
Shared Hierarchical Aggregation for Monitoring

Distributed Streams

Sailesh Krishnamurthy Michael J. Franklin

Computer Science Division, University of California, Berkeley, CA 94720
{sailesh,franklin}@cs.berkeley.edu

Report No. UCB/CSD-05-1381

October 18, 2005

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Shared Hierarchical Aggregation for Monitoring

Distributed Streams

Sailesh Krishnamurthy and Michael J. Franklin

Computer Science Division, University of California, Berkeley, CA 94720
{sailesh,franklin}@cs.berkeley.edu

Abstract. Widely dispersed monitoring networks generate huge data
volumes that are naturally organized via hierarchical aggregation. In
a system that manages such data, applications pose periodic aggregate
queries. In this paper we show how to efficiently process multiple periodic
aggregate queries in a hierarchy. First, we use a novel query rewrite that
optimally executes individual queries. Next, we show how to combine the
rewritten queries to share computation and communication resources. Fi-
nally, we identify a challenge in shared aggregation across a heterogenous
hierarchy, namely that push-down reduces sharing and pull-up increases
communication. We then propose a “partial push-down” technique that
permits effective sharing without increasing communication costs.

1 Introduction

Enterprises are deploying receptors such as network monitors (for intrusion de-
tection) and RFID readers (for asset tracking) across wide geographies, driving
the need for infrastructure to manage and process the data streams produced.
We are building HiFi [4], a general purpose system to manage, process, and
query data streams from widely dispersed receptors. Figure 1 shows distributed
intrusion detection powered by HiFi where edge nodes monitor network traffic.

Network monitor

Central
HiFi Server

Edge
Nodes

Internet ...Query

Results

Query

Results
Aggregation

Union

Stream Scan

SysAdmin

SysAdmin

Fig. 1. Using HiFi for distributed intrusion detection

In large-scale monitoring applications there can be a large number of users
executing similar concurrent queries. Using a näıveapproach to execute such
queries can lead to scalability and performance problems as each additional query
can add significant load to the system. Instead, it is vital to share computational
and communication resources by exploiting the similarities in these queries. The
techniques we present in this paper let a HiFi system exploit such sharing in
order to support a large number of concurrent queries.

1.1 Challenges in Monitoring Distributed High-Volume Streams

In our intrusion detection example administrators can pose periodic windowed
aggregate queries over network monitor data. Such queries have two parameters:
a range which is an interest interval over which the aggregate is computed, and a
slide which is a periodic (the slide is the period) interval controlling when results
are reported. We consider HiFi deployments with the following properties:

1. Periodic: Reporting results at specific intervals avoids flooding the network
with data. This is used in sensor databases and single site systems.

2. Overlapping: Large ranges and small slides cause overlapping aggregates.
Tuples in many windows makes efficient execution challenging.

3. Sharing: Resource sharing is a common way to scale streaming systems to
many queries.

4. Hierarchical: Bottom-up computation, across space and time, lets HiFi scale
with streams from widely deployed receptors.

Challenge: Our goal is to efficiently process a large number of aggregate queries
with periodic, overlapping windows over high volume data streams from widely
distributed receptors that are organized in a hetergenous hierarchy.

While some of these properties have been addressed in other systems, we
argue that all of them are together necessary in emerging large scale receptor-
based systems like HiFi. We know of no other system that attempts to support
all these properties. For instance, while TAG[12] supports periodic hierarchi-
cal aggregates, it does not support overlapping windows and sharing. Similarly,
STREAM[1] shares non-periodic overlapping windows in a single-site system.

It turns out that these properties are mutually incompatible for plans that
either push-down or pull-up aggregates. Aggregate pull-up moves raw data up
the hierarchy and increases communication overheads. On the other hand, while
aggressive aggregate push-down reduces the communication costs of individual
queries, it lowers opportunities for sharing, leading to high overall computa-
tion and communication costs. This tension has important implications for dis-
tributed monitoring systems like HiFi. Bandwidth consumption in a wired net-
work affects real operating costs with usage-based pricing. In a wireless sensor
network it determines battery life. In contrast, computing capacity is plentiful
in high end servers and sparse in sensors and edge nodes. Thus, it is vital to
distribute the load across the HiFi resource hierarchy. We resolve this tension
using a partial push down technique that has the following benefits:

1. Communication, and some computation, is shared across the hierarchy.
2. The remaining computation that cannot be shared is pulled up the hierarchy

where resources are abundant.

Our partial push down technique is implemented as a series of operations on a
set of queries as shown in Fig. 2. First, a new paired window rewrite extracts non-
overlapping parts of each query. These non-overlapping parts are then composed
to form a common sub-query. Finally, we pull-up the overlapping parts of each
query and push-down the non-overlapping common sub-query.

Input Extract Compose

Push-down

Pull-up

Top : Overlapping.
Edges : Non-overlapping.

Partial push-down

Many overlapping,
One Non-overlapping

Many overlapping
windows

Many overlapping
and Non-overlapping

Fig. 2. High-level overview of partial push-down

Contributions. Efficient shared processing of aggregate queries in a hierar-
chy is hard because the standard push-down and pull-up approaches are both
unsuitable. Thus, we need to invent techniques like new query rewrites and par-
tial push-down in order to let a HiFisystem exploit sharing and support many
concurrent queries. The specific contributions of this paper are the following:

1. A novel way to extract and execute non-overlapping components of an aggre-
gate over an overlapping window. We prove that our paired window rewriting
is optimal and superior to previous work in Sect. 3.

2. A technique that to share the processing of overlapping aggregates by com-
posing non-overlapping paired windows. We also prove that this is an optimal
way of sharing non-overlapping windows in Sect. 4

3. The partial push-down technique to share communication of non-overlapping
aggregates in a hierarchy in Sect. 5.

4. A performance study with real data validating our approach in Sect. 6.
5. A principled way to overlay partial push down across a heterogenous hier-

archy in Sect. 7.

We first present necessary background in Sect. 2 below.

2 Background and Related Work

2.1 Distributed Intrusion Detection

Our driving example is distributed intrusion detection in an enterprise. Here,
each node at the edge of an enterprise monitors all the incoming network traffic
(i.e., incoming TCP SYN packets) using a tool such as Snort [14]. The edge nodes
stream this data to a higher level server. Figure 1 shows a two-level hierarchy
that can be extended with additional levels if there are too many edges. Let the
union of data from edges be a single virtual stream Snort, with attributes SrcIP,
and time. Detecting a Distributed Denial of Service (DDOS) attack requires the
ability to compute the total number of incoming packets from each unique source
IP address. In our example HiFi-based system, this counting can be done with a
periodic sliding window aggregate written in CQL [2] as shown in Query 1. Here
the RANGE indicates a computation width of r and the SLIDE requires results

to be reported every s time units. The actual range and slide will depend on
the requirements of the user. For instance, MYSQLIDS [9] is a post-processing
tool that uses static Snort data in a relational database with an interface that
lets a user pick a range interval for analysis. Such a tool can be changed to
run on streams where users may choose different time windows and reporting
frequencies. In a large system it is likely that many concurrent users of such a
tool could issue queries that compute over and report at different intervals.

Query 1 Count packets from each unique source IP.

SELECT SrcIP, count(*)

FROM Snort S [RANGE ‘r’ SLIDE ‘s’]

GROUP BY S.SrcIP

2.2 Aggregates on windowed data streams

In this paper we consider aggregates that can be evaluated with constant state
independent of the size of their input. Such aggregates are classified as distribu-
tive (e.g. max,min,sum,count) and algebraic (e.g. avg) aggregates by Gray [6].
Such aggregates can be computed using partial aggregates over disjoint parti-
tions of their input,1 a technique used with parallel databases (e.g., Bubba [3]),
sensor networks (e.g., TAG [12]) and streams (e.g., STREAM [1]).

There are two main types of windows used with streaming aggregate queries.
While non-periodic windows have been studied extensively in single-site systems,
periodic windows can reduce communication costs in a distributed system.

Non-periodic windows. A window is non-periodic if it has no SLIDE clause.
For such a query the system must return an aggregate computed over the spec-
ified range whenever a client application demands it. Here successive client re-
quests can result in computing aggregates over overlapping window intervals of
the input. Arasu [1] presented general techniques to process many non-periodic
aggregates in shared fashion in a single-site system. It is hard to adapt these
methods to periodic windows as they consume large amounts of space that is
proportional to the buffer size of the maximum window of data across all queries.

Periodic windows. A window is periodic if it includes a SLIDE clause. For
example, in Query 1, the windows have a width (or range) defined by r and a
periodicity (or slide) defined by s. Such queries can be classified as follows:

1. Hopping: when r < s, each window is disjoint.
2. Tumbling: when r = s, the windows are disjoint and cover the entire input.
3. Overlapping: when r > s, each window overlaps with some others.

In our implementation and in the rest of this paper, an aggregate operator
assumes the existence of heartbeats in its input so that it can produce results
even if its input rate falls off, or if there is a highly selective predicate before the

1 The functions used for the partial aggregates can, in general, be different from those
for the overall aggregate.

aggregation [7]. Golab et al. [5] present a general treatment of result production
for streaming operators.

This paper focuses on aggregates that use periodic overlapping windows of
streams. With non-overlapping windows such aggregates are easily computed and
only require constant space, as a tuple can be discarded after being accumulated
in the aggregate. In contrast, with overlapping windows a tuple is included in
multiple windows and cannot be discarded in this way.

While we focus on the harder problem of shared processing of aggregates
on overlapping windows,2 our techniques apply equally well to non-overlapping
windows. The general theme of our approach toward evaluating an aggregate
with an overlapping windows is to rewrite it so that it uses a partial aggregate
over an appropriate non-overlapping window. Next, in Sect.3, we show how to
identify non-overlapping components of an overlapping window query.

3 Identify Non-overlapping Component: Paired Windows

In this section we describe how to rewrite an aggregate query with a periodic
overlapping window so that it uses a subquery with a non-overlapping window
that we call a sliced window. We develop a new paired window rewrite that
is superior to prior work. Paired windows are also crucial building blocks for
efficient shared computation and communication, as we show in Sects. 4 and 5.
We first formally define overlapping and sliced windows. We next explain paired
windows and finally show how to execute aggregates with such windows.

3.1 Formal definitions

We now formally define overlapping and non-overlapping sliced windows.

Definition 1 (Overlapping windows). An overlapping window W with range
r and slide s (r > s) is denoted by W [r, s]. An aggregate over W produces a result
at times t over tuples in intervals defined as a periodic function:

W =

{

[t − r, t] if t mod s = 0,

φ otherwise.

Definition 2 (Sliced window). A sliced window W is specified by a vector of
|W | = n slices and denoted by W (s1, . . . , sn) where the period s is the sum of all
n slices. We say that each slice si has an edge ei = s1+· · ·+si. An aggregate over
W produces a result at each slice edge over tuples in the slice intervals defined
for 1 ≤ i ≤ n as a periodic function:

W =

{

[t − si, t] if t mod s = ei

φ otherwise.

2 While windows can be time-based or count-based we only study the former here.

3.2 Sliced Windows: Paned vs Paired

We now describe how to rewrite an aggregate query containing an overlapping
window so that it uses partial aggregates with a non-overlapping sliced win-
dow. We consider two techniques, paned windows introduced by Li [10] and our
new paired windows approach. Finally, we show how our paired windows always
perform better than, or at least as good as, paned windows.

For ease of exposition we use an ungrouped aggregate query for our analysis
in this and following sections (see Query 2 below). Our techniques, however, work
for both grouped and ungrouped queries, and we show experimental results for
this in our performance study in Sect. 6.

Query 2 Count packets from all source IP addresses.

SELECT count(*)

FROM Snort S [RANGE ‘r’ SLIDE ‘s’]

The basic idea for efficient execution of overlapping window aggregates stems
from the observation that an aggregate over a window W [r, s] can be computed
from partial aggregates with a sliced window V (s1, . . . , sk, . . . , sn) with period
s, if and only if, sk + · · ·+ sn mod s = r as proved in Lemma 1 in Appendix A.
The paned and paired windows with period s that can be used to rewrite the
window W [r, s] are defined as:

1. Paned window: U(g, . . . , g) where g is greatest common divisor of r and s.
2. Paired window: V (s1, s2) where s2 = r mod s and s1 = s − s2.

An aggregate over a window W [r, s] can be computed from partial aggregates
over a paned or paired windows as defined above (for a proof, please see Corol-
laries 1 and 2 in Appendix A). While paned windows break a window of period
s into s/g panes of equal size g, paired windows split a window into exactly two
unequal slices that we call a “pair”. Figure 3 shows how Query 1 with a window
W [18, 15] can use a paned window of 5 slices W ′(3, 3, 3, 3, 3) or a paired window
W ′′(12, 3).

RANGE: 18 seconds
SLIDE: 15 seconds

Paned Windows
(3,3,3,3,3) seconds

0 15 30 45

Paired Windows
(12,3) seconds

0 15 30 45

Fig. 3. Paned vs Paired Windows

We now introduce SLICES, a new clause analogous to the RANGE-SLIDE clause,
to express aggregate queries with sliced windows.3 With paned windows, Query 2
would be rewritten into Query 3 with two parts: (1) a subquery Spwsub using
partial aggregates with a slice g (3 sec. in the example), and (2) a superquery that

3 While it is possible to express a sliced window as a union of hopping windows, this
syntatic sugar is more convenient.

computes the actual aggregate over the subquery’s partial aggregates. We use
a similar approach with paired windows where the only difference is the values
used in the SLICES clause as shown in Query 4. In both cases we use the SQL
standard WITH clause to express the subquery.

Query 3 Paned window rewriting
WITH Spwsub as

(SELECT count(*) as cnt

FROM Snort [SLICES ’3’])

(SELECT sum(cnt)

FROM Spwsub [RANGE ‘18’ SLIDE ‘15’])

Query 4 Paired window rewriting
WITH SpairSub as

(SELECT count(*) as cnt

FROM Snort [SLICES ‘12 sec’,‘3 sec’])

(SELECT sum(cnt)

FROM SpairSub [RANGE ‘18 sec’ SLIDE ‘15 sec’])

3.3 Analyzing and Executing Sliced Window Aggregates

We now analyze the relative complexities of the paned and paired window ap-
proaches and then show how aggregates over arbitrary sliced windows can be
efficiently processed.

As with most algorithms, the interesting tradeoffs are in space and time
complexity. We measure the former in terms of the maximum aggregate state
maintained at any point of time and the latter in terms of the number of ag-
gregate operations carried out in each time interval. In particular, we count the
number of times a tuple is accumulated in an aggregate and ignore the per-
window aggregate initialization and finalization calls. Further, we assume that
tuples enter the system in timestamp order (or are timestamped by the system
on entry) at a data rate of λ tuples per second.

The superquery is evaluated using the Explicit Window-ID (EWID) approach
proposed by Li [11]. Here, an overlapping aggregate is sent tuples augmented
with an identifier (the ewid) encoding all windows it belongs to. It then groups
these tuples by their ewid and aggregates them. Unlike a normal group-by, each
tuple is accumulated into multiple groups (one for each window to which it
belongs), using at most (r/s) aggregate state irrespective of the input data rate.
The superquery has a time complexity of rβ/s where β is the data rate of the
subquery. A sliced window subquery with k slices and period s uses constant
state with λ operations per second and produces a stream at a rate of k/s
partial aggregate tuples per second.

The key difference between the paired and paned windows is in the number of
slices a window period is broken into. In a period s, paned windows always have
s/g slices while paired windows have either 2 slices (worst-case when r mod s 6=
0) or 1 slice. The overall space and time costs of paned and worst-case costs of
paired windows are summarized in Table 1. In the worst-case for paired windows,

1/g < 2/s and in the best case (when r mod s = 0) 1/g is the same as 1/s. Since
the paired window never has more slices than the paned window, the paired
window subquery always has a data rate no larger than that of the paned window
subquery. So, paned windows are always either slower than, or at most equal to,
our paired window technique.

Table 1. Complexity of paned/paired windows

Method Time Space

Paned window λ + (1/g)(r/s) 1 + r/s

Paired window (worst-case) λ + (2/s)(r/s) 1 + r/s

Executing sliced window aggregates. We now show how to execute a sin-
gle aggregate query over a sliced window W (s1, . . . , sn) written as [SLICES

s1, . . . , sn]. The pseudocode for this operator is shown in Alg. 1. We assume
that the aggregate has access to state manipulation functions such as initialize,
accumulate for a new tuple, and finaliza to produce results. Here init initializes
the internal state with a slice index i as 1, the internal time t representing the
edge of the next slice si, and an aggregate state variable A. Incoming tuples y
with timestamp ty are sent to the operator by calling next. If ty is smaller than
the internal time t the tuple y is accumulated in A provided y is not a heartbeat.
Otherwise, the current slice is finalized and aggregate results are emitted at slice
edge t. Then, the aggregate state A is reinitialized, the slice index i is advanced,
and the internal time t is set to the next slice edge.

Algorithm 1 Sliced window aggregate operator

proc init(W (A, i, t, s1, . . . , sn))
initialize(W � A); W � i← 1; W � t← s1;

end

proc next(ty, y, W (A, i, t, s1, . . . , sn))
if (ty > W � t)

then emit tuples(W � t, finalize(W � A));
emit tuple(W � t, heartbeat);
initialize(W � A); W � i←W � W � i + 1 mod n; W � t←W � t + si; fi

if (y 6= heartbeat) then W � A← accumulate(W � A, y); fi

end

4 Multiple query processing

In Sect. 3 we developed the paired window rewrite to efficiently execute an
overlapping window aggregate query and proved that it is always either faster
than, or as fast as, the paned window approach for a single query. It turns out
that the paired window approach is the optimal way of using non-overlapping
aggregates to process multiple queries in a single node system.

We start with Q, a set of n queries that compute the same aggregate function
over a common input stream, where each query has different range and slide
parameters. More precisely, each query Qi in Q has range ri and slide si. For
simplicity we further assume that for all i, ri mod si 6= 0. For instance, the

queries in Q can be instances of Query 2, with different values for r and s, even
where r and s are relatively prime.

KW

(a) Unshared

Q1 Qn

KW

(b) Shared

Q1 Qn

Overlapping
EWID Aggregate

Single sliced
window Aggregate

Shared sliced
window Aggregate

KW
Sensor
Scan

Fig. 4. Possible plans for multiple queries

4.1 Unshared versus shared aggregation

The queries in Q can be processed in either an unshared or shared fashion. We
consider each alternative in turn:

1. Unshared aggregation: We rewrite each query using EWID paired win-
dows and run them separately as shown in the query plan in Fig. 4(a). The
input stream from the sensor scan is replicated to each of the n operator
chains with a single sliced window aggregate feeding an overlapping EWID
aggregate. Table 2 shows the space and time costs for the subqueries and
superqueries. The space and time costs of each superquery is independent
of the input rate λ unlike that of the n subqueries, each of which aggregate
every input.

Table 2. Processing costs without sharing

Cost Subqueries Superqueries

Space n Σiri/si

Time nλ 2Σiri/si
2

2. Shared Aggregation: We rewrite each query using EWID paired windows
but avoid repeated aggregate computations of tuples in subqueries. Instead,
we compose each of the n subqueries into a single sliced window common
subquery. In Fig. 4(b) the common subquery is represented by a shared sliced
window aggregate operator that produces a stream of partial aggregates that
are replicated to the n overlapping EWID aggregate superqueries.

In the rest of this section we examine shared aggregation in detail, followed
by an analysis of the relative computational costs of shared and unshared plans.

4.2 Shared aggregation

Here, we show how to compose sliced window subqueries to form a sliced window
common subquery that produces partial aggregates that can be shared.

Given queries in Q that are rewritten using EWID paired windows, the indi-
vidual paired window subqueries can be replaced by a common subquery. This

common subquery is a sliced window aggregate that is formed by composing the
individual paired window subqueries. The sliced window common subquery must
emit partial aggregates at every unique slice edge of each individual subquery.

Sliced windows can be composed only if they have the same period. Thus the
period of a composite sliced window is the lowest common multiple (lcm) of the
periods of individual windows. With unequal periods, windows are stretched to
the common period (lcm) by repeating their slice vectors.

As an example, Fig. 5 shows how to compose two sliced windows U(12, 3)
and V (6, 3). Here U and V have differing periods (15 and 9), and we stretch
them respectively by factors of 3 and 5 to produce U 3(12, 3, 12, 3, 12, 3) and
V 5(6, 3, 6, 3, 6, 3, 6, 3, 6, 3). We then compose U 3 and U5 to produce a window
W (6, 3, 3, 3, 3, 6, 3, 3, 3, 3, 6, 3). Note that ovals show shared edges in U 3 and V 4.

STRETCH

(3)

(5)

COMPOSE

U3(12,3,12,3,12,3)

V5(6,3,6,3,6,3,6,3,6,3)
W(6,3,3,3,3,6,3,3,3,3,6,3)

U(12,3)

V(6,3)

Fig. 5. Composing sliced windows

Common subquery data rate. The common subquery data rate, denoted by
β, is defined as the number of partial aggregate tuples (number of unique slice
edges) in each period of the common subquery. The value of β depends on the
query workload. It is lowest when one sliced window subsumes all others and
highest when only the final edge of all windows are shared:

max
1≤i≤n

(2/si) ≤ β ≤ Σn
i=1(2/si) − n + 1 (1)

Thus, β captures the “extent” of sharing among sliced windows. In Theorem 1
we show that composing paired windows leads to a lower β than composing
paned, or any other sliced, window.

Theorem 1. Let W be {W1(r1, s), . . . , Wn(rn, s)}, a set of n windows. Let W
be the sliced window formed by composing the paired windows of each Wi in W.
There exists no window W ′ formed by composing any sliced window rewriting of
each Wi where |W ′| < |W |.

Proof: Without loss of generality, let each Wi have identical slide s (or else
stretch as in Sect. 4.2). So every sliced window of each Wi has edges at 0 and
s. The paired window for each Wi has only one other edge at s − ri mod s.
From Lemma 1 (in Appendix A) every sliced window of each Wi must also have
an edge at s − ri mod s. Thus, the edges of the paired windows for each Wi

must exist in all possible sliced windows of Wi. Since the edges of a composite
sliced window are the union of all edges of its constituents, any composition W ′

of arbitrary sliced windows must include every edge of W , the composition of
paired-window rewritings and |W | ≤ |W ′|. �

Given β, Table 3 shows the space and time costs of the shared plan by
superqueries with input rate β and the common subquery with input rate λ.

Note that a similar analysis is possible with grouped aggregation, except that
the subquery data rate is not an easily analyzed constant.

Table 3. Processing costs with sharing

Cost Subquery Superqueries

Space 1 Σiri/si

Time λ βΣiri/si

4.3 Analysis: To share or not to share

We have explained two ways to execute multiple periodic aggregate queries.
Shared aggregation (Table 3) uses less space than unshared aggregation (Ta-
ble 2), as the space costs of the superqueries are identical while the number of
constant size subqueries is n without sharing and only 1 with sharing. In con-
trast, the time complexities of both plans depend on the input rate λ, as well as
the number of queries being shared and the extent of sharing. While the total
cost of the superqueries without sharing is always less than that with sharing, the
total cost of the unshared subqueries is always more than the cost of the shared
common subquery. Analytically, we can solve for λ and say that the unshared
approach costs less when inequality (3) holds.

nλ + 2Σ(ri/s2

i) < λ + βΣ(ri/si) (2)

λ < (βΣiri/si − 2Σiri/(si
2))/(n − 1) (3)

Intuitively, sharing for a given workload is beneficial only if the input rate λ is
high enough (i.e., greater than the lower bound imposed by inequality (3)). The
critical factor is the “extent” of sharing in the subquery which is reflected by
the common subquery data rate β. In theory, with a low input rate it may be
better not to share. We consider the effects of a practical workload in Sect. 6.3.

5 Shared Communication

In Sect. 4 we examined shared and unshared plans to execute multiple aggre-
gate queries in a streaming system. The focus in that section was on sharing
computation. Here we present the best way to share communication resources
while executing such queries across a hierarchy of stream processors. In partic-
ular, we show how the techniques of shared query processing apply to shared
communication.

Specifically, we consider executing Q, the set of n periodic aggregate queries
from Sect. 4 in a two-level hierarchy (we consider a full hierarchy in Sect. 7).
We start with the shared and unshared plans from Sect. 4. Both have three
levels of operators with the overlapping aggregate on top, the non-overlapping
sliced aggregate in the middle, and the sensor scan at the bottom. The network
interface can be between any of these three levels resulting in three choices for
aggregate location: no push-down where all aggregation is at the central server
and none at the edges, partial push-down where the overlapping aggregates are

at the central server and the sliced aggregates are at the edges, and full push-
down, where no aggregates are at the central servers and all are at the edges.
This leads to six possible plans shown in Fig. 6 where a box surrounding a query
plan indicates a single node in which the included plan is processed. A diamond
represents a network scan operator that reads tuples from the network interface.
The communication cost of each of these six plans is shown in Table 4.

Unshared
Partial push-down

Q1 Qn

Shared
No push-down

(4)

Q1 Qn

Shared
Partial push-down

(5)

Q1 Qn

Shared
Full push-down

(6)

Q1 Qn

Unshared
No push-down

(1) (2)

Q1 Qn Q1 Qn

Unshared
Full push-down

(3)

Fig. 6. Query plans for shared communication

Table 4. Communication costs for different plans

Num Aggregation Push-down Bandwidth

1 Unshared None nλ

2 Unshared Partial Σi2/si

3 Unshared Full Σi1/si

4 Shared None λ

5 Shared Partial β

6 Shared Full Σi1/si

Of these six plans, the two with no push down, (1) and (4) fetch raw data
from lower to higher level nodes and are competitive only with low data rates,
when any approach works well. Since we are interested in high data rates we
do not consider these further. Since (2) is computationally identical to (3) and
consumes twice as much bandwidth, we ignore (2) henceforth. With respect to
communication cost, (3) and (6) are identical, and so we only consider the latter
(6), as it also shares computation.

Thus, the lowest communication costs are with either shared partial push-
down (5) or shared full push-down (6). With partial push down we share com-
munication and computation resources, while with full push-down we only share
computation. Shared communication pays off when the common subquery data
rate is less than the total bandwidth of each fully pushed-down aggregate:

β < Σi(1/si) (4)

We know from (1) that maxi(2/si) ≤ β ≤ Σi2/si. That is, the common subquery
is formed by composing paired windows, each of which consume double the
bandwidth of their full push-down equivalent. If the extent of sharing is high

enough, then β can be less than the upper bound in (4) above. We examine the
“extent” of sharing experimentally in our performance study in the next section.

6 Performance study

In this section we report the results of a detailed performance study that investi-
gates the benefits of two techniques: shared communication of partial aggregates
in a two-level hierarchy and shared computation of aggregates in a single node.
For our experiments we implemented sliced aggregation in the TelegraphCQ [8]
system and deployed it on a cluster of quad 500 MHz Pentium-III nodes.

6.1 Experimental setup

We collected the logs of a Snort [14] sensor installed in the nodes of Planet-
Lab [13] to track incoming TCP SYN packets.4 For our experiments we used
the logs from a single node collected in a 24 hour period beginning at 4:00 am
on May 1, 2005. There were 523761 tuples in this trace. In our experiments
we run workloads of synthetic query sets with our implementation. Each of our
workloads is a query set characterized by the parameters in Table 5.

Table 5. Query workload properties

Param. Description Values

q Query {Grouped, Ungrouped} Aggregate

n Num. queries {2, 4, 8, 16, 32}

r Window range (1500, 2500) seconds

s Window slide (1000, 2000) seconds

Our workloads have two kinds of queries - the grouped aggregate of Query 1
and the ungrouped aggregate of Query 2. All n queries in a given workload
have identical slides (s) and varying ranges (r) generated uniformly from their
respective intervals. In addition, all queries are overlapping - i.e., no query where
r is smaller than s is generated. For each query set size, we generate 50 individual
query sets. For each workload we run the queries in each of the following ways.

1. Unshared aggregate (with paired windows)
2. Shared aggregate (with a common paned window subquery)
3. Shared aggregate (with a common paired window subquery)

For each aggregate operator we measure the number of tuples it produces, as
well as the total wall-clock time it consumes. From this we can compute:

1. Communication cost for full and partial push-down. This is in terms of
the average number of tuples that have to be streamed from the lower level
to upper level node in a hierarchy.

2. Computation cost for shared and unshared plans in a single node. This is
in terms of the average total time consumed in aggregation.

4 The inherent load on PlanetLab makes Snort drop some data.

6.2 Communication costs

We now present the results of a study of communication costs of the shared
partial push-down plan (5) and the shared full push-down plan (6) from Sect. 5.
Communication is shared only in the former. The results of our study are plotted
in Fig. 7. Here we also consider the full aggregate pull-up strategy where raw
data gets streamed to the top level node.

In the ungrouped aggregate case (shown on the left in Fig. 7), full push-down
is slightly more efficient than paired partial push-down. We do not plot the cost
of pull-up and paned partial push-down as they are very much more expensive
(523761 and 86278 tuples respectively). For 2 queries, full push-down only needs
to stream 118 tuples as opposed to 177 tuples of partial push-down. With more
queries, however, the difference between the two plans drops. For instance, with
32 queries, full push-down streams 1898 tuples as opposed to 1920 tuples of
partial push-down.

In the grouped aggregate case (shown on the right in Fig. 7), full push-down
is cheaper than full pull-up upto 8 queries (512535 vs 523761 tuples) and cheaper
than paned partial push-down upto 4 queries (257675 vs 455401 tuples). Paired
partial push-down is however, far more efficient than all the other schemes,
needing between 86472 tuples for 2 queries and 183910 tuples for 32 queries.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20 25 30 35

A
vg

 tu
pl

es
 s

tr
ea

m
ed

Number of queries

Ungrouped: Queries vs Tuples

Full push-down
Partial push-down (Paired)

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06

 2e+06
 2.2e+06

 0 5 10 15 20 25 30 35

A
vg

 tu
pl

es
 s

tr
ea

m
ed

Number of queries

Grouped: Queries vs Tuples

Full push-down
Full pull-up

Partial push-down (Paned)
Partial push-down (Paired)

Fig. 7. Communication: Partial vs Full push down.

We now summarize the results of the study of communication costs for dif-
ferent query plans over a two-level hierarchy:

1. With ungrouped aggregation, partial push-down is competitive with (while
slightly more expensive than) full push-down. As the number of queries in-
crease, costs of full push-down approach those of partial push-down. In either
case, however, the actual costs are very low - under 2000 tuples over a 24
hour period. Thus either approach would work well enough.

2. With grouped aggregation, partial push-down performs significantly better
than the other approaches. In particular, full push-down scales very poorly
with more queries.

6.3 Computation costs

Here we present the results of a study of the unshared aggregate and shared
aggregate plans (from Fig. 4), each using paired window subqueries. We also

considered shared aggregation using a paned window common subquery. In ad-
dition, we measured the costs of the paired window common subquery component
of the shared aggregation plan. The results of the study are plotted in Fig. 8.

In the ungrouped aggregate case (shown on the left in Fig. 8), the average
computation time of all three approaches increases with more queries, as ex-
pected. The shared aggregate with paired window subqueries (“shared paired”),
however, significantly outperforms the other two plans. For instance, at 2 queries
the average time is 11 seconds for “shared paired” as opposed to 13 seconds for
“shared paned” and 17 seconds for “unshared”. At 32 queries, these differences
are magnified and the average time is 39 seconds for “shared paired”, 100 sec-
onds for “shared paned” and 241 seconds for “unshared”. Note that the cost
of the paired common subquery remains stable from 8.9 seconds for 2 queries
through 9.1 seconds for 32 queries.

In the grouped aggregate case (shown on the right in Fig. 8), the average
compututation time of all approaches increases with more queries as with un-
grouped aggregation (albeit at a higher rate). Here “unshared” slightly outper-
forms “shared paned” for all query sizes, from 53 vs 94 seconds for 2 queries
through 1013 vs 1120 seconds for 32 queries. The “shared paired” approach is
significantly cheaper than the other two for all queries and costs from 33 seconds
for 2 queries through 505 seconds for 32 queries. The cost of the paired common
subquery is stable from 18 seconds for 2 queries to 23 seconds for 32 queries.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35A
vg

 c
om

p.
 ti

m
e

ov
er

 o
ne

 d
ay

 (
se

co
nd

s)

Number of queries

Ungrouped: Queries vs Computation time

Unshared
Shared Paned
Shared Paired

Paired common subquery

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35A
vg

 c
om

p.
 ti

m
e

ov
er

 o
ne

 d
ay

 (
se

co
nd

s)

Number of queries

Grouped: Queries vs Computation time

Shared Paned
Unshared

Shared Paired
Paired common subquery

Fig. 8. Computation: Shared vs Unshared

We now summarize the results of the study of computation costs for shared
aggregates with different query plans:

1. With grouped and ungrouped aggregation our “shared paired” approach
significantly outperforms the “unshared” and “shared paned” approaches.

2. In our workloads, the paned common subquery almost always reduces to a
[SLICES ‘1 sec’] subquery showing how the paned window rewriting can
make sharing very difficult.

3. In both cases, the costs of the paired-subquery component of the shared-
paired aggregation remains stable with increasing numbers of queries.

7 Putting it all together

Now we apply the insights of this paper to a typical HiFi system that consists of
distributed receptors on the “edge” of a network, intermediate nodes as well as a
central enterprise server. The edges handle heavy loads and sharing is vital to re-
duce their overheads. The most important lessons learned from our experiments
in Sect. 6 are:

1. Shared communication has real benefits with multiple aggregates using a
partial push down strategy. These benefits grow with more queries.

2. Shared computation has benefits with multiple aggregates for high enough
data rates. With such high rates (as in our study) the benefits of sharing
outweigh the costs which also increase with more queries.

The second lesson in particular is striking as the overheads of sharing are
normally fixed and not variable. Thus sharing can be a concern with low data
rates in tiny devices where computation is expensive. The graphs in Fig. 8,
however, reveal that the common paired window subquery has an almost fixed
cost even with increasing queries. So it is only superquery computation (which
is really unshared) that can worsen because of sharing, giving us our strategy:

1. Partial non-overlapping aggregates across time are pushed down right into
the leaves (receptors).

2. Intermediate nodes, from the edges to the root, aggregate share partial ag-
gregates across space.

3. The overall superqueries are only executed in the central server.

This approach has the following very desirable properties: (1) communica-
tion is shared everywhere it matters from tiny sensors to wired networks, (2)
intermediate nodes execute a single shared aggregate that would not be possible
with full push-down, (3) computation is unshared only at the highest level where
capacity is higher, and (4) overall computation across time is only carried out
at the level which issued the original query.

8 Conclusions

Widely dispersed monitoring networks generate large volumes of streaming data
that can be managed through hierarchical aggregation - a technique to succes-
sively collect and aggregate data from distributed sources receptors through a
hierarchy of data stream processors. We are building HiFi, a system to support
monitoring applications over distributed data streams. In such applications there
are typically a large number of users posing concurrent queries. These queries
are often similar and compute the same aggregate function over different peri-
odic overlapping windows. It is vital to share computational and communication
resources by exploiting the similarities in a query workload in order to support
large numbers of concurrent queries.

In this paper we showed how to share the processing of many similar aggre-
gate queries on periodic, overlapping windows across a heterogenous hierarchy.
It turns out that the obvious choices, aggregate push-down and pull-up, are both

unsuitable. While push-down reduces sharing, pull-up increases communication
costs. Our solution is partial push-down of aggregates across a hierarchy. First,
we developed the novel paired window rewrite (superior to prior work) to extract
non-overlapping components of aggregate queries. Next, we show how to com-
pose these non-overlapping components to share computation. Finally, we push
the composed non-overlapping component down the hierarchy and pull-up the
overlapping aggregates to the root. We also conducted a detailed performance
study with real-world data in order to validate our technique.

Our new techniques are crucial for widely distributed monitoring networks to
scale and support large numbers of concurrent queries as demanded by emerging
applications.

References

[1] A. Arasu et al. Resource sharing in continuous sliding-window aggregates. In
VLDB , 336–347. 2004.

[2] A. Arasu, et al. The CQL continuous query language: Semantic foundations and
query execution. VLDB Journal . (To appear).

[3] F. Bancilhon, et al. FAD, a powerful and simple database language. In VLDB ,
97–105. 1987.

[4] M. J. Franklin, et al. Design considerations for high fan-in systems: The HiFi
approach. In CIDR. 2005.

[5] L. Golab et al. Update-pattern-aware modeling and processing of continuous
queries. In SIGMOD . 2005.

[6] J. Gray, et al. Data Cube: a relational aggregation operator generalizing group-by,
cross-tab and sub-total. In ICDE . 1996.

[7] M. A. Hammad, et al. Efficient pipelined execution of sliding window queries over
data streams. Tech. Rep. CSD TR#03-035, Purdue. 2003.

[8] S. Krishnamurthy, et al. TelegraphCQ: An architectural status report. IEEE DE.

Bull., 26(1). 2003.
[9] R. K. Lewis. MYSQLIDS - a quick look approach to intrusion deteection systems.

http://www.codeproject.com/internet/mysqlids.asp.
[10] J. Li, et al. No pane, no gain: Efficient evaluation of sliding-window aggregates

over data streams. SIGMOD Record . 2005.
[11] J. Li, et al. Semantics and evaluation techniques for window aggregates in data

streams. In SIGMOD . 2005.
[12] S. R. Madden, et al. TAG: a tiny aggregation service for ad-hoc sensor networks.

In OSDI . 2002.
[13] L. Peterson, et al. A blueprint for introducing disruptive technology into the

internet. In HotNets. 2002.
[14] M. Roesch. Snort – lightweight intrusion detection for networks. In USENIX

LISA. 1999.

A Proofs

Lemma 1. An aggregate over a window W [r, s] can be computed from partial
aggregates of a window V (s1, . . . , sk, . . . , sn) with period s if and only if:

sk + · · · + sn = r mod s

Proof: Aggregates over W [r, s] are computed over intervals of |r| at times 0 mod
s. We first note that:

r = r mod s + br/scs (5)

(If): Suppose sk + · · · + sn is r mod s, from (5):

r = (sk + · · · + sn) + br/sc(s1 + · · · + sn) (6)

Thus an aggregate over an interval |r| can be computed at times 0 mod s with
partial aggregates over these br/scn + n − k + 1 contiguous slices of V :

{sk, . . . , sn}, {s1, . . . , sn}, . . . , {s1, . . . , sn}
︸ ︷︷ ︸

br/sc times

(Only if): Suppose W can be computed from partial aggregates over V . To
aggregate all input tuples we must use a set of contiguous slices from V . Since V
has period s, these slices must include an integral number (b) of complete slices
for each period and a residual set of slices (sa, . . . , sn where a ≤ n) from the
previous period:

{sa, . . . , sn}, {s1, . . . , sn}, . . . , {s1, . . . , sn}
︸ ︷︷ ︸

b times

The sum of these slice widths must be:

r = (sa + · · · + sn) + b(s1 + · · · + sn)

As sa + · · · + sn ≤ s, b = br/sc and sa + · · · + sn = r − br/scs. So there exists
k = a ≤ n, sk + · · · + sn = r mod s. �

Corollary 1 (Paned Windows). An aggregate over W [r, s] is computable
from partial aggregates over V (g, . . . , g) where g is gcd(r, s), s = gn, r = gp,
and n < p.

Proof: From number theory we know that g = (r mod s, s). Thus, r mod s = mg
where m < n. So ∃k, k = n−m +1 < n, 0 < k < n and sk + · · ·+ sn = r mod s.
(From Lemma 1). �

Corollary 2 (Paired windows). An aggregate over W [r, s] can be computed
from partial aggregates over V (s1, s2) where s1 + s2 = s and s2 = r mod s.

Proof: Set k = n = 2 in Lemma 1. �

