
TYTHON: A DYNAMIC SIMULATION ENVIRONMENT FOR SENSOR NETWORKS

Michael Demmer, Philip Levis, August Joki, Eric Brewer, David Culler

University of California, Berkeley
Computer Science Division

Berkeley, CA 94720

ABSTRACT

We present Tython, a Python-based scripting extension to Tiny-
OS’s TOSSIM simulator. Tython includes a rich library of script-
ing primitives that enable users to describe dynamic but repro-
ducible simulation scenarios. We take advantage of TinyOS’ event
driven execution to allow users to attach script callbacks to partic-
ular simulation scenarios. Scripts can also use interfaces at both a
whole-network and a per-mote level to analyze and affect behav-
ior in response to changes in the environment. We use the devel-
opment of a Pursuer-Evader application as a running example to
demonstrate the value of this approach.

1. INTRODUCTION

Programming sensor network systems requires developers to de-
sign distributed and robust algorithms, implement them for resource-
constrained motes, and test or debug them with a limited ability
(e.g., LEDs) to inspect program execution. These challenges have
led to the development of several sensor network simulators, such
as TOSSIM[1], EmStar[2], and atemu[3]. Simulation can speed
up the development cycle; the embedment and large scale of mote
networks, as well as their limited network bandwidth, lead to a
long and limiting install-test-debug cycle (sometimes on the or-
der of hours). Simulation provides repeatable experimental condi-
tions; in deployment, a combination of high concurrency, reactive
behavior, and uncontrolled environmental input leads to unfore-
seen system conditions and interactions. Finally, simulation allows
users to inspect and control execution more easily and at a much
higher fidelity than possible with a collection of hundreds of tiny
computers dispersed in space.

At the same time, sensor networks introduce novel require-
ments for a simulator. A sensor network’s behavior depends on
how nodes perceive and interact with the dynamic and uncontrol-
lable real world. Applications and protocols can be sensitive to
minor variations in environmental effects, such as radio interfer-
ence or sensor input. Although existing simulators can model pro-
gram execution at a wide range of fidelity and scale, they mostly
ignore the stimuli that drive that execution. Systems such as Em-
Star address the environment by introducing a hybrid mode, where
simulation code interacts with real-world motes; although this ap-
proach allows testing simulated applications based on real data, it
does not support repeatable, controlled experiments.

Experience in our research group developing a pursuer-evader
game (PEG) TinyOS [4] application demonstrates some of the is-
sues that developers face. In this application, a field of motes
senses moving vehicles by periodically sampling magnetometers
and smoothing the readings. If the resulting reading is over a

threshold, a node broadcasts the observed value to nearby neigh-
bors. The node with the highest reading (the implicit leader) ag-
gregates all other received readings into a single packet and sends
it to a pursuer robot.

After an initial implementation on real motes, we ported the
application to the TOSSIM simulator. Simulating the TinyOS ap-
plication code allows developers to test code and algorithms with
static routing points. However, TOSSIM alone proved to be in-
sufficient, as fully testing and analyzing this application requires
modeling how sensing, aggregation, and routing behave as pursuer
and evader robots dynamically move through the sensor field.

To effectively simulate this and many other applications, the
TOSSIM framework requires two additional capabilities:

Reproducible Interactivity: Environmental dynamics and noise
define a large space of possible system effects. Programs need
to be exposed to as much of this space as possible to find error
cases, and any given scenario should be reproducible. Finding a
race condition by introducing interesting sensor readings is useful;
being able to verify that the problem is fixed by reproducing the
situation is more so.

Flexible Environmental Models: Extreme deployment environ-
ments such as building structures, volcanos, and bird habitats are a
common application requirement for mote networks. Correspond-
ingly, although common environments such as an open field or
an office may be suitable for some applications, developers must
be able to introduce their own environmental models, either by
building on or replacing those already available, and the domain
of expressible models should be as large as possible.

This paper presents Tython, an extension to the TOSSIM sim-
ulator for testing and analyzing TinyOS applications. Tython ad-
dresses these key requirements with two main contributions. First,
Tython integrates an implementation of the Python[5] scripting
language with a set of primitives and structures used to control
and interact with a TOSSIM simulation. This full-featured pro-
gramming environment enables repeatable experimentation with
fine-grained execution control.

Second, Tython implements a rich set of internal abstractions
and library routines to model and control the environmental effects
on a simulation. These include a programmable distance-based ra-
dio interference model as well as a flexible mechanism for repre-
senting the inputs to real-world sensors. Through the combination
of reproducible interactivity and environmental modeling, Tython
is a powerful tool for the sensor network application developer.

In the next section, we review existing sensor network simu-
lators and their capabilities. In Section 3, we outline the TOSSIM
simulator framework and how Tython uses and extends that frame-
work to provide reproducible interaction and flexible environmen-

tal models. We present several use cases in Section 4 to demon-
strate the kinds of problems Tython seeks to solve and how it
solves them. Finally, we discuss several areas for future work and
conclude in Section 5.

2. RELATED WORK

Given that Tython is based on TOSSIM, much of the related work
analysis in [1] applies directly to this work as well. We present
the aspects of TOSSIM’s design that are pertinent to Tython in
Section 3.1. Here we present how several other sensor network
simulators relate to Tython and motivate its particular capabilities.

ns-2 [6] is a widely used event simulator for network sys-
tems, and many experiments have leveraged it to examine pro-
tocols and distributed systems.ns-2 integrates the Tcl script-
ing language into the tool, and therefore offers similar flexibility
and determinism as in Tython. The main limitation withns-2 is
that it is exclusively a simulation framework; a protocol authored
for ns-2 must be reimplemented to test in deployment. As the
Tython/TOSSIM environment runs identical application code in
simulation and in deployment, a particular implementation can be
examined in simulation as well on actual hardware, and multiple
implementations can be compared in terms of code complexity,
size, and execution time.

EmStar [2] is a flexible environment for developing sensor
network applications, originally intended for iPAQ-class devices,
and recently extended to include support for TinyOS based appli-
cations [7]. The EmStar framework enables distributed applica-
tion executions on physical nodes, simulated executions within a
single application on a node, or a hybrid environment in which
“real” nodes can communicate with simulated nodes. Although
the framework includes many utilities for managing this process
execution, the distributed nature of the execution precludes certain
control capabilities that are possible in Tython due to the tight syn-
chronization between the execution of the program and the simu-
lation of the environment. An interesting future avenue of research
would be to integrate the Tython execution control framework to
interact with nodes running under the EmStar framework.

TOSSF [8] is a simulation system that compiles a TinyOS ap-
plication into the SWAN [9] simulation framework. The primary
focus of TOSSF is on scalability, whereas Tython is targeted more
for flexibility and ease of use. As such, TOSSF does not provide
a scripting framework for experimentation, hence suffers from a
potentially long test-debug cycle. Also, although TOSSF also en-
ables development of custom environmental models, the lack of
scripting support requires those models to be compiled into the
simulation platform.

3. THE TYTHON FRAMEWORK

3.1. TOSSIM Background

Tython uses TOSSIM as its simulation core. TOSSIM compiles
whole TinyOS programs, written in nesC [10], into its discrete
event simulation framework. This allows a developer to use a
desktop and existing development tools, such as debuggers, to test
and analyze the same code that will run on motes. Internally, the
TOSSIM event queue models the execution of a number of nodes
with very precise timing. This precision, combined with control-
lable random seeds, provides a deterministic execution environ-
ment and repeatable experiments.

TOSSIM does not provide any direct interface for interacting
with a running simulation. Instead, it implements a network proto-
col by which interactive applications can send commands and re-
ceive events from the simulation. This communication channel is
synchronous: when TOSSIM sends an event to a registered appli-
cation, it blocks until it receives an acknowledgment packet. This
behavior is critical to allow an interacting application to determin-
istically affect execution: the application can execute commands
synchronously in response to an event.

TOSSIM includes a Java-based graphical tool, TinyViz, which
interacts with TOSSIM through its network protocol. TinyViz al-
lows users to select and manipulate simulated nodes through a
GUI, and load pre-compiled “plug-ins” for additional functional-
ity. Although TinyViz allows a user to interact with a simulation, it
has two major limitations. First, a GUI is an inherently unrepeat-
able interface: dragging a GUI-based robot in exactly the same
way and speed twice is not an effective experimental methodol-
ogy. Second, although Java code in plugins can create repeat-
able effects, the range of control is defined when TinyViz boots: a
user cannot, for example, easily change how a plugin-based robot
moves without starting a new simulation.

3.2. Tython Scripting Support

Tython extends TinyViz by incorporating a Java based implemen-
tation of the Python scripting language called Jython [11]. In addi-
tion to TinyViz’s standard GUI interaction, users can interact with
a simulation through a console or pre-loaded scripts. Jython em-
powers the developer with a full featured programming language
with a rich library of control primitives, library objects and built-in
data structures. Furthermore, Jython includes a powerful reflection
capability to expose Java objects to the scripting environment and
vice versa. The use of Jython also enables both an interactive con-
sole and file-based scripting capabilities.

Tython leverages this reflection to provide a set of abstractions
for the various entities within the simulation framework. These
abstractions are implemented as Java classes and provide the in-
terface for controlling the simulated motes, other “objects” within
the system, environmental effects, and the simulation engine itself.
For example,motes[3].turnOff() signals the simulator to
turn off mote 3, andsim.pause() pauses simulation.

Additionally, because Tython provides a full fledged scripting
language, functions can use these low-level interfaces to encode
higher-level abstractions. For example, at the lowest level, Tython
allows a script to set the ADC value of a particular ADC port on a
mote. Some scripts used in the PEG simulations model a vehicle
source by setting the magnetometer ADC values for nearby motes
based on their distance. Our experiences with situations such as
these led us to develop additional, higher level sensor abstractions,
which we discuss in Section 3.6.

Tython also extends the TinyViz event dispatching mechanism
to the scripting environment. This enables a script to be syn-
chronously notified when a particular operation occurs in one of
the simulated motes, such as a radio transmission or LED blink-
ing. For example, a script can trigger when a particular mote has
been elected leader, or even when two motes very close to one
another are both elected leader. This latter example represents a
case in which packet loss has caused the leader election to operate
sub-optimally, or it could be due to a bug in the leader election
algorithm; determining which is the case is useful to a developer.

T
YTHON
 TOSSIM

Bit Error

Radio Model

Variable Resolver

TinyOS Program

Simulation

Event Queue

Distance Based

Radio Model

Object Library

Jython

Scripting Engine

Sensor Model

Fig. 1. Tython / TOSSIM Design

3.3. Tython / TOSSIM Boundary

Figure 1 depicts the functionality division between Tython and
TOSSIM. The large enclosing boxes represent the process bound-
ary, and as mentioned previously, the two processes communicate
over a network protocol. One way to characterize this functionality
division is as the boundary between the simulation of environmen-
tal effects on a system and the execution of the system code itself.

The process separation in this architecture offers several bene-
fits: First of all, the command/event protocol codifies the full set of
effects that the environment can impart on the system execution.
Secondly, keeping potentially complex environmental modeling
out of TOSSIM helps to maintain the simplicity of the TOSSIM
code base, improving both scalability and reliability. Finally, this
separation allows for more implementation flexibility, as evidenced
by the use of Java to implement Tython, while TOSSIM is imple-
mented in nesC.

TOSSIM’s synchronous event dispatch model enables this pro-
cess separation without losing repeatability. As such, even though
Tython and TOSSIM run in separate execution threads, the net-
work protocol provides the necessary synchronization and ties the
two executions together without any race conditions.

3.4. Tython Radio Model

As described elsewhere [1] TOSSIM implements a radio channel
model that assigns a bit error probability to each “link” between
a pair of nodes. Although this model is flexible, it does not nat-
urally express environmental effects such as distance on the radio
channel. To address this shortfall, TinyViz implements a distance
based radio model, where bit error probabilities are derived from
the motes’ locations in a virtual coordinate space. The actual loss
rates come from a small set of predefined models, such as a unit
disc or distance based distributions derived from empirical data.

This approach allows users to quickly lay out a physical topol-
ogy for experiments, but is also very limiting. First, adding new
radio models requires either modifying TinyViz or writing new
Java classes that TinyViz loads when it boots: either case requires
quitting and restarting TinyViz. Second, direct user interaction is
neither precise nor repeatable, for example, users click and drag
motes to move them to new positions. Enabling users to control
these variables dynamically and repeatably as a simulation runs
leads to a more powerful development environment.

Tython extends the TinyViz model, providing scripting inter-
faces to “move” motes around in the virtual space and manipu-
late the current propagation model. The scripting interface also

exposes facilities that disable the distance-based calculations and
directly set the loss rate probability between any pair of nodes, via
theradio.setLossRate() function.

As one example in which the direct interface may be more ap-
propriate, several studies have gathered comprehensive trace data
of sensor network deployments in complex environments [12, 13,
14]. Within the Tython framework, the connectivity characteris-
tics of a particular deployment could be extrapolated from a trace
and then used as input to the radio model. This, in essence, would
program the simulated environment to mirror the effects observed
in the real deployment, and allows developers to develop proto-
cols that address the exact observed phenomena from a particular
application deployment.

As we gathered network traces from the initial deployment of
the PEG application, another avenue for exploration would be to
use these traces to drive the radio loss model within Tython. This
could allow us to examine the causes of some observed misbehav-
iors in deployment, as well as to examine the behaviors that result
from the particular radio characteristics observed in the field.

3.5. Objects in the Environment

While some sensor network applications are intended to monitor
ambient environmental effects such as temperature or humidity,
other applications are intended to interact with or respond to other
physical objects in the environment. In many cases, the position of
this object in space relative to the nodes may influence the sensor
readings on the nodes themselves. For example, a photo sensor
will respond to a nearby flashlight that is shining on it, and a radio
transmission may be obstructed by a barrier.

To accommodate these effects, Tython exposes an interface
through which non-mote objects can be incorporated into a simu-
lation experiment. This mechanism enables a natural framework
for evaluating the effects that these objects can have on the sys-
tem execution. For example, a wall object could be added to the
simulation through the scripting interface, and a radio propagation
model could learn about the existence of the wall object and take
it into account when calculating a loss rate, e.g. by setting the loss
rate to 95% for any pair of nodes that lie on opposite sides of the
wall. These objects are invisible to TOSSIM, which only observes
their effects in terms of mote interactions and sensing (e.g., radio
bit error rates, ADC settings).

3.6. Sensor Model

TOSSIM exposes a simple API hook to directly set the value of a
particular analog to digital converter (ADC) port and thereby simu-
late a sensor input. As in the case of the radio model, Tython both
exposes this direct interface and also implements a higher level
model for sensor readings. To that end, we implemented object
interfaces for the following abstractions:

Sensor Field: a real world phenomenon that is to be sensed,
such as, light, magnetism, or temperature; each field is mapped to
a specific ADC port within the simulation.

Sensor Source Object:a mote or another simulated object
with some intrinsic intensity for a particular sensor field; for ex-
ample, a light source will have some luminescence, and a metal
object has a certain magnetic attraction.

Sensor Propagation:the model for signal attenuation as a
function of the distance between a sensing mote and the source,
e.g. a fixed diameter “disc” model, a “linear” model in which the

value declines as a proportion of the distance, or more complicated
custom models.

Sensor Combination:the interface used to combine the values
from individual sensor values to obtain an aggregate reading that is
set as the ADC port value, either additive, multiplicative, or again,
a custom combination module.

In general, we designed this sensor model framework to be
a simple framework for representing common scenarios based on
our experiences using Tython for applications such as PEG. At
the same time, the model is flexible and extensible, allowing it to
evolve over time for new hardware platforms or environments.

3.7. Library Routines

In addition to exposing the internal state of the simulation environ-
ment through Java reflection, the Tython framework also includes
a rich library of utility objects. For example, one object exposes
the random number generator used within Tython/TOSSIM for use
within scripts, another manages periodic callbacks, and another
performs step-wise movement of an object with various mobility
patterns (e.g. linear, random walk) in the virtual space.

For Tython to accurately model phenomena over time in a
simulation, it must have a way of knowing when the simulation
reaches a certain time. We extended TOSSIM to include atime
reachedcommand, which enqueues an event on the TOSSIM queue
at a specified simulation time. As with all other events, when
TOSSIM handles the event, it signals Tython, so Tython can ma-
nipulate the environment as it needs to. Using this functionality,
scripts can implement “future actions” and periodic callbacks that
are synchronized with the simulation execution, an essential char-
acteristic for repeatable simulations.

3.8. Simulation Variable Resolution

Another feature enabled by the Tython environment is to expose
the ability to read variables directly from the simulated executable.
To enable this feature, we made some simple modifications to the
nesC compiler to generate a variable resolver function, much like
a limited form of debugging symbols. Through this mechanism,
Tython can resolve address and length of a variable from TOSSIM,
and subsequently retrieve the variable’s value from memory.

This facility is most useful for debugging, as it allows interac-
tive access to the simulated program state of all nodes. For exam-
ple, a script in the PEG application can print out which mote(s) are
“leaders” as follows1:

for m in motes:
if m.getByte("MutationRoutingM$leader"):

print m, "is a leader"
else:

print m, "is not a leader"

One potential extension to this system would to add variable
writing capabilities as well. This would allow, for example, a test
script to force multiple nodes to be leaders and determine how the
PEG routing protocols handle that situation. Clearly, this func-
tionality must be used carefully, as it could easily corrupt mote
and simulator state.

1Some basic Tython statements and syntax have been omitted from this
and future examples in the interest of brevity and clarity.

4. EXAMPLES / USE CASES

To illustrate the advantages of the Tython system, this section out-
lines some use cases for which we have designed the Tython sys-
tem and some examples of its utility.

4.1. Basic Scenario Validation

A basic use case for Tython is as a development framework for
debugging and evaluating an implementation that depends on en-
vironmental dynamics. For example, Tython enables easy testing
of PEG’s magnetometer filtering and local aggregation. A devel-
oper can introduce simulated magnetometer sources, noise, or spu-
rious readings, and analyze how the application performs. Unfor-
tunately, as our development and testing of this part of the PEG
demo motivated much of Tython, it also preceded it: by the time
Tython was ready for use, this part of PEG was well tested and
stable, after many hours of work and deployment.

To demonstrate the benefits of Tython, we step through how
the PEG developers could have used it to simplify testing and de-
velopment.

To start off, the script would distribute 100 motes in a grid
covering a one hundred foot square region. This will also have
the effect of updating the distance based radio model to reflect the
connectivity of this distribution:

for x in range(0, 10):
for y in range(0, 10):

m = motes[x + (y * 10)]
m.setCoord(x * sim.worldWidth / 10,

y * sim.worldHeight / 10)

Next, the script creates a sensor propagation model that atten-
uates linearly from 5 feet to 20 feet and adds it to the system:

model = LinearSensorModel(5.0, 20.0)
sensor.addModel("magmodel", model)
sensor.addField("mag", port, "magmodel")

The script then creates an evader object (the sensor source ob-
ject) and attaches a magnetism attribute with value 100:

evader = sim.newSimObject()
attr = SensorAttribute("mag", value=100)
evader.addAttribute("mag", attr)

Finally, using theObjMover utility class, the script moves
the object to the other side of the field of motes in one foot incre-
ments:

evader.setCoord(0, 20)
objmover.moveTo(evader, 1, 100, 40)

To illustrate the effects of this example, we tracked the ADC
input value on a row of the simulated motes in the grid whenever
a periodic sampling timer fires.

As expected, the plot of sensor values in Figure 2 confirms the
expected results. For the motes that detect the object, their sensor
readings climb linearly as the evader approaches the mote, plateau
at full strength if the evader comes within 10 feet, then fall as the
evader moves away.

This simple example illustrates the flexibility of the Tython
scripting API as well as its ability to represent real-world situations
in a natural and easy to use manner.

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

se
ns

or
 A

D
C

 v
al

ue

simulation time

"mote_30"
"mote_32"
"mote_34"
"mote_36"
"mote_38"

Fig. 2. Sensor readings from the example script

4.2. Network Protocol Development

The TinyOS toolchain includes Java-based utilities for generating
classes representing TinyOS packets. Jython’s Java reflection al-
lows Tython to seamlessly integrate all of these tools. Instead of
compiling and writing Java classes to inject packets and moni-
tor network traffic in TOSSIM, users can do so more easily with
scripts.

One early adopter of the Tython framework uses it to develop
and evaluate an any-to-any mote routing protocol based on logical
coordinates [15]. A simple experiment first initializes a topology,
and then evaluates the overall connectivity achieved by the proto-
col by iterating over theN nodes in the system, and for each node,
injecting a command packet with an instruction to try to send a
message to every other node. The script also registers an event han-
dler to receive all packets that are sent by the system, and thereby
can compare the observed behavior versus the expected behavior.

To evaluate the protocol’s recovery from transient network
problems, the developer has run the same experiments while in-
troducing node failures. This tests how temporary disconnections
or failures affect end-to-end delivery and how well the protocol
can react to temporary disconnections that are contrary to longer
term link estimators. In general, the greatly enhanced debugging
and introspection support provided by the Tython system has been
extremely valuable tool for this development.

In the case of the PEG application, injecting and monitoring
network traffic allows a developer to script how a user might inter-
act with a deployment. For example, normally a deployed network
is in a deep sleep mode, and a user wakes up the network by send-
ing a few special packets through a base station. Tython scripts
can recreate this interaction in a repeatable way.

4.3. Edge Condition Coverage

A widely accepted principle in systems design is that code to han-
dle exception cases is the hardest code to get right [16]. This fol-
lows from the fact that exception handling code is hard to test be-
cause the situations which trigger that code are rare and hard to
create. Furthermore, it may be very difficult or even impossible to
test such code in an actual deployment since the cause of the ex-

ception may be something irreversible like a hardware component
failure.

An example of one such situation in the PEG applications is
the existence of a faulty sensor. This failure could be due to low
batteries, a loose connection, or faulty hardware. Because nodes
automatically send sensor readings if they are above a threshold, a
single faulty sensor can continuously claim it detects a moving ve-
hicle when none exists. Theoretically, the magnetometer filtering
code should take care of this case (it automatically adjusts mag-
netometer gain to find a baseline noise floor), but this was never
tested in the real world. For a short term deployment, the gen-
eral technique is usually to just replace the bad sensor. Long term
deployments, however, do not have this luxury.

Another example is is the case of one-way radio “connectiv-
ity”. It has been shown in empirical studies [17] that deployments
of a field of wireless sensor nodes will in general have pairs of
nodes in which communication is one-way. Networking protocols
should be designed to handle these situations, yet it is challenging
to reliably set up scenarios of one-way connectivity in a lab testing
environment.

Testing both of these scenarios in Tython is simple. For the
former, Tython controls the input to the magnetometer and can
easily simulate faulty readings. For the latter, using the direct radio
interface, a script can set a 99% loss rate on packets transmitted
from mote 1 to mote 2, and a 0% loss rate on packets in the reverse
direction as follows:

radio.setLossRate(1, 2, 0.99)
radio.setLossRate(2, 1, 0.00)

These examples both show the benefits of a full application
simulator. Testing filtering techniques and routing protocols in
controlled experiments, not simply concluding “it seems to work,”
can vastly help improve application performance and reliability.

4.4. Parameter Exploration

Many algorithms and protocols depend on a set of parameters that
affect how the system operates in a given situation. Experimen-
tation can help determine the best settings for a given input sce-
nario. Iterating through a large parameter space in deployment or
on a test bed can quickly become infeasible due to the burdens
of reprogramming motes. Additionally, the input to a real world
network is unrepeatable And can change between experiments. In
contrast, controlled input in simulation allows a developer to sep-
arate and understand the causes of behavior, rather than conflate
parameters with the environment.

Since Tython implements the ability to run, pause, resume,
and stop a TOSSIM simulation, a script can easily iterate through a
parameter space. For each setting, it is trivial to run an experiment,
gather results, then reset the simulator and try the next value. This
process is easily amenable to unattended batch simulations

Furthermore, since the scripting framework is itself a program-
ming language, this exploration need not be static. For example,
the above technique can run independent experiments for each pa-
rameter value with different random seeds. The number of exper-
iments can be determined dynamically, to achieve a desired confi-
dence interval in the results.

4.5. Protocol Comparisons

Many research papers use simulation frameworks to compare a set
of protocols. For example, Broch et al. [18] present a comparison

of several mobile ad-hoc routing protocols based on simulations
in ns-2 [6]. One of the significant points that their paper makes
is that the different protocols are highly sensitive to the particulars
of a mobility scenario. To provide a fair comparison, they pre-
calculated a set of candidate mobility scenarios and then ran each
protocol on the same set of scenarios, thus reducing the biases of
an individual mobility pattern.

The Tython framework easily enables these types of experi-
ments. The built-in Python libraries include primitives for reading
and parsing files, allowing a set of scenarios to be pre-computed
and stored for subsequent execution. For this type of study, it is
critical to ensure that all aspects of the system remain constant
across the comparisons, except of course the program code being
evaluated. Because the Tython framework is intimately tied to the
TOSSIM event loop, Tython ensures that the experimental setup is
identical among protocol comparisons.

4.6. Simulating Sensors and Actuators

Tython has proven to be an invaluable tool in the experimentation
and evaluation of the PEG application. Some of these uses are dis-
cussed above, such as triggering a route discovery flood by inject-
ing a control packet to the intended root of the routing tree, moni-
toring the location of the evader to effect magnetometer readings,
and using the scripting capabilities to iterate repeatedly through a
set of experiments.

In addition, a key use of Tython in the PEG application was
to emulate sensors and actuators that are not provided by the core
TOSSIM environment. Since TOSSIM does not provide a model
of radio-signal strength, the PEG scripts monitored radio traffic
and converted the packets into radio strength measurement values
based on the sender’s location. These values are then set as ADC
port readings on the simulated motes, thereby simulating a hard-
ware feature based on packet transmissions in the simulation.

Similarly, as TOSSIM also does not have a model for simu-
lating robotic vehicles, Tython provided that functionality. In this
case, Tython acts as the implementation of actuators for velocity
and direction, responding to instructions (in the form of debugging
messages) by moving the simulated object in the virtual space.

As these two examples show, a useful feature of Tython is to
emulate the behavior of sensor and actuator systems that are not
provided by TOSSIM itself.

5. CONCLUSIONS

Programming sensor network systems is and will likely remain a
challenging task. A primary goal of simulation platforms is to help
to alleviate these burdens. For wireless sensor network systems,
two features of simulators are extremely valuable: reproducible
experimentation and dynamic environment modeling.

Tython adds these two key features to the TOSSIM simulation
engine for TinyOS programs. Tython implements a Python based
scripting framework that enables flexible and repeatable interac-
tions with the underlying simulation. Through extensible models
for sensor propagation and radio channel losses, Tython exposes a
framework for representing the effects of a dynamic environment
on a system’s execution. Some early experiments with the Tython
environment in a pursuer-evader application have verified the core
benefits of the framework as well as informing the design of cer-
tain key aspects, such as the sensor abstraction model.

Tython is a functional framework with many users worldwide;
however, there are several ways in which it can be improved, some
of which are being actively working on. The most important is the
command/event interface. Although TOSSIM’s synchronous in-
terface allows reproducible dynamics, it can impose a significant
overhead as it generally leads to four context switches for each
event. We are working to relax this aspect of the system: while
critical events and commands (decided by the scripting side) will
remain synchronous, others can be delivered asynchronously. An
initial implementation of this type of functionality allows a script
to batch a set of commands into a single synchronous exchange;
this turns out to have a major effect when Tython modifies state
such as the radio connectivity, which can require up ton2 com-
mands. We expect these developments to be part of the next major
TinyOS release.

Tython is an integral part of TinyOS distributions 1.1.4 and
later, and is available athttp://www.tinyos.net/

6. REFERENCES

[1] Philip Levis, Nelson Lee, Matt Welsh, and David Culler, “TOSSIM: Accu-
rate and scalable simulation of entire TinyOS applications,” inProceedings of
SenSys, June 2003.

[2] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ra-
manathan, and Deborah Estrin, “Emstar: a software environment for developing
and deploying wireless sensor networks,” inProceedings of the 2004 USENIX
Technical Conference, Boston, MA, 2004.

[3] “atemu - Sensor Network Emulator / Simulator / Debugger,”http://www.
cshcn.umd.edu/research/atemu/ .

[4] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and
Kristofer S. J. Pister, “System architecture directions for networked sensors,”
in Proceeedings of ASPLOS 2000, Boston, MA, USA, Nov. 2000, pp. 93–104.

[5] “The Python Programming Language,”http://www.python.org/ .

[6] “The Network Simulator,”http://www.isi.edu/nsnam/ns/ .

[7] Lewis Girod, Thanos Stathopoulos, Nithya Ramanathan, Jeremy Elson, Debo-
rah Estrin, Eric Osterweil, and Tom Schoellhammer, “A system for simulation,
emulation, and deployment of heterogeneous sensor networks,” inProceed-
ings of the Second ACM Conference on Embedded Networked Sensor Systems,
Baltimore, MD, 2004.

[8] Luiz Felipe Perrone and David Nicol, “A Scalable Simulator for TinyOS Ap-
plications,” inProceedings of the 2002 Winter Simulation Conference, 2002.

[9] Jason Liu, Yougy Yuan, Michael Liljenstam, and L. Felipe Perrone,
“SWAN: Simulator for Wireless Ad-Hoc Networks,”http://www.cs.
dartmouth.edu/research/SWAN .

[10] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler, “The nesC language: A holistic approach to networked em-
bedded systems,” inProceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI), June 2003.

[11] “Jython,” http://www.jython.org/ .

[12] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler,
“Lessons from a sensor network expedition,” inProceedings of EWSN, Jan-
uary 2004.

[13] Alberto Cerpa, Naim Busek, and Deborah Estrin, “SCALE: A tool for simple
connectivity assessment in lossy environments,” Tech. Rep. CENS-21, UCLA,
2003.

[14] Jerry Zhao and Ramesh Govindan, “Understanding packet delivery perfor-
mance in dense wireless sensor networks,” inProceedings of SenSys, 2003.

[15] Rodrigo Fonseca, Sylvia Ratnasamy, David Culler, Scott Shenker, and Ion Sto-
ica, “Beacon vector routing: Scalable point-to-point in wireless sensornets,”
Tech. Rep. IRB-TR-04-012, Intel Research Berkeley, May 2004.

[16] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf, “Bugs as deviant behavior: a general approach to inferring errors in
systems code,” inProceedings of SOSP, 2001, pp. 57–72.

[17] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker,
“An empirical study of epidemic algorithms in large scale multihop wireless
networks,” 2002, Submitted for publication, February 2002.

[18] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta
Jetcheva, “A performance comparison of multi-hop wireless ad hoc network
routing protocols,” inProceedings of Mobicom, 1998.

