Smartseer: Continuous Queries over Citeseer

Jayanthkumar Kannan, Beverly Yang, Scott Shenker,
Puneet Sharma, Sujata Banerjee, Sujoy Basu, Sung Ju Lee

Report No. UCB/CSD-05-1371
January 2005

|
| Computer Science Division (EECS)
University of California
Berkeley, California 94720
f\/ /\

Smartseer: Continuous Queries over Citeseer

Jayanthkumar Kannan, Beverly Yang, Scott Shenker,
Puneet Sharma, Sujata Banerjee, Sujoy Basu, Sung Ju Lee

January 2005

1 Introduction nately, no such centralized resources are likely to be available
for Smartseer. Instead, encouraged by the Planetlab model,
In the field of Computer Science today, a research contributioke envision that various organizations would donate individ-
is only “timestamped” if and when it is selected for publica-u@l machines, housed at their respective sites, to the Smart-
tion in a conference or journal. Not only does the process teer effort. SmartSeer must “make do” with this loosely cou-
submission and publication have a long time cycle, but it igled, unreliable, distributed machines — in other words, creat-
also highly unpredictable: a small number of over-worked (0'9 What we call an “opportunistic infrastructure” over what-
lazy) program committee members shoulder the responsibili¥er resources are available.
of determining which papers will have a lasting impact on thexisting work for answering continous queries in a dis-
field, and which will not, in the time span of just a few hoursributed fashion are either based on tighly coupled systems
In contrast, in other fields such as Physics, a research confliike Telegraph) or allow only simple keyword-based queries
bution is recognized as soon as its preprint is made availab(&cribe etc). Smartseer uses a DHT-based design for continous
and the impact of the contribution is determined over a longueries, building off similar approaches for answering imme-
period of time by the number of citations it receives. Thus, thgjate queries (MIT paper). It also supports more expressive
process of publicizing and evaluating research contributionséferies by allowing simple subqueries since it turns out that
much less error-prone and possibly faster as well. some queries of interest to users require such expressiveness.

To remedy the situation in Computer Science, we envision @ther desirable features for SmartSeer include mechanisms
publicly availablepreprint library in which users can sub- for perform distributed crawling, inexact text matching etc:
mit technical reports to timestamp their contributions, anWe consider such issues orthogonal to our main thrust, and re-
perform searches over preprint content. We name this sy&earch topics in their own right. Smartseer has been deployed
tem “SmartSeer,” after the well-known CiteSeer repository otnd tested over Planetlab.

technical documents. The objective of SmartSeer has guidagthough Smartseer has been designed with a specific applica-
us in laying down two important requirements: support fokion in mind, it also offers design insights into executing conti-
rich continuousqueries and the ability to usgpportunistic nous queries over DHTSs. A simple model shows that when im-
infrastructure plemented over a DHT, continuous queries have intrinsically

One key enabling mechanism required for such a preprint flifferent characteristiscs and scaling properties compared to
brary is a mechanism for users to be notified of new docilmediate queries. Morever, latency expectations for contin-

ments that fall in their area of interest and expertise. For thi#0Us queries are typically less stringent compared to immedi-

purpose, Smartseer offers support for rich continuous querigt queries, and our system allows for optimizations that ex-

over documents, in which users may register queries and ,@m this c_haracterlstlc. We also believe Smartseer also offers
ceive notifications when relevant documents are inserted inf§sign guidelines for larger scale system such as web alerts,
the system. Today, researchers are alerted to new publicatidlfsVs alerts, etc.

via conferences and journals; in an environment focused on

preprints, researches must rely on these continuous queries to

discover new, relevant work. Naturally, real-time {mmedi-

ate) queries are also supported.

Based on the current experience with Citeseer and the scélaper Outline. In this paper, we present the basic archi-
of a preprint library across all scientific fields, it is clear thatecture of the SmartSeer system (Section 2), along with an
Smartseer has to be distributed for scalability and fault toleenalysis of the new technical challenges faced by our system
ance reasons. In fact, Citeseer supports continous query fuiiection 3). We then validate our design decisions using sim-
tionality, but this functionality has been disabled (as has beenation analysis of real-life workloads (Section 4). Finally, we
crawling) due to excessive load. Though distributed, ideallseport on our initial experience in deploying SmartSeer as a
SmartSeer could be under centralized control, with all mgublicly available service (Section 5). Our goal for this pa-
chines under a single management at a single site with plerggr is not only to describe the technical aspects of SmartSeer,
of bandwidth between them. Such a configuration would abut also to raise awareness of and participation in the current
low a web service-like highly optimized design. Unfortu-SmartSeer collaboration.

2 Basic Architecture wi] o105 |

w2 | 9608Q9 |

w3 | 10011013015 |

Smartseer supports keyword search over text documents and
metadata using standard information retrieval techniques.
Queries consist adearch termswhich are keywords that ap-
pear in an optionally specified context (e.g., “title:smartseer”
specifies the keyword “smartseer” appearing in the title of
the document). Boolean conjunctive and disjunctive queries
are supported, as well as simple subqueries for more complex
constraints. For example, we may ask for documents by all co-
authors of Jane by the query “author:(author:Jane).” Because
support for OR queries and especially subqueries is relatively
complex, we focus primarily only on the support of simple
conjunctive queries.

Our basic design is based on the simple observation (pointed Figure 1: Basic Architecture
out in Telegraph) that executing continuous queries can be
thought of running immediate queries with the role of docu-

ments and queries reversed. Queries are stored in the system, .
and on the arrival of a new document, queries that match @' this expected common case, the partition-by-keyword ap-

AND Queg

'mxlj cumel

Document Node

Query Node

document are notified of the same. proach provides better scaling bandwidth since the number of
nodes that needs to be contacted will be typically lower (as-

21 DHT-based Architecture suming that the infrastructure consists of order of hundreds of
machines).

There are three primary design choices for a loosely couplgg), these reason, Smartseer is based on a DHT design to
distributed systf-zm for continous queries: mirrorir)g, p,artitionéchieve partition-by-keyword. Basing the design upon DHT
by-ID, and partition-by-keyword. In the query mirroring ap-ai10s us to build a self-organizing, self-healing system over
proach, all documents and continous queries are stored on gl nistic infrastructure. As we will describe later, Smart-
nodes, and a new document or immediate query is sent &.qr employs standard P2P techniques in its architecture, and

a randomly chosen mirror. The partition-by-query approacyiends these techniques to cover the functionality we wish to
partitions the continous queries or documents among t@ pport
I .

nodes, and a new document or immediate query is sent to a
nodes. The partition—by-keyword method bui_Ids a distributeglz Continuous Queries

index of the keywords in the continuous queries or documents

using a DHT. As it turns out, support for certain kinds ofOur architecture for supporting continuous queries is a simple
continuous queries requires the ability to support immediagxtension of the conventional architecture used for executing
queries as well. Thus, the design choice for Smartseer is dicamediate queries over DHTs. For now, we focus on simple
tated by the constraints imposed by both kinds of queries. conjuctive queries that involve multiple terms of the form “au-

Firstly, we rule out the mirroring option: though it might work thor:name” and “text.databases” etc.

for smaller data sets, it does not scale to Smartseer’s requitevery DHT node is responsible for maintaining a list of
ments. For example, the current CiteSeer database has ogeeries whose keys fall into the keyspace of that node. In par-
700GB worth of document data. Not only would we expect gicular, smartseer nodes participate in a distributed hash table
preprintlibrary to exceed this size by orders of magnitude (e¢PHT), using the Bamboo DHT, which is based on Pastry.
pecially if topics outside of Computer Science are includedpistributed hash tables provide a simplet/getinterface that

but in an opportunistic infrastructure we need to make usalow applications to insert and retrieve objects by key over
of the available resources, which will likely not be powerfuldistributed, unreliable storage. Nodes in a DHT are automat-
servers with terabytes of storage. Query mirroring also magally assigned a region of an identifier space for which they
not be suitable for Smartseer if a huge volume of continouare responsible. Responsibility of terms is assigned by hash-
queries are registered. ing a term, and assigning it to the node responsible for the

Secondly, notice that in the partition-by-keyword approactsPace in which the hash falls.

during the insertion of a new document, only nodes that stofehe key of a query is defined to be the hash ofrtiwst selec-
gueries containing keywords belong to the document need tive termt¢, in the query. We say that the queryregistered

be contacted. In contrast, in the partition-by-ID approach, ilen termt,, because it is stored at the node responsiblefor
respective of the number of nodes in the system, all of theand will be processed only if a document containsStatis-

will have to be notified of the arrival of the new documenttics about selectivity of the different terms can be obtained
We expect that queries will mostly use words that occur in thie our system by querying the node responsible for storing the
meta-data of the document and the abstract of the documeintverted list ofdocumentghat contain the term. Thus, for con-

junctive queries, a query and its metadata is stored only afTde translated sub-query is an OR-query consisting of all the
single node. This is unlike document indexes, where only theesults returned by the subquery. Once all sub-queries have
ID is stored in many inverted lists, queries aegisteredon been translated, the query is now registered at all terms or one
only a single term. of them (depending on whether it is a OR query or an AND

Now,we describe the document insertion process. This prgU€ry)- In addition, the original subquery itself is registered,

cess is shown in Figure 1. When a new document is inserted that so that new results to the subquery are obtained. Such

all nodes that are responsible for some term in the documd?if'V "esults are sent to the node(s) responsible for storing par-

are contacted. We refer to the node inserting the document@d duery-

thedocument insertionode, and each of the nodes contacte@onsider our example from the previous section: YEAR:2004
as thequerynodes. When a document is inserted into the syp\UTHOR:(networks AUTHOR=Bob). The original subquery
tem, one node serves as the document insertion node, andsisnetworks AUTHOR=Bob” and the translated subquery
responsible for handling all actions associated with the insei$. “AUTHOR:AuthorX OR AUTHOR:AuthorY OR AU-

A document insertion node may simply be the document ttHOR:AuthorZ.” Say a new document is inserted in 2004, in
which a document is initially uploaded, or it may be chosemhich one of the authors is AuthorZ. Assume that the query is
for particular properties. The document insertion node wiltegistered on all terms in the translated subquery. This doc-
parse the document intokens which are then transformed ument will cause the translated subquery to be processed,
into terms via stop-word filtering and stemming (filtering andvhich, when found to have been satisfied, will in turn trig-
stemming is performed for query terms as well). ger the original query for processing. If the translated sub-

Due to the fact that the entire query is stored at the que ery were not registered, then for every document inserted,

nodes, each continuous query can be procdssatly — there € WOUI.d have to rg-evqluate the (_antire supquery and query
is no need to ship inverted lists as with immediate querie€XPressionas described in the previous section. The translated

However, to process a query locally, a node needs to kn%%;'bquery is essentially a “materialized view” of the results of

whether the keywords in the query appear in the documenfl® SubPquery.

We discuss this need shortly. Second, by registering on tthdowever, registering the translated subquery is not sufficient.
most selective term, we seek to maximize load-balancin§ay Carol has never written a paper with Bob before on net-
and minimize wasted processing. If queries were registeraerks, until recently. When their document is inserted, Carol
on common terms, then the node(s) responsible for the maxiw satisfies the subquery, and suddenly all of Carol's docu-
common terms would have disproportionately high load, anchents from 2004 now satisfy the query. From this example,
would process many spurious results. These spurious resulte can see how with subqueries, old/pre-existing documents
would occur because the size of the inverted list for popularan be returned as continuous query results when a different
keywords would tend to be higher. documentis inserted.

To enable a node to process its continuous queries on the s noted in previous literature, negated predicates are prob-
sertion of a new document, we must somehow send sufficieleimatic for materialized views, for which continuous queries
information about the document over to these nodes. For eare a special case. In particular, a negated subquery could re-
ample, if the query “cat dog aardvark” were stored on the nodguire that certain results for a continuous query be “recalled.”
responsible for “aardvark,” that node must also know whethés there is no clean way to handle this problem, SmartSeer
“cat” and “dog” appear in the document, before it can deteidoes not allow negated terms in continuous complex queries.
mine whether the query is satisfied by the document. As a

baseline technique, we may choose to send the entire do@i3 Immediate Queries

ment to each node iV, who can then use the keyword in-
formation present in the document to evaluate the continuo
gueries. Clearly, sending the entire document may not alwa
be a wise choice with respect to efficiency. In Section 3, w
discuss different approaches to processing continuous querig

Ve employ the standard approach to supporting immediate
gyword queries over DHTs. We useiamerted indexwhere

r every term in the corpus, there exists iamerted list of

gstingsspecifying the documents in which this term appears,

nd the number of occurrences of the term within each docu-

. . ment.
2.2.1 OR queries and Complex queries. o o)
To distributed this inverted index, SmartSeer employs the

OR queries are registered on every term, rather than the legsartition by keyword” approach (cite MIT paper) where
selective. When a document is inserted into SmartSeer, ifibdes are responsible for a subset of terms appearing in the
contains any terms in the OR query, then the query will beorpus, and each node manages the inverted lists correspond-
processed. If the document contains more than one termiimg to those terms. Thdocument insertionode described in

the query, the query may be processed multiple times. the previous section is also responsible for updating document

Continuous complex queries are slightly more complicated?dices.
Firstly, on query insertion, the subquery is run asramedi- When a user submits a query to the system, again, one node
ate query and the subquery is said to have baémslated serves as thguery insertiomode. For each term in the query,

the query insertion node retrieves the corresponding invert@d4 Expressiveness

list by hashing the term and again using the DHT to find .) .) .
the node responsible for the inverted list. These lists are théniS clear from the discussion so far that continous queries

merged to answer the query. Note that optimizations such 88d immediate queries are executed in our system based on

those described in (cite MIT paper) can be employed to d& rendezvous mechanism: documents and queries that §ha're a
crease bandwidth consumption in this step. keyword both update the same DHT node, and a match is dis-

] o covered. This rendevzous mechanism has the following con-
In our system, the document index update is piggybacked @@quences regarding the expressiveness of the queries.
the query notification message. Because a qué&ptored on) , . L
a node responsible for at least one termyjny is necessar- Range queries are especially hard to implement in this mech-

ily co-located with the inverted list of that term. As a result2N1SM, since all nodes that store keys in the range have to be
when a new document is inserted into the system, the nodagtified. For immediate queries, contacting all nodes in this
that manage the inverted lists relevant to that document gi@"g€ in unavoidable. If required, range queries can be imple-
the same set of nodes that manage all queries with at leA&gnted by some form of multicasting (which would require
one keyword appearing in the document. Therefore, to upde{fégh bandwidth). Other limits on the expressiveness o_f queries
document indices on the insertion of a new document, we df Smartseer (as compareed to a query language like SQL)

not need to contact any nodes outside of those query nod®§ that conditions that involve comparison of attributes in the
notified. relation cannot be supported efficiently. The same holds for

similarity search operations similar to supported by Citeseer
today (these however can be supported better by a pSearch-
like architecture at the expense of accuracy).

2.3.1 OR queries and Complex queries. In general, our stance on these limits of expressiveness is that
solutions that do not have such limits are orthogonal to the
OR queries are handled in a fashion similar to AND queriesbjective of Smartseer, and can be plugged into our system
except that a document is returned as a result if it is found #required. Currently, Smartseer has two options for dealing
appear imnyinverted list, rather than all. with such expensive queries. The first option is that if there are

When a query contains a subquery term, we first execute tRENer simpler predicates in the query that are already directly
subquery to retrieve a list of documetisthat satisfy the sub- SUPPOrted in our system, then we decompose the query into an
query. From these documents, fields of the appropriate typ8aSy” part a”9 haf,d part: the “easy” partis registered in the
are extracted. An OR query is then created that represents fRE T, and the “hard” part is verified on a hit. For example, for
materialized, otranslated version of the original subquery. COnjunctive continuous queries that have a subquery as one of
This translated version is then executed to retrieve a list §f t€rms, if there are other simple terms in the query, then reg-
documentsD’ that satisfy the termD’ acts as an inverted list istering the query on one of these other terms might be a more

for this term, and may then be used in processing the Origingﬁicient solution. We expect this option to be sufficient for the
query. workload that Smartseer is geared towards. The second option

.) is store such expensive queries on a smaller set of machines,
For example, say a user submits the following query, \which all new documents are sent.
“YEAR:2004 AUTHOR:(networks AUTHOR:Bob)” — in

other words, all papers written in 2004, for which at least)
one author has co-written a paper with Bob containing th€-2 Sample Queries

keyword ‘networks.” Say the only authors that wrote & pay, orger to motivate the need for expressive queries in Smart-

per containing 'networks’ with Bob were AuthorX, Au- geer e Jist some sample queries below. One kind of query

thorY and AuthorZ. The translated version of this subque%e ;
.)) gueries based on the document texg.(documents con-
is thus AUTHOR:AuthorX OR AUTHOR:AuthorY OR AU- taining the words “tcp” and “wireless”). We expect these to

THOR:Atho_rZ. Clear!y, given the existing data (at the time,q relatively simple queries. Users of the system will also
the query is first submitted), this translated subquery is €quij jnterested in tracking citations to their papers. One way
alent to the original subquery. for an user to do this would be: if he wants to be notified
To execute the above query, SmartSeer will first execute tloé new citations to one of his papers, say with ID=X, then
subquery, to get all documeni3 written by Bob containing he could insert the following continous query: “X in Docu-
the term 'networks.” Given these documents, SmartSeer withent. CITATIONS”. If an user would like to track citations
then extract the authors from these documents (AuthorX, Ate all his papers, he can insert one such query for each of
thorY, and AuthorZ), and create the translated OR query dss papers. Or he could use subqueries and insert the fol-
described above. SmartSeer will then execute the translatedving query: “X in Document.CITATIONS and X IN (AU-
subquery, to retrieve all documerd®s by one or more of these THOR=AUTHORNAME)". Thus, subqueries could be cer-
three authors. SmartSeer will also retrieve the inverted list tainly of use to users of Smartseer. For another example, con-
for “YEAR:2004." By taking the intersection dfandD’, the sider an user who is interested of keeping track of new papers
final result is produced. written by his co-authors: the query “Document. AUTHOR =

Y and Y in AUTHOR (AUTHOR=X)"” would notify the user verted lists at each term stores all the queries registered at that

of papers written by co-authors of X. term. With this kind of storage, when a new document is in-
] _ _ _ serted, theentire document is sent to the nodes storing the
3 Design Issues in Continuous Queries inverted lists. Since these nodes store all terms in the query,

While much work has focused on supporting immediate ke and are informed of all terms in the document, then it can
PP g Yerform notification. The possibility of such strategies (which

word queries in a peer-ta-peer seiting (cite lots of paper e will discuss later) leads to the following important fact.

we do not know of any prior work on continuous keywordThe bandwidth consumed by a DHT-based immediate query

g#ﬁgss.kser%r;veucgﬁ(é:s;r:zea%huar!%r;??)? ggcil:]?pﬁégr:’gecggstem increases without bound as the size of the document
o addressymeseqchaller; es. Later in Section 4 qwe evalué rpus increases. On the other hand, as the number of conti-
ges. ’ fASus gueries increases, the entire document could be sent over

our_techniques_over realistic wo_rkloads, and sho_vv that PrOPElstead of sending the queries, thus the bandwidth consumed
choice of technique can greatly improve the efficiency of harE at most the cost of sending the entire document to all the

dling continuous queries. nodes in the system.

The baseline method for executing continous queries parallels

the one typically used in immediate queries: the documenti®.2 Joining Document and Query Metadata

sertion node fetches the inverted list of queries stored under all))

terms in the document, and then triggers further action. We ré0 answer a continuous query on the arrival of a new docu-
fer to this baseline method as the “fetch queries” method. Weent, the first challenge is to somehow join information re-
first discuss the need for improving on this baseline metho8arding terms in the query and terms in the document. Two

before discussing further optimizations. characteristics of continous queries help us improve over the
“fetch queries” method: the entire query is stored in the in-
3.1 Scaling Properties verted list and latency is not a stringent constraint. The pri-

))) ~_ mary objective of optimizing the document insertion process
In this section, we analyze the bandwidth consumption in aRs t5 reduce bandwidth, which is the main bottleneck resource.

swering continous queries. Firstly, we assume that the methggs a1s0 wish to split the storage and communication load
used in answering continous queries is similar to that used j{parly equally across all the nodes in the system. Also, all
answering immediate queries over DHTs: fetch the invertegese optimizations are geared towards conjunctive queries,
lists of queries stored on each term in the document, anghce an OR query can be notified right away. Apart from the
merge these lists. “fetch queries” option, there are three other possible options:
A detailed analysis on the lines of the MIT paper can be used

to estimate the bandwidth required in such a method. Thee Send Document:The document insertion node sends
bandwidth required to handle immediate queries (at the rate the entire document to the nodes containing contin-

of I) over N documents over a DHT i& x NI x W, Wy uous queries relating to terms in the document (the
(wherex is a contant depending on the distribution of termsin “query” nodes’). The query nodes then check for match-
queries and documentd/, andW, are the number of terms ing queries, and trigger further action.

in queries and documents respectively). As a first approxima- _ .
tion, the bandwidth required to handf& continous queries e Term-by-Term Dialogue: In a term-by-termdialogue,

when new documents arrive at a réteis o x RC' x Wy FWj. the query node sends a message to the document node
If all the queries are conjunctive queriég, can be dropped, asking about the presence of a set of terms in the docu-
F is a factor representing the fraction of words in a document ment, and the document insertion node responds with a
that are actually used in queries. bit vector — one bit per requested term — specifying the

presence of each terms. We say that a temedslvedf it

the query node includes it in the dialogue, and the docu-
ment insertion node responds regarding its presence. On
one extreme, the query node can resolve all distinct terms
appearing in the queries in a single message; at the other
extreme, the query node can resolve a single term at a
time. Due to packet header overhebdichingterms is
desirable.

Substituting typical values (rate of new documents is set at
1000-10000 documents per day) suggests that the cost of han-
dling new documents is 3 orders of magnitude easier than
answering immediate queries. Thus the negative result in the
MIT paper for immediate queries over DHTs might not hold
for continous queries. Note however, that this bandwidth is
still high, and optimizations that cut down on this bandwidth
are useful.

However, we wish to point out that DHT systems for answer- e Send Bloom Filter: The document insertion node sends
ing continous queries differ in one main aspect from those a bloom filter of all its terms to the query nodes. Since
for answering immediate queries: the former indexes queries, the bloom filter has no false negatives, the query node
while the latter indexes documents. Since queries are typically can discard queries that have a term correspondingto a
much smaller than a document, it is feasible to storeetie in the bloom filter. Thus, the query nodes prune down the
tire query at its terms, instead of its identifier. Thus, the in- set of queries stored in the inverted list to a potentially

smaller set. At this point, the query nodes can send dtle eliminated. However, due to packet header and messaging
these queries to the document insertion node, or initiateverhead, it is also important not to extend the dialogue to too
a term-by-term dialogue. many rounds. The topic of optimizing term-by-term dialogue
is covered later in this section. For now, we use the worst-case
Note that each of these methods is more efficient than tlest described above.

“Send Queries” option since the query metadata (€.9., infofy,o pandwidth cosBF of shipping a bloom filter, followed
mation on the user who registered the query, feedback inf y a term-by-term dialogue for all non-filtered query terms,
mation used to tune relevance ranking, etc.) is typically mugg.

larger than the terms comprising the query. As a result, rather B
than shipping an entire query over to the document insertion BF = f(d)+e-q+7-4q)

n_ode, it always makes sense to_lnstead batch all terms 'nt%eref(d) is a function determining the “optimal” bloom fil-
single round of a term-by-term dialogue. ter size given a document sizgs the number of unique terms
These three approaches can all be optimal in different scpresent in the queries,is the error rate of the bloom filter —
narios. Here, we present a model for the bandwidth costs #fe percentage of false positives, anid the fraction of query
each approach that will show us the general scenarios in whitgrms that do appear in the document. Note that due to the pos-
each approach is optimal. In our workload simulations 4 waeibility of a false positive, any term that “passes” the bloom fil-
demonstrate the utility of this model in determining the begter must still be resolved in the term-by-term dialogue. Hence,

approach. € - q + v - q represents the number of terms that pass the fil-
_ ter, including both false and true positives. Note that, again,
3.2.1 Modelling cost we are assuming the worst-case cost for the term-by-term dia-

In this section, we provide an approximate model for th logue in Whlch_no queres are ell_mlnated. However, given the
ow false-positive rate of bloom filters, the worst case for this

bandwidth consumed. All costs below are in terms of the nu L2 rm-by-term dialogue is likelv to be verv close to the average
ber of terms that must be shipped. As a result, absolute banaa'se y 9 y y 9

width cost would multiply the below costs BY, the average
length of a term (in bits). For a given false positive rate the size of the optimal bloom
filter is given (approximately) by).625d1og(1/¢). So, the

First, the bandwidth cost D of shipping a documentis a sim- ; .
equation becomes:

ple constant:
SD=d Q)

whered is the number of unique terms in the document.

The costT'D of a term-by-term dialogue is, in the worst case*Vhered: is the number of queries that have all terms matching
but one.q; can be written in terms of the selectivity of the

TD =gq (2) termsin the query.

ooking at the above equations, the basic tradeoff between
e three approaches is cleardlfs large relative tay, then

BF = 0.625dlog(1/e) +€-q1+~-q)

whereq is the number of unique terms across the queries.

practice,T') may pe much smallgr thazn.due to the POSSI e dialogue is best, given that it is not a function of docu-
bility of query elimination Assuming conjunctive queries, i ment size. Ifq is very large relative tal, then depending on
atermt s re_solved a’?d.f"“”d not to appear in the dOCL.Jmentthe values ot and~, shipping the document or bloom filter
thgn aII.querles containingmay be ehmm:_ated from consider- would be best. If we assume thatthe false positive rate, is
ation, since they can not possibly be satisfied. For any térm mall given an appropriately sized bloom filter, and that the

!f all queries in whicht’ appears have been eliminated, them ize of the bloom filterf(d). is a slowly growing function
is unnecessary faf to be resolved. In the extreme case, if ev-

erv query contains the tertwhich is found not to be present of document size, then shipping a bloom filter is better than
y query con - P ' shipping the full document if the fraction of satisfied queries
then all queries are eliminated. The cost of the dialogue

. . ughly~) is low. Otherwise, ify is relatively high (e.g., if
E;Tﬁéydﬁgfozﬁs g two small messages. Thus, the actual Cogzgeries tend to have just a few common terms), then shipping

TD=6q 3) the documentis best. Later in Section 4 we vinI guantitatively

compare these approaches through simulations of SmartSeer
whered is a fudge factor depending on which terms are actwver typical document workloads, and show how the above
ally present in the document, and the order in which terms astmple model predicts well the best approach to use.

resolved. Note that in all approaches, the document insertion node must

There are many opportunities to optimize the term-by-term dfirst “notify” the query node of a new document, and of the
alogue. Given general probabilities of the likelihood of termsieed to process continuous queries over this document. This
appearing in documents, a query node may first resolve terrdecument notificatioomessage may also contain the bloom
that are not frequent, or terms that appear in many queridster, document, or whatever information is necessary to im-
in order to maximize the expected number of queries that caalement the desired join approach.

3.2.2 Optimization of Term-by-Term Dialogue then send one document notification message to each unique

. node, along with the terms in the document that each node
Unless we choose the ship the document to the query nodes,osnonsible for. For example, if we use the term-by-term

our approach to joining query and document metadata will ingjz0gue to process continuous queries, the document notifi-

volve a term-by-term dialogue. For this reason, here we CORyijon message for the example node above would contain the
sider how to optimize this dialogue. For simplicity, we WI"& dog.” “cow” and the number of occurences of

nitially i he i f ket head d | terms “cat,
initially ignore the issue of packet headers, and our goal Wi, o, term in the document (so that the query node can update

be to minimize (;che num(tj)er Olf terms resoB/ed.blBy elirlr_lir!atfhe corresponding document inverted lists that it also stores).
Ing queries, as discussed earlier, we may be able to eliminglge powever that this clustered approach is harder and com-
terms from consideration as well. A query node must thereforlﬁex to code robustly due to the fact that keyspace mappings
order the terms to be resolved so as to maximize the numBer, change during the notification process. In our implemen-

of expected terms eliminated. tation, clustering is implemented by looking up terms in a se-
The exact solution to this problem seems hard (more specifial fashion: looking up a term gives the node responsible for
cally, it sems to involve computation exponential in the numthe term, as well as the keyspace that node is responsible for.

ber of rounds in the dialogue). For this reason, we considgfihe numper of nodes in the system is very small compared
heuristics to optlr_nlze the term-by-term dialogue. F|rst! we Ob['o the number of unique terms in a document —e.g., 20 nodes,
serve that there is a class of terms that cannot be eliminategy -9go unique documents — then with high probability, ev-
These are the terms that appear in any remaining query (i-r hode will receive a document notification message. In this
query that has not been eliminated) such that all other terngase, rather than performing a lookup for every term in the
|n.the ?]uerr]y h?]ve alreagiy be_e? rdeiolvr:ad.dln order tohqeltedbcument, theébroadcastapproach to document notification
mine whether the query Is satisfied by the document, this laggy i h1y broadcast the notification message to all other

remaining term must be resolved. Therefore, an optimal digj,qes in the DHT, via an efficient application-level multicast
logue will always resolve these “singleton” terms first. Once g (cite... was it herald?).

singleton term is resolved, new singleton terms may be intro- o

duced. For example, consider the queries “cat dog” and “ddgowever, broadcast cannot be used for all join approaches. In
cow.” If “cat” is resolved and found to be present, “dog” be-Particular, it cannot be paired with a term-by-term dialogue,
comes a singleton term, but “cow” does not. If “dog” is subseSINCe aquery n_ode receiving the notification will have no |de.as
guently resolved and found to be present, then “cow” becomé\é’llch termsin its keyspace are reIevant to the dpcument. Sim-
a singleton term as well. Therefore, an optimal dialogue willarly, broadcast cannot be paired with bloom filters. Broad-
repeatedly resolve singleton terms until no such terms remaf@St is only an option if we choose to ship the document to the
— that is, all remaining queries have 2 or more unresolvedilery nodes. With the full document, the query nodes can ex-
terms. It is possible to develop other heuristics based on tH@&Ct which terms in its keyspace are relevant to the document,
selectivity of the terms and the number of queries contairftnd thereby update the appropriate inverted lists and process
ing a specific term: we leave the detailed investigation of sudh€ appropriate queries.

queries for future work.

4 Workload Simulations

3.3 Document Notification In this section we describe simulations of SmartSeer over re-

In a large-scale system with thousands or even million gilistic workloads, and quantify the comparison across the (_jif-
nodes, each term in a document will likely hash to a Sep?{‘erent approaches to supporting continuous queries described
rate node. However, in a likely implementation of SmartSedp the previous section.

on the order of tens or hundreds of nodes, there will be sig- .

nificant overlap in the nodes to which terms hash. Thereforé;1 Experimental Setup

it may not make sense to process continuous queries on a Py smartseer implementation is written in Java using the li-
term basis, as described above. Instead, we may wisatth braries exported by the Bamboo and OpenHash code. This
process queries by node. was deployed on Planetlab, and the same code can be used for
For example, if terms “cat,” “dog” and “cow” all hash to the simulating a number of nodes on a single node.

same no_de, theq that node will Process all three sets of CQ%e run SmartSeer over two document sets: CiteSeer (cite),
responding queries at once. Consider the scenario in Whigh TREC (cite). CiteSeer is our target application, so itis the
documents are shipped to query nodes to process continuQyis qited corpus over which to simulate SmartSeer. How-
queries. By recognizing that the above three terms hash (9,84, since the SmartSeer architecture and techniques may be
single node, only a single document need to be shipped to thejieq 1o different application scenarios, we also study the
node, rather than three copies of the same document. performance of SmartSeer over TREC, a widely-used corpus
In the clusteredapproach to document notification, the docfor evaluation of information retrieval systems. The main dif-
ument insertion node will first find, for each term, the queryerence between these corpora is that the TREC data consists
node responsible that term. The document insertion node wdf smaller documents (an average of ab2if unique words)

Parameter Default in Section 3. When, the number of query terms, is very low,

Network size 10 nodes the term dialogue has best performanceg&sows, however,
Document Set CiteSeer the cost of the term dialogue grows linearly withLikewise,
Query Workload Generated - : :

. ; the cost of bloom filter follows by a dialogue grows with
Join Approach Ship document . . .

o ' the constantd +) is so small, this approach still has good

Notification Type Naive - - - .
Mean terms per query 5 performance even wheqis fairly large. In our simulations
Skew type Same under the default parameter values, we did not reach the point
Number of continuous queries 50000 where bloom filter has worse performance than shipping the

document.

Table 1:Default parameter values for simulation _
4.3 More Queries

compared to Citeseer where the document had on an averdgé@rder to see how each of these methods scales with respect
about2000 unique words. For this reason, we use a bloorfP the number of queries, we doubled the number of queries

filter of 10K bits for the CiteSeer data, and a bloom filter of2nd the results are plotted in Figure 4. The “Send Document”
1K bits for the TREC data. In both cases, we insertedp Method was left out of the analysis since it does not vary with
random documents from the corpus. this parameter. Clearly, Bloom filter performs better than the

_term-by-term dialogue since the constéaid greater thai +
We run SmartSeer over two types of query workloads: queri

submitted to the MIT website, and synthetically generated

queries. Queries submitted to the MIT website comprise arg-4 Number of terms

alistic workload for immediate queries; however, it is not clear

the continuous queries will exhibit the same properties as infhe average number of terms per query was also varied to
mediate ones. Therefore, we also generate synthetic quéyt, 6,8 terms. The “Send Document” method does not have
workloads with different properties we can tune. Queries a@ny variation with this parameter. The term-by-term dialogue
generated in the following manner: First, we calculate thend bloom filter however do vary: this variation is plotted
term frequency distribution over the document corpus. Wi Figure 5 for the TREC data and in Figure 6 for the Cite-
then generate a query by selecting terms independently fragger data. As can be seen, as the number of terms increases,
this distribution, without replacement. The number of termghe Bloom Filter performs better than the term-by-term dia-
for this query is generated from a normal distribution witHogue. At2 terms query however, the term-by-term dialogue
meanv and standard deviatioBv. Before generating queries, performs better. This effect is mainly due to the fact that as the
we may perturb the distribution by increasing the skew (i.enumber of terms decreasgs,increases, and thus the bloom
those terms that appear frequently in documents appear eviiger pays a greater penalty for a false positive.

more frequently in queries), maintaining the same skew, igzeca|l that bloom filters perform relatively poorly when
no_rmgthe skew (i.e., using a uniform frequency distribution)g large — in other words, when a large fraction of queries
or inverting the skew (i.e., those terms that appear frequentlye satisfied by the document. The probability of satisfaction
in documents appear infrequently in queries). The fitst 5 roughly inversely proportional to the number of terms in
documents are used_to infer the term frequency dlstr_|but|on§,query_ the slope of the bloom filter curve increases when
and the next batch is used .to measure the bandwidth CORtms per query is small. When the number of query terms
sume_d._Bec_a_use no real_contlnuous que_ryworkloads_arg aV"f’é"Iarge and queries have 2 terms on average, the cost of
gble, |t.|s.d|ff|cuI.t to project _the properties of term distribu-the ploom filter approach exceeds the document-shipping ap-
tions within continuous queries. proach. Therefore, in a system in which many continuous
The above description query generation involves several pgderies are registered (implying largeand queries are easily
rameters. In addition, several other simulation parameteatisfied (implying largey), shipping document outperforms
such as network size and join approach, must also be speshipping bloom filters.

fied. Unless otherwise specified, parameter values are setas
shown in Table 1. 4.5 Distribution of terms

Skew of terms also has an effect on the best choice of join ap-
proach. We have experimented with two other kinds of skews:
First, let us compare the different join approaches under dithe uniform distribution and the inverted skew distribution.
ferent workload scenario. Figure 2 shows the number of bytd$e results for the uniform distribution are shown in Figure 7.
required for each approach along the y-axis, where the nurs can be seen, since the domain of terms is relatively large,
ber of distinct query terms (the tergnfrom our analysis in the inverted lists are usually short, and the term-by-term dia-
Section 3) is varied along the x-axis. Figure 3 plots the numegue wins.

ber of bytes versus the number of results. Results for the case when the query distribution of terms is
In these figure we see clearly the basic tradeoffs describéuk inverse of the document distribution of terms are shown in

4.2 Comparing the Join Approaches

4000 T T T T T T T T 7000 T T T T T T T T T
SEND_DOC —+—.- SEND_DOC —+—
3500 - TERM_DIALOGUE --:>¢™ 7] 6000 TERM_DIALOGUE -- - --X
3000 L SEND_BLOOM-~- - -- SEND_BLOOM ---%::
5000 .
2500 E
é jfg; 4000 a
@ 20001 1 @ 3000 | >
1000 2000 | R]
500 y 1000 x -
O 1 Xl 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100120140160180200
Inv List Size Inv List Size
Figure 2:Bytes Vs Inverted List Size (a) TREC data (b) Citeseer
2000 SEND_DOC —+ 10000 SEND_DOC —+
—_— —_—
1800 | 9000 - TERM_DIALOGUE - -:- -
1600 — 8000 - ND_BLOOM ------
1400 — 7000
é 1200 . é 6000
2 1000 1 2 5000
I+ 800 |- % E B3 4000
600 [Xk . 1 3000
400 |- AR e 2000
200 podsadhox RN 1000 ¥
O 1 1 1 1 1 1]X O P 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0O 10 20 30 40 50 60 70 80 90
Num Results Num Results
Figure 3:Bytes Vs Number of Results (a) TREC data (b) Citeseer
6000 T T T T T 12000 T T T T T T T
TERM_DIALOGUE_1 - -~ TERM_DIALOGUE_1 -----
L SEND_BLOOM_1 :-#%--- | | SEND_BLOOM_1 ---%--- 1|
5000 10000 TERM_DIALOGUE
4000 — 8000 - —
[%] %] -
2 3000 - 2 6000 |- -
3 & 3
2000 | - . 4000 | B
0 {Wl'E I I I I I 0 fa I I ¢ I I I I I
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 450
Inv List Size Inv List Size
Figure 4:(More Queries) Bytes Vs Inverted List Size (a) TREC data (b) Citeseer
T T T T T 1000 T T T T T
o 2 TERMS ---x-- | ” 2 TERMS ------
4 TERMS ------ 900 - X 4 TERMS ---%---
%/ 6 TERMS & 800 L : 6 TERMS & |
e ;
2 1 700 1
& : R 3
S S 600 —
m - m
i 500 e
j :’ _ 400 —
aE 4 300 F % T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Inv List Size Inv List Size

Figure 5:(Number of Terms) Bytes Vs Inverted List Size (TREC data) (a) Term-by-Term Dialogue (b) Bloom Filter

Bytes

Figure 6:(Number of Terms) Bytes Vs Inverted List Size (Citeseer data) (a) Term-by-Term Dialogue (b) Bloom Filter

Bytes

Bytes

7000

6000 -
5000 -
4000
3000
2000

1600

1000 [¥
0 Mz@kx TR S R R N

0 50 100150200 250300 350400450500

'2 TERMS - - -

B 4TERMS ---%--- -
: 6 TERMS @

Inv List Size

1400 |
1200 |
1000 |
800
600 -
400
200 -

D D
TERM_DIALOGUE ----
SEND_BLOOM ---%---

- % -X 4
o XX
xx***-gg;gae-x‘ié*x*** |

x X 1 1 1 1 1 1

1800

2 4 6 8 10 12 14 16
Inv List Size

Bytes

Bytes

3500

3000

2500

2000

1500

1000 |

'2 TERMS - - -
¥ 4TERMS % _
/B BTERMS &

500

0 50 100150200 250300350400450500

Inv List Size

6000

———F T]

- SEND_DOC ——
5000 TERM_DIALOGUE ---%--- |

SEND_BLOOM -+ :--
4000 | .
3000 | .
2000 | .
1000 %.......... Heoeeennann Koooonemnnns .
1 15 2 25 3 35 4 45 5

Inv List Size

Figure 7:(Uniform Distribution) Bytes Vs Inverted List Size (a) TREC data (b) Citeseer

1600
1400
1200
1000
800 -
600 -
400
200

§__X__X..x-*'4
K- K- R P N HT R KK K-
TERE :
1

%
%

2 4 6 8 10 12 14 16
Document

Bytes

7000 T I : .
SEND_DOC —+—

6000 & = e 4
SEND_BLOOM -*-%---

5000 i

4000 i

3000 - i

2000 i

1000 %--..-... t CERRRPEE E RREEEEEE L SEEEEPEN K SERRTETE *

1 2 3 4 5 6

Document

Figure 8:(Inverse skew distribution) Bytes Vs Inverted List Size (a) TREC data (b) Citeseer

10

600 L —

300 T T T

'SEND_DOC '—+—- " SEND_DOC —+—
250 - TERM_DIALOGUE(L) -~ | 500 - TERM_DIALOGUE(1) - ---x |
TERM_DIALOGUE) - %--- TERM_DIALOGUE(5) ---%-+
a0} TERMiDIALOlC‘%'UE(lo) B | ol TERM_DIALOGUE(10) .."E i
x SEND BLOOM --© - < SEND_BLOOM - -© -
150 | . 300 | .
£ : £
S S -
< 100 < 200 t X o
50 100
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 200
Inv List Size Inv List Size

Figure 11: Number of Packets Vs Inv List Size (TREC data)igure 12: Number of Packets Vs Inv List Size (Citeseer data)

Figure 8. This case is again similar to the uniform distributionbatch size increases, the term dialogue has lesser chances to
the inverted lists are quite small, and either the bloom filter cgliminate queries.

the term-by-term dialogue performs best. The inverted lists

are small because assuming a ZipF distribution, there are4@8 Load Balancing

lot more rare terms, as compared to popular terms, thus the

same number of queries are registered on a greater numbelb@rder to verify the load balancing properties, we measured
distinct terms. statistics related to the amount of processing per node: since

the processing is a function of the inverted list sizes, we mea-
sured the number of inverted list entries stored at every node
that was used in processing the documents. We experimented

We also experimented with varying number of SmartSea¥ith a 1000 node system, where each node Hadvirtual
nodes (0, 100 and1000 nodes) to compare the different noti- servers, so that the keyspace was distributed evenly. Under
fication methods and these results are plotted in Figure 9 (fthrese conditions, the maximum load on a machine was about
TREC data) and in Figure 10 (for Citeseer documents). THetimes greater than the average load. The deviation from per-
naive method does not take advantage of multiple terms hadgct load balancing occurs mainly because of the skewed dis-
ing on to the same query node and thus incurs the same ovéibution of queries: this can be addressed by having the num-
head. The clustering method scales linearly (at a low slopggr of nodes in a region of the keyspace proportional to the
as the number of nodes increases: this can be seen by a sig@d on the keyspace. Known solutions (cite) can be used to
ple balls-in-bins analysis. The broadcast method saves lookifpprove this if desired.

cost at low number of nodes, but is clearly wasteful at higher

number of nodes. This takeaway here is that the DHT af Public Deployment

proach clearly helps in reducing the number of nodes con-

tacted as opposed to a mirroring/partition-by-ID method. N this section we report our initial experience in deploying
SmartSeer as a public service.

4.6 Notification Type.

4.7 Latenc
y e Describe how it works together with strib’'s crawl-

To measure the latency of the different approaches, we ing/incoming document and queries?

counted the number of packet exchanges for the different op-

timizations, and the results are plotted in Figure 11 (for the e Describe the kind of load we get?

TREC data) and in Figure 12 (for the Citeseer data). The

“Send Document” requires only a single round irrespective e Any summary performance numbers?

of the size of the inverted list. The bloom filter method in-

creases slowly with the size of the inverted list, and will prob6 Conclusion

ably provide acceptable latency for Smartseer. The term di-

alogue method requires about one order of magnitude malrethis paper we described SmartSeer, a peer-to-peer preprint
rounds compared to bloom filter, since terms are requestegpository supporting immediate and continuous keyword
one after another. This can be remedied by batching termsdueries. We described the basic architecture of the system,
groups (the figure shows batche$o0t0 and15). These bring and identified several key issues in supporting continuous key-
down the latency to an acceptable level. Note however, as therd queries. From our workload simulations we highlight

11

1.2e+06 — 701000 J il

SEND_DOC(NAIVE) —— 80 "TERM_DIALOGUE(NAIVE) ——
16+06 $END_DOC(CLUSTERED) -+ YRM_DIALOGUE(CLUSTERED) --x---
SEND DOC(BROADCAST) 70000 |~ SEND_BLOOM(NAIVE) ---%---
QFEND BRI OOM(CI LISTFRED) -]
800000 - . | 60000 JEND_BLOOM(CLUSTERED) &~ |
0 (%]
2 @ 50000 i
S 600000 - - <
@ & 40000 | -
400000 | E 30000 |
. 20000 | _.
200000 .- 4 i
x 10000 [.+
O i) 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1
0 100200300400500600700800900000 0 1002003004005006007008009001000
Number of Nodes Number of Nodes

Figure 9:(Varying Number of Nodes: TREC data) Avg Bytes Vs Number of Nodes (a) Send Document (b) Send Bloom Filter and Term
Dialogue

6e+06 — T T T T T T T T 1le+06
SEND_DOC(NAIVE) —+— 9 KTERNT DrALOGUE(NAWE)--;c;---_*
50106 |- SEND-_DOC(CLUSTERED) . 02 DIALOGUE(CLUSTERED) - ---
SEND_DOC(BROADCAST) ------ 800000 ' SEND_BLOOM(NAIVE) ---%---
700006HND_BLOOM(CLUSTERED) - B i
4e+06 | .
0 » 600000 -
(] [}
’% 3e+06 - % 500000 B
400000 e
2e+06 - 7 300000 | .
le+06 I eI 200000 - E
i 100000 -§ U EUUTN NP,
0 e 1 1 1 1 1 1 1 1 1 0 B 1 1 1 1 1 1 1 1
0 1002003004005006007008009001000 0 10020030040050060070080090QL000
Number of Nodes Number of Nodes

Figure 10:(Varying Number of Nodes: CiteSeer data) Avg Bytes Vs Number of Nodes (a) Send Document (b) Send Bloom Filter and Term
Dialogue

12

the importance of selecting a suitable approach to these chal-
lenges. Finally, we report on the challenges arising from a
public deployment of the SmartSeer system.

In the future, there are many more aspects of continuous
query support that we wish to explore. First, we want to in-
vestigate the optimization of more complex queries with sub-
gueries, which can be quite expensive. While the techniques
for conjunctive queries may apply, additional optimizations
are possible, such as materializing subquery results. Second,
we want to explore semantic clustering of documents or terms
to further speed up query processing. For example, if fre-
guently co-occurring terms are stored at the same node, then
the total number of nodes involved in a continuous query
may be decreased. Similarly, if multiple documents are batch-
inserted into the system, then some communication between
qguery node and document insertion node (e.g., the resolving
of terms) can be “shared” by all documents in the batch. If
documents in a batch have similar semantic vectors, then the
amount of useful shared communication may increase. Fi-
nally, we wish to make use oélevance feedbadio tune the
output of continuous queries.

Acknowledgements. We would like to thank Jeremy Stri-
bling for access to the CiteSeer repository of documents and
metadata.

13

