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Abstract—Wireless, multi-hoping sensor networks with more motes. Also, different types of data may be simultaneously
than tens of motes often encounter traffic congestion. The generated by the network: some data packets may have to be
occurrence of congestion subsequently results in loss of control ga ¢ 55 js to the base station, whereas others may have contents
over the bandwidth each mote effectively receives. In this paper that b ted ' din th twork itself
we present a bandwidth management mechanism for sensor a (?an € aggregated or proce;se 'h .e n.e ork itselr.
networks called Argus that incorporates congestion control and ~ This loss of control over bandwidth distribution may not be
the ability to divide available bandwidth amongst traffic flows significant if we consider simple one-hop networks of less than
and as well as handle different traffic patterns. Argus focuses 10 motes, generating data at a lower rate than the maximum
primarily on the transfer of data packets, and is implemented o network can handle. However, as the size of the network
in the routing and transport layers. Since it independent of . ) : .
the data-link layer, it can therefore be applied to a network INCreases to tens or hundrgds of motes, congestion occurs,
with different MAC protocols. Argus implements Extended Causing a general increase in latency and dropping of packets
Epoch-based Proportional Selection (EEPS), a distributed and thus wastage of energy. Moreover, such networks typically
variant of Weighted Fair Queuing. EEPS performs scheduling of cover a larger area and are thus more likely to be multi-
per-child queues, with the associated weights _prlmarlly derived hoping, which results in more packets from motes closer to
from the flow sizes of downstream motes. Since a mote only ' . . . .
requires knowledge of each child mote’s total flow and not each (h€ base station to be received. This phenomenon is observed
individual flow's size, and since queues need be maintained on a€ven when congestion control and Automatic Repeat Request
per-child rather than a per-flow basis, Argus is scalable and is (ARQ) are implemented [8].
ideal for resource-constrained sensor networks. \We demonstrate  |ncreasing the size of the network to more than hundreds
tha_lt Argus is able to achieve its goals of bandwidth management of motes has been widely acknowledged to require a change
using a 26-mote mica2dot testbed. . : . .

in architectural design. Rather than having a thousand motes
Key words: sensor networks, distributed algorithms, weighted send data to one base station, it is preferable to partition the
fair queuing, congestion control, bandwidth management network into distinct regions, each with its own base station.
We can extend this scenario to the one shown in Figure 1.
Here, the infrastructure motes route data from the patch of
type A sensor motes as well as the type B sensor motes to

Since the first sensor mote was created, a multitude e gateway device, which in turn transmits the data over the
networking protocols have been designed, written and testégternet to a location where they can be further processed.
These protocols have differed greatly from the traditional
networking protocols found in the Internet. For instance, unlike
the traditional Internet, where dedicated routers perform the =

I. INTRODUCTION

highly specialized task of routing packets from one network i .
to another, each sensor mote is capable of generating dat » . -
as well as forwarding data upstream towards a sink mote, . T
or base stationAlso, bandwidth management in the Internet e £ b bqrmgt

is typically accomplished at two different entities: gateway = | &« o

routers and end-hosts. Such management in sensor network L

will have to be for traffic generated locally as well as route ...

through traffic. Yet another difference is the homogeneity of = | | g (@ ooy

the networks. Thus far, sensor networks have been mostly

homogeneous, in that the type of motes, their capabilities aHd. 1. A heterogeneous sensor network, comprising of motes with different

resources, are similar if not the same. Sensor networks are agggurces. Data is gathered and may be processed in-network before being
homogeneous in the traffic management sense: each pasketto a center through the Internet.

in a sensor network is treated the same as all other packets,

there is no concept of data flows from each source mote to theSuch an architectural design serves to increase the effective
corresponding sink mote. Although such a scheme is easyat@ilable bandwidth in the network, as well as to accommodate
implement and consumes little state in the motes, it results imebtes with different capabilities. It is reasonable to assume
loss of control in the management of bandwidth. For instand@at infrastructure motes can have multiple Media Access Con-
it is not possible to devote more bandwidth to a particularol (MAC) interfaces, for instance, they may have different
data flow, neither is it possible to ensure that the base stati@awlios for interacting with micaz and mica2dot motes. This is
receives approximately the same number of packets from aldifferent definition of heterogeneity that is not captured by



any high level sensor network protocol. will finish being serviced bit-by-bit, and schedules them for

The traffic traversing a heterogeneous network can be geansmission based on their virtual finishing times. Although
tentially diverse in terms of the average rate and pattern.sdich a scheme provides max-min fairness for each flow, it is
mote may generate more packets when an event is detectedimgractical for sensor networks for three reasons:
the application running on the motes may aggregate receivedsensor motes have limited memory. Maintenance of a queue
data or forward them unaltered. It is therefore difficult, if notor each downstream mote is impossible for networks larger
impossible, to determine a good upper bound for the totdlan a few motes since each mote only has about 4Kilobytes
amount of traffic to be carried at any one time. Together withf RAM.
the fact that quality of wireless links can fluctuate greath®. Simulation of bit-by-bit packet servicing consumes CPU
it is not feasible to exactly provision the network so thatycles, which is limited and should be reserved for applications
bandwidth is always available. Over-provisioning the networks far as possible.
appears to be an attractive solution, but has the disadvantdg&nowledge of each flow’s weight requires communication
of incurring additional cost and is not a solution if there areverhead that consumes scarce energy resources.
applications that attempt to transmit data as fast as they canA more scalable technique to approximate FQ within a
Over-provisioning is also not as simple as adding more motestwork is proposed in Core-Stateless Fair Queuing [3]. Here,
to the network, since, unlike in the case of wired networkper-flow management is handled only at the edge routers,
having more wireless motes implies that in general intewhereas the core routers compute the forwarding probability
ference increases thereby reducing the effective bandwidtlased on the current estimated rate inserted in the packet
Furthermore, different applications are likely to have varyinigeader. Thus core routers need not maintain per flow state,
bandwidth requirements relative to one another. Since it alowing the network core to approximate FQ at a much lower
intractable for an application programmer to be aware of albst.
possible applications running on the same network and adjustWWFQ in wired networks has been extended to the wireless
his bandwidth usage accordingly, we believe that havingdammain in [7], where the authors proposed a global and a
common, automatically and dynamically self-adjusting bandistributed local fairness model. However, maintenance of each
width management mechanism amongst all sensor motes iffoav’s state is still required, which may still be intractable for
better solution. large sensor networks with multiple flows.

We propose an Extended Epoch-Based Proportional SelecThe Adaptive Rate Control (ARC) scheme [5] developed
tion (EEPS) algorithm that is a distributed variant of Weightefdr sensor networks that gives preference to route-through
Fair Queuing (WFQ) [2], where the weights involved arg&raffic. By estimating the number of downstream motes, local
derived from the flow sizes of downstream motes and may bate metering can be performed to achieve a certain level of
adjusted by other factors. We call our implementattogus fairness. In general, usage of ARC causes more packets to be
it requires per-child qgueues and only maintains state pertainiregeived from downstream motes. Also, since ARC does not
to its one-hop neighboring motes. Per-flow managementngintain state pertaining to the flows, it cannot allocate more
required only at the originating mote, and not at intermediabandwidth to a particular flow in general.
motes. Communication between upstream and downstream
m_ot(_es isf minimized and is piggybacked on_to_data packets, thus I1l. BANDWIDTH MANAGEMENT GOALS
eliminating the use of explicit control traffic in the network. ) ) ) ) )

The rest of this paper is organized as follows: Section 11 [N this section we describe precisely what the bandwidth
briefly covers related work in this area; Section IIl states tfBanagement component aims to achieve.
goals of our bandwidth management mechanism; Section 1vV1) Argus should handle various types of traffic, including
gives the overview of Argus. Sections V and VI elaborate ~ many-to-one and point-to-point, in-network processed
on the design of EEPS and Argus respectively. Section VIl and aggregated traffic. It should also be able to take
describes the implementation of Argus in a mica2dot mote.  into account traffic that is periodic, that is triggered on
Section VIII shows how the design of EEPS and Argus, Some event, and that transfers data as fast as possible
and the implementation of the latter, achieve our goals of through the network. Since we focus on data traffic in
bandwidth management. Section IX briefly describes details this paper, we do not consider control traffic that are
of the testbed and other related components in the network broadcast throughout the network.
stack. Results of experiments run on the testbed are presented) It provides a common standard with which a traffic flow
in Section X. Next, we discuss some related issues encountered can use to determine the amount of bandwidth it obtains
during the course of the experiments in Section XI, and finally ~ relative to other flowsvhen the network is congested
we conclude in Section XII. For instance, a flow requesting for 4 units of bandwidth
will obtain twice as much as another requesting for 2
units. We do not providabsolutebandwidth guarantees,
that is, even though applications can attempt to send

The control of route-through traffic has been studied ex-  periodically at 10kbps, the actual bandwidth obtained
tensively in wired networks. For instance, Weighted Fair  will be subject to the amount available. Also, in general,
Queuing (WFQ) [2] maintains a separate queue for each flow it is difficult to guarantee a fixed amount of bandwidth
passing through an Internet router, determines when a packet with the wireless link quality fluctuating. Thus, we

IIl. RELATED WORK



upper-bound the bandwidth obtained, but not lowelt is possible that part(s) of the network transit between

bound it. congested and uncongested states, in which Argus manages the
3) When the network is not congested, motes are allow#idws in a manner transparent to the applications, which will

to send packets at their current rate. Transition @ihly know whether a packet can be accepted by the network,

the network to and from a congested state and tloe not.

corresponding handling of traffic should bansparent  The second type of traffic inetwork determinedND). In

to the application. Thus the application need only bnis case the rate at which packets can be pushed into the

concerned with whether or not the network can accepetwork is determined by the network itself. Typically, an

more packets, and can otherwise send packets at @pplication that generates ND traffic has a backlog of packets

interval. which it has to send as fast as possible. For instance, a mobile
4) It performs some amount ofongestion contrgl by mote may gather readings over a long period of time and store

regulating the rate at which packets are injected inthem in non-volatile memory, and download them only when

the network, i.e. viemdmission control it is within the range of some infrastructure, or fixed, motes.
5) Finally, our mechanism allows the application to deteth such instances the download of data should take place as

mine the division of bandwidth between downstreamuickly as the network allows. Unlike AD traffic which may

motes. This enables the application programmer @ may not congest the network, it is clear that ND traffic will

adjust the distribution according to his needs. Thudgfinitely do so.

with information from the MAC layers, differences We next describe the design of the algorithm that allows us

between the maximum capacities of incoming links caio achieve the goals mentioned in Section Il

be factored in. Using the earlier example on micaz and

mica2dot motes, we give approximately 90% of the V. ALGORITHM DESIGN

outgoing bandwidth to the incoming micaz packets, and

the remaining 10% to the mica2dot packets. We foc

only on the mechanism, the policies involved are beyoq r

the scope of this paper.

We extend the basic algorithm, Epoch-based Proportional
lection (EPS) proposed in [8]. We first define the common
ms used throughout the rest of the paper, then briefly
describe the steps to be taken prior to EPS, and finally the
algorithm itself.

IV. OVERVIEW OF ARGUS

We begin by providing a high-level view of Argus, therA. Terminology
elaborate on its design and different components in the sub\we define theparentof a mote to be the mote to which a
sequent sections. packet is next forwarded, andsabtreeo consist of a mote and

Argus primarily manages the bandwidth obtained by a floall its downstream motes. Thus, in Figure 2, mote fsbtree
of data through the network. We assume that the bandwidifeis 5, and D's is 1. Assume that mote A requests for 2 units
consumed by control traffic is small and therefore do nef flow, B requests for 5, C requests for 1, D requests for 3,
consider it further in this paper. Basically, each mote in thend E requests for 1, then tisabtree flow sizefor mote A,
network monitors its current effective transmission rate am®land E are 12, 9 and 1 respectively.
the total size of the flows routed through it. Dividing that
rate by the total flow size gives the rate at which each unit of
flow downstream can be injected into the network. The inverse
of this rate gives the epoch length which is then propagated
downstream, where each mote then regulates the number of
packets allowed into the network, i.e. admission control is
enforced locally.

When congestion is not experienced, Argus does not con-
strain any data flow, thus the applications can send at their %‘. 2
sired rates. When congestion occurs, Argus can, by scheduling
per-child queues and using the number of flows routed through
each child, divide the available bandwidth between the flows .
as specified by their weights. This is done without explicﬁ" Basic Steps
signaling between downstream and upstream motes, and ié\n outline of the steps to take is given below. We elaborate
achieved with minimal overhead, in the form of piggybacke@n each step in the following subsections.
epoch length and total flow sizes, in the headers of datal) Obtain the total units of flows from downstream motes.
packets. 2) Measure the average rateat which packets can be

Argus handles two primary types of traffic rate patterns. The  transmitted from this mote.
first type isapplication determinedAD). Examples of this  3) Divide the average rateby total units of flown to give
kind of traffic include the periodic generation of data packets,  the per-unit-flow generation ratg;,., = ;.
and data that is produced upon the occurrence of some eventf) Compare the ratey;,, with the rater oy parent SENt
i.e. the application determines when it will produce packets.  from the parent mote, as well as with the rajg,., ruu

Motes A, B and C have subtree sizes 5, 3 and 1 respectively.



used when the local buffers exceed a predeterminBd Reaction to Overflowing Queues

threshold, use and propagate the smallest rate to th§ynhen a mote detects the imminence of queues overflowing,
children motes. we use the per-flow ratey;,,, , . Which is adjusted accord-

e o . o . . :
5) Within an epochtepec, = -, for a mote withf units  jng to Table I, where ;o parent is the flow rate disseminated
of flows, inject no more thaf packets into the network py the parent, motes begin reducing flow rates once the queue
within the time intervalicpocr, - size increases beyond thi&IRESHOLandmaz_queue_size

is the maximum occupancy amongst all queues in the mote.
C. Obtaining Subtree’s Total Flow

The subtree flow size of a mote A is stored in the header of
the data packet sent to its parent mote B. At B, it retrieves the - A T RESTOD
flow sizes from data packets sent by its children, sums them,| ' ’;]?ax‘q“e;e‘l‘;’fe_>FALSEs ©

B . . . . queuel ull ==
and adds its own flow size before dispatching the total size to queueFull — TRUE
its parent in the next data packet. With reference to Figure 2, | T flow,qfull <= MIN(T flow, T flow,parent)
mote C sends a flow size of 1, B sen@8bTreeSize(C) ese .
. flow,qfull < mln(rflow:rflow,qfull: Tflow,parent)

+ SubTreeSize(D) + 5 = 1+3+5 = 9, and A sends T flow.qfull — (2 )T flow,q full
SubTreeSize(B) + SubTreeSize(E) + 2 = 9+1+2 = elsequeueFull — FALSE
12.

Since the updated flow sizes are stored in all data packet
headers, changes in these sizes can be updated and handled
dynamically. This allows the network to adapt to changes fn Epoch Length Definition
topology and i_n traffic rows._A new flow of s_ize increases  The length of an epoch,,..;, is defined to be the inverse
the total flow size by, and reinstates the previous value wheggt MIN(T f1ow, T flow parent T flow.qfuit)- THIS is the value that

TABLE |
FLOW RATE ADJUSTMENT. QUEUE OVERFLOW

it ends. will be used locally. For traffic that is forwarded unaltered,
we disseminate the same,,., downstream. However, for
D. Rate Measurement flows that undergo network processing, the outgoing flow size

We now describe one way of measuring mean effectiVe@ not be the same as the incoming one, thus a simple
transmission rate at a mote. The effective tim¢aken to adiustment has to be madetg,., before dissemination: Let
transmit a packet begins when the network layer sends a padR€; outgoing flow size per epoch Buigoing, and that of
to the data-link layer, until the time notification of successfdf!cOMINg ones beincoming- Then, the effective epoch length

transmission is received from the data-link layer. is simply
fincomin
SendPkt PktSent tepoch,updated = tepoch X —Reomng
Network foutgoing
Layer t =

____________________________________________________________________ ﬁ By controlling the epoch length, we manage the rate at

Data-link M E which packets are pushed into the network, thereby controlling
Layer t

contention = raa)y T oaTA ) ACK (B) congestion. In general, a mote with a total flowaofinits is

allowed to push a maximum of packets into the network
within an epoch.

period

time

Fig. 3. SimpleMAC in operation G. Dissemination of Epoch Length

Using a simple MAC protocol, the operation of which is Like the flow size of the subtree, the epoch length is piggy-
illustrated in Figure 3¢ is then defined as shown in the figuredacked on the data packets transmitted. The children motes
This value oft is a sample of the average time needed @Avesdrop on the data packets, and update their parents’ epoch
transmit a packet, and this average time is obtained using tBBgths correspondingly.

exponential moving average formula below:
H. Extended Epoch-based Proportional Selection (EEPS)

av; (t) (g)T—l- (1 - g)avi,l(t) ) ) _

n n The basic Epoch-based Proportional Selection (EPS) algo-
whereav; (t) is the moving average in thi¢h iteration,« is the  rithm transmits, within each epoch, exactly from each child’'s
weight, T" is the latest sample df andn is the total number queuen times the number of downstream motes serviced by
of subtree flows. The inverse of the average transmission rtftat queue, where: is some positive integer. Work conser-
gives the per-flow rate ;.. vation is not implemented: if a packet to be sent has not yet

We note that this method of rate measurement takes irgtrived, the mote waits for it. Also, since a mote does not keep
account loss due to corruption, interference and schedulitrgck of packets from each downstream mote but the number
constraints. For instance, if S-MAC [6] puts the radio to sleepf packets transmitted within an epoch, the queues must be
before sending the packet, the sleep time will be included inFIFO. Once the two conditions above are met, EPS is correct
and thus correctly reflect the reduction in effective bandwidthased on the following inductive proof:



Base caseConsider a leaf mote L. Within an epoch, L willthe other flows, regardless of their destinations. Although per-
transmit exactly one packet from itself, equal to the numbehild, per-destination queues require more memaory in resource
of motes in its subtree. constrained motes, we believe that this is acceptable for sensor

Inductive stepAssuming that, exactly one packet from eachetworks as the number of sink motes in the network at any
downstream mote arrives in the corresponding FIFO quetime is expected to be small. Also, queues corresponding to a
within an epoch, then, by transmitting the same number pérticular sink can be reused if no more traffic is routed to it.
packets as the number of downstream motes, EPS ensures that
exactly one packet in its subtree will be transmitted. C

The extension of basic EPS is straightforward: for a mote
generating: packets per epoch, we treat that mote as a IogicaIF|0W sizes associated with each queue can be thought of

mote consisting of physical motes, and the correctness progts Weights, which can then be manipulated to provide control
can be applied as before. over the bandwidth distributed amongst the queues. Referring

again to Figure 4, mote C may allocate twice the bandwidth
to packets from E by doubling the weights of E's queues.
) ] Alternatively, increasing the weights for queues associated

We describe how EEPS can be applied to a network Wit destination A will increase the rate at which packets
varying traffic flows and patterns, as well as the componer{§| pe sent to A. Thus, weights can also be altered to take

. Weight Management

VI. ARGUSDESIGN

that its implementation, Argus, is composed of. into account the capacities of the data-link layers. It is to be
noted that this adjustment of weights is performed locally,
A. Per-Epoch Management though one can possibly construct a control plane that globally

The time granularity used in Argus is the epoch length Jnanages flows. This, however, is beyond the scope of this

defined in Section V-F. When the system is relatively stablB2PE":

packets at deptld in the nth epoch will be sent to motes at

depth(d — 1) in the (n + 1)th epoch. Since traffic flows may D. Flow Management

vary over time, we handle them on an epoch-by-epoch basisy citical aspect of EPS is th&nowledge that a packet
The primary issue becomes the determination of flow Siz?rﬁm a child is supposed to be sent next, and to wait for it
within an epoch, which is easily solved with the observatiqtore starting the next epoctm EPS, it is assumed that flows
that the flow size is a combination of that reported by packels, continuous, and that each mote generates a data packet
from children motes and the number of packets generatgthyy enoch. Since the length of an epoch is determined by the

locally in the previous epoch. current network state, EPS is suitable for motes generatidg
traffic. To extend EPS to incorporafeD traffic, we observe
B. Per-Destination Queue Management that a mote (say A) needs only indicate whether its parent, as

well as subsequent upstream motes, are requirediticipate
more packets from A. The conditions under which the parent
mote needs to do so are:

« As queues become backlogged, in which case A will
definitely have more packets to send, and

o A routes ND traffic, which is pushed into the network
whenever the network is able to accept more.

We use one bit (the “more” bit), to indicate whether more
packets are due to arrive, and set the bit according to the
conditions stated above. Once the “more” bit is set, it will not
_ _ _ _ be reset before reaching the destination.
prafhcflow destined - - refficflow destined With the knowledge that more packets will arrive, and
because flow sizes may differ between consecutive epochs,
Eig-né‘a EctLOSAS t;iféiC;nfg?;Zrirg%Jt'e:Sthg dli;fefcenzérfl\;ﬁ?e?g;atngstihg”elj;%mrgus waits until all anticipated packets, carrying the sizes of
as:ociated With child E and destination A.. Sche‘dulihg is performed a%onggws for the next epoch, to arrive before continuing.
all queues. We use a simple example illustrated in Figure 5 to explain
the use of the “more” bit. Assume that motes S1 and S2
Since a mote may be routing packets to different destinationitially send at 1 packet per minute. At such a low rate, the
motes, queues have to be allocated per destination as wellpaths from S1 and S2 to R via X are uncongested: the queues
Figure 4, mote C routes traffic from D and E to A, and frommever have occupancy greater than one. Together with the fact
F to B. Mote C treats each child queue as distinct queudisat the traffic are not of type ND, this means that the “more”
and schedules them together rather than perform schedulignever gets set, and thus, at X, each packet can be sent as
amongst queues grouped according to their destinations. Hoen as they arrive, without having to wait for the other.
former is done because Argus aims to allocate bandwiddhi to Now assume that S1 and S2 increase their sending rates,
flowsrouted through a mote according to its weight relative foerhaps due to the detection of an event, to the point where




@ 1) currentFlowSize : gives the number of packets yet

\ ® to be transmitted in the current epoch,
/,’. ® 2) maxFlowSize : maintains the total number of packets
P to be transmitted in the current epoch, and
€ 3) hasMore : a boolean variable indicating whether more
Key packets are anticipated from the associated child mote,
dataflow along data flow between . . . .
" apah " neighboring motes With reference to Figure 6(a), six operations are performed,

triggered by the following events:
Fig. 5. Source motes S1 and S2 are sending packets to receiver R. TrafﬁCReception of data packefn incoming packet is buffered
from both sources are routed through X. in the corresponding queue based on the previous one hop
mote from which it arrived as well as on the destination

X can no longer forward packets as quickly as they arrive. AOté as specified in the packet header. The “more” bit in the

this time, X’s queues, as well as those along the path Slg@cket heade'r is also copied and updated in the corresponding

and S2-X, build up. The latter causes incoming packets atl@sMore variable. o

to have their “more” bit set, thus X alternates between sendingS€lection of next packet to senfelection is performed

packets from S1 and S2, i.e. the system automatically reveéRis® round-robin manner amongst queues that have packets

to EEPS. to send in the current epoch. If there are packets to send
Having described Argus’ design, we next elaborate on itdat has not yet arrived (i.e. we sent less than the flow

implementation in two separate components: Argus-T, afif€ thus far for this epoch), and there are no other queues
Argus-N. that can be serviced, then we wait until the packet arrives,

work conservation is not implemented no more packets
VIl. ARGUSIMPLEMENTATION are to be sent in this epoch, then the next epoch begins,
with currentEpochSize updated from the first packet in
. ach queue. However, ifasMore indicates that packets are
(Argus-N) and transport (Argus-T) layers of the traditiona xpected from a child and none has yet to arrive, then the next

netwprk sta(?k as shown in F|gure 6@' W.h'ISt in reality it i3 poch does not begin until at least one packet from that child
possible to implement the functionalities in one componeni,

we solit them into two for clarity and ease of explanation. " received. All waiting times are included in the effective
P y P " transmission time of a packet.

Successful transmission of pack&he transmission time

Argus’ functionalities are implemented in the networ

(@) (b) rom Simple, . .
arqusT | "M SmPIeA begins when the next packet is sent or should have been sent.
ST AppncanonLZD} Computation of effective transmission time, as specified in
Application Queue . . . .
************************ Section V-D, is performed when the data-link layer signals
Argus-N the successful transmission of a packet.
S Terspot L BT cocei Quewe Reception of eavesdropped packet from par@hie epoch

[ SimpleNetH Argus-N j

Network to Simple|

,,,,,,,,,,,,,,,,,,,,,,,,,,, ~— BRI ]T = child2 Queu
SimpleMAC

W = cwiowed length piggy-backed on the packet header is retrieved and
et stored in the correspondirarentEpoch  variable.
Ending of an epochWhen an epoch ends, Argus-N com-

) R S ﬂ: chidnguee |  PUES the cliura'tiolr'l of the next epoch accordir!g to _Sgctipn V-F.
Physical ‘ This duration is jittered to prevent synchronized injection of
ey key o SmREMAC packets into the network by the application [5].
() component —== Data Flow [ Packet fom ffﬁiﬁil'ﬁlh} Sending of the next packelust before the next packet is

sent, the packet header is updated with the current epoch
length, and the sum of the flows routed through this mote
Fig. 6. (a) Location of Argus components (Argus-N and Argus-T) in th

network stack. SimpleMAC, SimpleNet and SimpleApp are generic medigg the particular destination.
access control, forwarding and testing components respectively. (b) Per-child

queues in Argus-N: a special local queue is reserved for packets gener%ﬁ?

locally, if any. These packets are transfered at the end of each epoch frem Argus-T

Argus-T's application queue to the local queue in Argus-N.

Argus-T interfaces with the application, and provides
admission control. The application first informs Argus-T of
its intention to send and receive packets using the function call

A. Argus-N

Having the forwarding path traverse through Argus-N ispensocket(application_id,
necessary in order to control which packet to send next and flow_size,
when. Argus-N contains the queues used to buffer packets to destination_address,
be forwarded, including those generated locally. The variables intercept,
parentEpoch s hold the updated epoch lengths of each network _determined)

parent mote corresponding to different destinations, whilst
three variables are associated with each queue: The parameters are explained as follows:



(® (b)

« applicationid: is the identification number of the applica-

tion, since in general we may have different applications SimpleApp } SimpleApp ]
running simultaneously in the network. Application Application

« flow_size for AD traffic, flow_size indicates the max-
imum number of packets the application will send per [ el } ol ]
epoch, and the number of packets sent from this flow | a"sPe" Transport
if an.d when congestion occurs. If the traffic is of type [SimpIeNet Argus_N] [SimpIeNet i }
ND instead, therflow_size  refers to the number of | oo Natwork —
packets the application is expected to send per epoch.

« destinationaddressthe identification number of the des- SimpleMAC } SimpleMAC ]
tination mote. Data-fink Data-Tink

» intercept a boolean variable. If true, packets received | .., Physical
with the sameapplication_id will be passed to the
application for processing. This is useful for applications Key[ () component —= Data Floxg
that perform in-network processing of data, for instance,
data aggregation. Fig. 7. (a) datapath within an intermediate mote that does not perform in-

« networkdetermined a boolean variable. If true, the ratenetwork processing of received data, and that generates data of its own. (b)
at which the application sends packets is determined Wapath within an intermediate mote that performs in-network processing.
the network. Also, the start of an epoch will be signaled to
the application, which can then proceed to séad.size
number of packets for that epoch. intercept  set to true. The data path is given in Figure 7(b),

Argus-T controls admission of packets into the network b nd bqth ir_1coming and outgoi_ng per—t_'-zpoch flow siz_es have to

limiting the number that can be injected within an epoch, t maintained to handle traffic that is processed in-network

length of which is determined by Argus-N in the previou&secnon V'_F)' ) )

section. Packets accepted are not immediately pushed ont§S Mentioned in Section IV, Argus also handles AD and
the local queue in Argus-N, but buffered within Argus-T untiND traffic. For AD traffic, opensocket s called with

the next epoch begins. This buffering is necessary in order't§twork_determined  set to false. At low data rates when
precisely determine local traffic’s flow size for the next epocif?€ dueues are relatively empty, “more” bits in the data packet
The number of packets accepted per epoch is upper bounB_@éderS will not be set most of the time; furthermore, flow

by the parameteflow_size  set by the application when it SZ€S at anytime are likely to be small and thus packets can
calls opensocket . - be forwarded as soon as possible without having to wait

Like Argus-N, operations are typically performed upon thfor packets from other queues. On the othe_r hand, when the
triggering of specific events: network_ t_)ecc_)mes c_ongested, the system will revert to EEPS
Reception of a packet from applicatiohrgus-T first checks @S SPecified in Section V-H. o _ .
if the application has exceeded its quota for the current epochAS for ND traffic, the “more” bit in packets carrying this
and that there is sufficient local buffer space. If so, the packgfd of traffic is always set. Unlike the case of AD traffic,
is accepted. control over sending of packets is passed to the network,
Ending of an epochPackets buffered in the current epocp{vhich signals the application when the next epoch has began
is pushed into the local queue in Argus-N. As each packdfd packet(s) can be accepted.
is transferred, the number of packets remaining in the local ] . o
buffer is copied into the flow size field of the packet headdrongestion control Congestion control is implemented

Logically, Argus-T is similar to a child mote forwardingi” various parts. Firstly, the epoch length disseminated
packets to its parent. downstream (by Argus-N) by a congested destination or

intermediate mote is used when performing admission control
(by Argus-T) of packets into the network. Secondly, as
mentioned in [8], the continuous feedback and adaptation
With the implementation details given in Section VII, weof the network to the current environment brings about
now show how the goals set out in Section IIl are met. oscillations in the epoch length, thereby causing phase
shifting between motes of different depths with respect to
Different traffic types For unaggregated traffic, wherethe destination mote. Thirdly, jittering is introduced when
each intermediate mote forwards incoming packets (not doemputing the length of the next epoch, which determines the
to itself) without processingppensocket is called with time locally generated packets are injected into the network.
parameteintercept set to false. Also, for such traffic theThis provides further shifting of phase independent of the
total size of the flow as seen by the destination mote is simpypplication’s behavior.
the sum of flows of all motes in its subtree. Figure 7(a) shows
the path of the data flow within the intermediate mote. Common standard The flow_size parameter in
For packets that have in-network processing operatioopensocket can be used to determine the relative
performed on thempopensocket would be called with amount of bandwidth a flow obtains with respect to another

VIII. A CHIEVEMENT OF GOALS



during congestion. The range and typical application-specific  pica2dot Testbed
values forflow_size  can be determined by an out-of-band
mechanism, much like the assignment of TCP ports to
well-known applications in the Internet.

Wireless I

! =
i Sensor Network !
= 0

' '
: L
' '
'
: L
'

i
Transparent state switchingThis goal is relevant only
for AD traffic, since ND traffic always attempt to congest
the network. To the application, it does not need to know I|[E]|
=|L

1

Server

1 S VT
: : i ; ;
if the network is congested, or to be concerned with the : : :

fairness of the network and thus adjust its rate accordingly. termetvork

The application needs only know whether a packet can be

accepted or not. The setting of “more” bits, which signify afig. 8. The mica2dot testbed on which our implementation ran. Each mote
increase in occupancy and therefore possible Congestionis nnected to an ethernetwork via the serial interface, and can communicate

L Wi& a server. The ethernetwork is used to log packets sent and received from
transparent to the application. each mote.

Dynamic altering of bandwidth allocationThe weights ]
assigned to each queue is derived from the correspondfigSimPIeMAC
flow sizes piggy-backed on each data packet. By alteringWe include a description of SimpleMAC, SimpleNet and
these weights, we can alter the distribution of outgoingimpleApp for the sake of completeness. When a packet
bandwidth amongst the incoming queues. This can take irisopassed to SimpleMAC, it waits for a random period of
account differences in MAC layer technologies, and aldone (contention period). If nothing is heard from neigh-
allow applications to meet certain requirements. For instand®ring motes, it transmits the data packet and waits for an
we can increase the weights of a subtree of motes in a certaosknowledgment (ACK). If none is heard, timeout occurs, and
region of the rainforest, to obtain more readings from therhbacks off before entering the contention stage again. Each
over a period of time. An alternative would be to conta¢etransmission exponentially increases the backoff period, and
each of the motes and get each of them to increase their fitive relevant constants are given in Table Il. Since Argus
sizes. The former is a more attractive option as it reduces tisesupposed to be independent of the data-link layer, we
communication overhead that is required in the latter. kept SimpleMAC simple, and do not attempt to improve its
Altering of bandwidth management is also possible at theroughput by optimizing the various parameters in the table.
application end to try and obtain an absolute, rather thafso, SimpleMAC does not buffer packets: once a packet has
relative, amount of bandwidth in the network. The applicatidpeen received, it is passed to Argus-N immediately. Similarly,
can occasionally monitor the rate at which it has been sendiagpacket from SimpleNet is sent as soon as possible.
packets, and adjust thilow_size  parameter accordingly.

Since it is possible that the bandwidth requested is not TABLE Il
. . TABLE OF CONSTANTS SIMPLEMAC
available flow_size  must be upper bounded to prevent the _
application from increasing that to a large value. Contgfignt'g’;f’oué (max) o ms
Initial backoff period (max) 100 ms
IX. TESTBEDDETAILS Maximum backoff period (max) 400 ms
In this section we briefly describe the implementation of
the other components in the network stack: SimpleMAC and
SimpleNet, the application SimpleApp, and details of th€. SimpleNet
testbed used. In general, the topology of the multi-hoping network is a
factor in the performance of our algorithm. To provide a fair
A. Testbed Description comparison with round-robin queue scheduling, and because

We tested our implementation on a mica2dot testbed [9] Y€ @ré not concerned with how routing is done, we fix the
26 motes. Each mote is connected via its serial interface t¢°R°I09Y by defining the next hop at every mote for a particular
100Mbit ethernetwork, which is in turn connected to a servdestination. The links in the resulting topology have relatively
from which we can upload binaries via the ethernetwork af@ 0SS, and are selected via an out-of-band mechanism. The
serial interface. The ethernetwork / serial interfaces also alld@P°logy is given in Figure 9. In general, the larger the mote
us to log data packets in the server just before they are séhtthe more hops it is from the destination.
from the source motes, and when they are received by the
destination mote; it is not used for actual data communicatiéh SimpleApp
between motes. The ethernetwork is completely isolated fromSimpleApp is an application written to generate and receive
other networks, thus traffic consists only of packets sent to atidtee different types of traffic: periodic, in-network processed,
from the motes. The latency in the ethernetwork is low, on tlemd ND. It also performs the additional task of notifying
order of a few milliseconds, an assumption that is verified packet generation and packet reception at the destination mote
the next section. via the serial interface.



Fig. 9. Fixed routing topology: mote 0 is the destination and the root of the

routing tree.

X. EMPIRICAL RESULTS

In this section we present the empirical results obtained oo ¢ a
from our implementation of Argus on the testbed described in oo | | | .
the previous section. The network topology as mentioned in  oe2f | i i | i
Section IX-C is fixed (Figure 9) to factor out effects that may  oo| | |
otherwise result. Throughout this section we compare Argus .. i 1 I

B. Periodic Data Generation

We first compare the performance of Argus and round-robin
with SimpleApp generating packets at 3.75 second intervals.
Periodic generation of data is a form of AD traffic. In the case
of Argus, each flow in the network is given a size of two that
remains unchanged for the duration of the experiment, which
lasted for an hour. The results in Figure 11 clearly shows that
for periodic traffic, Argus is able to evenly distribute available
bandwidth amongst all downstream motes.

Packets Received From Each Mote as a Fraction of Total

Ol T T T T T T T T T T T T T T T T T T T
Round-Robin, interval 3750ms ==-----

Argus, interval 3750ms

Fraction

=)

12 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25

with the round-robin servicing of queues, and we begin by Mote ID

providing motivation for Argus.

A. Motivation

Fig. 11.  With motes attempting to send at intervals of 3.75 seconds,
Argus evenly distributes bandwidth amongst all motes regardless of their hop
distance from destination.

We first vary the rate at which packets are generated by
SimpleApp. Figure 10 shows the fraction of packets received@! Latency
the des_tina_tion that originate from the corresponding mote. A_tWe next investigate the delay experienced from the time a
a sending interval of 5 seconds for each mote, the networkyigcket is first injected into the network until the time it reaches

still uncongested and is able to deliver the packets at the s gestination. This delay includes the time the packet takes to

rate as they are generated. However, when the application@lyerse the ethernetwork before being logged in the server. We
tempts to send at intervals of 3.75 and 2.5 seconds, the netwggfieye that the processing time within the server is negligible,

is unable to handle the load and in general becomes biasgg
towards motes closer to the destination. Thus, each mote

thus only investigate the delay within the ethernetwork by
Bﬁ?ging the motes for the duration of an experiment. Round-

no control over the amount of bandwidth it effectively receiveg)pin pinging of the motes is performed, the interval between

when the network becomes congested.

Packets Received From Each Mote as a Fraction of Total Received

OlF—T—T—TT T T T T T T T T T T T I T T T T T T T
Round-robin, interval 2500ms ====---
Round-robin, interval 3750ms
0.10 - Round-robin, interval 5000ms =-=:=-~

Fraction of Total Packets Received

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
Mote ID

consecutive motes being exponentially distributed [1] to ensure
that the correct average delay values are obtained. Also, the
intervals have a mean of two seconds so that the ping packets
themselves do not congest the ethernetwork. The results are
given in Figure 12, which shows that the delay is small,
averaging about 2 milliseconds, and does not vary significantly
even when the wireless sensor network is congested.

Figures 13 and 14 show the latency distribution for round-
robin and Argus respectively. We observe that Argus’ delay
distribution has less variance compared to round-robin’s. This
is despite the fact that SimpleMAC is a random access
protocol and is therefore difficult to control the latency across
multiple hops. Another observation is that the latency becomes
independent of the number of hops the mote is from the
destination. In Figure 13 we find that motes that are closer
to the destination have their packets delivered faster than the

Fig. 10. Motes with smaller IDs are in general closer to the destination mo%t.hers' wheree_ls the network is more fair in the case of Argus:
More packets are typically received from motes closer to the destination Q@CkEtS experience roughly the same delay.

the network gets congested.

An intuitive explanation behind why Argus causes a re-
duction in mean and variance in latency is that the upstream
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Ping Times for Each Mote D. Transition from Uncongested to Congested State

20 T T T T

Mean pi‘ng 1ime‘

sl ] We next demonstrate that Argus is able to transparently
handle the distribution of bandwidth as the network transits
from an uncongested to a congested state. Initially each mote
in the network transmits periodically at an intervals of 60
seconds. After 30 minutes, the motes increase their generation

16 q

14+ 4

12 - B

Ping Time (milliseconds)

tor 1 rates to send at intervals of 3.75 seconds. Throughout the
8l . entire process, SimpleApp is not notified of any changes in
ol i the network.

Packets Received From Each Mote as a Fraction of Total
Transition from Uncongested to Congested State
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Fig. 12. Distribution of time to ping each mote on the ethernetwork, with ~ °*®f 1

the mean times. 007 | |
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Fig. 15. Fraction of total packets received from each mote is approximately

200 | J equal before and after the network becomes congested.

We gathered the fraction of packets received from each mote
1 before and after the increase in generation rates. The results
are given in Figure 15, which shows that Argus achieves its

goal of transparently handling network state transitions.

Fig. 13. Latency Distribution and Mean for Packets Generated by Corre-

Spondlng Motes - Round-robin Packets Received Per Minute From Mote 19
Network Transition from Uncongested to Congested State
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1 3 5 7 9 m 1B 15 17 18 2 2B I Fig. 16. Rate at which packets are received by the destination mote before

Mote ID

and after the network becomes congested.

Fig. 14. Latency Distribution and Mean for Packets Generated by Corre-

sponding Motes - Argus We also monitored the per-minute rate at which the
destination mote received packets from mote 19 (Figure 16),
as well as the fluctuation in its epoch length at the same time

motes know and expect packets from downstream motes(Figure 17). We split the graphs into 3 different regions, I, Il

these expected packets do not arrive, then upstream motes la@p lll, and elaborate on each as follows:

silent, which increases the chances of successful reception and

consequently packets originating downstream are more likdRegion I Epoch lengths are initialized to a large value,

to be forwarded. 20 seconds, to prevent immediate congestion of the network
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Epoch Length Fluctuation in Mote 19 Packets Received From Each Mote as a Fraction of Total
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Fig. 17. Epoch length fluctuation: the network transits from an uncongestei). 18. Mote 19 requests for 1.5 times the bandwidth of other motes. Argus
to a congested state. realizes this allocation, but not round-robin.

if generation rates are high. This is similar to TCP’s slowicrease in rate at the mote has no effect on the effective
start [4]. The network is relatively unloaded and each mot@ndwidth it receives as seen at the destination mote.
generates packets at the fixed rate of one packet per minute.

Since the network is uncongested packet collisions are X|. DISCUSSION

uncommon and the effective transmission time of a packet
is close to the actual time to transmit one (in the tens
milliseconds). This causes a drop in the epoch length,
since an exponential weighted moving average is used in
computing the length this results in the concave graph fk State

Figure 17. Due to the severe resource constraints in a sensor mote, the

amount of state required by the algorithm has to be minimized
Region It About 30 minutes into the experiment allags much as possible. An implementation of the network stack
motes begin generating packets at intervals of 3.75 seconglsmponents should always maximize the amount of remaining
Since the epoch length has become short by this tim@sources for the application that it provides services for.
packets are rapidly pushed into the network, causing thewith this in mind, we note that the primary sources of
spike around the 30 minute mark in Figure 16. With thghemory consumption in Argus are the per-destination, per-
increase in rate, collisions occur, reducing the effectivhild queues in Argus-N, and the application queue in Argus-
time to transmit a packet, and consequently the epoghwhilst it is possible to reduce each of the queue sizes in
length increases as well. Since the rate at which packeligyus-N to one, we cannot do so for the case of Argus-T,
are transmitted is higher than in Region |, epoch lengHince, to determine the number of packets injected into the
updates occur more frequently, and thus the increase ntwork (and thus the flow size in this epoch), we need to
epoch length is more rapid than the decrease in Regionpiiffer them before transferring them to Argus-N's local queue
This behavior is ideal since this is precisely the time wheR the next epoch. Thus, the application queue must be able to
the epoch length should rapidly increase to reduce congestiggid as many packets as the paramétaw_size  specified

by the application when it callepensocket
Region Il During this time the number of collisions Having per-destination queues also imply that Argus will
decrease, while the queue sizes increase. This causespifhably not be feasible for networks that have many sinks
epoch length to keep increasing (computed according 4@d long flows. For short flows we can implement timeouts: if
Table I) in order to reduce the size of the queues. Althoughmote has not forwarded any packet to a particular destination
not shown in the figure, subsequently the epoch lengfing is not expecting to (via theasMore variable), then the

decreases as queues drain, thereafter it oscillates aroundsieof queues corresponding to that destination can be reused.
30 second mark, in response to the queue occupancies.

In this section we discuss various related issues that were
a%acountered during the design and implementation of Argus.

B. Timeouts and Packet Losses

As mentioned in Section IX-C, the network routing topology
Finally, we increase mote 19’s generation rate to 1.5 timeés fixed for all experiments to factor out effects that may
that of the other motes. For Argus, we increase mote 19's flatherwise arise. In reality, link qualities fluctuate causing
size accordingly, from 2 to 3. The result shown in Figure 1&latively frequent changes in topology. Since state is stored
shows that Argus is able to provide that extra amount ofith respect to a downstream mote in the form of the
bandwidth to mote 19, whilst in the case of round-robin thieasMore andcurrentFlowSize variables, there is a need

E. Non-uniform Bandwidth Distribution



12

to anticipate and handle situations where the next expectadthis case, shown in Figure 19, would be to explicitly
packet doesn't arrive. This is possible since although link-levebtify the children that the queues buffering their packets
retransmissions can reduce loss probability due to interfereraze overflowing, and to backoff for a longer period of time
and corruption, it cannot eliminate it completely. When th&,...;y that is reasonably lower bounded to allow X to
data-link layer fails to successfully transmit the packet withitransmit its packet,q.xo sy can be a function of the number of

a number of attempts, the network layer may decide to (@he-hop children motes, so that the probability of interference
drop the packet and send the next, or (2) pick a differedbes notincrease with an increase in children motes but remain
neighbor and attempt to forward the same packet again. rilatively constant. Such explicit notification has the advantage
(1), dropped packets in the middle of a flow can be handleddatdistinguishing between loss due to corruption / interference

the next hop mote by updatingurrentFlowSize if it is and overflowing queues.
smaller, otherwise the packet is assumed to be from the next
epoch. The problem with this approach is that the network therf? ©) ® ® @ ©)

again becomes biased towards motes closer to the destinatian,

albeit not as much as when Argus is not used. If however, ‘
the dropped packet is at the end of a flow, the next hop mote
will then wait for its arrival, an event that will never occur. In

©) ©) ©)
this case, there is no alternative but to implement timeouts. In //\ /A\m /\f““

(2), the situation in the previous next hop mote is the same, X 1 2y SN (2
as the dropping of the last packet in the flow for (1): it waits ®© @® @ @® © ©

for a packet that will never arrive. In this case timeouts WI||J_.ig. 19. (a) Mote X forwards packets from S1, S2, ... Sn to R (b), (¢) To

probably also have to be implemented. increase the chances of successfully receiving the next packet from S1, X
Thus, we see that for optimal performance the routinglls S2,..., Sn to backoff for longer periods of time.

component has to satisfy the following properties:

(1) it has to minimize losses by selecting next hop links that

have low loss probabilities, and E. Interference Between Neighboring Flows

(2) it has to minimize the frequency of changes in the routing

topology.

Whilst Argus explicitly manages cross traffic at a mote

through the use of per-destination queues, it is less clear how

traffic that do not cross but still interfere with each other

C. On Topology Changes and Feedback should be handled. For instance, in Figure 20, where A and
Consider a typical cycle in a stable network: the congestBdroute traffic to different destinations and are able to receive

mote (say A) measures the effective transmission rate ag@ch other's packets, one may let the epoch length be the

disseminates the resulting epoch length. The epoch lengthrigan of that in A and B, or pick the larger of the two. On

used in Argus-T when enforcing admission control, causingte other hand, if A and B are close enough to interfere with

reduction in packets pushed into the network. Subsequengch other’s transmissions, but are largely unable to receive

congestion at A reduces, and effective transmission time the other’s packets, then a solution will possibly require global

well as the epoch length decrease. This forms a feedback I@g@rdination. These are areas that will be considered in future

that causes the epoch length to approach then oscillate arowedkK.

some optimal value. It can be observed that this convergence

time increases with the path length of this feedback loop, Q

i.e. the more hops the loop covers, the longer it will take Q

to converge. Bearing this in mind, it is possible that, to Sy /

take advantage of higher quality paths, the network topology @

changes at intervals that are significantly shorter than the time N

feedback takes to traverse the network. The moving average O N \

weight, o in Section V-D, also affects the rate at which O O

congestion control converges. Exactly how to determine the

optimal rate at which topology can or should change, and tb% 20. Two different traffic streams exist in the network: one passes through

optimal value fora, is an open question and will be included, another through B. A and B's transmissions interfere with each other.

in future work.

D. MAC Optimization XIl. CONCLUSION

We implemented a SimpleMAC to demonstrate that Argus In this paper we presented a distributed, WFQ-like schedul-
is independent of the data-link layer. However, one can suggasj algorithm, Extended Epoch-based Proportional Selection
optimizations in the MAC protocol to improve performance(EEPS). EEPS requires per-child, per-destination queues and
For instance, we expect that one of the major causes raft per-flow queues, and is thus more scalable than WFQ.
packet drops is the overflowing of queues caused by the wdieights associated with each queue is first derived from the
for another child mote’s (say X) packets. An optimizatiosum of flows of downstream child motes, and may be altered to
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take into account application requirements or MAC protocol
differences. EEPS also measures and uses the length of an
epoch to upper bound the maximum number of packets a
mote can inject into the network, thus providing admission
control that aids in reducing congestion. The implementation
of EEPS, called Argus, is tested on a 26-mote testbed. Empir-
ical observations show that Argus is able to reduce the mean
and variance of the latency experienced by packets from motes
several hops away from the base station. It is also shown that
Argus is able to distinguish between flows of different sizes,
and divide the bandwidth accordingly. Lastly, Argus trans-
parently handles the transition of the network to and from a
congested state, and can accommodate different types of traffic
including Application-Determined (AD), Network-Determined
(ND), many-to-one, point-to-point, and in-network processed.
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