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Abstract

An electronic payment system ideally should provide
security, anonymity, fairness, transferability and scal-
ability. Existing payment schemes often lack either
anonymity or scalability. In this paper we propose Who-
Pay, a peer-to-peer payment system that provides all
the above properties. For anonymity, we represent coins
with public keys; for scalability, we distribute coin trans-
fer load across all peers, rather than rely on a central en-
tity such as the broker. This basic version of WhoPay is
as secure and scalable as existing peer-to-peer payment
schemes such as PPay, while providing a much higher
level of user anonymity. We also introduce the idea of
real-time double spending detection by making use of
distributed hash tables (DHT), which further improves
the security level of WhoPay.

To evaluate how well WhoPay distributes load among
peers, we have run simulations with several different con-
figurations. The simulation results show that the major-
ity of the system load is handled by the peers under
typical peer availability, indicating that WhoPay should
scale well.

1 Introduction

E-commerce is rapidly becoming the preferred way for
many consumers to obtain goods and services. Pay-
ments for such transactions on the Web are frequently
fulfilled using credit cards or an online payment system
such as PayPal [17]. These electronic payment systems
generally incur considerable per transaction cost. For
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example, most credit card processors charge merchants
a minimum fee of between 15 and 35 cents per transac-
tion [13]. As a consequence, these payment schemes are
generally considered unsuitable for items that cost $5
or less. Micropayment systems, which try to aggregate
many small micropayments into a few bigger payments,
are designed to address this issue.

Another issue with traditional payment technologies
like the credit card system and PayPal is the lack of
privacy provided to the parties involved in the trans-
actions. With credit cards or PayPal, the identities of
the payer and payee of each transaction are exposed not
only to each other, but also to the credit card companies
or PayPal.com. These exposed identities, together with
the transaction itself, can reveal precious or sensitive in-
formation about the parties involved. In response to
this concern, numerous anonymous payment systems [29]
have been proposed to hide user identities during trans-
actions, mostly by using blind signatures [9] or public
key cryptography.

Total anonymity has its negative side. Particularly,
it makes it more difficult to punish fraud such as dou-
ble spending and allows illegal activities such as black-
mail and money laundering. What we really want is a
payment system where users remain anonymous under
normal circumstances but a trusted authority, called the
judge, can be called in to reveal relevant identities for
law enforcement purposes when fraud is detected. The
notion of fairness was introduced by Camenisch [5] to de-
scribe this property. Vo and Hohenberger have proposed
such a fair system [29].

A common characteristic shared by all the payment
schemes mentioned above is that every transaction goes
through a central authority, which we refer to in general
as the broker. This means the broker needs to handle
a huge amount of load and thus presents a scalability



and performance bottleneck. While credit card compa-
nies and PayPal have so far been able to sustain the
ever growing transaction load by increasing investment
in hardware, this certainly sets the threshold for entry
to the payment business very high and makes it infeasi-
ble for use in many applications. For example, one can
imagine a pay-per-download file sharing system, where
a virtual payment system is used to encourage fair shar-
ing of resources among peers and discourage free riders.
There is probably no business model in such a system
that can make someone willing to invest the amount of
money needed to assume the role of the broker.

PPay [30] is a scalable payment system that is inspired
by the success of P2P file sharing systems. Such systems
as KaZaA [15] can scale to millions of peers because they
pool together and harness the massive resources at the
“edge” of the network, rather than relying on expensive
centralized resources. As noted by its authors, PPay
exploits two main characteristics of P2P applications:

e First, peers are generally both consumers and mer-
chants. As a result, coins received from other peers
can be used in many transactions before being de-
posited at the broker.

e Second, if we can shed the broker’s load onto the
peers, we can build a payment scheme with much
better scalability and performance properties than
existing ones.

PPay is secure, fair and scalable, but provides no
anonymity. In contrast, the Vo-Hohenberger system is
secure, anonymous and fair, but is not scalable. In this
paper, we propose WhoPay, a P2P payment system that
is secure, anonymous, fair, and scalable, thus combining
the best of both worlds.

The rest of the paper is organized as follows. In the
next section, we will formally define our design goals.
Then in Section 3, we will describe some background
information that should help us understand WhoPay’s
architecture. This is followed by the description of the
basic version of WhoPay in Section 4. Several exten-
sions to this basic design will be introduced in Section 5,
including a real-time double spending detection mech-
anism and others that further improve the anonymity
property of WhoPay. We present our simulation work
in Section 6 and discuss related work in Section 7. We
conclude in Section 8.

Notation: We will let B denote the broker, pkx the
public key of some entity X, skx the private key of X,
and gkx the group private key of X. A message M
signed by some key K is denoted as {M} .

2 Design Goals

Vo and Hohenberger defined a set of desirable proper-
ties for digital payment systems, denoted SAFT, which
stands for Security, Anonymity, Fairness, and Transfer-
ability [29]. These properties were defined with the as-
sumption that every coin transfer goes through the bro-
ker. We will adopt their terminology, but slightly rede-
fine each property to make it applicable to our peer-to-
peer design.

e Security: The value of coins can not be tampered
with. This means, only the broker can generate
coins or increase the value of coins, and only the
current holder of a coin can transfer, destroy, or de-
crease the value of the coin. This guarantees that
no user can manipulate the system for profit or to
harm another. In particular, fraud such as double
spending is either prevented, or detectable and pun-
ishable.

e Anonymity: Payer and payee do not need to re-
veal their identities to any third party. This means,
without the help of the judge, nobody (other than
the participants themselves) can identify the partic-
ipants of a transaction with probability better than
random guessing. Optionally, payer and payee can
hide identities from each other.

e Fuairness: The broker and the judge, working to-
gether, can reveal the identities of all parties in-
volved in a particular transaction. If possible, this
process should not reveal any information about
other transactions.

e Transferability: The recipient of a coin can use the
same coin to pay another user without identifying
himself to the broker. All systems mentioned in this
paper support transferability and thus this property
will not be the focus of our discussion.

Besides, we want our scheme to reduce load on the
broker:

e Scalability: The load of any particular entity does
not grow to be unmanageable as the size of the sys-
tem increases. In particular, the majority of the
transaction load should be distributed among peers
rather than handled by the broker.

3 Preliminaries

Before we present the WhoPay design, we first briefly
describe some background information that will help us



understand the architecture of WhoPay, namely PPay
and group signatures.

3.1 PPay

PPay is a payment scheme designed for P2P systems.
In PPay, user U purchases coins from the broker, and
hence becomes the owner and holder of the coins. To
spend the coins he owns, U issues the coins to another
user, say V. After the issue, V becomes the current
holder of the coins, but U remains their owner. If V'
wants to pay yet another user W with these coins, he
can transfer these coins to W via U, the coins’ owner.
After the transfer, V' relinquishes his holdership of the
coins and W becomes the current holder of the coins; U
remains the owner of the coins. W can further transfer
these coins to others, and so on. Only the holder of a
coin can spend the coin. Or, the holder can choose to
deposit the coin at the broker for cash, by which time
the coin comes out of circulation.

The main challenge in this scheme is to ensure that
the security properties are not compromised, since we
now want operations—in particular, transfers—normally
done by the trusted broker to be performed by untrusted
peers. As PPay is designed as a micropayment scheme,
in that each payment is of a small amount, utmost se-
curity is not required; a security model where fraud is
detectable (even after the fact) and punishable is prob-
ably good enough in most cases. PPay achieves such
security as follows.

When user U purchases a coin from the broker, the
coin is in the following form:

C ={U, sn}sky

where sn is the serial number of a coin that uniquely
identifies it. Once issued, the coin becomes:

Coin = {C, H, seq} sk,

where H is the current holder of the coin, and seq is a
sequence number. The coin owner maintains a sequence
number counter for the coin and increments the coin’s
sequence number each time it is issued or transferred.
For example, to issue the coin C to user V, U sends V:

C(V = {Ca Va 5€Q1}sku

which also serves as a proof of issue. Now for V' to trans-
fer the coin to W, V sends the following transfer request
to owner U:

{W,Cv }sky

and U will keep a record of this transfer request in order
to later prove that V has “relinquished” the holdership

of the coin, in case of a dispute. Finally, U sends W:
Cw = {C, W, seq2} sk,

which also serves as a proof of transfer. Note that segs
must be greater than seq;.

In summary, a coin explicitly contains the identities of
both owner and holder; users sign their messages with
their private keys, and keep audit trails of these signa-
tures. These features ensure the “good enough” security
mentioned earlier.

Finally, in practice peers come and go, so how do we
deal with coins whose owners are offline (we will call such
coins “offline coins” from now on)? To address this issue,
PPay includes a downtime protocol, in which the broker
temporarily handles the transfer/renewal of offline coins
and keeps relevant state. Peers must synchronize state
with the broker after they rejoin the system.

It is easy to see that PPay provides very weak, if any,
anonymity for the parties involved in a transaction. For
example, during coin transfer, the payee knows who the
payer is and vice versa, and the coin owner knows who
the payee and the payer are and thus can construct a
complete transaction history for each coin it owns. In
Section 4, we will describe how to modify this scheme
to provide anonymity while preserving security, fairness
and scalability.

3.2 Group Signatures

In the group signature protocol proposed by Chaum et
al [10], a group consists of n private keys G, ..., Gy,
one master public key G,, and one master private key
Gs. Each of Gy, ..., G, can be used to sign a message.
The master public key G, can be used to verify that the
message was signed by one of G, ..., Gy, but cannot
tell by which one. The master private key G5 can be
used to pinpoint which key was used. Gy is also used to
generate new private keys.

WhoPay uses group signatures to achieve fairness. Ev-
ery user is required to register with a trusted authority,
called the judge. The judge assigns each user U a (dis-
tinct) private key, denoted as gk, from a group! and
records the user’s identity with the private key. The
judge also keeps the master private key to herself. (In
practice, this master private key can be divided among
N judges using Shamir’s secret sharing protocol [26] and
at least K judges are needed in order to recover the key;
but we will make this assumption implicit in the rest
of our discussions.) Whenever a user wants to remain
anonymous, it signs its messages with its group private

LAll users belong to the same group in WhoPay.
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Figure 1: The WhoPay Model: (1) U purchases coin
from broker; (2) U issues coin to V; (3) V transfers
coin to W through U; (4) W deposits coin at broker.

key rather than its regular private key. These signatures
allow everyone to verify (using the master public key)
that the signer is a legitimate user in the system but
do not expose its true identity under normal circum-
stances. However, once a fraud is detected, the judge
can be called in to reveal the identities of the bad guys.
This way, anonymity is preserved and justice is served.

4 WhoPay

4.1 Overview

WhoPay inherits its basic architecture from PPay. Coins
have the same lifecycle as in PPay. Users purchase coins
from the broker and spend them by issuing them to other
users, who can either spend them by transferring them
or deposit them at the broker for cash. Coins must be re-
newed periodically to retain their value. Coins get trans-
ferred /renewed via the coins’ owners if they are online,
or via the broker otherwise (Figure 1).

The first major difference of WhoPay from PPay is
that coins are identified by public keys, rather than se-
rial numbers. To purchase a coin, user U generates a
random public/private key pair pkc,, /skc,,, keeps the
private key skc,, secret and asks the broker to sign the
public key pkc,,.2 The broker sends the coin back in the
following form:

C= {U7 kau}skB

where pkc,, should (with very high probability) uniquely

2 As different users generate these public/private key pairs in-
dependently, there is a probability of key collision. The length of
the renewal period of coins can be used to keep this probability
small. In this paper, we assume this probability is small enough
so that, say, the broker is willing to absorb this risk.

identify the coin. Once issued, the coin becomes:
Coin = {C, pkc,,, seq, exp_date} s,

where H is the current holder of the coin, exp_date is the
expiration date of the coin, and seq is the sequence num-
ber of the coin and serves the same function as in PPay.
For example, to issue the coin C, the payee V generates
a random public/private key pair pke,, /skc,, , keeps the
private key sk¢, secret and asks the coin owner U to sign
the binding (pkc,,, pkc, ). The binding (pkc,,, pkcy)
means “coin pkc, is now represented by pkc,”, and is
a way of conveying the information of who the current
holder of a coin is, in that whoever knows the private
key skc,, is the current holder of the coin pkc, . At any
point of time, each user remembers one such binding for
each coin it owns. To complete the issue procedure, U
sends V:

Cy = {C, pke,,, seq1, exp_datey } sk,

which also serves as a proof of issue. Similarly, for V/
to transfer the coin, the intended payee, say W, also
generates a random public/private key pair pkcy,, /skcy,
keeps the private key skc,, secret and sends the public
key pkc,, to V. V then sends the following transfer
request to owner U:

{{kaW ) CV}Sch }gkv

and U will keep a record of this transfer request in order
to later prove that V has “relinquished” the holdership
of the coin, in case of a dispute. Finally, U sends W:

Cw = {C, pkcy, , seqq, exp_dates} sk,

which also serves as a proof of transfer. Note that segs
must be greater than seq;.

4.2 Protocol Details

The details of the WhoPay protocols are given below.

Purchase: To purchase a coin from the broker, user
U generates a random public/private key pair pke, and
skcy, . He keeps sk¢, to himself and sends pkc, along
with his identity (e.g., in the form of a public key cer-
tificate) signed by his private key sky to the broker.
After verifying the signature, the broker adds pkc, to
the list of valid coins, signs the coin with its private key
and sends it back to U. The transaction completes after
U verifies the broker’s signature. It should be straight-
forward to modify this procedure to purchase coins in
batch.

Issue: For U to issue V a coin pkc,, V generates a
random public/private key pair pke, and skc, , keeps



skcy, to himself, and sends pkc,, to U. U sends V the
broker-signed coin pkc,,, and answers a challenge by V'
to prove he is the owner of the coin. U then updates
its coin binding list to bind pkc, to pkc, , a randomly
chosen sequence number and an appropriate expiration
date. U signs the binding with skc,,, and sends V' the
signed binding, which serves as a proof of issue of the
coin to V. The transaction completes after V' verifies
the signature.

Transfer: For V to transfer W a coin pkc,,, W gener-
ates a random public/private key pair pkc,, and skcy,,
keeps skc,, to himself, and sends pkc,, to V. V sends
the coin owner U a transfer request identifying pkc,, and
pkcy, . The transfer request is signed with both sk¢,, and
V’s group private key gky, with the first to prove V’s
holdership of the coin and the second to help ensure the
fairness of the system. After receiving this transfer re-
quest and verifying it is a valid request, U sends W the
broker-signed coin pkc,,, and answers a challenge by W
to prove he is the owner of the coin. U then updates
its coin binding list to bind pkc, to pkc,,, an incre-
mented sequence number and an appropriate new expi-
ration date. U signs this binding with skc, and sends
W the signed binding, which serves as a proof of trans-
fer of the coin to W. The transaction completes after W
verifies the signature.

Deposit: For W to deposit a coin pkc,, it sends a
deposit request to the broker identifying the coin to be
deposited. The deposit request is signed with both skc,,
and W’s group private key gky , with the first to prove
W’s holdership of the coin and the second to help ensure
the fairness of the system. After receiving this deposit
request and verifying it is a valid request, the broker
sends payment to W.

Renewal: For W to renew a coin pkc,,, it sends a
renewal request to the coin owner U identifying the coin
to be renewed. The renewal request is signed with both
skcy,, and W’s group private key gkw, with the first to
prove W’s holdership of the coin and the second to help
ensure the fairness of the system. After receiving this
renewal request and verifying its validity, U updates its
binding for pkc, with an incremented sequence num-
ber and an appropriate new expiration date. U signs
this updated binding with skc, and sends W the signed
binding, which serves as a proof of renewal. The trans-
action completes after W verifies the signature.

Downtime transfer: For V to transfer W a coin
pkc, via the broker, W generates a random pub-
lic/private key pair pkc,, and ske,,, keeps skcy, to him-
self, and sends pkc,, to V. V sends the broker a transfer
request identifying pkc,, and pkc,, . The transfer request
is signed with both sk¢, and V'’s group private key gkv,
with the first to prove V’s holdership of the coin and the

second to help ensure the fairness of the system. Af-
ter receiving this transfer request and verifying it is a
valid request, the broker records the binding of pkc,, to
pkc,, , an incremented sequence number and an appro-
priate new expiration date. The broker signs this binding
with skp and sends W the signed binding, which serves
as a proof of transfer of the coin to W. The transaction
completes after W verifies the signature.

In the details, there are two flavors of the downtime
transfer protocol, depending on whether the coin was
last issued/transferred/renewed through its owner, or
was it transferred/renewed through the broker. In the
first case, most likely the broker has not established any
state about the coin and thus needs to verify the coin
owner’s signature. In the second case, most likely the
broker has the up-to-date binding information for the
coin and only needs to perform a bit-by-bit comparison
of the signed binding received to the locally stored sig-
nature.

Downtime renewal: For V to renew a coin pkc, via
the broker, V sends the broker a renewal request iden-
tifying the coin to be renewed. The renewal request is
signed with both skc,, and V’s group private key gkv,
with the first to prove V’s holdership of the coin and
the second to help ensure the fairness of the system. Af-
ter receiving this renewal request and verifying it is a
valid request, the broker records the binding of pkc,, to
pkc, , an incremented sequence number and an appropri-
ate new expiration date. The broker signs this binding
with skp and sends V the signed binding, which serves as
a proof of renewal of the coin. The transaction completes
after V' verifies the signature. Similar to the downtime
transfer case, there are two flavors of the downtime re-
newal protocol, depending on whether the coin was last
issued/transferred /renewed through its owner, or was it
transferred /renewed through the broker.

Sync: For U to synchronize state with the broker after
it rejoins the system, it identifies itself to the broker and
proves its claimed identity through a challenge-response
procedure. The broker then looks up the bindings for the
coins whose owner is U, which it has been maintaining
for U during U’s downtime, signs them with its private
key skp, and sends it to U. After verifying the signed
bindings, U updates its coin binding list accordingly.

In summary, coin ownership is still exposed as in PPay,
but coin holdership is hidden®. Peers only use their pri-
vate keys to sign messages when they play the role of
coin owners, e.g., when they issue coins or handle coin
transfers/renewals. When peers act as coin holders, e.g.,
when they transfer or deposit coins, they use two keys

3In section 5, we will show how to anonymize coin ownership
as well.



to sign their messages. The first is the coin private key
that proves the peer’s holdership of the coin and the
other is the peer’s group private key. Neither signature
reveals the peer’s identitiy during normal operations and
the group signature allows the identity to be recovered
by the judge in exception cases, e.g., in order to identify
culprits when fraud is detected.

4.3 System Properties

In this section, we analyze the properties of WhoPay to
evaluate how well our design goals outlined in Section 2
have been met.

Security. WhoPay supports as good security as PPay.
Assuming digital (group or otherwise) signatures are not
forgeable, nobody other than the broker can create coins
and nobody is able to pose as somebody else, for exam-
ple, to spend coins he does not hold or handle transfer of
coins he does not own. While certain kinds of fraud are
still possible, the audit trails of peers and the broker en-
sure they will be detected and the culprits identified and
punished. Most of these fraud requires the collusion of
the coin owner, and exposed coin ownership in WhoPay
means these fraud is easily punishable. Even for fraud
committed by coin holders, the hidden coin holdership
in WhoPay does not pose a serious problem as the group
signatures allow holder identities to be revealed in these
cases.

Anonymity. WhoPay provides much stronger
anonymity than PPay. During coin transfer, the coin
does not contain holder identity and both the payer and
the payee use their group private keys to sign messages,
so the payee does not know who the payer is and vice
versa. For the same reason, the coin owner does not
know who the payee and the payer are. Thus coin
transfer is completely anonymous. Similarly, during
coin renewal, the coin owner does not know who is
requesting the renewal and during coin deposit, the
broker does not know who is requesting the deposit.

During coin issue, the payee knows who the payer is
since the coin contains owner identity and the owner
signs its messages with its private key. The payer, how-
ever, does not know who the payee is as the payee signs
its messages with its group private key. Thus, coin issue
is semi-anonymous and we will discuss mechanisms to
improve issue anonymity in Section 5.

Finally for each coin, the broker knows who made the
initial purchase, but not who made the final deposit.
Therefore, although it can still link purchases to deposits
by matching the public keys that represent the coins,
there is little information it can infer from this link.

Note that so far we have been talking about anonymity

in terms of application level identities such as those en-
coded in public key certificates. In many situations net-
work level identities (e.g., IP addresses) can convey a lot
of information and are hence worth hiding as well. There
have been many studies in this area, most of which, such
as Onion Routing [22] and Tarzan [12], involve hiding
end points IP addresses by using third party proxies.
In this paper, we will assume such mechanisms will be
adopted whenever network level anonymity is desired.

Fairness. Recall that fairness means the broker and
the judge, working together, can reveal the identities
of all parties involved in a particular transaction with-
out learning any information about other transactions.
Transactions signed with (non-group) private keys ex-
pose signer identities and are automatically fair. For
those signed with group private keys, the broker sends
the transactions of interest to the judge, who recovers
the identities of the signers of these transactions and
sends them back. Note that no information about other
transactions is learned in this process. Thus WhoPay is
fair.

Transferability. Recall that transferability means
the recipient of a coin can use the same coin to pay
another user without identifying himself to the broker.
In WhoPay, when the coin owner is online, broker is not
involved in coin transfers and hence does not learn the
identity of the payer. In fact, even the coin owner does
not learn the identity of the payer, due to the anonymity
property mentioned above. When transferring an offline
coin via the broker, the payer also remains anonymous
throughout the transaction. Thus WhoPay supports
transferability.

Scalability. During the lifetime of a WhoPay coin,
there is one purchase, one issue and one deposit, but
there could be an arbitrary number of transfers and re-
newals. Thus we expect transfers and renewals to dom-
inate the system load. Transfer and renewal load is
distributed across peers. In general, the more coins a
peer issues, the more transfers and renewals he needs
to handle. This is desirable, as we expect more active
peers to do more work. The broker is only involved in
coin purchases, deposits, synchronizations and downtime
transfers/renewals. The load generated by the last three
items depends on the availability of peers, but we ex-
pect the majority of transaction load is handled by the
peers rather than by the broker and the broker load in-
creases sublinearly as the number of peers (or the total
system load) increases. We will run simulations to study
scalability in detail in Section 6.



5 Extensions

5.1 Real-time Double Spending Detec-
tion

By making sure all fraud will eventually be detected and
punished, WhoPay as described so far already provides
a level of security as good as PPay. One might be con-
cerned that detecting fraud until coin deposit time may
be too late and much damage could have been done by
that time. To address this issue, WhoPay also provides
real-time double spending detection. The idea is
to make every peer’s coin binding list globally readable.
To make sure every coin owner publishes its list faith-
fully, a peer does not accept payment until verifying that
the relevant public binding has been properly updated.
Each peer constantly monitors the public bindings for
the coins it currently holds, and any unexpected update
can trigger appropriate actions.

The major challenge is how to implement this public
coin binding list. Publishing and serving all the bindings
in a central trusted server would not be a good idea, as
that would create a single point of failure and perfor-
mance bottleneck. We cannot give any peer too much
control over where the bindings are published, as doing
so would undoubtedly breed fraud. We propose to pub-
lish the coin bindings in a trusted, access-controlled dis-
tributed hash table (DHT) infrastructure. Like hash ta-
bles, distributed hash tables provide a put/get interface
for storing/retrieving values under given keys. Unlike
hash tables that are stored in local memory, DHTs are
distributed across a network. The intelligence of a DHT
design lies in its routing algorithm that ensures that a
query under a given key is always routed toward the same
host in the network. CAN [20], Chord [28], Pastry [25]
and Tapestry [14] are early examples of DHT.

Naturally, only the owner of a coin should be allowed
to write to the coin’s binding, while anyone can read
the binding. To enforce such access control policy, recall
that the coin bindings are keyed by public keys, such as
pkc, . The DHT should be designed in such a way that
only users who know sk¢, (which, supposedly, is only
the owner of the coin) can write to the id pk¢,, (by pro-
viding the right signature, which can be published along
with the binding to back it up), but anyone can read
the id pkc,,. This way, any user can verify the binding
but only the owner of the coin can modify this binding.
To allow the broker to take over during downtime, the
broker should also be allowed to write to any id. By
allowing the broker to update the bindings in the pub-
lic list, real-time double spending detection will continue
working during the owner’s downtime. To monitor this
DHT-based public binding list, peers can either poll the

bindings of interest periodically or use a register/notify
mechanism such as Bayeux [31], Scribe [7, 8], or CAN-
me [21].

We understand that there is a huge amount of trust
placed in this DHT infrastructure for its access control
and register/notify service. To address this issue, we
can either assume this infrastructure is provided as a
service by a trusted entity (e.g., AT&T), or in the case
that this infrastructure consists of arbitrary members
and lacks administrative control, introduce mechanisms
to detect and remove misbehaving nodes. Either way,
further study is needed.

5.2 Issuer Anonymity

As pointed out in Section 4, the identity of the payer is
exposed during coin issues. We identify three approaches
to this issue. The first approach is just to live with
it. We expect peers to be fully aware that there is no
payer anonymity when you issue a coin. Peers can issue
coins to pay for less sensitive items or services. When
anonymity matters, peers should choose to transfer in-
stead of issue coins. As long as peers have enough coins
to transfer, this should not be a major concern.

In the second approach, we introduce coin shops into
the system. Coin shops purchase coins from the bro-
ker, and peers purchase coins, using the issue procedure,
from the coin shops. The only transactions a coin shop
performs is to purchase coins from the broker, to issue
coins to peers, and to manage (i.e., handle the transfers
and renewals of) the coins it has issued. Coin shops do
not care about anonymity; they are in this business for
profit, e.g., by charging a small fee for each coin issued.
Peers do not own, and hence never issue coins. Peers
spend coins only using the transfer procedure, which is
anonymous.

The third approach is more complicated. Since the
root, cause for lack of issuer anonymity is the encoding
of coin owner identity in coins, why not just remove this
information from the coins? That is, given a coin, one
should not be able to tell who the coin’s owner is. Be-
cause we represent coins as public keys, we really do not
need to hardcode coin owner information in coins; a peer
can always prove its ownership of a coin by showing its
knowledge of the right private key. Thus, a coin now has
the initial form of

C= {kaU }SkB

instead of C' = {U, pkcy, } sk, for example. Once issued,
the coin becomes:

Coin = {C, pkcy, , seq, exp_date} sk,



where only C has a different format now, but everything
else stays the same as before.

The explicit coin owner information encoded in coins,
however, was needed in three places in the original Who-
Pay design. First, when peers transfer coins, the payer
needs to contact the coin owner to request the transfer.
Second, when peers perform synchronization with the
broker, the broker needs to map coins to owners in order
to determine which coins’ state to send to peers. Third,
when certain fraud (e.g., double issuing) is detected,
coin owners should be held responsible. By removing
coin owner information from coins, we break these three
things. Now we will present solutions to these problems
such that WhoPay can still operate properly.

Our solution to the first problem is to use an anony-
mous indirection mechanism like the Internet Indirec-
tion Infrastructure, or 43 [27]. i3 is an overlay network
consisting of i3 servers that store triggers and forward
messages. Each coin now includes a handle and peers
send messages to this handle when they want to con-
tact the coin’s owner. That is, coins now have the initial
form of C = {h¢y,pkcy tsky, Where hey, is the handle
of the coin. The coin owner registers a trigger on this
handle so that all messages sent to this handle will be
forwarded to itself. These handles act as pseudonyms
for the coin owner and obscure the identity of the coin
owner. Note with the use of this indirection mechanism,
the issue protocol and the transfer protocol look exactly
the same from the payee’s point of view, and thus the
payee cannot tell whether the payer is the coin owner or
some random peer.

A simple, but inefficient solution to the second prob-
lem would be to let the peer tell the broker which coins
it owns, which could be a long list. Moreover, to ensure
the secure and correct functioning of the system, the bro-
ker must ask the peer to prove its ownership of each of
these coins. As a result, this process would incur huge
communication and processing overhead. A better alter-
native, inspired by the observation that synchronization
is needed if and only if the public binding for a coin and
the local binding of the coin owner are different, is to use
lazy synchronization. Instead of synchronizing every-
thing immediately after rejoining the system (which we
call proactive synchronization), the peer waits until it
is absolutely necessary, i.e., when a transfer or renewal
request is received. Upon receiving such a request, the
coin owner checks the relevant binding in the public coin
binding list and updates its local binding if it is out-
dated (we will refer to this operation as simply a check).
This way, the involvement of the broker during synchro-
nization becomes totally optional, which is certainly a
desirable property.

The last problem is actually about fairness. Realizing

this, the solution becomes obvious—using group signa-
tures. Peers sign their messages with their group private
keys when issuing coins. These signatures allow the is-
suers to remain anonymous under normal circumstances,
while making sure that they will get caught and punished
if they cheat.

6 Simulation

6.1 Simulation Setup

We have run simulations to study the load distribution
among the peers and the broker under different scenar-
ios. In particular, we want to show that a system based
on our algorithm would scale well with increasing load.

We evaluated three policies in our simulation, which
we denote as policy I, II, and III, respectively. While
policy I and III represent two extreme scenarios, policy
IT covers the middle ground. As the results for policy II
were less interesting, we will describe those for policy 1
and IIT only.

In policy I, each peer selects payment methods accord-
ing to the following order of preferences:

1. Transfer an online coin (via the owner).
2. Transfer an offline coin (via the broker).
3. Issue an existing coin.

4. Purchase and issue a new coin.

In policy III, each peer selects payment methods ac-
cording to the following order of preferences:

1. Transfer an online coin (via the owner).
2. Issue an existing coin.
3. Purchase and issue a new coin.

4. Deposit an offline coin, then purchase and issue a
new coin.

In policy I, each peer tries to get rid of coins received
from other peers as quickly as possible. The motivation
behind this might be fear of fraud. Policy III simulates
the best case in terms of broker load: each peer tries
to avoid dealing with the broker as much as possible,
and the way it deals with offline coins is the same as
the second policy. These two policies are also different
in the way they deal with offline coins. Policy I chooses
to transfer offline coins through the broker, and the mo-
tivation for doing so might be that each peer wants to
minimize the number of coins it needs to manage. In



Table 1: Simulation Setup

Setup Policy Sync I v Number of peers
A I, IL.a, IL.b, III | proactive, lazy | 15 mins - 32 hrs | 1 hr, 2 hrs, 4 hrs 1000
B I, IL.a, IL.b, III | proactive, lazy 2 hrs 2 hrs 100 - 1000

policy III, peers deposit offline coins, and purchase new
coins to issue. We suspect that doing this effectively
moves the ownership of the coins from an offline peer to
an online peer, and may reduce the load on the broker
in the long run. For these reasons, we call policy I the
user-centric policy, policy III the broker-centric policy.

We use simulations to study load distribution with
different peer availability, load distribution under differ-
ent spending policies, the impact of lazy synchronization
vs. proactive synchronization, and finally, load distribu-
tion with different number of peers. To study the first
three, we use the following setup, which we refer to as
Setup A. There are a total of 1000 peers. Peers join
and leave the system: online session lengths follow ex-
ponential distribution with mean p, and offline session
lengths follow exponential distribution with mean v. In
this setup, the availability of peers can be roughly indi-
cated by the value o = p/(pn + v). To model different
peer availability, we run three sets of simulations, with
v set to 1 hour, 2 hours, and 4 hours, respectively. We
call these three sets of simulations short downtime simu-
lation, median downtime simulation, and long downtime
simulation, respectively. In each of these simulations,
we further vary p from 15 minutes to 32 hours. For each
peer, candidate payment events arrive as an independent
Poisson process with rate 1 payment per 5 minutes, with
the payee selected randomly. A candidate payment event
will result in an actual payment event if and only if the
randomly selected payee is online at the time, therefore
the actual payment events (for each peer) form an in-
dependent Poisson process with rate a payments per 5
minutes. We use a renewal period of 3 days, and each
run lasts for 10 days (in the simulated world).

To gain insights into how the system scales with in-
creasing number of peers, we run another set of simula-
tions, which we refer to as Setup B. In these simulations,
we vary the size of the system from 100 peers up to 1000
peers. We fix the mean online and offline session lengths
to 2hrs, i.e. p = v = 2 hrs, simulating a 50% peer avail-
ability. The rest of the configuration stays the same.
The setups are summarized in table 1.

Next we present the simulation results. As it turned
out the results for the short downtime simulation, me-
dian downtime simulation, and long downtime simula-
tion are pretty similar to each other, we will only show
the results for the median downtime simulation.

6.2 Simulation Results

Load distribution. The WhoPay system is built from
the following coarse-grained operations: coin purchases,
issues, transfers, deposits, renewals, downtime transfers,
downtime renewals, synchronizations, checks, and lazy
synchronizations. Here we first analyze load distribu-
tion in terms of these operations; later in this section we
will give our estimates of the (CPU and communication)
costs of these operations and analyze the aggregate load
distribution.

Under policy I with proactive synchronization, the
broker needs to handle purchases, downtime transfers,
downtime renewals, and synchronizations. Figure 2
shows the broker load in terms of these operations. As
peer availability increases, peers are online more often
and hence generate more payment events. On the other
hand, as peer availability increases, fewer transactions
involve offline peers and need to go through the broker.
The trend of broker load thus reflects the combined effect
of these two competing forces. For purchases, the first
force dominates since the number of purchases increases
as peer availability increases. For downtime transfers
and downtime renewals, the first force dominates when
peer availability is low while the second force dominates
when peer availability is high, shown by the fact that
the numbers of these two operations first increase and
then decrease as peer availability increases. One excep-
tion to this rule is the number of synchronizations, which
decreases all the way as peer availability increases; this
is because exactly one synchronization is performed for
each peer join event.

Under policy I with lazy synchronization, the bro-
ker needs to handle purchases, downtime transfers, and
downtime renewals, but no synchronizations. The trend
of broker load follows the same pattern as in the proac-
tive synchronization case, as shown in Figure 3. The
results for policy III are similar.

The story about peer load is pretty much the flip side
of that about broker load: average peer load rises as
peer availability increases (see Figures 4 and 5), for the
same reason that broker load drops. One striking point
though, is that under all configurations, transfers domi-
nate peer load.

Now to compare the total load on the broker/peers
under each configuration, we need to know the relative



Table 2: Measured Operation Cost
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Figure 3: Broker Load: Policy I + Lazy Sync

costs of such operations as purchases and transfers. We
look at two aspects of the cost: CPU cost and commu-
nication cost. Communication cost is the easy one to
deal with, as we can pretty much determine (approxi-
mately) the number of messages and bits transmitted
for each operation from the protocol specification alone.
Since most of these messages can be sent in one packet,
we will let the communication cost of each operation be
proportional to the number of messages sent/received
rather than the number of bits.

As for CPU cost, we observe that the costs of these
operations are dominated by micro-operations including
key pair generation, regular or group signature genera-
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tion, and regular or group signature verification. For ex-
ample, for peers, each transfer involves 1 key pair gener-
ation, 4 signature generations, 4 signature verifications,
1 group signature generation, and 1 group signature ver-
ification. Using the Bouncy Castle Crypto Package [2],
we measured the CPU time it takes to perform 10,000
DSA 1024-bit key generations, 10,000 DSA 1024-bit sig-
nature generations, and 10,000 DSA 1024-bit signature
verifications on a RedHat Enterprise Linux ES release 3
machine with a 3.06GHz Intel(R) Xeon(TM) CPU. The
results are shown in Table 2.

We did not find detailed results about the complex-
ity of group signature schemes in the literature, other
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than that they have been traditionally much more ex-
pensive than regular signature schemes but more efficient
group signature schemes have been proposed in recent
years [4, 6, 16]. In our analysis we are forced to make
a wild guess that efficient group signature schemes exist
such that signature generation and verification are twice
as expensive as regular signature generation and verifi-
cation. Therefore, using the cost of key pair generation
as the base unit, we assume the relative costs of these
micro-operations as shown in Table 3.

With these cost metrics, we can now obtain the to-
tal CPU and communication loads on the broker under
different configurations, as shown in Figures 6 and 7.
The plots reveal two things. First, lazy synchronization
cuts down broker load significantly. Second, the results
apparently agree with our conjecture that the broker-
centric policy yields less load on the broker than the
user-centric policy.

Figures 8 and 9 plot the broker-peer load ratio. Note
only the data corresponding to low peer availability is
shown. With extremely low peer availability, broker
load is two orders higher than average peer load. With
higher peer availability (i.e., 4hr-32hr mean online ses-
sion lengths), broker load is one order higher than av-
erage peer load. In either case, considering that we use
1000 peers in our simulations, the majority of the load
is supported by the peers, rather than by the broker.

Table 3: Relative Operation Cost
Operation Relative CPU cost
key pair generation 1
regular signature generation
regular signature verification
group signature generation
group signature verification
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Figure 7: Broker Communication Load

Load Scaling. In the second set of simulations, we
fix peer availability at 50% and vary the size of the sys-
tem from 100 peers up to 1000 peers, expecting that
broker load will grow sublinearly with total system load.
The reasoning behind such an expectation is that pay-
ment (transfer in particular) is the dominant transac-
tion type, and with a larger peer pool, peers will have
better chances of finding an online coin at the time of
payments and thus avoid contacting the broker. Unfor-
tunately, as shown in Figures 10 and 11, our simulation
results contradict this hypothesis: the broker load grows
about linearly with the total system load, rather than
sublinearly.

We attribute this unexpected result to our over-
simplified simulation model. In our simulation, peers
are uniform: they act independently and select payees
totally at random. Since we use a globally uniform peer
availability, each payment event has the equal probabil-
ity of requiring the involvement of the broker. As a re-
sult, broker load grows linearly with total system load.
In reality, we are more likely to see power-law peers,
where a small number of active peers are responsible for
a large portion of total system activities. We can expect
these peers to have good reputation and be highly reli-
able. Peers are more willing to do business with such su-
per peers. As system grows, this pool of super peers will
also grow, and peers will have better chances of finding
a coin owned by a super peer (who is most likely online)
at the time of payments. As a result, broker load will
probably grow sublinearly with total system load. Cer-
tainly we need to do more simulation work to verify the
validity of this conjecture.

On the other hand, even with linearly scaling broker
load, our system is able to relieve the broker of around
95% of the system load and we feel it is a major improve-
ment over previous centralized systems.
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In summary, as peer availability increases, broker load
decreases and peer load increases. Both the broker-
centric policy and lazy synchronization cut down bro-
ker load significantly. Transfer dominates peer load and
transfer-via-owner is the dominant payment type. Most
of the system load is handled by peers, rather than by
the broker.

7 Related Work

We got the idea of using public keys to represent coins
from the Burk-Pfitzmann anonymous transfer system [3].
The Vo-Hohenberger scheme [29] adds fairness to Burk-
Pfitzmann with the use of group signatures. Both are
online transfer systems, as is WhoPay; but while Who-
Pay distributes transfer load across peers, each trans-
fer in Burk-Pfitzmann and Vo-Hohenberger needs to go
through a central entity.

An alternative to these online transfer systems, quite
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naturally, is offline transfer systems. For example, peers
can transfer coins by using layers: each time a coin is
transferred, the current holder of the coin simply adds
another layer of signature to the coin, which serves as a
proof of relinquishment. Group signatures can be used
to provide fairness without compromising anonymity.
No third party is involved in the transfer and thus the
scheme is extremely scalable. This scheme suffers two
major problems though. First, coins grow in size after
each transfer. Second, double spending is easier to com-
mit and harder to defend than in online transfer sys-
tems. It has no real-time double spending detection.
Anyone can double spend in this scheme, while in Who-
Pay only coin owners can double spend. Nonetheless,
layered coins can be a lightweight alternative to transfer-
via-broker when coin owners are offline. To alleviate the
size and security problems mentioned above, a maximum
number of layers can be imposed.

Micropayment schemes are designed to handle pay-
ments of small amount, e.g., less than $5. These schemes



must be lightweight, otherwise the cost will outweigh
the value of the payment. Their basic approach is to
aggregate many small micropayments into a few bigger
payments. Early examples include PayWord [24] and
Electronic Lottery Tickets [23], both of which use se-
cure hash chains, albeit in different ways. These algo-
rithms, however, only allow aggregation by an individ-
ual merchant and thus are limited by the frequency of
a given consumer’s purchases with that merchant. More
recently, schemes have been designed to allow aggrega-
tion across multiple consumers and multiple merchants.
These schemes generally involve a third party payment
service provider that sits between consumers and mer-
chants and performs the aggregation for the merchants.
Some of these schemes, including BitPass [1], First-
gate [11] and Paystone [18], require pre-enrollment or
pre-deposit of funds with the payment service provider,
while others, including PepperCoin [19], don’t.

While WhoPay is not specifically designed as a micro-
payment scheme, it can certainly be extended to support
micropayment. For example, we can use a scheme such
as PayWord to first aggregate small micropayments into
bigger payments and carry out the bigger payments us-
ing WhoPay. That is, each pair of users maintains a
soft credit window between themselves and only makes
payments when this window reaches a threshold value.

8 Conclusions

An electronic payment system ideally should provide
security, anonymity, fairness, transferability and scal-
ability. Existing payment schemes often lack either
anonymity or scalability. In this paper we proposed
WhoPay, a peer-to-peer payment system that provides
all the above properties. For anonymity, we represent
coins with public keys; for scalability, we distribute coin
transfer load across all peers, rather than rely on a cen-
tral entity such as the broker. This basic version of
WhoPay is as secure and scalable as existing peer-to-
peer payment schemes such as PPay, while providing a
much higher level of user anonymity. We also introduced
the idea of real-time double spending detection by mak-
ing use of distributed hash tables (DHT), which further
improves the security level of WhoPay. Through simu-
lations, we have shown that WhoPay should scale well
under typical operating conditions.

A trusted DHT infrastructure that supports access
control and a register /notification mechanism is essential
to WhoPay’s real-time double spending detection mech-
anism. More work in this area is needed.
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