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Abstract. We present a simple, intuitive algorithm for the problem of
finding an approximate list of the k£ most frequent items in a data stream
when the item frequencies are Zipf-distributed. Our result improves the
previous result of Charikar, Chen and Farach-Colton [CCF02] for the
same problem when the Zipf parameter is low. We also highlight an
application of the algorithm to web caching that may be of practical
interest.

1 Introduction

A number of papers [ABC096,BCF*99,CBC95,G94,SKW00,X002] in the net-
working community have studied large traces of web accesses or search engine
queries and concluded that the frequency of requests is well-approximated by a
Zipf distribution, i.e. the frequency of the ith most frequent request is ;= where
c is a normalizing constant and z > 0 is referred to as the Zipf parameter . They
generally reported values of z in the range (0, 1], which is very low compared to
the Zipf parameters reported for other properties of the internet. These results
have important implications in the design of efficient web caching schemes, since
the distribution of requests determines, among other things, the size of the cache
needed to achieve a given cache hit-ratio.

For the purposes of motivating this paper, suppose that we have a single
cache for a group of web servers with enough storage space for k files. We make
the assumption that each file has the same size. It is known that if each request is
modelled as being drawn independently at random from a specific distribution,
an assumption supported by [BCFT99], then the optimum cache-replacement
algorithm is LFU (Least Frequently Used) [CD73]. In other words, we should
cache exactly the k most frequently accessed files. In practice, however, this
replacement algorithm is complicated by the fact that it is too expensive to
store a separate counter for each distinct file, and hence other cache-replacement
algorithms are used, such as LRU (Least Recently Used). However, since there is
good evidence that LFU can outperform LRU, especially when the cache size is
small [BCFT99], it would be interesting to find a way to implement it efficiently.

We cast this problem in the framework of finding frequent items in a data
stream, a problem on which there is now a considerable body of work (see Section

1 Some papers refer to this distribution as a generalized Zipf or Zipf-like distribution,
reserving the name Zipf distribution for the case z = 1.



2, Related Work). In the data stream model, a stream S is an ordered sequence
of n items drawn from an universe of m elements (S € [m|™). Define n; to be the
frequency of the ith most frequent item in the stream, so that A data stream
algorithm is allowed one pass over the stream and must use sub-linear (preferably
poly-logarithmic space and per-item processing time. We consider the following
version of the frequent items problem, first defined in [CCF02]:
FINDAPPROXTOP(S, k, €)

— Input: An input stream S, integer k, and real number e.

— Output: A list of k elements from S such that every item o; in the list has
frequency n; > (1 — €)ny, and every item o; with n; > (1 + €)ny will be in
the list with high probability.

In other words the algorithm must return a list of items, all of whose fre-
quencies are relatively large with respect to the kth most frequent element and
it cannot output items with very low frequencies.

Our solution to this problem is a simple data structure that builds off the
Count Sketch data structure of Charikar, Chen and Farach-Colton [CCF02]. Our
algorithm achieves better space bounds for small values of the Zipf parameter,
z, as is appropriate for our web caching application.

2 Related Work

The general problem of finding frequent items in data streams has many obvi-
ous applications, including mining the most popular queries to a search engine
[CCF02], internet congestion control [KPS03,DLMO02], iceberg queries [FSGT96]
and association rules [MMO02]. In general, the problem cannot be solved exactly
in sublinear space since there is an {2(m) lower bound for the problem of finding
the maximum element exactly [AMS99].

As a result, numerous approximate versions of the problem have been formal-
ized in the data stream literature. A good survey of frequent items algorithms
can be found in [CM03]. Here we merely list several of the more important ones.
Gibbons and Mattias [GM98] gave two simple algorithms for maintaining fixed-
sized random samples of a stream which can then be used to estimate the most
frequent items. However no theoretical guarentees for their algorithms are avail-
able. Fang et al. [FSG'96] considered “iceberg queries” which in our framework
correspond to items whose frequency is above some user-specified threshold.
Their algorithms generally require multiple passes over the data stream. Manku
and Motwani [MMO02] gave improved algorithms for the iceberg query problem.
Their algorithms have the guarentee that items with small frequency are never
output. Later, Karp et al. [KPS03] and Demaine et al. [DLMO02] independently
showed that a classic algorithm for finding a majority element (an element that
occurs at least half the time) can be generalized to find all elements whose fre-
quency exceeds some user-specified fraction 6 of the total length of the stream in
space %. Finally, Cormode and Muthukrishan [CM03] gave an algorithm for find-
ing items with frequency above some fraction of the total length of the stream



based on the idea of group testing. Unlike all the previous algorithms, their algo-
rithm works in the presence of delete operations, a feature more suited for their
database applications than for the networking application that we consider here.

None of the above algorithms solve our version of the problem. All of them
return elements with frequency above a certain threshold and thus are not
guarenteed to return a list of k elements. In addition, for the algorithms of
[KPS03,DLMO02], the list of items returned may include items with arbitrarily
small frequency. As a result, none of these solutions is suitable for our applica-
tion. The only paper which studies the version of the problem that we consider
is the original paper of Charikar, Chen and Farach-Colton [CCF02]. We describe
their algorithm in depth in Section 3.

On the experimental side, a number of papers have studied the distribution
of web accesses or search engine queries and concluded that the distribution was
some kind of Zipf distribution. [ABCO96] found a Zipf parameter of 0.85 while
[G94] and [CBC95] found Zipf parameters slightly under, but very close to 1.
[X002] did not explictly mention the Zipf parameter but it is implicit from their
plots that the parameter is less than 1. [BCFT99] measured six traces from a
variety of sources and found good fits for all with various parameters, all less
than 1.

3 The CCF Algorithm

Since our work is based heavily on the algorithm of Charikar, Chen and Farach-
Colton (hereafter referred to as the CCF algorithm) and their Count Sketch data
structure[CCF02], we begin by reviewing their work. Recall that n is the total
length of the data stream seen so far, m is the total number of distinct elements
in the data stream seen so far and n; is the frequency of element i, ordered such
that ny > ne > ... > nyy,.

The Count Sketch data structure is a small sketch of the data stream which
allows us to estimate the frequency of each item to within an additive factor
of eny with probability 1 — §. Observe that this guarentee is sufficient to solve
the FINDAPPROXTOP(S, k, €) problem defined above. It consists of an array of
O(log %) hash tables plus two pairwise independent hash functions, s(-) and h(-),
for each hash table. h(-) hashes items to buckets, while s(-) hashes items to %1
uniformly at random. Assume all hash functions are independent of one another.

The data structure implements two operations: ADD and ESTIMATE. To
ADD a new element i to the Count Sketch, for each of the O(log %) hash tables,
we hash the item into a bucket using h(7), and then update the count in that
bucket with either +1 or —1 depending on the outcome of s(i). It turns out
that the pairwise independence of the hash functions implies that s(¢) - k() is an
unbiased estimator of n;. To see this, suppose we want to estimate the frequency
of item ¢. For each distinct item j, we define an “indicator” random variable z;
to be the item’s frequency, n;, if the item hashes into the same bucket as ¢ and
0 otherwise. Then by the pairwise independence of s(-) and the independence of

h(-) and s(-).
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This proves the following lemma;:
Lemma 1. s(i) - h(i) is an unbiased estimator for n;.

We call each estimator s(i) - h(i) for each of our hash tables an individual
estimator. Given the individual estimators, to ESTIMATE the value of n; given
an item ¢ from the Count Sketch, we take the median of the O(log %) individual
estimators and return it as the final estimate.

The ultimate goal of the CCF algorithm is to return an approximate list of
the top k items seen so far at any point in the data stream. To do so, it maintains
a Count Sketch and a heap of the top k items as follows: whenever it sees a new
item, it ADDS it to the Count Sketch and queries the data structure for an
ESTIMATE of the frequency of the item. If the item is already in the heap, it
increments its count. Otherwise, it compares the estimate to the frequency of
the smallest item in the heap and if it is larger, adds the new item to the heap.
It is easy to see that this procedure ensures that at any point in the stream, the
heap maintains the top k elements seen so far.

3.1 Analysis of the CCF Algorithm

Intuitively, the algorithm works well if there are a few items in the stream that
are very frequent and a large number of items with very low frequency. By
choosing the hash table size large enough, we can ensure that the large items get
spread out and do not corrupt each other’s estimates with reasonable probability.
Conditioning on this event occurring, each large item only collides with small
items which then cancel each other out because of the random +1’s.

The crucial parameter in the data structure is b, the number of buckets in each
hash table. First, we set b = £2(k). This ensures that with constant probability,
none of the top k elements collide. Conditioning on this event occurring, we
then proceed to compute the variance of the estimator and apply Chebyshev’s
inequality to bound the deviation of each estimator.

Lemma 2. Conditioned on the event that none of the top k items collide with
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1, the variance of each individual estimator for n; is bounded by
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Again, by pairwise independence of the s(k) and s(j), the cross terms cancel.

Recall that our definition of FINDAPPROXTOP(S, k, €) requires us to estimate
the frequency of each element to within an additive error of eng. So, plugging our
bound on the variance from Lemma 2 into Chebyshev’s inequality, setting the
deviation to be the eny and setting the error probability to be constant implies
the following bound on b:

2
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Setting the probability to a constant and solving for b gives the desired result.

Thus far we have shown that the there are no collisions with constant prob-
ability and that conditioned on that, the deviation of the estimator is less than
eny with constant probability. To achieve a high probability result, we take the
median of O(log %) individual estimators. The proof is by a standard Chernoff
bound argument showing that if the expected number of individual estimators
with small deviation is bounded away from %, then with high probability, at
least 3 of O(log %) estimators have small deviation, which in turn implies that
the median has small deiviation. We omit details from this extended abstract.

Lemma 4. The median of the individual estimators has small deviation with
probability O(1 — m)

We note that the use of the median, as opposed to the mean, is crucial
to the algorithm. Intuitively, each individual estimate could deviate from its
expectation by a large amount, for example, if two large elements happen to
collide in the same bucket. These “outliers” have a large affect the mean, making
it unsuitable for a final estimator, whereas the median is robust to these outliers.



The final piece of the analysis is to take a union bound over all n positions
in the stream to ensure that at every point in time, we can estimate the current
item’s frequency accurately and with high probability.

The final space bound is b multiplied by O(log %), the number of hash tables.
Putting together our bounds on b, this proves the main theorem of [CCF02]:

Theorem 1. The CCF algorithm solves FINDAPPROXTOP(S, k, €) in space

2
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While this theorem holds for arbitrary distributions on the item frequencies,
we shall be particularly interested in analyzing the space bounds implied for
low parameter Zipf distributions. We show these calculations in the next section
after we present our algorithm.

4 Our Algorithm

Our algorithm keeps the basic outline of the CCF algorithm and merely modifies
the Count Sketch data structure. We keep the h(-) hash functions from the Count
Sketch data structure and the array of hash tables, but we discard the s(-) hash
functions. Now, to ADD an item to the sketch, we simply update the count of
the appropriate bucket in each hash table by +1. To ESTIMATE the frequency
of an element, we take the count in the bucket, and subtract from it a constant
¢ = 7. Intuitively, c is the expected count of the bucket up to that point in the
stream.

Although this algorithm seems much simpler than the CCF algorithm, some-
what surprisingly, it yields slightly better bounds, as we shall now show.

4.1 Analysis

For clarity, we shall denote our hash function A(-) to differentiate it from h(-)
for the CCF algorithm. Similarly we shall denote the size of each of our hash
tables by b. Define our individual estimator of item ¢ to be

~ L n
h(i) = (Zﬂ?j) 3
J

We start by again setting b = 2(k) so that with constant probability, our
item ¢ does not collide with any of the other k top items. Conditioning on this
event occurring, we see that

Lemma 5. The expectation of each individual estimator of i, conditioned on the
event that none of the top k items collide with i, is

Ejgk Ny
b
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While this is not quite what we wanted since the estimator is biased down-
wards, we shall show later that we can correct for this at the end of the algorithm.
However, for the remainder of the analysis, it will be convenient to work with
the biased version of the estimator. Note however that since b will generally be
fairly large and for low parameter Zipf’s, the k most frequent items will carry
only a small fraction of the total weight of the stream, this estimator should be
quite close to the actual value in practice.

We now compute the variance of the estimator.

Lemma 6. Conditioned on the event that none of the top k items collide with
Z]>k "3
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The linearity of the variance is implied by the pairwise independance of the
hash function A(-).

So our estimator has the same variance as the Count Sketch estimator. By
stepping through their analysis, we can obtain the same space bounds. However,



when we analyze the algorithm with higher moments instead of the variants and
apply deviation bounds analogous to Chebyshev’s Inequality for these higher
moments, we can achieve a slight improvement. By contrast, higher moment
analysis does not yield better results for the CCF algorithm. In the rest of this
section, we will work only with even moments because of the difficulty of working
with the absolute values in odd moments.

As an example, consider the Fourth Moment of fz(z) For ease of presentation,
in the rest of this paper we let u be the expectation of s(i) - h(i) and i be the
expectation of ﬁ(z) The calculation of the Fourth Moment follows in exactly the
same way as the variance calculation. The only change needed is for fz() to be
four-wise independent. This gives

4
" . n
E((h(i) - )] < ET
which implies the following bound on b:
b= Zj>k n;l
(Enk)4

using a Fourth Moment generalization of Chebyshev’s Inequality.
In general, for arbitrary even p, our algorithm has a pth moment of

P
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Putting all this together gives us the following theorem:

Theorem 2. Our algorithm solves FINDAPPROXTOP(S, k, €) in space

n Zj>k n? n
O(klogg + WIO g)

when h(-) is chosen to be a p-wise independent hash function for some even
number p.

4.2 Correcting the Estimator

Recall from Lemma 5 that our estimator iL(Z) is a biased estimator.

ngk nj

E[A(i)] = n; — ;



We can correct the estimator by observing that our algorithm as stated gives

n;
ngk J

us good estimates of the quantity Y; = n; — for each of the k& most

frequent items. Summing these up we get

Svi=0- k)—zjg’“ -

i<k

and we can approximate this quantity to within (1 + €) precision. & is known
so this gives us a good estimate of the sum and we can use this to correct our
estimator, h(7).

4.3 Analysis for Zipf distributions

We now analyze the improvement the algorithm gives for Zipf distributions.
We omit the parameter ¢ in the definition of the Zipf distribution from our
calculations since all occurrences of ¢ eventually cancel.

Recall that our bounds from Theorem 2 depend on the sum of the pth power
of the n;’s. Accordingly we compute

) O(m*=r%), 2 < 1]—1?
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Plugging these values into Theorem 2, we obtain the following values for b
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The final bounds or obtained by multiplying these values for b by the number
of hash tables, O(log % ).

In comparison to our algorithm, the CCF algorithm does not achieve better
space bounds using higher moment analysis. We refer the reader to Appendix A
for this analysis. The bounds for both algorithms are reported in Table 1.

When reading the Table 1, note that £ < m always and for our target
applications, £k << m since m will generally be extremely large, possibly even
unbounded (e.g. the number of distinct files on a group of web servers or the
number of distinct queries to a search engine). while k will generally be relatively
small (e.g. the size of a cache or the 10 most popular queries on a given day). It
can be seen that our bounds are better than those of the CCF algorithm for small
values of z and never worse. It was shown in [CCF02] that for Zipf parameter
above 1, the trivial sampling algorithm performs better than the CCF algorithm.
Likewise, it performs better than our algorithm. However, our focus in this paper
is on low parameter Zipf’s which are seen in practice in web access traces.



Zipf parameter| CCF Algorithm|Our Algorithm
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Table 1. Comparison of space requirements for CCF algorithm vs. Our algorithm.

1 1
Assume 5 <3

We note that our algorithm avoids polynomial dependence on m for all but
the lowest parameter Zipf distributions (z < 1), and furthermore, we can raise
p to an arbitrarily large constant to make this threshold as low as we like.

5 Discussion

We presented a simple, new algorithm for FINDAPPROXTOP(S, k, €) that im-
proves on the space bounds of the CCF algorithm when the Zipf parameter is
very small. This is a somewhat surprising result since the algorithm is appar-
ently much simpler. In addition, we motivated our work by describing a web
caching application for which our version of the frequent items problem is nec-
essary and for which there is evidence that good algorithms for low parameter
Zipf distributions are desirable.

Our algorithm is very simple to implement, essentially involving only hash-
ing, median finding and maintaining a heap. p-wise independent hash functions
can be trivially implemented by choosing a random degree-p polynomial over
an appropriately sized finite field. As p gets large, though, the amount of stor-
age required for the hash functions may come in to play. Therefore, the total
per-item processing time is essentially only O(log %), assuming a linear time
median-finding algorithm. It practice, sorting the individual estimators to find
the median is presumbly fast enough.
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A Higher Moment Analysis for CCF

In this Appendix, we show that the CCF estimator does not achieve good bounds
for higher moments. Consider again the Fourth Moment and recall that that our
estimator had a Fourth Moment

4
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E[(h(i) — )*] = 7



The CCF estimator, by contrast, has the following Fourth Moment:
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This is because the +1 random variables have the unusual property that even
powers have expectation 1 while odd powers have expectation 0. This means that
in general, the pth moment of the Count Sketch estimator is

p P

p 2,2

Zj>k n; + Ej;ee,j,bk n;ing
b

E[(s(9) - h(i) = p)*] =

Recall the p is assumed to be an even number.

When the distribution is very skewed, the first term dominates. On the other
hand, if the distribution is uniform, say, the second term dominates. We will now
show that for Zipf distributions, the second term dominates.
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Comparing these bounds to those in Table 1, we can see that they do no
better than the bounds achieved by using only the Second Moment Method on
the CCF algorithm.



