialogue.

These three approaches can all be optimal in different sce-
narios. Here, we present a model for the bandwidth costs of
each approach that will show us the general scenarios in which
each approach is optimal. In our workload simulations 4 we
demonstrate the utility of this model in determining the best
approach.

3.2.1 Modelling cost

In this section, we provide an approximate model for the
bandwidth consumed. All costs below are in terms of the num-
ber of terms that must be shipped. As a result, absolute band-
width cost would multiply the below costs bȳW , the average
length of a term (in bits).

First, the bandwidth costSD of shipping a document is a sim-
ple constant:

SD = d (1)

whered is the number of unique terms in the document.

The costTD of a term-by-term dialogue is, in the worst case:

TD = q (2)

whereq is the number of unique terms across the queries. In
practice,TD may be much smaller thanq, due to the possi-
bility of query elimination. Assuming conjunctive queries, if
a termt is resolved and found not to appear in the document,
then all queries containingt may be eliminated from consider-
ation, since they can not possibly be satisfied. For any termt′,
if all queries in whicht′ appears have been eliminated, then it
is unnecessary fort′ to be resolved. In the extreme case, if ev-
ery query contains the termt which is found not to be present,
then all queries are eliminated. The cost of the dialogue is
simply the size of two small messages. Thus, the actual cost
of the dialogue is:

TD = δ · q (3)

whereδ is a fudge factor depending on which terms are actu-
ally present in the document, and the order in which terms are
resolved.

There are many opportunities to optimize the term-by-term di-
alogue. Given general probabilities of the likelihood of terms
appearing in documents, a query node may first resolve terms
that are not frequent, or terms that appear in many queries,
in order to maximize the expected number of queries that can

be eliminated. However, due to packet header and messaging
overhead, it is also important not to extend the dialogue to too
many rounds. The topic of optimizing term-by-term dialogue
is covered later in this section. For now, we use the worst-case
cost described above.

The bandwidth costBF of shipping a bloom filter, followed
by a term-by-term dialogue for all non-filtered query terms,
is:

BF = f(d) + ε · q + γ · q (4)

wheref(d) is a function determining the “optimal” bloom fil-
ter size given a document size,q is the number of unique terms
present in the queries,ε is the error rate of the bloom filter –
the percentage of false positives, andγ is the fraction of query
terms that do appear in the document. Note that due to the pos-
sibility of a false positive, any term that “passes” the bloom fil-
ter must still be resolved in the term-by-term dialogue. Hence,
ε · q + γ · q represents the number of terms that pass the fil-
ter, including both false and true positives. Note that, again,
we are assuming the worst-case cost for the term-by-term dia-
logue in which no queries are eliminated. However, given the
low false-positive rate of bloom filters, the worst case for this
term-by-term dialogue is likely to be very close to the average
case.

For a given false positive rateε, the size of the optimal bloom
filter is given (approximately) by0.625d log(1/ε). So, the
equation becomes:

BF = 0.625d log(1/ε) + ε · q1 + γ · q (5)

whereq1 is the number of queries that have all terms matching
but one.q1 can be written in terms of the selectivity of the
terms in the query.

Looking at the above equations, the basic tradeoff between
the three approaches is clear. Ifd is large relative toq, then
the dialogue is best, given that it is not a function of docu-
ment size. Ifq is very large relative tod, then depending on
the values ofε andγ, shipping the document or bloom filter
would be best. If we assume thatε, the false positive rate, is
small given an appropriately sized bloom filter, and that the
size of the bloom filter,f(d), is a slowly growing function
of document size, then shipping a bloom filter is better than
shipping the full document if the fraction of satisfied queries
(roughlyγ) is low. Otherwise, ifγ is relatively high (e.g., if
queries tend to have just a few common terms), then shipping
the document is best. Later in Section 4, we will quantitatively
compare these approaches through simulations of SmartSeer
over typical document workloads, and show how the above
simple model predicts well the best approach to use.

Note that in all approaches, the document insertion node must
first “notify” the query node of a new document, and of the
need to process continuous queries over this document. This
document notificationmessage may also contain the bloom
filter, document, or whatever information is necessary to im-
plement the desired join approach.

6

3.2.2 Optimization of Term-by-Term Dialogue

Unless we choose the ship the document to the query nodes,
our approach to joining query and document metadata will in-
volve a term-by-term dialogue. For this reason, here we con-
sider how to optimize this dialogue. For simplicity, we will
initially ignore the issue of packet headers, and our goal will
be to minimize the number of terms resolved. By eliminat-
ing queries, as discussed earlier, we may be able to eliminate
terms from consideration as well. A query node must therefore
order the terms to be resolved so as to maximize the number
of expected terms eliminated.

The exact solution to this problem seems hard (more specifi-
cally, it sems to involve computation exponential in the num-
ber of rounds in the dialogue). For this reason, we consider
heuristics to optimize the term-by-term dialogue. First, we ob-
serve that there is a class of terms that cannot be eliminated.
These are the terms that appear in any remaining query (i.e.,
query that has not been eliminated) such that all other terms
in the query have already been resolved. In order to deter-
mine whether the query is satisfied by the document, this last
remaining term must be resolved. Therefore, an optimal dia-
logue will always resolve these “singleton” terms first. Once a
singleton term is resolved, new singleton terms may be intro-
duced. For example, consider the queries “cat dog” and “dog
cow.” If “cat” is resolved and found to be present, “dog” be-
comes a singleton term, but “cow” does not. If “dog” is subse-
quently resolved and found to be present, then “cow” becomes
a singleton term as well. Therefore, an optimal dialogue will
repeatedly resolve singleton terms until no such terms remain
– that is, all remaining queries have 2 or more unresolved
terms. It is possible to develop other heuristics based on the
selectivity of the terms and the number of queries contain-
ing a specific term: we leave the detailed investigation of such
queries for future work.

3.3 Document Notification

In a large-scale system with thousands or even million of
nodes, each term in a document will likely hash to a sepa-
rate node. However, in a likely implementation of SmartSeer
on the order of tens or hundreds of nodes, there will be sig-
nificant overlap in the nodes to which terms hash. Therefore,
it may not make sense to process continuous queries on a per-
term basis, as described above. Instead, we may wish tobatch
process queries by node.

For example, if terms “cat,” “dog” and “cow” all hash to the
same node, then that node will process all three sets of cor-
responding queries at once. Consider the scenario in which
documents are shipped to query nodes to process continuous
queries. By recognizing that the above three terms hash to a
single node, only a single document need to be shipped to the
node, rather than three copies of the same document.

In the clusteredapproach to document notification, the doc-
ument insertion node will first find, for each term, the query
node responsible that term. The document insertion node will

then send one document notification message to each unique
node, along with the terms in the document that each node
is responsible for. For example, if we use the term-by-term
dialogue to process continuous queries, the document notifi-
cation message for the example node above would contain the
terms “cat,” “dog,” “cow,” and the number of occurences of
each term in the document (so that the query node can update
the corresponding document inverted lists that it also stores).
Note however that this clustered approach is harder and com-
plex to code robustly due to the fact that keyspace mappings
may change during the notification process. In our implemen-
tation, clustering is implemented by looking up terms in a se-
rial fashion: looking up a term gives the node responsible for
the term, as well as the keyspace that node is responsible for.

If the number of nodes in the system is very small compared
to the number of unique terms in a document – e.g., 20 nodes,
and 2000 unique documents – then with high probability, ev-
ery node will receive a document notification message. In this
case, rather than performing a lookup for every term in the
document, thebroadcastapproach to document notification
will simply broadcast the notification message to all other
nodes in the DHT, via an efficient application-level multicast
tree (cite... was it herald?).

However, broadcast cannot be used for all join approaches. In
particular, it cannot be paired with a term-by-term dialogue,
since a query node receiving the notification will have no ideas
which terms in its keyspace are relevant to the document. Sim-
ilarly, broadcast cannot be paired with bloom filters. Broad-
cast is only an option if we choose to ship the document to the
query nodes. With the full document, the query nodes can ex-
tract which terms in its keyspace are relevant to the document,
and thereby update the appropriate inverted lists and process
the appropriate queries.

4 Workload Simulations

In this section we describe simulations of SmartSeer over re-
alistic workloads, and quantify the comparison across the dif-
ferent approaches to supporting continuous queries described
in the previous section.

4.1 Experimental Setup

Our Smartseer implementation is written in Java using the li-
braries exported by the Bamboo and OpenHash code. This
was deployed on Planetlab, and the same code can be used for
simulating a number of nodes on a single node.

We run SmartSeer over two document sets: CiteSeer (cite),
and TREC (cite). CiteSeer is our target application, so it is the
best-suited corpus over which to simulate SmartSeer. How-
ever, since the SmartSeer architecture and techniques may be
applied to different application scenarios, we also study the
performance of SmartSeer over TREC, a widely-used corpus
for evaluation of information retrieval systems. The main dif-
ference between these corpora is that the TREC data consists
of smaller documents (an average of about200 unique words)

7

Parameter Default
Network size 10 nodes
Document Set CiteSeer
Query Workload Generated
Join Approach Ship document
Notification Type Naive
Mean terms per query 5
Skew type Same
Number of continuous queries 50000

Table 1:Default parameter values for simulation

compared to Citeseer where the document had on an average
about2000 unique words. For this reason, we use a bloom
filter of 10K bits for the CiteSeer data, and a bloom filter of
1K bits for the TREC data. In both cases, we inserted1000
random documents from the corpus.

We run SmartSeer over two types of query workloads: queries
submitted to the MIT website, and synthetically generated
queries. Queries submitted to the MIT website comprise a re-
alistic workload for immediate queries; however, it is not clear
the continuous queries will exhibit the same properties as im-
mediate ones. Therefore, we also generate synthetic query
workloads with different properties we can tune. Queries are
generated in the following manner: First, we calculate the
term frequency distribution over the document corpus. We
then generate a query by selecting terms independently from
this distribution, without replacement. The number of terms
for this query is generated from a normal distribution with
meanν and standard deviation.3ν. Before generating queries,
we may perturb the distribution by increasing the skew (i.e.,
those terms that appear frequently in documents appear even
more frequently in queries), maintaining the same skew, ig-
noring the skew (i.e., using a uniform frequency distribution),
or inverting the skew (i.e., those terms that appear frequently
in documents appear infrequently in queries). The first500
documents are used to infer the term frequency distributions,
and the next batch is used to measure the bandwidth con-
sumed. Because no real continuous query workloads are avail-
able, it is difficult to project the properties of term distribu-
tions within continuous queries.

The above description query generation involves several pa-
rameters. In addition, several other simulation parameters,
such as network size and join approach, must also be speci-
fied. Unless otherwise specified, parameter values are set as
shown in Table 1.

4.2 Comparing the Join Approaches

First, let us compare the different join approaches under dif-
ferent workload scenario. Figure 2 shows the number of bytes
required for each approach along the y-axis, where the num-
ber of distinct query terms (the termq from our analysis in
Section 3) is varied along the x-axis. Figure 3 plots the num-
ber of bytes versus the number of results.

In these figure we see clearly the basic tradeoffs described

in Section 3. Whenq, the number of query terms, is very low,
the term dialogue has best performance. Asq grows, however,
the cost of the term dialogue grows linearly withq. Likewise,
the cost of bloom filter follows by a dialogue grows withq,
the constant (ε + γ) is so small, this approach still has good
performance even whenq is fairly large. In our simulations
under the default parameter values, we did not reach the point
where bloom filter has worse performance than shipping the
document.

4.3 More Queries

In order to see how each of these methods scales with respect
to the number of queries, we doubled the number of queries
and the results are plotted in Figure 4. The “Send Document”
method was left out of the analysis since it does not vary with
this parameter. Clearly, Bloom filter performs better than the
term-by-term dialogue since the constantδ is greater thanε +
γ.

4.4 Number of terms

The average number of terms per query was also varied to
2, 4, 6, 8 terms. The “Send Document” method does not have
any variation with this parameter. The term-by-term dialogue
and bloom filter however do vary: this variation is plotted
in Figure 5 for the TREC data and in Figure 6 for the Cite-
seer data. As can be seen, as the number of terms increases,
the Bloom Filter performs better than the term-by-term dia-
logue. At2 terms query however, the term-by-term dialogue
performs better. This effect is mainly due to the fact that as the
number of terms decreases,q1 increases, and thus the bloom
filter pays a greater penalty for a false positive.

Recall that bloom filters perform relatively poorly whenγ
is large – in other words, when a large fraction of queries
are satisfied by the document. The probability of satisfaction
is roughly inversely proportional to the number of terms in
a query. the slope of the bloom filter curve increases when
terms per query is small. When the number of query terms
is large and queries have 2 terms on average, the cost of
the bloom filter approach exceeds the document-shipping ap-
proach. Therefore, in a system in which many continuous
queries are registered (implying largeq) and queries are easily
satisfied (implying largeγ), shipping document outperforms
shipping bloom filters.

4.5 Distribution of terms

Skew of terms also has an effect on the best choice of join ap-
proach. We have experimented with two other kinds of skews:
the uniform distribution and the inverted skew distribution.
The results for the uniform distribution are shown in Figure 7.
As can be seen, since the domain of terms is relatively large,
the inverted lists are usually short, and the term-by-term dia-
logue wins.

Results for the case when the query distribution of terms is
the inverse of the document distribution of terms are shown in

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160 180

B

yt
es

Inv List Size

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140 160 180 200

B

yt
es

Inv List Size

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

Figure 2:Bytes Vs Inverted List Size (a) TREC data (b) Citeseer

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 5 10 15 20 25 30 35 40

B

yt
es

Num Results

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 10 20 30 40 50 60 70 80 90

B

yt
es

Num Results

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

Figure 3:Bytes Vs Number of Results (a) TREC data (b) Citeseer

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350

B

yt
es

Inv List Size

TERM_DIALOGUE_1
SEND_BLOOM_1

TERM_DIALOGUE
SEND_BLOOM

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400 450

B

yt
es

Inv List Size

TERM_DIALOGUE_1
SEND_BLOOM_1

TERM_DIALOGUE
SEND_BLOOM

Figure 4:(More Queries) Bytes Vs Inverted List Size (a) TREC data (b) Citeseer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700

 B
yt

es

Inv List Size

2 TERMS
4 TERMS
6 TERMS
8 TERMS

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700

 B
yt

es

Inv List Size

2 TERMS
4 TERMS
6 TERMS
8 TERMS

Figure 5:(Number of Terms) Bytes Vs Inverted List Size (TREC data) (a) Term-by-Term Dialogue (b) Bloom Filter

9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400 450 500

 B
yt

es

Inv List Size

2 TERMS
4 TERMS
6 TERMS
8 TERMS

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400 450 500

 B
yt

es

Inv List Size

2 TERMS
4 TERMS
6 TERMS
8 TERMS

Figure 6:(Number of Terms) Bytes Vs Inverted List Size (Citeseer data) (a) Term-by-Term Dialogue (b) Bloom Filter

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14 16

 B
yt

es

Inv List Size

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 1.5 2 2.5 3 3.5 4 4.5 5

 B
yt

es

Inv List Size

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

Figure 7:(Uniform Distribution) Bytes Vs Inverted List Size (a) TREC data (b) Citeseer

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

 B
yt

es

Document

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6

 B
yt

es

Document

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

Figure 8:(Inverse skew distribution) Bytes Vs Inverted List Size (a) TREC data (b) Citeseer

10

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

N
um

 P
kt

s

Inv List Size

SEND_DOC
TERM_DIALOGUE(1)
TERM_DIALOGUE(5)

TERM_DIALOGUE(10)
TERM_DIALOGUE(15)

SEND_BLOOM

Figure 11: Number of Packets Vs Inv List Size (TREC data)

Figure 8. This case is again similar to the uniform distribution:
the inverted lists are quite small, and either the bloom filter or
the term-by-term dialogue performs best. The inverted lists
are small because assuming a ZipF distribution, there are a
lot more rare terms, as compared to popular terms, thus the
same number of queries are registered on a greater number of
distinct terms.

4.6 Notification Type.

We also experimented with varying number of SmartSeer
nodes (10, 100 and1000 nodes) to compare the different noti-
fication methods and these results are plotted in Figure 9 (for
TREC data) and in Figure 10 (for Citeseer documents). The
naive method does not take advantage of multiple terms hash-
ing on to the same query node and thus incurs the same over-
head. The clustering method scales linearly (at a low slope)
as the number of nodes increases: this can be seen by a sim-
ple balls-in-bins analysis. The broadcast method saves lookup
cost at low number of nodes, but is clearly wasteful at higher
number of nodes. This takeaway here is that the DHT ap-
proach clearly helps in reducing the number of nodes con-
tacted as opposed to a mirroring/partition-by-ID method.

4.7 Latency

To measure the latency of the different approaches, we
counted the number of packet exchanges for the different op-
timizations, and the results are plotted in Figure 11 (for the
TREC data) and in Figure 12 (for the Citeseer data). The
“Send Document” requires only a single round irrespective
of the size of the inverted list. The bloom filter method in-
creases slowly with the size of the inverted list, and will prob-
ably provide acceptable latency for Smartseer. The term di-
alogue method requires about one order of magnitude more
rounds compared to bloom filter, since terms are requested
one after another. This can be remedied by batching terms in
groups (the figure shows batches of5, 10 and15). These bring
down the latency to an acceptable level. Note however, as the

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180 200

N
um

 P
kt

s

Inv List Size

SEND_DOC
TERM_DIALOGUE(1)
TERM_DIALOGUE(5)

TERM_DIALOGUE(10)
TERM_DIALOGUE(15)

SEND_BLOOM

Figure 12: Number of Packets Vs Inv List Size (Citeseer data)

batch size increases, the term dialogue has lesser chances to
eliminate queries.

4.8 Load Balancing

In order to verify the load balancing properties, we measured
statistics related to the amount of processing per node: since
the processing is a function of the inverted list sizes, we mea-
sured the number of inverted list entries stored at every node
that was used in processing the documents. We experimented
with a 1000 node system, where each node had10 virtual
servers, so that the keyspace was distributed evenly. Under
these conditions, the maximum load on a machine was about
5 times greater than the average load. The deviation from per-
fect load balancing occurs mainly because of the skewed dis-
tribution of queries: this can be addressed by having the num-
ber of nodes in a region of the keyspace proportional to the
load on the keyspace. Known solutions (cite) can be used to
improve this if desired.

5 Public Deployment

In this section we report our initial experience in deploying
SmartSeer as a public service.

• Describe how it works together with strib’s crawl-
ing/incoming document and queries?

• Describe the kind of load we get?

• Any summary performance numbers?

6 Conclusion

In this paper we described SmartSeer, a peer-to-peer preprint
repository supporting immediate and continuous keyword
queries. We described the basic architecture of the system,
and identified several key issues in supporting continuous key-
word queries. From our workload simulations we highlight

11

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 100 200 300 400 500 600 700 800 900 1000

 B
yt

es

Number of Nodes

SEND_DOC(NAIVE)
SEND_DOC(CLUSTERED)
SEND_DOC(BROADCAST)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 100 200 300 400 500 600 700 800 900 1000

 B
yt

es

Number of Nodes

TERM_DIALOGUE(NAIVE)
TERM_DIALOGUE(CLUSTERED)

SEND_BLOOM(NAIVE)
SEND_BLOOM(CLUSTERED)

Figure 9:(Varying Number of Nodes: TREC data) Avg Bytes Vs Number of Nodes (a) Send Document (b) Send Bloom Filter and Term
Dialogue

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 100 200 300 400 500 600 700 800 900 1000

 B
yt

es

Number of Nodes

SEND_DOC(NAIVE)
SEND_DOC(CLUSTERED)
SEND_DOC(BROADCAST)

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

 B
yt

es

Number of Nodes

TERM_DIALOGUE(NAIVE)
TERM_DIALOGUE(CLUSTERED)

SEND_BLOOM(NAIVE)
SEND_BLOOM(CLUSTERED)

Figure 10:(Varying Number of Nodes: CiteSeer data) Avg Bytes Vs Number of Nodes (a) Send Document (b) Send Bloom Filter and Term
Dialogue

12

the importance of selecting a suitable approach to these chal-
lenges. Finally, we report on the challenges arising from a
public deployment of the SmartSeer system.

In the future, there are many more aspects of continuous
query support that we wish to explore. First, we want to in-
vestigate the optimization of more complex queries with sub-
queries, which can be quite expensive. While the techniques
for conjunctive queries may apply, additional optimizations
are possible, such as materializing subquery results. Second,
we want to explore semantic clustering of documents or terms
to further speed up query processing. For example, if fre-
quently co-occurring terms are stored at the same node, then
the total number of nodes involved in a continuous query
may be decreased. Similarly, if multiple documents are batch-
inserted into the system, then some communication between
query node and document insertion node (e.g., the resolving
of terms) can be “shared” by all documents in the batch. If
documents in a batch have similar semantic vectors, then the
amount of useful shared communication may increase. Fi-
nally, we wish to make use ofrelevance feedbackto tune the
output of continuous queries.

Acknowledgements. We would like to thank Jeremy Stri-
bling for access to the CiteSeer repository of documents and
metadata.

13

