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Abstract— Wireless, multi-hoping sensor networks with more
than tens of motes often encounter traffic congestion. The
occurrence of congestion subsequently results in loss of control
over the bandwidth each mote effectively receives. In this paper
we present a bandwidth management mechanism for sensor
networks called Argus that incorporates congestion control and
the ability to divide available bandwidth amongst traffic flows
and as well as handle different traffic patterns. Argus focuses
primarily on the transfer of data packets, and is implemented
in the routing and transport layers. Since it independent of
the data-link layer, it can therefore be applied to a network
with different MAC protocols. Argus implements Extended
Epoch-based Proportional Selection (EEPS), a distributed
variant of Weighted Fair Queuing. EEPS performs scheduling of
per-child queues, with the associated weights primarily derived
from the flow sizes of downstream motes. Since a mote only
requires knowledge of each child mote’s total flow and not each
individual flow’s size, and since queues need be maintained on a
per-child rather than a per-flow basis, Argus is scalable and is
ideal for resource-constrained sensor networks. We demonstrate
that Argus is able to achieve its goals of bandwidth management
using a 26-mote mica2dot testbed.

Key words: sensor networks, distributed algorithms, weighted
fair queuing, congestion control, bandwidth management

I. I NTRODUCTION

Since the first sensor mote was created, a multitude of
networking protocols have been designed, written and tested.
These protocols have differed greatly from the traditional
networking protocols found in the Internet. For instance, unlike
the traditional Internet, where dedicated routers perform the
highly specialized task of routing packets from one network
to another, each sensor mote is capable of generating data
as well as forwarding data upstream towards a sink mote,
or base station. Also, bandwidth management in the Internet
is typically accomplished at two different entities: gateway
routers and end-hosts. Such management in sensor networks
will have to be for traffic generated locally as well as route
through traffic. Yet another difference is the homogeneity of
the networks. Thus far, sensor networks have been mostly
homogeneous, in that the type of motes, their capabilities and
resources, are similar if not the same. Sensor networks are also
homogeneous in the traffic management sense: each packet
in a sensor network is treated the same as all other packets,
there is no concept of data flows from each source mote to the
corresponding sink mote. Although such a scheme is easy to
implement and consumes little state in the motes, it results in a
loss of control in the management of bandwidth. For instance,
it is not possible to devote more bandwidth to a particular
data flow, neither is it possible to ensure that the base station
receives approximately the same number of packets from all

motes. Also, different types of data may be simultaneously
generated by the network: some data packets may have to be
sent as is to the base station, whereas others may have contents
that can be aggregated or processed in the network itself.

This loss of control over bandwidth distribution may not be
significant if we consider simple one-hop networks of less than
10 motes, generating data at a lower rate than the maximum
the network can handle. However, as the size of the network
increases to tens or hundreds of motes, congestion occurs,
causing a general increase in latency and dropping of packets
and thus wastage of energy. Moreover, such networks typically
cover a larger area and are thus more likely to be multi-
hoping, which results in more packets from motes closer to
the base station to be received. This phenomenon is observed
even when congestion control and Automatic Repeat Request
(ARQ) are implemented [8].

Increasing the size of the network to more than hundreds
of motes has been widely acknowledged to require a change
in architectural design. Rather than having a thousand motes
send data to one base station, it is preferable to partition the
network into distinct regions, each with its own base station.
We can extend this scenario to the one shown in Figure 1.
Here, the infrastructure motes route data from the patch of
type A sensor motes as well as the type B sensor motes to
the gateway device, which in turn transmits the data over the
Internet to a location where they can be further processed.

Fig. 1. A heterogeneous sensor network, comprising of motes with different
resources. Data is gathered and may be processed in-network before being
sent to a center through the Internet.

Such an architectural design serves to increase the effective
available bandwidth in the network, as well as to accommodate
motes with different capabilities. It is reasonable to assume
that infrastructure motes can have multiple Media Access Con-
trol (MAC) interfaces, for instance, they may have different
radios for interacting with micaz and mica2dot motes. This is
a different definition of heterogeneity that is not captured by
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any high level sensor network protocol.
The traffic traversing a heterogeneous network can be po-

tentially diverse in terms of the average rate and pattern. A
mote may generate more packets when an event is detected, or
the application running on the motes may aggregate received
data or forward them unaltered. It is therefore difficult, if not
impossible, to determine a good upper bound for the total
amount of traffic to be carried at any one time. Together with
the fact that quality of wireless links can fluctuate greatly,
it is not feasible to exactly provision the network so that
bandwidth is always available. Over-provisioning the network
appears to be an attractive solution, but has the disadvantage
of incurring additional cost and is not a solution if there are
applications that attempt to transmit data as fast as they can.
Over-provisioning is also not as simple as adding more motes
to the network, since, unlike in the case of wired networks,
having more wireless motes implies that in general inter-
ference increases thereby reducing the effective bandwidth.
Furthermore, different applications are likely to have varying
bandwidth requirements relative to one another. Since it is
intractable for an application programmer to be aware of all
possible applications running on the same network and adjust
his bandwidth usage accordingly, we believe that having a
common, automatically and dynamically self-adjusting band-
width management mechanism amongst all sensor motes is a
better solution.

We propose an Extended Epoch-Based Proportional Selec-
tion (EEPS) algorithm that is a distributed variant of Weighted
Fair Queuing (WFQ) [2], where the weights involved are
derived from the flow sizes of downstream motes and may be
adjusted by other factors. We call our implementationArgus;
it requires per-child queues and only maintains state pertaining
to its one-hop neighboring motes. Per-flow management is
required only at the originating mote, and not at intermediate
motes. Communication between upstream and downstream
motes is minimized and is piggybacked onto data packets, thus
eliminating the use of explicit control traffic in the network.

The rest of this paper is organized as follows: Section II
briefly covers related work in this area; Section III states the
goals of our bandwidth management mechanism; Section IV
gives the overview of Argus. Sections V and VI elaborate
on the design of EEPS and Argus respectively. Section VII
describes the implementation of Argus in a mica2dot mote.
Section VIII shows how the design of EEPS and Argus,
and the implementation of the latter, achieve our goals of
bandwidth management. Section IX briefly describes details
of the testbed and other related components in the network
stack. Results of experiments run on the testbed are presented
in Section X. Next, we discuss some related issues encountered
during the course of the experiments in Section XI, and finally
we conclude in Section XII.

II. RELATED WORK

The control of route-through traffic has been studied ex-
tensively in wired networks. For instance, Weighted Fair
Queuing (WFQ) [2] maintains a separate queue for each flow
passing through an Internet router, determines when a packet

will finish being serviced bit-by-bit, and schedules them for
transmission based on their virtual finishing times. Although
such a scheme provides max-min fairness for each flow, it is
impractical for sensor networks for three reasons:
1. Sensor motes have limited memory. Maintenance of a queue
for each downstream mote is impossible for networks larger
than a few motes since each mote only has about 4Kilobytes
of RAM.
2. Simulation of bit-by-bit packet servicing consumes CPU
cycles, which is limited and should be reserved for applications
as far as possible.
3. Knowledge of each flow’s weight requires communication
overhead that consumes scarce energy resources.

A more scalable technique to approximate FQ within a
network is proposed in Core-Stateless Fair Queuing [3]. Here,
per-flow management is handled only at the edge routers,
whereas the core routers compute the forwarding probability
based on the current estimated rate inserted in the packet
header. Thus core routers need not maintain per flow state,
allowing the network core to approximate FQ at a much lower
cost.

WFQ in wired networks has been extended to the wireless
domain in [7], where the authors proposed a global and a
distributed local fairness model. However, maintenance of each
flow’s state is still required, which may still be intractable for
large sensor networks with multiple flows.

The Adaptive Rate Control (ARC) scheme [5] developed
for sensor networks that gives preference to route-through
traffic. By estimating the number of downstream motes, local
rate metering can be performed to achieve a certain level of
fairness. In general, usage of ARC causes more packets to be
received from downstream motes. Also, since ARC does not
maintain state pertaining to the flows, it cannot allocate more
bandwidth to a particular flow in general.

III. B ANDWIDTH MANAGEMENT GOALS

In this section we describe precisely what the bandwidth
management component aims to achieve.

1) Argus should handle various types of traffic, including
many-to-one and point-to-point, in-network processed
and aggregated traffic. It should also be able to take
into account traffic that is periodic, that is triggered on
some event, and that transfers data as fast as possible
through the network. Since we focus on data traffic in
this paper, we do not consider control traffic that are
broadcast throughout the network.

2) It provides a common standard with which a traffic flow
can use to determine the amount of bandwidth it obtains
relative to other flowswhen the network is congested.
For instance, a flow requesting for 4 units of bandwidth
will obtain twice as much as another requesting for 2
units. We do not provideabsolutebandwidth guarantees,
that is, even though applications can attempt to send
periodically at 10kbps, the actual bandwidth obtained
will be subject to the amount available. Also, in general,
it is difficult to guarantee a fixed amount of bandwidth
with the wireless link quality fluctuating. Thus, we
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upper-bound the bandwidth obtained, but not lower-
bound it.

3) When the network is not congested, motes are allowed
to send packets at their current rate. Transition of
the network to and from a congested state and the
corresponding handling of traffic should betransparent
to the application. Thus the application need only be
concerned with whether or not the network can accept
more packets, and can otherwise send packets at any
interval.

4) It performs some amount ofcongestion control, by
regulating the rate at which packets are injected into
the network, i.e. viaadmission control.

5) Finally, our mechanism allows the application to deter-
mine the division of bandwidth between downstream
motes. This enables the application programmer to
adjust the distribution according to his needs. Thus,
with information from the MAC layers, differences
between the maximum capacities of incoming links can
be factored in. Using the earlier example on micaz and
mica2dot motes, we give approximately 90% of the
outgoing bandwidth to the incoming micaz packets, and
the remaining 10% to the mica2dot packets. We focus
only on the mechanism, the policies involved are beyond
the scope of this paper.

IV. OVERVIEW OF ARGUS

We begin by providing a high-level view of Argus, then
elaborate on its design and different components in the sub-
sequent sections.

Argus primarily manages the bandwidth obtained by a flow
of data through the network. We assume that the bandwidth
consumed by control traffic is small and therefore do not
consider it further in this paper. Basically, each mote in the
network monitors its current effective transmission rate and
the total size of the flows routed through it. Dividing that
rate by the total flow size gives the rate at which each unit of
flow downstream can be injected into the network. The inverse
of this rate gives the epoch length which is then propagated
downstream, where each mote then regulates the number of
packets allowed into the network, i.e. admission control is
enforced locally.

When congestion is not experienced, Argus does not con-
strain any data flow, thus the applications can send at their de-
sired rates. When congestion occurs, Argus can, by scheduling
per-child queues and using the number of flows routed through
each child, divide the available bandwidth between the flows
as specified by their weights. This is done without explicit
signaling between downstream and upstream motes, and is
achieved with minimal overhead, in the form of piggybacked
epoch length and total flow sizes, in the headers of data
packets.

Argus handles two primary types of traffic rate patterns. The
first type is application determined(AD). Examples of this
kind of traffic include the periodic generation of data packets,
and data that is produced upon the occurrence of some event,
i.e. the application determines when it will produce packets.

It is possible that part(s) of the network transit between
congested and uncongested states, in which Argus manages the
flows in a manner transparent to the applications, which will
only know whether a packet can be accepted by the network,
or not.

The second type of traffic isnetwork determined(ND). In
this case the rate at which packets can be pushed into the
network is determined by the network itself. Typically, an
application that generates ND traffic has a backlog of packets
which it has to send as fast as possible. For instance, a mobile
mote may gather readings over a long period of time and store
them in non-volatile memory, and download them only when
it is within the range of some infrastructure, or fixed, motes.
In such instances the download of data should take place as
quickly as the network allows. Unlike AD traffic which may
or may not congest the network, it is clear that ND traffic will
definitely do so.

We next describe the design of the algorithm that allows us
to achieve the goals mentioned in Section III.

V. A LGORITHM DESIGN

We extend the basic algorithm, Epoch-based Proportional
Selection (EPS) proposed in [8]. We first define the common
terms used throughout the rest of the paper, then briefly
describe the steps to be taken prior to EPS, and finally the
algorithm itself.

A. Terminology

We define theparentof a mote to be the mote to which a
packet is next forwarded, and asubtreeto consist of a mote and
all its downstream motes. Thus, in Figure 2, mote A’ssubtree
sizeis 5, and D’s is 1. Assume that mote A requests for 2 units
of flow, B requests for 5, C requests for 1, D requests for 3,
and E requests for 1, then thesubtree flow sizesfor mote A,
B and E are 12, 9 and 1 respectively.

B

C D

A

E

Fig. 2. Motes A, B and C have subtree sizes 5, 3 and 1 respectively.

B. Basic Steps

An outline of the steps to take is given below. We elaborate
on each step in the following subsections.

1) Obtain the total units of flowsn from downstream motes.
2) Measure the average rater at which packets can be

transmitted from this mote.
3) Divide the average rater by total units of flown to give

the per-unit-flow generation raterflow = r
n .

4) Compare the raterflow with the raterflow,parent sent
from the parent mote, as well as with the raterflow,qfull
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used when the local buffers exceed a predetermined
threshold, use and propagate the smallest rate to the
children motes.

5) Within an epochtepoch = 1
rflow

, for a mote withf units
of flows, inject no more thanf packets into the network
within the time intervaltepoch.

C. Obtaining Subtree’s Total Flow

The subtree flow size of a mote A is stored in the header of
the data packet sent to its parent mote B. At B, it retrieves the
flow sizes from data packets sent by its children, sums them,
and adds its own flow size before dispatching the total size to
its parent in the next data packet. With reference to Figure 2,
mote C sends a flow size of 1, B sendsSubTreeSize(C)
+ SubTreeSize(D) + 5 = 1+3+5 = 9, and A sends
SubTreeSize(B) + SubTreeSize(E) + 2 = 9+1+2 =
12.

Since the updated flow sizes are stored in all data packet
headers, changes in these sizes can be updated and handled
dynamically. This allows the network to adapt to changes in
topology and in traffic flows. A new flow of sizex increases
the total flow size byx, and reinstates the previous value when
it ends.

D. Rate Measurement

We now describe one way of measuring mean effective
transmission rate at a mote. The effective timet taken to
transmit a packet begins when the network layer sends a packet
to the data-link layer, until the time notification of successful
transmission is received from the data-link layer.

contention
period

Network
Layer

Data−link
Layer

DATA (A) ACK (B)DATA (A)

SendPkt PktSent

t

timeout

time

Fig. 3. SimpleMAC in operation

Using a simple MAC protocol, the operation of which is
illustrated in Figure 3,t is then defined as shown in the figure.
This value of t is a sample of the average time needed to
transmit a packet, and this average time is obtained using the
exponential moving average formula below:

avi(t)←
(α

n

)
T +

(
1− α

n

)
avi−1(t)

whereavi(t) is the moving average in theith iteration,α is the
weight,T is the latest sample oft, andn is the total number
of subtree flows. The inverse of the average transmission rate
gives the per-flow raterflow.

We note that this method of rate measurement takes into
account loss due to corruption, interference and scheduling
constraints. For instance, if S-MAC [6] puts the radio to sleep
before sending the packet, the sleep time will be included int,
and thus correctly reflect the reduction in effective bandwidth.

E. Reaction to Overflowing Queues

When a mote detects the imminence of queues overflowing,
we use the per-flow raterflow,qfull which is adjusted accord-
ing to Table I, whererflow,parent is the flow rate disseminated
by the parent, motes begin reducing flow rates once the queue
size increases beyond theTHRESHOLD, andmax queue size
is the maximum occupancy amongst all queues in the mote.

TABLE I

FLOW RATE ADJUSTMENT: QUEUE OVERFLOW

if max queue size > THRESHOLD
if queueFull == FALSE

queueFull← TRUE
rflow,qfull ← min(rflow, rflow,parent)

else
rflow,qfull ← min(rflow, rflow,qfull, rflow,parent)

rflow,qfull ← ( n
n+α

)rflow,qfull

elsequeueFull← FALSE

F. Epoch Length Definition

The length of an epoch,tepoch, is defined to be the inverse
of min(rflow , rflow,parent, rflow,qfull). This is the value that
will be used locally. For traffic that is forwarded unaltered,
we disseminate the sametepoch downstream. However, for
flows that undergo network processing, the outgoing flow size
may not be the same as the incoming one, thus a simple
adjustment has to be made totepoch before dissemination: Let
the outgoing flow size per epoch befoutgoing, and that of
incoming ones befincoming. Then, the effective epoch length
is simply

tepoch,updated = tepoch × fincoming

foutgoing

By controlling the epoch length, we manage the rate at
which packets are pushed into the network, thereby controlling
congestion. In general, a mote with a total flow ofx units is
allowed to push a maximum ofx packets into the network
within an epoch.

G. Dissemination of Epoch Length

Like the flow size of the subtree, the epoch length is piggy-
backed on the data packets transmitted. The children motes
eavesdrop on the data packets, and update their parents’ epoch
lengths correspondingly.

H. Extended Epoch-based Proportional Selection (EEPS)

The basic Epoch-based Proportional Selection (EPS) algo-
rithm transmits, within each epoch, exactly from each child’s
queuen times the number of downstream motes serviced by
that queue, wheren is some positive integer. Work conser-
vation is not implemented: if a packet to be sent has not yet
arrived, the mote waits for it. Also, since a mote does not keep
track of packets from each downstream mote but the number
of packets transmitted within an epoch, the queues must be
FIFO. Once the two conditions above are met, EPS is correct
based on the following inductive proof:
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Base case: Consider a leaf mote L. Within an epoch, L will
transmit exactly one packet from itself, equal to the number
of motes in its subtree.

Inductive step: Assuming that, exactly one packet from each
downstream mote arrives in the corresponding FIFO queue
within an epoch, then, by transmitting the same number of
packets as the number of downstream motes, EPS ensures that
exactly one packet in its subtree will be transmitted.

The extension of basic EPS is straightforward: for a mote
generatingx packets per epoch, we treat that mote as a logical
mote consisting ofx physical motes, and the correctness proof
can be applied as before.

VI. A RGUSDESIGN

We describe how EEPS can be applied to a network with
varying traffic flows and patterns, as well as the components
that its implementation, Argus, is composed of.

A. Per-Epoch Management

The time granularity used in Argus is the epoch length as
defined in Section V-F. When the system is relatively stable,
packets at depthd in the nth epoch will be sent to motes at
depth(d− 1) in the (n + 1)th epoch. Since traffic flows may
vary over time, we handle them on an epoch-by-epoch basis.
The primary issue becomes the determination of flow sizes
within an epoch, which is easily solved with the observation
that the flow size is a combination of that reported by packets
from children motes and the number of packets generated
locally in the previous epoch.

B. Per-Destination Queue Management

B

C

D

E
F

traffic flow destined
for A

traffic flow destined
for B

A
Mote C

(D,A)

(F,B)

(E,B)

(E,A)

Key

Fig. 4. Cross traffic: mote C routes two different traffic streams: one from
D and E to A, and another from F to B. In C, (E,A) refers to the queue
associated with child E and destination A. Scheduling is performed amongst
all queues.

Since a mote may be routing packets to different destination
motes, queues have to be allocated per destination as well. In
Figure 4, mote C routes traffic from D and E to A, and from
F to B. Mote C treats each child queue as distinct queues,
and schedules them together rather than perform scheduling
amongst queues grouped according to their destinations. The
former is done because Argus aims to allocate bandwidth toall
flowsrouted through a mote according to its weight relative to

the other flows, regardless of their destinations. Although per-
child, per-destination queues require more memory in resource
constrained motes, we believe that this is acceptable for sensor
networks as the number of sink motes in the network at any
time is expected to be small. Also, queues corresponding to a
particular sink can be reused if no more traffic is routed to it.

C. Weight Management

Flow sizes associated with each queue can be thought of
as weights, which can then be manipulated to provide control
over the bandwidth distributed amongst the queues. Referring
again to Figure 4, mote C may allocate twice the bandwidth
to packets from E by doubling the weights of E’s queues.
Alternatively, increasing the weights for queues associated
with destination A will increase the rate at which packets
will be sent to A. Thus, weights can also be altered to take
into account the capacities of the data-link layers. It is to be
noted that this adjustment of weights is performed locally,
though one can possibly construct a control plane that globally
manages flows. This, however, is beyond the scope of this
paper.

D. Flow Management

A critical aspect of EPS is theknowledge that a packet
from a child is supposed to be sent next, and to wait for it
before starting the next epoch. In EPS, it is assumed that flows
are continuous, and that each mote generates a data packet
every epoch. Since the length of an epoch is determined by the
current network state, EPS is suitable for motes generatingND
traffic. To extend EPS to incorporateAD traffic, we observe
that a mote (say A) needs only indicate whether its parent, as
well as subsequent upstream motes, are required toanticipate
more packets from A. The conditions under which the parent
mote needs to do so are:

• A’s queues become backlogged, in which case A will
definitely have more packets to send, and

• A routes ND traffic, which is pushed into the network
whenever the network is able to accept more.

We use one bit (the “more” bit), to indicate whether more
packets are due to arrive, and set the bit according to the
conditions stated above. Once the “more” bit is set, it will not
be reset before reaching the destination.

With the knowledge that more packets will arrive, and
because flow sizes may differ between consecutive epochs,
Argus waits until all anticipated packets, carrying the sizes of
flows for the next epoch, to arrive before continuing.

We use a simple example illustrated in Figure 5 to explain
the use of the “more” bit. Assume that motes S1 and S2
initially send at 1 packet per minute. At such a low rate, the
paths from S1 and S2 to R via X are uncongested: the queues
never have occupancy greater than one. Together with the fact
that the traffic are not of type ND, this means that the “more”
bit never gets set, and thus, at X, each packet can be sent as
soon as they arrive, without having to wait for the other.

Now assume that S1 and S2 increase their sending rates,
perhaps due to the detection of an event, to the point where
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data flow along
a path

data flow between
neighboring motes

X R

S1

S2

Key

Fig. 5. Source motes S1 and S2 are sending packets to receiver R. Traffic
from both sources are routed through X.

X can no longer forward packets as quickly as they arrive. At
this time, X’s queues, as well as those along the path S1-X,
and S2-X, build up. The latter causes incoming packets at X
to have their “more” bit set, thus X alternates between sending
packets from S1 and S2, i.e. the system automatically reverts
to EEPS.

Having described Argus’ design, we next elaborate on its
implementation in two separate components: Argus-T, and
Argus-N.

VII. A RGUS IMPLEMENTATION

Argus’ functionalities are implemented in the network
(Argus-N) and transport (Argus-T) layers of the traditional
network stack as shown in Figure 6(a). Whilst in reality it is
possible to implement the functionalities in one component,
we split them into two for clarity and ease of explanation.

Argus−N

Packet from
next epoch

Packet from
current epoch

Key

Application
Queue

Argus−N

Argus−T

SimpleMAC

Transport

Network

Data−link

Physical

SimpleApp

Application

SimpleNet

Component Data Flow

Key

Child N Queue

Child 2 Queue

Child 1 Queue

Local Queue

Argus−T
from SimpleApp

from SimpleMAC

to SimpleNet

(a) (b)

Fig. 6. (a) Location of Argus components (Argus-N and Argus-T) in the
network stack. SimpleMAC, SimpleNet and SimpleApp are generic media-
access control, forwarding and testing components respectively. (b) Per-child
queues in Argus-N: a special local queue is reserved for packets generated
locally, if any. These packets are transfered at the end of each epoch from
Argus-T’s application queue to the local queue in Argus-N.

A. Argus-N

Having the forwarding path traverse through Argus-N is
necessary in order to control which packet to send next and
when. Argus-N contains the queues used to buffer packets to
be forwarded, including those generated locally. The variables
parentEpoch s hold the updated epoch lengths of each
parent mote corresponding to different destinations, whilst
three variables are associated with each queue:

1) currentFlowSize : gives the number of packets yet
to be transmitted in the current epoch,

2) maxFlowSize : maintains the total number of packets
to be transmitted in the current epoch, and

3) hasMore : a boolean variable indicating whether more
packets are anticipated from the associated child mote,

With reference to Figure 6(a), six operations are performed,
triggered by the following events:

Reception of data packet: An incoming packet is buffered
in the corresponding queue based on the previous one hop
mote from which it arrived as well as on the destination
mote as specified in the packet header. The “more” bit in the
packet header is also copied and updated in the corresponding
hasMore variable.

Selection of next packet to send: Selection is performed
in a round-robin manner amongst queues that have packets
to send in the current epoch. If there are packets to send
that has not yet arrived (i.e. we sent less than the flow
size thus far for this epoch), and there are no other queues
that can be serviced, then we wait until the packet arrives,
work conservation is not implemented. If no more packets
are to be sent in this epoch, then the next epoch begins,
with currentEpochSize updated from the first packet in
each queue. However, ifhasMore indicates that packets are
expected from a child and none has yet to arrive, then the next
epoch does not begin until at least one packet from that child
is received. All waiting times are included in the effective
transmission time of a packet.

Successful transmission of packet: The transmission time
begins when the next packet is sent or should have been sent.
Computation of effective transmission time, as specified in
Section V-D, is performed when the data-link layer signals
the successful transmission of a packet.

Reception of eavesdropped packet from parent: The epoch
length piggy-backed on the packet header is retrieved and
stored in the correspondingparentEpoch variable.

Ending of an epoch: When an epoch ends, Argus-N com-
putes the duration of the next epoch according to Section V-F.
This duration is jittered to prevent synchronized injection of
packets into the network by the application [5].

Sending of the next packet: Just before the next packet is
sent, the packet header is updated with the current epoch
length, and the sum of the flows routed through this mote
to the particular destination.

B. Argus-T

Argus-T interfaces with the application, and provides
admission control. The application first informs Argus-T of
its intention to send and receive packets using the function call

opensocket(application_id,
flow_size,
destination_address,
intercept,
network_determined)

The parameters are explained as follows:
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• application id: is the identification number of the applica-
tion, since in general we may have different applications
running simultaneously in the network.

• flow size: for AD traffic, flow_size indicates the max-
imum number of packets the application will send per
epoch, and the number of packets sent from this flow
if and when congestion occurs. If the traffic is of type
ND instead, thenflow_size refers to the number of
packets the application is expected to send per epoch.

• destinationaddress: the identification number of the des-
tination mote.

• intercept: a boolean variable. If true, packets received
with the sameapplication_id will be passed to the
application for processing. This is useful for applications
that perform in-network processing of data, for instance,
data aggregation.

• networkdetermined: a boolean variable. If true, the rate
at which the application sends packets is determined by
the network. Also, the start of an epoch will be signaled to
the application, which can then proceed to sendflow size
number of packets for that epoch.

Argus-T controls admission of packets into the network by
limiting the number that can be injected within an epoch, the
length of which is determined by Argus-N in the previous
section. Packets accepted are not immediately pushed onto
the local queue in Argus-N, but buffered within Argus-T until
the next epoch begins. This buffering is necessary in order to
precisely determine local traffic’s flow size for the next epoch.
The number of packets accepted per epoch is upper bounded
by the parameterflow_size set by the application when it
calls opensocket .

Like Argus-N, operations are typically performed upon the
triggering of specific events:

Reception of a packet from application: Argus-T first checks
if the application has exceeded its quota for the current epoch,
and that there is sufficient local buffer space. If so, the packet
is accepted.

Ending of an epoch: Packets buffered in the current epoch
is pushed into the local queue in Argus-N. As each packet
is transferred, the number of packets remaining in the local
buffer is copied into the flow size field of the packet header.
Logically, Argus-T is similar to a child mote forwarding
packets to its parent.

VIII. A CHIEVEMENT OF GOALS

With the implementation details given in Section VII, we
now show how the goals set out in Section III are met.

Different traffic types: For unaggregated traffic, where
each intermediate mote forwards incoming packets (not due
to itself) without processing,opensocket is called with
parameterintercept set to false. Also, for such traffic the
total size of the flow as seen by the destination mote is simply
the sum of flows of all motes in its subtree. Figure 7(a) shows
the path of the data flow within the intermediate mote.

For packets that have in-network processing operations
performed on them,opensocket would be called with

Argus−N
Argus−N

Argus−T

SimpleMAC

Transport

Network

Data−link

Physical

SimpleApp

Application

SimpleNet

(a)

Argus−T

SimpleMAC

Transport

Network

Data−link

Physical

SimpleApp

Application

SimpleNet

(b)

Component Data FlowKey

Fig. 7. (a) datapath within an intermediate mote that does not perform in-
network processing of received data, and that generates data of its own. (b)
datapath within an intermediate mote that performs in-network processing.

intercept set to true. The data path is given in Figure 7(b),
and both incoming and outgoing per-epoch flow sizes have to
be maintained to handle traffic that is processed in-network
(Section V-F).

As mentioned in Section IV, Argus also handles AD and
ND traffic. For AD traffic, opensocket is called with
network_determined set to false. At low data rates when
the queues are relatively empty, “more” bits in the data packet
headers will not be set most of the time; furthermore, flow
sizes at anytime are likely to be small and thus packets can
be forwarded as soon as possible without having to wait
for packets from other queues. On the other hand, when the
network becomes congested, the system will revert to EEPS
as specified in Section V-H.

As for ND traffic, the “more” bit in packets carrying this
kind of traffic is always set. Unlike the case of AD traffic,
control over sending of packets is passed to the network,
which signals the application when the next epoch has began
and packet(s) can be accepted.

Congestion control: Congestion control is implemented
in various parts. Firstly, the epoch length disseminated
downstream (by Argus-N) by a congested destination or
intermediate mote is used when performing admission control
(by Argus-T) of packets into the network. Secondly, as
mentioned in [8], the continuous feedback and adaptation
of the network to the current environment brings about
oscillations in the epoch length, thereby causing phase
shifting between motes of different depths with respect to
the destination mote. Thirdly, jittering is introduced when
computing the length of the next epoch, which determines the
time locally generated packets are injected into the network.
This provides further shifting of phase independent of the
application’s behavior.

Common standard: The flow_size parameter in
opensocket can be used to determine the relative
amount of bandwidth a flow obtains with respect to another
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during congestion. The range and typical application-specific
values forflow_size can be determined by an out-of-band
mechanism, much like the assignment of TCP ports to
well-known applications in the Internet.

Transparent state switching: This goal is relevant only
for AD traffic, since ND traffic always attempt to congest
the network. To the application, it does not need to know
if the network is congested, or to be concerned with the
fairness of the network and thus adjust its rate accordingly.
The application needs only know whether a packet can be
accepted or not. The setting of “more” bits, which signify an
increase in occupancy and therefore possible congestion, is
transparent to the application.

Dynamic altering of bandwidth allocation: The weights
assigned to each queue is derived from the corresponding
flow sizes piggy-backed on each data packet. By altering
these weights, we can alter the distribution of outgoing
bandwidth amongst the incoming queues. This can take into
account differences in MAC layer technologies, and also
allow applications to meet certain requirements. For instance,
we can increase the weights of a subtree of motes in a certain
region of the rainforest, to obtain more readings from them
over a period of time. An alternative would be to contact
each of the motes and get each of them to increase their flow
sizes. The former is a more attractive option as it reduces the
communication overhead that is required in the latter.

Altering of bandwidth management is also possible at the
application end to try and obtain an absolute, rather than
relative, amount of bandwidth in the network. The application
can occasionally monitor the rate at which it has been sending
packets, and adjust theflow_size parameter accordingly.
Since it is possible that the bandwidth requested is not
available,flow_size must be upper bounded to prevent the
application from increasing that to a large value.

IX. T ESTBEDDETAILS

In this section we briefly describe the implementation of
the other components in the network stack: SimpleMAC and
SimpleNet, the application SimpleApp, and details of the
testbed used.

A. Testbed Description

We tested our implementation on a mica2dot testbed [9] of
26 motes. Each mote is connected via its serial interface to a
100Mbit ethernetwork, which is in turn connected to a server
from which we can upload binaries via the ethernetwork and
serial interface. The ethernetwork / serial interfaces also allow
us to log data packets in the server just before they are sent
from the source motes, and when they are received by the
destination mote; it is not used for actual data communication
between motes. The ethernetwork is completely isolated from
other networks, thus traffic consists only of packets sent to and
from the motes. The latency in the ethernetwork is low, on the
order of a few milliseconds, an assumption that is verified in
the next section.

Ethernetwork

Server

Wireless
Sensor Network

Mica2dot Testbed

Fig. 8. The mica2dot testbed on which our implementation ran. Each mote
is connected to an ethernetwork via the serial interface, and can communicate
with a server. The ethernetwork is used to log packets sent and received from
each mote.

B. SimpleMAC

We include a description of SimpleMAC, SimpleNet and
SimpleApp for the sake of completeness. When a packet
is passed to SimpleMAC, it waits for a random period of
time (contention period). If nothing is heard from neigh-
boring motes, it transmits the data packet and waits for an
acknowledgment (ACK). If none is heard, timeout occurs, and
it backs off before entering the contention stage again. Each
retransmission exponentially increases the backoff period, and
the relevant constants are given in Table II. Since Argus
is supposed to be independent of the data-link layer, we
kept SimpleMAC simple, and do not attempt to improve its
throughput by optimizing the various parameters in the table.
Also, SimpleMAC does not buffer packets: once a packet has
been received, it is passed to Argus-N immediately. Similarly,
a packet from SimpleNet is sent as soon as possible.

TABLE II

TABLE OF CONSTANTS: SIMPLEMAC

ACK timeout 25 ms
Contention period (max) 100 ms

Initial backoff period (max) 100 ms
Maximum backoff period (max) 400 ms

C. SimpleNet

In general, the topology of the multi-hoping network is a
factor in the performance of our algorithm. To provide a fair
comparison with round-robin queue scheduling, and because
we are not concerned with how routing is done, we fix the
topology by defining the next hop at every mote for a particular
destination. The links in the resulting topology have relatively
low loss, and are selected via an out-of-band mechanism. The
topology is given in Figure 9. In general, the larger the mote
id, the more hops it is from the destination.

D. SimpleApp

SimpleApp is an application written to generate and receive
three different types of traffic: periodic, in-network processed,
and ND. It also performs the additional task of notifying
packet generation and packet reception at the destination mote
via the serial interface.
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Fig. 9. Fixed routing topology: mote 0 is the destination and the root of the
routing tree.

X. EMPIRICAL RESULTS

In this section we present the empirical results obtained
from our implementation of Argus on the testbed described in
the previous section. The network topology as mentioned in
Section IX-C is fixed (Figure 9) to factor out effects that may
otherwise result. Throughout this section we compare Argus
with the round-robin servicing of queues, and we begin by
providing motivation for Argus.

A. Motivation

We first vary the rate at which packets are generated by
SimpleApp. Figure 10 shows the fraction of packets received at
the destination that originate from the corresponding mote. At
a sending interval of 5 seconds for each mote, the network is
still uncongested and is able to deliver the packets at the same
rate as they are generated. However, when the application at-
tempts to send at intervals of 3.75 and 2.5 seconds, the network
is unable to handle the load and in general becomes biased
towards motes closer to the destination. Thus, each mote has
no control over the amount of bandwidth it effectively receives
when the network becomes congested.
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Fig. 10. Motes with smaller IDs are in general closer to the destination mote.
More packets are typically received from motes closer to the destination as
the network gets congested.

B. Periodic Data Generation

We first compare the performance of Argus and round-robin
with SimpleApp generating packets at 3.75 second intervals.
Periodic generation of data is a form of AD traffic. In the case
of Argus, each flow in the network is given a size of two that
remains unchanged for the duration of the experiment, which
lasted for an hour. The results in Figure 11 clearly shows that
for periodic traffic, Argus is able to evenly distribute available
bandwidth amongst all downstream motes.
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Fig. 11. With motes attempting to send at intervals of 3.75 seconds,
Argus evenly distributes bandwidth amongst all motes regardless of their hop
distance from destination.

C. Latency

We next investigate the delay experienced from the time a
packet is first injected into the network until the time it reaches
the destination. This delay includes the time the packet takes to
traverse the ethernetwork before being logged in the server. We
believe that the processing time within the server is negligible,
and thus only investigate the delay within the ethernetwork by
pinging the motes for the duration of an experiment. Round-
robin pinging of the motes is performed, the interval between
consecutive motes being exponentially distributed [1] to ensure
that the correct average delay values are obtained. Also, the
intervals have a mean of two seconds so that the ping packets
themselves do not congest the ethernetwork. The results are
given in Figure 12, which shows that the delay is small,
averaging about 2 milliseconds, and does not vary significantly
even when the wireless sensor network is congested.

Figures 13 and 14 show the latency distribution for round-
robin and Argus respectively. We observe that Argus’ delay
distribution has less variance compared to round-robin’s. This
is despite the fact that SimpleMAC is a random access
protocol and is therefore difficult to control the latency across
multiple hops. Another observation is that the latency becomes
independent of the number of hops the mote is from the
destination. In Figure 13 we find that motes that are closer
to the destination have their packets delivered faster than the
others, whereas the network is more fair in the case of Argus:
packets experience roughly the same delay.

An intuitive explanation behind why Argus causes a re-
duction in mean and variance in latency is that the upstream
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Fig. 12. Distribution of time to ping each mote on the ethernetwork, with
the mean times.
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Fig. 13. Latency Distribution and Mean for Packets Generated by Corre-
sponding Motes - Round-robin
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Fig. 14. Latency Distribution and Mean for Packets Generated by Corre-
sponding Motes - Argus

motes know and expect packets from downstream motes. If
these expected packets do not arrive, then upstream motes keep
silent, which increases the chances of successful reception and
consequently packets originating downstream are more likely
to be forwarded.

D. Transition from Uncongested to Congested State

We next demonstrate that Argus is able to transparently
handle the distribution of bandwidth as the network transits
from an uncongested to a congested state. Initially each mote
in the network transmits periodically at an intervals of 60
seconds. After 30 minutes, the motes increase their generation
rates to send at intervals of 3.75 seconds. Throughout the
entire process, SimpleApp is not notified of any changes in
the network.
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Fig. 15. Fraction of total packets received from each mote is approximately
equal before and after the network becomes congested.

We gathered the fraction of packets received from each mote
before and after the increase in generation rates. The results
are given in Figure 15, which shows that Argus achieves its
goal of transparently handling network state transitions.
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Fig. 16. Rate at which packets are received by the destination mote before
and after the network becomes congested.

We also monitored the per-minute rate at which the
destination mote received packets from mote 19 (Figure 16),
as well as the fluctuation in its epoch length at the same time
(Figure 17). We split the graphs into 3 different regions, I, II
and III, and elaborate on each as follows:

Region I: Epoch lengths are initialized to a large value,
20 seconds, to prevent immediate congestion of the network
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Fig. 17. Epoch length fluctuation: the network transits from an uncongested
to a congested state.

if generation rates are high. This is similar to TCP’s slow
start [4]. The network is relatively unloaded and each mote
generates packets at the fixed rate of one packet per minute.
Since the network is uncongested packet collisions are
uncommon and the effective transmission time of a packet
is close to the actual time to transmit one (in the tens of
milliseconds). This causes a drop in the epoch length, and
since an exponential weighted moving average is used in
computing the length this results in the concave graph in
Figure 17.

Region II: About 30 minutes into the experiment all
motes begin generating packets at intervals of 3.75 seconds.
Since the epoch length has become short by this time,
packets are rapidly pushed into the network, causing the
spike around the 30 minute mark in Figure 16. With the
increase in rate, collisions occur, reducing the effective
time to transmit a packet, and consequently the epoch
length increases as well. Since the rate at which packets
are transmitted is higher than in Region I, epoch length
updates occur more frequently, and thus the increase in
epoch length is more rapid than the decrease in Region I.
This behavior is ideal since this is precisely the time when
the epoch length should rapidly increase to reduce congestion.

Region III: During this time the number of collisions
decrease, while the queue sizes increase. This causes the
epoch length to keep increasing (computed according to
Table I) in order to reduce the size of the queues. Although
not shown in the figure, subsequently the epoch length
decreases as queues drain, thereafter it oscillates around the
30 second mark, in response to the queue occupancies.

E. Non-uniform Bandwidth Distribution

Finally, we increase mote 19’s generation rate to 1.5 times
that of the other motes. For Argus, we increase mote 19’s flow
size accordingly, from 2 to 3. The result shown in Figure 18
shows that Argus is able to provide that extra amount of
bandwidth to mote 19, whilst in the case of round-robin the
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Fig. 18. Mote 19 requests for 1.5 times the bandwidth of other motes. Argus
realizes this allocation, but not round-robin.

increase in rate at the mote has no effect on the effective
bandwidth it receives as seen at the destination mote.

XI. D ISCUSSION

In this section we discuss various related issues that were
encountered during the design and implementation of Argus.

A. State

Due to the severe resource constraints in a sensor mote, the
amount of state required by the algorithm has to be minimized
as much as possible. An implementation of the network stack
components should always maximize the amount of remaining
resources for the application that it provides services for.

With this in mind, we note that the primary sources of
memory consumption in Argus are the per-destination, per-
child queues in Argus-N, and the application queue in Argus-
T. Whilst it is possible to reduce each of the queue sizes in
Argus-N to one, we cannot do so for the case of Argus-T,
since, to determine the number of packets injected into the
network (and thus the flow size in this epoch), we need to
buffer them before transferring them to Argus-N’s local queue
in the next epoch. Thus, the application queue must be able to
hold as many packets as the parameterflow_size specified
by the application when it callsopensocket .

Having per-destination queues also imply that Argus will
probably not be feasible for networks that have many sinks
and long flows. For short flows we can implement timeouts: if
a mote has not forwarded any packet to a particular destination
and is not expecting to (via thehasMore variable), then the
set of queues corresponding to that destination can be reused.

B. Timeouts and Packet Losses

As mentioned in Section IX-C, the network routing topology
is fixed for all experiments to factor out effects that may
otherwise arise. In reality, link qualities fluctuate causing
relatively frequent changes in topology. Since state is stored
with respect to a downstream mote in the form of the
hasMore andcurrentFlowSize variables, there is a need



12

to anticipate and handle situations where the next expected
packet doesn’t arrive. This is possible since although link-level
retransmissions can reduce loss probability due to interference
and corruption, it cannot eliminate it completely. When the
data-link layer fails to successfully transmit the packet within
a number of attempts, the network layer may decide to (1)
drop the packet and send the next, or (2) pick a different
neighbor and attempt to forward the same packet again. In
(1), dropped packets in the middle of a flow can be handled at
the next hop mote by updatingcurrentFlowSize if it is
smaller, otherwise the packet is assumed to be from the next
epoch. The problem with this approach is that the network then
again becomes biased towards motes closer to the destination,
albeit not as much as when Argus is not used. If however,
the dropped packet is at the end of a flow, the next hop mote
will then wait for its arrival, an event that will never occur. In
this case, there is no alternative but to implement timeouts. In
(2), the situation in the previous next hop mote is the same
as the dropping of the last packet in the flow for (1): it waits
for a packet that will never arrive. In this case timeouts will
probably also have to be implemented.

Thus, we see that for optimal performance the routing
component has to satisfy the following properties:
(1) it has to minimize losses by selecting next hop links that
have low loss probabilities, and
(2) it has to minimize the frequency of changes in the routing
topology.

C. On Topology Changes and Feedback

Consider a typical cycle in a stable network: the congested
mote (say A) measures the effective transmission rate and
disseminates the resulting epoch length. The epoch length is
used in Argus-T when enforcing admission control, causing a
reduction in packets pushed into the network. Subsequently,
congestion at A reduces, and effective transmission time as
well as the epoch length decrease. This forms a feedback loop
that causes the epoch length to approach then oscillate around
some optimal value. It can be observed that this convergence
time increases with the path length of this feedback loop,
i.e. the more hops the loop covers, the longer it will take
to converge. Bearing this in mind, it is possible that, to
take advantage of higher quality paths, the network topology
changes at intervals that are significantly shorter than the time
feedback takes to traverse the network. The moving average
weight, α in Section V-D, also affects the rate at which
congestion control converges. Exactly how to determine the
optimal rate at which topology can or should change, and the
optimal value forα, is an open question and will be included
in future work.

D. MAC Optimization

We implemented a SimpleMAC to demonstrate that Argus
is independent of the data-link layer. However, one can suggest
optimizations in the MAC protocol to improve performance.
For instance, we expect that one of the major causes of
packet drops is the overflowing of queues caused by the wait
for another child mote’s (say X) packets. An optimization

in this case, shown in Figure 19, would be to explicitly
notify the children that the queues buffering their packets
are overflowing, and to backoff for a longer period of time
tbackoff that is reasonably lower bounded to allow X to
transmit its packet.tbackoff can be a function of the number of
one-hop children motes, so that the probability of interference
does not increase with an increase in children motes but remain
relatively constant. Such explicit notification has the advantage
of distinguishing between loss due to corruption / interference
and overflowing queues.
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Fig. 19. (a) Mote X forwards packets from S1, S2, ..., Sn to R (b), (c) To
increase the chances of successfully receiving the next packet from S1, X
tells S2,..., Sn to backoff for longer periods of time.

E. Interference Between Neighboring Flows

Whilst Argus explicitly manages cross traffic at a mote
through the use of per-destination queues, it is less clear how
traffic that do not cross but still interfere with each other
should be handled. For instance, in Figure 20, where A and
B route traffic to different destinations and are able to receive
each other’s packets, one may let the epoch length be the
mean of that in A and B, or pick the larger of the two. On
the other hand, if A and B are close enough to interfere with
each other’s transmissions, but are largely unable to receive
the other’s packets, then a solution will possibly require global
coordination. These are areas that will be considered in future
work.

BA

Fig. 20. Two different traffic streams exist in the network: one passes through
A, another through B. A and B’s transmissions interfere with each other.

XII. C ONCLUSION

In this paper we presented a distributed, WFQ-like schedul-
ing algorithm, Extended Epoch-based Proportional Selection
(EEPS). EEPS requires per-child, per-destination queues and
not per-flow queues, and is thus more scalable than WFQ.
Weights associated with each queue is first derived from the
sum of flows of downstream child motes, and may be altered to
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take into account application requirements or MAC protocol
differences. EEPS also measures and uses the length of an
epoch to upper bound the maximum number of packets a
mote can inject into the network, thus providing admission
control that aids in reducing congestion. The implementation
of EEPS, called Argus, is tested on a 26-mote testbed. Empir-
ical observations show that Argus is able to reduce the mean
and variance of the latency experienced by packets from motes
several hops away from the base station. It is also shown that
Argus is able to distinguish between flows of different sizes,
and divide the bandwidth accordingly. Lastly, Argus trans-
parently handles the transition of the network to and from a
congested state, and can accommodate different types of traffic
including Application-Determined (AD), Network-Determined
(ND), many-to-one, point-to-point, and in-network processed.
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