
SSA: A Power and Memory Efficient Scheme to
Multi-Match Packet Classification

Fang Yu
fyu@eecs.berkeley.edu

T. V. Lakshman
lakshman@research.bell-labs.com

Martin Austin Motoyama
m moto@uclink.berkeley.edu

Randy H. Katz
randy@eecs.berkeley.edu

Report No. UCB/CSD-5-1388
May 2005

Computer Science Division (EECS)
University of California
Berkeley, California 94720

This technical report is supported by UC Micro grant number 03-041

and 02-032 with matching support from NTT MCL, HP, Cisco, and

Microsoft.

SSA: A Power and Memory Efficient Scheme to
Multi-Match Packet Classification

Fang Yu1 T. V. Lakshman2 Martin Austin Motoyama1 Randy H. Katz1

1EECS Department, UC Berkeley
fyu@eecs.berkeley.edu m_moto@uclink.berkeley.edu randy@eecs.berkeley.edu

2Bell Laboratories, Lucent Technologies
lakshman@bell-labs.com

Abstract
New network applications like intrusion detection systems
and packet-level accounting require multi-match packet
classification, where all matching filters need to be reported.
Ternary Content Addressable Memories (TCAMs) have
been adopted to solve the multi-match classification
problem due to their ability to perform fast parallel
matching. However, TCAM is expensive and consumes
large amounts of power. None of the previously published
multi-match classification schemes is both memory and
power efficient. In this paper, we develop a novel scheme
that meets both requirements by using a new Set Splitting
Algorithm (SSA). The main idea of SSA is that it splits
filters into multiple groups and performs separate TCAM
lookups into these groups. It guarantees the removal of at
least half the intersections when a filter set is split into two
sets, thus resulting in low TCAM memory usage. SSA also
accesses filters in the TCAM only once per packet, leading
to low power consumption. We compare SSA with two best
known schemes: MUD [1] and Geometric Intersection-
based solutions [2]. Simulation results based on the SNORT
filter sets show that SSA uses approximately the same
amount of TCAM memory as MUD, but yields a 75% to
95% reduction in power consumption. Compared with
Geometric Intersection-based solutions, SSA uses 90% less
TCAM memory and power at the cost of one additional
TCAM lookup per packet.

1. Introduction
In packet classification, an incoming packet is compared
against a set of filters. Most traditional applications only
require the highest priority match, e.g., the longest prefix
match. However, many new applications demand multi-
match packet classification, where all matching filters need
to be reported. For example, for accounting purposes,
multiple counters may need to be updated for a given packet
[1]. Therefore, multi-match classification is necessary to
identify the relevant counters for each packet.

Another application of multi-match classification is
network intrusion detection systems, which monitor packets
in a network and detect malicious intrusions or DoS attacks.
Systems like SNORT [3] employ thousands of rules that
contain intrusion patterns. Figure 1.a gives an example of a
SNORT rule that detects a MS-SQL worm probe. Figure 1.b
is a rule for detecting an RPC old password overflow
attempt. Each rule has two components: a rule header and a
rule option. The rule header is a classification filter that
consists of five fixed fields: protocol, source IP, source port,
destination IP, and destination port. The rule option
specifies intrusion patterns used for scanning packet
payloads. Rule headers may have overlaps, so a packet may
match multiple rule headers (both examples blow). Multi-
match classification is used to find all the rule headers that
match a given packet in order to identify the related rule
options that must later be checked.

Figure 1. SNORT rule examples.

Multi-match classification is usually the initial step in
choosing a set of functions (e.g., update a counter) related to
a packet. Because multi-match classification is performed
on every packet, we do not want this operation to bottleneck
the system. To maintain high packet processing rates, we
need an approach that has a deterministic and high lookup
rate. Hence, TCAMs were adopted to solve the multi-match
classification problem [1, 2] as they can perform fast
parallel searches across all filters in hardware. However,
TCAMs are expensive and consume high amounts of power.
In some high end routers, TCAMs consume around 30 to 40
percent of the total line card power. As line cards are

 1

stacked together, TCAMs impose a high cost on the cooling
system. Figure 2 shows the power consumption of a 9Mbits
TCAM based on the data from a TCAM manufacture. The
energy used by a TCAM grows linearly with the number of
entries searched in parallel and scales with the frequency of
TCAM accesses. To be cost and energy efficient, TCAM-
based multi-match solutions must use an economic TCAM
memory size and perform a limited number of TCAM
lookups for each packet.

None of the previously published multi-match
classification schemes can meet all of the requirements
above. For example, the MUD scheme proposed by
Lakshminarayanan et al. encodes the extra bits in each
TCAM entry to support range and multi-match lookup [1].
The amount of TCAM memory needed is linear in the size
of the filter sets. However, the algorithm needs at least k
TCAM lookups to get k matching results and all the entries
in the TCAM are accessed during each lookup. This results
in a long processing time and high power consumption for
packets that match many filters. Another previously
proposed Geometric Intersection-based solution can report
classification results with just one TCAM lookup [2].
However, achieving this speed requires that all filter
intersections (regions of overlap between filters) be inserted
as new filters in the TCAM. Theoretically, N filters with F
fields can create O(NF) intersections. Therefore, this
approach is not cost or energy efficient when filters have
many intersections.

0

2

4

6

8

10

12

0 20,000 40,000 60,000
Number of Entries Searched in Parallel

Po
w

er
 (i

n
w

at
ts

)

250 Million Lookups Per Second
207 Million Lookups Per Second
165 Million Lookups Per Second
125 Million Lookups Per Second

Figure 2. Power consumption for a 9Mbits TCAM.

In this paper, we propose a Set Splitting Algorithm
(SSA), which works by splitting the filters into several sets
and performing separate TCAM lookups for each set. The
benefits of SSA are summarized as follows:
• Low Memory Usage. We will show later that it is not

necessary to include the intersections caused by filters
of different sets in the TCAM. Each time a filter set is
split into two sets, SSA guarantees the removal of at
least 50% of the intersections needed in TCAMs.

• Low Power Consumption. SSA uses a small amount
of TCAM memory and accesses each TCAM entry
once per packet. Hence, the power consumption level is
low.

• Deterministic Lookup Rates. If SSA splits filters into
k sets, then k TCAM lookups are needed. The number
of TCAM lookups is independent of the input packet.

• Supports Parallelism. The filter sets generated by SSA
are uncorrelated. Thus, the lookups into these filter sets
can be parallelized or pipelined.

• Low Update Cost. Since filters are split into
uncorrelated sets, the update cost is local to one set.
Simulation results based on the SNORT rule sets and

synthesized large filter sets show that SSA removes over
95% of the intersections when splitting the filter set into two
sets and almost eliminates the need to include extra
intersections when splitting the filter sets into four sets. The
total number of TCAM entries used is less than 1.2 times
the original filter set size, which is 90% less space than the
Geometric Intersection-based solutions Compared to MUD,
SSA uses a similar amount of TCAM memory. However,
SSA is faster than MUD, since each packet requires either
two or four TCAM lookups (depending on whether the
original filter set is split into two or four sets), while MUD
requires 20 TCAM lookups in the worst case. In addition,
although SSA involves multiple TCAM lookups, each
lookup is performed on different sets. Each entry in the
TCAM is accessed only once per packet. Hence, SSA yields
a 75% to 95% reduction in power consumption over MUD,
as MUD may require accessing each TCAM entry up to 20
times for one packet.

The rest of paper is organized as follows. We start by
giving a brief introduction to TCAM in Section 2. Then we
analyze the existing solutions for multi-match classification
in Section 3. Our SSA scheme is presented in Section 4. We
show the effectiveness of our approach by comparing it with
two previously published TCAM-based solutions (MUD
and Geometric Intersection-based solution), and two
representative software-based solutions (EGT-PC[4] and
HiCuts [5]) in Section 5. Finally, we state our conclusions in
Section 6.

2. Introduction to TCAM
A TCAM consists of a list of fixed-length entries. Each
entry has several cells that can be used to store a string. A
TCAM works as follows: given an input string, it performs
a parallel comparison of the string against all entries
contained in memory and reports a bit vector of the
matching results. This bit vector is passed to a priority
encoder, and the lowest index match result is usually
reported (shown in Figure 3). The lookup time (e.g., 4 ns
[6]) is deterministic for any input.

Unlike a binary CAM that has two states: (0 or 1), each
cell in a TCAM can take one of three states: 0, 1, or ‘?’ (do
not care). With the ‘do not care’ state, TCAMs can be used
for matching variable prefix CIDR IP addresses and thus
can be used in high-speed IP lookups [7, 8]. TCAMs report
a longest prefix match result with just one lookup time (e.g.,
4 ns). Furthermore, there is a one-to-one correspondence
between the bits in the filter sets and memory bits required.

 2

Figure 3. A TCAM.

However, TCAMs have some limitations. TCAMs cost
about 30 times more per bit of storage than DDR SRAMs
[9]. In addition, TCAMs consume 150 times more power
per bit than SRAMs. TCAM power consumption grows
linearly with the number of entries searched in parallel and
is also directly related to the number of TCAM accesses, as
mentioned in Section 1.

3. Related Work
Different approaches have been proposed to save TCAM
space and reduce TCAM power consumption. For example,
approaches like CoolCAMs [10] and load balancing
TCAMs [11, 12] partition the TCAM so that for a given
packet, only several partitions are searched to decrease
power consumption. These approaches are designed for the
one dimensional packet classification (destination IP
lookup). Spitznagel et al. [8] proposed a solution for the
multi-dimensional case. They organized the TCAM as a two
level hierarchy where an index block is used to
enable/disable the query process of the main blocks. They
also incorporated circuits for direct range comparisons.
These approaches are all designed for single match packet
classifications that require reporting only the highest priority
match. In the rest of this section, we will review current
solutions to the multi-match classification problem.

3.1 Bit Vector Solution
Currently, commercial TCAMs only report one matching
result (usually the first match). This is because TCAMs
have priority encoding circuits that take the matching vector
and output the first matching index as previously shown in
Figure 3. If we remove that priority encoder, the TCAM can
output a bit vector of matching results, one bit for each
entry. This solution works very efficiently when each
matching result is connected directly to a hardware
processing unit [13]. The related follow-up processing can
be triggered immediately, and these follow-up processing
units can run in parallel.

However, if we don’t have the whole system built with
the aforementioned hardware, the bit vector solution doesn’t
work efficiently. In the common packet classification
architecture, a processor (CPU or Network Processing Unit
(NPU)) is connected to a TCAM. The processor sends
packet information to the TCAM, and the TCAM sends

back matching results. With the matching results, the
processor performs the relevant operations (e.g., send to a
port, update a counter) on the packet. If the TCAM returns a
matching vector, the processor needs to step through the
vector to extract the matching results. This is not an efficient
approach when the number of entries N is large and the
matching vector is sparse. First, the rate to transfer the N bit
vector is limited by memory bandwidth. Second, processing
complexity is O(N) to extract the matching results.

Is it possible to change the priority encoder to output
the matching results only? This is difficult to accomplish,
because the number of matching entries and how they are
spread over the N bit vector vary from application to
application. It is also hard for TCAM vendors to come up
with a general design that works efficiently for all
applications.

3.2 Current Industrial Solutions
Some commercial TCAMs support multiple matching.
There is a valid bit for each TCAM entry that indicates
whether or not to compare this entry with the input. The
valid bits of all entries are initially set to valid. Given an
input, the first match will be reported in the first cycle. The
valid bit for the first matching entry is then unset, and the
TCAM will subsequently ignore that entry. The TCAM then
performs another lookup, and the second match is reported.
This process continues until there are no more matching
results. Finally, all the valid bits are reset to valid for the
next packet.

As analyzed in [1], identifying k matching results
requires 7k cycles, as it takes 6 cycles to invalidate and later
revalidate an entry. Furthermore, all entries, excluding those
that match the packet, are searched k times. Hence, the
energy consumption level is high when packets match many
entries.

3.3 MUD Solutions
Lakshminaryanan et al. proposed a novel solution to support
both range matching and multiple matching in TCAMs [1].
Their approach is based on the observation that some
commercially available TCAMs have 144 bits per entry,
while the 5-tuple typically used for packet classification has
only 104 bits. They proposed a scheme called Multi-match
Using Discriminators (MUD). The basic idea is to encode
the index of the entry and include the encoded value in each
TCAM entry. For example, for the eighth entry in TCAM,
put 1000 (binary form of 8) after the filter in that entry.
When searching for a match, MUD appends the input packet
with a set of discriminators. The packet information is
compared with the filters in parallel, while the
discriminators are compared with the encoding of the
indexes in parallel. The initial discriminators are all set to
don’t cares, meaning one can match results at any index.
After finding a matching result at index j, the TCAM is
searched again with a discriminator field value that is

 3

‘greater than j’ to get the second match result. The scheme
needs to expand ‘greater than j’ to prefixes, so MUD may
need multiple TCAM lookups to obtain the second matching
result. The authors showed that MUD needs 1+d+(k-2)*(d-
1) TCAM lookups to get k matching results, where d is the
logarithm of the number of entries in TCAM (d=log2N).
The worst case lookups can be decreased to 1+d*(k-1)/r
with DIRPE, where r (smaller than d) is a parameter used in
DIRPE [1].

Compared to commercial solutions, MUD doesn’t need
to store the per-search state in the TCAM (i.e., invalidating
the previously matched TCAM entries) to get the multi-
match results. Therefore, it can be used in multi-threaded
environments. However, it shares the same problem with
commercial solutions: the number of TCAM accesses
needed per packet is linear to the number of matching
results. We will show later in Section 6 that a packet can
match up to 12 unique filters for the SNORT rule sets and
thus requires a maximum of 20 TCAM lookups. This is the
worst case performance, but a common packet can result in
many TCAM lookups as well. For example, a regular HTTP
packet matches at least 4 unique filters. A Napster file-
sharing packet can match 8 unique filters and thus requires a
maximum of 15 TCAM lookups. In addition, all the TCAM
entries are accessed during each TCAM lookup, so the
power consumption of MUD is high when packets match
many entries.

tcp $SQL_SERVER 1433 $EXTERNAL_NET 139

tcp any any any 139

Match

tcp $SQL_SERVER 1433 $EXTERNAL_NET any

Input

TCAM
Stores Rules

Filter 1

Filter 2

SRAM
Stores Match Results

(Index of rule)

tcp $SQL_SERVER 1433 $EXTERNAL_NET 139 Filter 1&2

Figure 4. Geometric Intersection-based scheme

3.4 Geometric Intersection-based Solutions
The geometric intersection-based approach inserts filter
intersections in the TCAM [2]. An illustrative example is
shown in Figure 4. If we only put filter 1 and 2 into the
TCAM, a packet matching both filters cannot get all the
matching results. Therefore, intersection filters (e.g., the
filter in the first entry of the TCAM) are created to handle a
packet that matches both filters. These intersection filters
and the original filters are inserted into the TCAM and
compared in parallel with the input packet. Only one TCAM
lookup is needed. Afterwards, the result can be used as an
index into SRAM to get all the matching results as shown in
Figure 4. Theoretically, the number of intersection filters
can be O(NF), where N is the total number of filters, and F is
the number of fields. Real-world filter sets are typically
simpler than the theoretical worst case, but we still observe

that the SNORT rule header set creates intersections that are
ten times the original filter set size [2]. This approach is
expensive both in memory and power consumption when
the filter set has many intersections.

3.5 Software solutions
Most existing software-based packet classification
algorithms are designed for single-match classification. The
most relevant work on multi-match classification is on filter
conflict detection in [14]. They showed that even for the
single-match classification problem, classification filters can
intersect and thus introduce conflicts. There are cases where
commonly used conflict resolution schemes that are based
on filter ordering do not work. The authors proposed a
solution to solve the problem by adding new filters in a
manner similar to the geometric intersection-based solution.

There have been extensive studies on the single-match
classification problem, and some of them can be extended to
report multi-match results. For example, Grid of Tries and
Extended Grid of Tries (EGT) [4, 15] use the source and
destination IP addresses to build a trie. By traversing the
tree, we can get all the related filters. Multi-match results
can be obtained by comparing the input with these filters
one by one. Other heuristic algorithms like Recursive Flow
Classification (RFC) [16], HiCuts and Hypercuts [5, 17]
work well for real world filter sets for single-match
classification.

These software solutions are developed based on
typical characteristics of single match filter sets. For
example, the authors of the EGT scheme observed that in
typical single match filter sets, at most 20 rules will match
any packet when considering the source and destination
fields. Hence, one can search the tree based on the source
and destination fields and then perform a linear search
among the returned filters. This appears to be an economic
solution. However, this observation is no longer valid for
multi-match classification sets. In SNORT rule sets, there
are many wildcards in the source and destination addresses.
One packet can match up to 153 filters when considering
source and destination IP addresses only. We will show in
Section 6 that two representative algorithms (EGT-PC and
HiCut) either need to compare the input packet with many
filters one by one, or need a large amount of memory when
applied to the SNORT rule sets.

4. A Memory and Power Efficient
Solution to Multi-match Classification
We want to develop a scheme that is both memory and
energy efficient. In addition, we want our algorithm to be
fast: access TCAMs as few times as possible. The
Geometric Intersection-based solution is fast, requiring only
one TCAM lookup per packet. However, intersection filters

 4

results in high storage requirements and power
consumption. This problem, however, can be solved if we
are willing to sacrifice time for storage space and power
consumption. Let’s look at the example in Figure 5, all the
filters intersect with each other in a two dimensional space.
Putting the filters into the TCAM with all the intersections
requires O(N2) TCAM entries, and we can obtain the
classification result with one TCAM access. However, if
we split the filters into two groups, we can check the two
groups separately and report the matching results from both
groups as shown in Figure 6. This approach can reduce the
number of TCAM entries to N+1, but it costs two TCAM
lookups.

Storage cost: N filters +O(N2) intersection
Classification speed: 1 TCAM lookup time

Figure 5. Include all intersections in the TCAM.

Storage cost: N filters +1 intersection (F2 and F3)
Classification speed: 2 TCAM lookups time

Figure 6. Separate filters into two sets and perform TCAM lookups
separately.

We still need to keep intersections that are generated by
filters in the same set. For example, in Figure 6, the
intersection of filter F2 and F3 still needs to be included in
the TCAM so that we can distinguish a packet matching
both filters from packets matching only one of the filters.
However, intersections of filters from different sets are no
longer needed in the TCAM because separate TCAM
lookups will be performed on each set. Hence, if a packet
matches multiple filters from different sets, all the matches
will be reported separately.

Note that although we separate filters into two sets here,
we don’t necessarily require two TCAMs. TCAM vendors
now provide a blocking feature that can divide a TCAM into
several blocks and allow users to selectively search one or
several blocks in parallel. With this feature, different sets of
filters can be put into different blocks of the same TCAM
and be accessed separately. Since different sets generated by
SSA are logically independent, we can even parallelize the
lookups in different sets to achieve a higher rate.

If we split the filter sets so that most intersections occur
between filters in different sets, we do not need to include
these intersections in the TCAM. This saves TCAM space
and also reduces power consumption. Note that we only
consider the intersections that are different from the original
filters because these intersections require extra TCAM
entries. For example, in Figure 7, although F1 and F2
overlap, the intersection is the same as F2. We don’t need to
include this intersection in the TCAM because when a
packet matches F2, we can simply report a matching of both
F2 and F1. However, when F2 and F3 intersect to create
intersection I, we do need to consider I because it is
different from F2 and F3, thus requiring an extra TCAM
entry. F1 doesn’t contribute to the generation of this
intersection, so I = intersect of F2 and F3 only. In other
words, I can be eliminated only when F2 and F3 are in
different sets,

FN

Figure 7. Example of filter intersections.

This approach is memory and power efficient. These
benefits come at the cost of more TCAM lookups. Hence,
we want to find an algorithm that can automatically separate
filters into a minimum number of sets, and keep the total
number of filters (original filter set plus the remaining
intersection filters) smaller than the TCAM capacity.

4.1 Mathematical Formulation
Suppose there are N filters F1, F2, …., FN, and filters create
M intersections I1, I2, …., IM. For example, I1= intersection
of (F1, F5, F6). We want to separate the filters into several
sets. We define the residual intersection set I’ as
intersections generated by filters in the same set, which is
different from filters in that set. Our objective is to separate
filters into a minimum number of sets that satisfy N + |I’| <
TCAM size, which is an NP hard problem.

Suppose we restrict the problem by dividing up the
filters into two sets rather than multiple sets. Our new goal
then would be to find a way to separate filters into two sets
so that number of residual intersection is minimum.
Unfortunately, this problem is still NP hard and is known as
the maximum set splitting or maximum hypergraph cut
problem [18].

To our knowledge, the best known approximation
algorithm for the maximum set splitting problem yields a
performance ratio of 0.72 to the optimum solution [19].
However it requires quadratic programming, hence the
solution will be too slow to be useful as there are usually
hundreds to thousands of filters in the multi-match filter sets
[1, 3]. We develop an efficient algorithm SSA to quickly
divide filters into multiple sets so as to reduce the need of
including intersection filters. SSA guarantees the removal

F1 One TCAM Lookup
Matching F1 and FN

 5

of at least half of the intersections each time the filter set is
split into two sets. In addition, it has a low complexity of
O(NM), where N is the total number of filters, and M is the
total number of intersections.

4.2 Johnson’s Algorithm for the Maximum
Satisfiability Problem
SSA is based on Johnson’s algorithm [20], which we briefly
summarize in this section. The algorithm solves the
maximum satisfiablity problem defined as follows. Let L be
N literal pairs L={{ , 1F 1F }, { , 2F 2F },.., { , NF NF }}.
Each literal can take either a true value or a false value.
There are M clauses, with each clause consisting of a subset
of literals either in a positive or negative form, e.g., C1

={ 1F ∨ 2F ∨ 6F }. The goal is to find an assignment of L
that satisfies the maximum number of clauses. Define K as
the minimum number of literals in each clause. For K 2,
this problem is known to be NP complete [18].

≥

Assign each clause with |C| literals a weight = 2-|c|;
While (not all literals assigned weight yet){

Pick any remaining literal Fi;
 If the total weight of clauses containing Fi > those containing

iF {

 Assign Fi a true value;
 Remove all clauses containing Fi ;
 Double the weight of clauses containing iF ;
 }else{
 Assign Fi a false value;

Remove all clauses containing iF ;

Double the weight of clauses containing Fi
 }
}

Figure 8. Johnson’s algorithm.

Johnson’s algorithm is an approximation algorithm for
the maximum satisfiability problem. As presented in Figure
8, it works as follows: At the very beginning, it assigns each
clause C a weight = 2-|c|, where |C| denotes the number of
literals in C. For example, weight of C1 ={ 1F ∨ 2F ∨ 6F }
is 2-3. Next, the algorithm examines literals one by one. For
any literal that has not been assigned a value yet, if the
weight of all clauses containing is higher than the clauses
containing

iF

iF

iF , assign a true value. Now, all the clauses
containing are all satisfied and hence can be removed.
Clauses containing

iF

iF

iF are not satisfied yet, so we want the
other literals within the clauses to have a higher probability
of being selected as true later. Hence, the algorithm
multiplies the weight of all the clauses containing iF by 2.
For the case where the weight of all clauses containing iF is

higher than the clauses containing , the algorithm
performs the opposite actions.

iF

Johnson’s algorithm is very simple, it has O(NM)
complexity. It is proven that Johnson’s algorithm can satisfy
at least (2K-1)/ 2K fraction of the total clauses [20]. For
instance, when K=2, it can satisfies at least ¾ of the clauses.
Johnson’s algorithm achieves the best approximable bound
for K>2 [20].

4.3 Set Splitting Algorithm (SSA)
In this section, we present SSA, which works by splitting
filters that generate intersections into different sets, so that
their intersections don’t need to be included in TCAMs.
Every filter corresponds to a literal in the maximum
satisfiablity problem, where literals can either take a true
value or false value. For every intersection, two clauses are
added into the clause set, one with all positive literals, and
one with all negative literals. For example, if I1 represents
the intersection of , and , add two clauses:

C={ } and C’={
1F 2F 6F

1F ∨ 2F ∨ 6F 1F ∨ 2F ∨ 6F }. If there are
M intersections, the total number of clauses is 2M. Then, we
run Johnson’s algorithm and assign each filter either a
true or a false value. If the literal takes a true value, the
corresponding filter is placed in one set. Otherwise, it is put
in the other set. Figure 9 shows the pseudo code.

iF

Reduce the filter set splitting problem into a max satisfiablity
problem:

Each filter Fi corresponds to a literal
For each intersection Ii generated by j filters: Fx1, Fx2, …,

Fxj, add two clauses:
C={ Fx1 F∨ x2∨ ,…, F∨ xj)
C’=(1xF ∨ 2xF ∨ ,…, ∨ xjF)

Run Johnson’s algorithm to assign each filter Fi a true value or
false value

Put Fi in set one if it is true.
Put Fi in set two if it is negative.

Figure 9. Set splitting algorithm (SSA).

Lemma: If both clauses of an intersection are satisfied, this
intersection is no longer needed in the TCAM.
Proof: Suppose I1, which is the intersection of , ,
and , has both clauses C={ } and

C’={

1F 2F

6F 1F ∨ 2F ∨ 6F

1F ∨ 2F ∨ 6F } satisfied. This means that at least one
of (, ,) is true and one of them is false. According to
the algorithm, these filters are split into different sets. Thus
this intersection does not need to be represented in the
TCAM.□

1F 2F 6F

Theorem: SSA can remove at least 50% of the intersections
each time the filter set is split into two sets.

 6

Proof: Each clause is generated by an intersection; hence, it
has at least two literals. In other words, K >=2. From
Johnson’s results, at least (2K-1)/ 2K=¾ of the clauses are
satisfied. There are a total of 2M clauses, which means
2M*3/4=1.5M of the clauses are satisfied. Since there are M
intersections, and each intersection corresponds to two
clauses, at least 0.5M of the intersections have both clauses
satisfied and hence can be removed according to the lemma.
□

If we want to split the filter set further into more
subsets, this result still holds. Whenever the filter set is split,
we can decrease at least 50% of the intersections. For
example, if we split the filters into two sets, and then split
both sets again, we can decrease the number of intersections
to less than ¼ of the original number.

The complexity of the SSA is same as Johnson’s
algorithm: O(NM). Note that we didn’t impose any
restriction on the order for literals to be examined in the
Johnson’s algorithm. In our simulation, we select literals
based on the ratio of positive weight (total weight of clauses
containing positive literals) to negative weight. This results
in a complexity of O(NM+N2).

5. Simulation Results
In this section, we compare SSA with two previously
proposed TCAM approaches: MUD and Geometric
Intersection-based approaches. In addition, we also will
present the results of applying software-based solutions
(EGT-PC and HiCuts) to the multi-match filter sets. We use
the SNORT [3] rule header benchmark as the test sets for
multi-match classification. Since the SNORT rule header
sets are fairly small, we also test our algorithms on
synthesized larger filter sets.

5.1 Evaluation Metrics
We are going to show the tradeoffs between different
solutions in terms of the following metrics.
• Memory consumption. We use the total number of TCAM

entries to reflect memory consumption because all entries
have the same width (e.g., 144 bits).

• Speed. Memory lookup is usually the bottleneck of a
packet classification system. For the three TCAM-based
solutions (SSA, MUD and Geometric Intersection-based
solution), the number of SRAM accesses needed per
packet is equal to the number of TCAM accessesi. This is
because we can use the TCAM output as an index to fetch
the results stored in SRAM, as illustrated in Figure 4 of
Section 3. Hence, we report the maximum number of

i SSA and Geometric Intersection-based solution may take longer than one
SRAM access time if the matching results are longer than the memory
bandwidth. However, it shouldn’t be a serious issue as a packet matches a
maximum of 12 filters in the SNORT rule sets and pipelining data transfer
scheme can be used to decrease the time.

TCAM lookups per packet to reflect the worst case
classification rate.

• Power consumption. As shown in Figure 2 of Section 1,
energy used by a TCAM grows linearly with the number
of entries searched in parallel and is directly related to the
number of TCAM accesses. Hence, we use the total
TCAM entries accessed per packet as a metric for power
consumption. It is defined as the product of the number of
TCAM entries accessed per lookup and the number of
lookups per packet.

• Update costs. We randomly select 90% of the filter set as
the base filter set and use the remaining 10% as the
update filters. We test the insertion cost in terms of the
number of newly inserted filters because the deletion of
old filters is easier in TCAM-based approaches (just mask
those entries out). Note that inserting a filter into a first
match TCAM may require moving the existing filters.
There are existing approaches that prepare empty spaces
in TCAMs, or associate priority [21] or extra circuits with
each entry [22]. Here, we only concentrate on the number
of newly inserted filters as the metric of update cost.

5.2 Results on the SNORT Rule Header Set
We test all the versions of SNORT after 2.0. Although each
rule set has around 1700-2000 rules, many rules share a
common rule header (filter). The unique rule headers in
each version vary from 240 to 257 as shown in Table 1.
Note that we omitted the versions that share the same rule
headers with the previous version.

Table 1. SNORT rule headers statistics.

Version Release Date Filter Set Size
2.0.0 4/14/2003 240
2.0.1 7/22/2003 255
2.1.0 12/18/2003 257
2.1.1 2/25/2004 263

TCAM Memory Consumption
The Geometrical Intersection-based solution inserts all the
intersections into the TCAM. The second column in Table 2
records the number of extra intersections (different from the
original filters) that need to be included. Although it is well
below the theoretical upper bound O(NF), it is still roughly
10 times the size of the original filter set. After applying
SSA to divide the filters into 2 sets (SSA-2), the number of
extra filters that need to be included in TCAM falls below
55, which means that we removed more than 98% of the
intersections. When splitting the filters into four sets (SSA-
4), SSA almost removes the need to include extra filters
caused by intersections. Note that the SNORT rule set
contains range and negation (e.g., not port 80). Filters
containing range and negation may need to be mapped into
multiple TCAM entries. There are many existing solutions
to these two problems. For example, we can use extra
encodings [1, 23] or hardware circuits [8] to solve the range

 7

problem and the negation removing scheme proposed in [2]
to efficiently map negations into TCAM. In this paper, we
assume that range and negation can be efficiently solved
using the previous solutions. This assumption won’t affect
the comparison of the three TCAM-based solutions because
all of them face similar percents of ranges and negations.

Table 3 shows the total number of TCAM entries
required by the three solutions. MUD uses the least number
of TCAM entries: just the number of filters. The Geometric
Intersection-based solution needs to include many
intersections filters. Hence, it consumes the most number of
TCAM entries. SSA dramatically removes the extra
intersection filters that need to be inserted into the TCAM.
The number of TCAM entries needed is extremely close to
the MUD solution.

Table 2. Total number of extra intersections filters in TCAMs.

SSA-2 SSA-4

Version
Geometric

Intersection-
based

Extra
Inter-

sections
Saving

Extra
Inter-

sections
Saving

2.0.0 3453 46 98.67% 1 99.97%
2.0.1 3754 47 98.75% 1 99.97%
2.1.0 3758 47 98.75% 0 100%
2.1.1 4067 55 98.65% 0 100%

Table 3. Total number of TCAM entries used.

Version MUD Geometric
Intersection-based

SSA-2 SSA-4

2.0.0 240 3693 286 241
2.0.1 255 4009 302 256
2.1.0 257 4015 304 257
2.1.1 263 4330 318 263

Classification Speed
For a given packet, only one TCAM lookup is required by
the Geometric Intersection-based solution. For our SSA
solution, the number of lookups is deterministic. If the filter
sets are split into two sets, then two separate TCAM
lookups are needed. These two TCAM lookups access
different sets of filters. Because no logical relationship
exists between them, these two lookup processes can be
fully parallelized. If we split the filter sets into four sets,
then four TCAM lookups are needed.

The number of TCAM lookups needed by MUD varies
from packet to packet. Packets that don’t match any filters
need only one TCAM lookup. However, for the SNORT
filter sets, one packet can match a maximum of 12 filters.
Hence, for such packets, MUD takes at least 12 TCAM
lookups to get all the matching results. The worst case
number of TCAM lookups used by MUD is 1+d*(12-1)/r,
where d is the logarithm of the total number of filters and r
is the chunk size. For the SNORT rule sets, d is 8 or 9 and r
can be 5 or less. Hence, the number of TCAM lookups can
be as high as 20.

The above analysis is the worst case performance of
MUD. Since the number of TCAM lookups is workload

dependent, we looked at some high frequency packets. A
HTTP packet matches at least 4 unique filters and thus
requires 5 to 9 TCAM lookups. A Napster file-sharing
packet can match 8 unique filters and thus requires 9 to 15
TCAM lookups.

Update Cost
The update cost for the Geometric Intersection-based
solution is high, as newly inserted filters may intersect with
the existing filters and result in potentially many insertion
operations. Table 4 shows the average update costs per
newly inserted filter in terms of the number of newly
generated filters (including intersection filers) in the TCAM.
The third column also shows the maximum number of
insertions. One filter can generate up to 157 new TCAM
entry insertions. This scheme will obviously be slow during
the update process.

Table 4. Update cost in terms of newly inserted filters.
Geometric

Intersection-
based

SSA-2 SSA-4

Version MUD
Avg Max Avg Max Avg Max

2.0.0 1 31.73 157 1.33 17 1.002 2
2.0.1 1 35.24 135 1.34 19 1 1
2.1.0 1 34.71 135 1.36 20 1.002 2
2.1.1 1 36.00 172 1.41 26 1.006 2

The number of newly inserted filters is always 1 for
MUD, as it doesn’t need to include any intersections. The
average insertion cost decreases to almost 1 when using
SSA-2. However, the max update cost is still high (around
20). If the filter set is split into 4 sets, the number of newly
inserted filters is reduced to approximately 1 and the worst
case cost is 2, which is similar to the MUD solution.

Power Consumption
The power consumption of the MUD-based solution is
related to the incoming packets. As we explained before, in
the worst case, a packet may need 20 TCAM accesses to get
all the matching results. For each access, all the entries in
TCAM are compared in parallel. Hence, the total number of
TCAM entries accessed is 20 times the filter set size in the
worst case, which is over 4000 entries as shown in the top
curve of Figure 10. If all the packets are HTTP packets, then
each packet needs at least 5 TCAM lookups, meaning that it
accesses at least 1000 entries. A Napster packet needs at
least 9 TCAM lookups, and hence access at least 2000
entries.

The Geometric Intersection-based algorithm only
performs one TCAM lookup. Therefore, the number of
TCAM entries accessed per packet is the same as the
number of TCAM entries used. It is around 4000 due to
large number of intersections included in the TCAM. For
SSA, although we perform several TCAM lookups, they
look into different groups of filters (stored in different
TCAM blocks or different TCAMs). Each TCAM entry is

 8

accessed only once per packet. Hence, the total number of
TCAM entries accessed is just the number of entries in the
TCAMs (less than 300). The energy used by SSA-4 and
SSA-2 is similar as shown in the bottom curves in Figure
10. SSA-2 saves at least 90% of the energy consumption
compared to the Geometric Intersection-based solution.
Compared to MUD, it saves over 95% compared to the
worst case performance, and saves 76% for HTTP packets
and 87% for Napster file-sharing packets.

0
1000

2000
3000
4000

5000
6000

7000
8000

2.0.0 2.0.1 2.1.0 2.1.1
Snort version

N
um

be
r o

f T
C

A
M

 e
nt

rie
s

ac
ce

ss
ed

 p
er

 p
ac

ke
t

MUD (HTTP Packets)
MUD (Napster Packets)
MUD (worst case)
Geometric Intersection-based
SSA-2
SSA-4

Figure 10. TCAM entries accessed per packet.

5.3 Results on a Synthesized Multi-match
Filter Set
Since the SNORT rule header set is fairly small, we
generate synthetic multi-match classification test sets to test
our algorithms. We take a real-world single-match
classification set used in a core router (more than 3000
filters) and randomly insert new filters into it. Each field in
these new filters is randomly selected from old filter sets
according to their appearance frequencies. Since these new
filters are randomly selected, they are likely to intersect with
the old filters to create intersections. Because the
performance of different algorithms is largely dependent on
the number of intersections, we test our algorithms on
different intersection rates, defined as the percentage of
newly inserted filters to the size of the original filter set. We
start at 5%, which constitutes around 150 new filters, and
test to 100%, meaning that the number of newly inserted
filters reaches the same size as the original filter set size
(3060 filters).

Table 5. Total number of extra intersections filters in TCAMs.

SSA-2 SSA-4 Insertion
Factor

Geometric
Intersection-

based
Interse
ctions Saving Interse

ctions Saving

0 359 22 93.87% 2 99.44%
0.05 418 20 95.22% 1 99.76%
0.1 488 45 90.78% 3 99.39%
0.2 733 52 92.91% 4 99.45%
0.3 1080 112 89.63% 1 99.91%
0.4 1312 78 94.05% 9 99.31%
0.6 2086 171 91.80% 9 99.57%
0.8 2488 208 91.64% 4 99.84%
1 2883 229 92.06% 7 99.76%

 Although the synthesized filter sets are larger than the
SNORT rule sets, they generate relatively fewer
intersections, as shown in the second column of Table 5.
SSA also works well for these large filter sets. Splitting the
filter set into 2 sets removes over 90% of the extra
intersections, while splitting the set into 4 sets almost
eliminates the need to include extra intersections.

Due to space limitations, we will not present detailed
results on the classification speed and energy consumption.
SSA-2 requires only 2 memory lookups per packet.
However, MUD solution can match more than 20 filters in
the worst case and thus requires more than 20 TCAM
accesses per packet. Hence, SSA-2 is faster and more
energy efficient than MUD.

5.4 Software Solutions
We apply the popular EGT-PC and HiCuts algorithm to the
SNORT rule sets. EGT-PC can directly support multi-match
results. We made slight modifications to the HiCuts
algorithm to output all matching results.

EGT-PC is optimized based on the characteristics of the
typical single match filter sets, as discussed in Section 3.5.
For the SNORT rule sets, many rules apply to the same
common source and destination addresses. Therefore, if we
search the EGT-PC tree based on the source and destination
addresses, the algorithm may return up to 153 filters for an
input packet. All these filters have to be compared to the
packet one by one in software, making the approach highly
inefficient.

When we apply HiCuts to the SNORT rule sets, the
high number of filter intersections cause filters to be copied
to multiple leaf nodes. We optimized the HiCuts algorithm
to report filters directly when they encounter a node that is
fully covered by these filters to reduce filter duplications.
However, these cases are not common, and we still see that
the filters are copied many times at the leaf nodes. Table 6
shows that for the SNORT 2.0.0 filter set, a filter is copied
on average 745019/240=3108 times. This high degree of
duplication results in a high SRAM storage requirement.
More than 40MBytes of SRAM are needed for the SNORT
filter sets. This requirement goes beyond the largest single
chip SRAM density (around 8MBytes today). In addition, a
high degree of filter duplication will cause large update
costs, as the insertion of a new filter or deletion of an old
filter needs to touch all the leaf nodes containing that filter.

Table 6. Applying HiCuts to the SNORT rule set.

Version Tree Height Number of Filters
 in Leaf Nodes

SRAM Used
(KB)

2.0.0 18 745,019 41,000
2.0.1 19 803,645 46,297
2.1.0 19 820,415 47,160
2.1.1 18 827,651 49,378
As we can see from the above results, due to the

different characteristics of multi-match and single-match

 9

[10] F. Zane, G. Narlikar, and A. Basu, "CoolCAMs:
Power-Efficient TCAMs for Forwarding Engines,"
INFOCOM, March 2003.

filter sets, the two single match software-based solutions do
not work efficiently on the SNORT rule sets.

[11] R. Panigrahy and S. Sharma, "Reducing TCAM
Power Consumption and Increasing Throughput," Proc. Hot
Interconnects, 2001.

6. Conclusions
Multi-match packet classification is a key packet-processing
operation needed in important applications such as network
intrusion detection and packet-level accounting. Previously
proposed TCAM-based approaches suffer from high power
consumption or high memory usage. We develop a new set
splitting algorithm (SSA) that reduces the TCAM memory
and power consumption by 90% when tested on the SNORT
rule set. This is accomplished by using a novel scheme that
splits filters into multiple TCAM blocks such that, for each
split, the number of overlaps within each TCAM block is
reduced by a factor of at least two. Our algorithm can
support fast updates and also generates deterministic lookup
rates. To our knowledge, this is the first power efficient
scheme for high-speed multi-match packet classification.

[12] K. Zheng, H. Che, Z. Wang, and B. Liu, "an ultra
high throughput and power efficient TCAM based IP lookup
engine," Proc. IEEE Infocom, 2004.
[13] H. Song and J. W. Lockwood, "Efficient packet
classification for network intrusion detection using FPGA,"
Proc. International Symposium on Field Programmable
Gate Arrays (FPGA), Monterey, USA, 2005.
[14] V. Srinivasan and G. Varghese, "Faster IP lookups
using controlled prefix expansion," Proc. ACM
SIGMETRICS joint international conference on
Measurement and modeling of computer systems, 1998.
[15] V. Srinivasan, G. Varghese, S. Suri, and M.
Waldvogel, "Fast and Scalable Layer Four Switching,"
Proc. Sigcomm, Spetember 1998.

References [16] P. Gupta and N. McKeown, "Packet classification
on multiple fields," Proc. SIGCOMM, August 1999.

[1] K. Lakshminarayanan, A. Rangarajan, and S.
Venkatachary, "Algorithms for Advanced Packet
Classification with Ternary CAMs," Proc. ACM Sigcomm,
2005.

[17] S. Singh, F. Baboescu, G. Varghese, and J. Wang,
"Packet Classification Using Multidimensional Cutting,"
Proc. Sigcomm, August 2003.
[18] P. Crescenzi and V. Kann, "A compendium of NP
optimization problems."
http://www.nada.kth.se/~viggo/wwwcompendium/node145.
html.

[2] F. Yu and R. H. Katz, "Efficient Multi-Match
Packet Classification with TCAM," Hot Interconnects,
August, 2004.
[3] "SNORT Network Intrusion Detection System."
http://www.snort.org.

[19] G. Andersson and L. Engebretsen, "Better
Approximation Algorithms and Tighter Analysis for SET
SPLITTING and NOT-ALL-EQUAL SAT," Proc. technical
reports, ECCCTR: Electronic Colloquium on
Computational Complexity, 1998.

[4] F. Baboescu, S. Singh, and G. Varghese, "Packet
Classification for Core Routers: Is there an alternatives to
CAMs?," Proc. IEEE Infocom, 2003.
[5] P. Gupta and N. McKeown, "Packet classification
using hierarchical intelligent cuttings," Proc. Hot
Interconnects, August, 1999.

[20] D. S. Johnson, "Approximation algorithms for
combinatorial problems," Proc. the fifth annual ACM
symposium on Theory of computing, 1973.

[6] "5512GLQ TCAM from NetLogic Microsystems." [21] M. Hidell, P. Sjödin, and O. Hagsand, "Router
Architectures," Tutorial at Networking 2004. [7] P. Gupta and N. McKeown, "Algorithms for Packet

Classification," Proc. IEEE Network, 2001. [22] M. Kobayashi, T. Murase, and A. Kuriyama, "A
longest prefix match search engine for multi-gigabit ip
processing," Proc. International Conference on
Communications (ICC 2000).

[8] E. Spitznagel, D. Taylor, and J. Turner,
"Classification Using Extended TCAMs," Proc. IEEE
International Conference on Network Protocols (ICNP),
2003. [23] H. Liu, "conference on Measurement and modeling

of computer systems," Proc. Hot Interconnects, 2001. [9] D. E. Taylor, "Survey Taxonomy of Packet
Classification Techniques," Proc. Tech Report, WUCSE-
2004-24, May 2003.

 10

	technical report.pdf
	3.1 Bit Vector Solution
	3.2 Current Industrial Solutions
	3.3 MUD Solutions
	3.4 Geometric Intersection-based Solutions
	3.5 Software solutions
	4.1 Mathematical Formulation
	4.2 Johnson’s Algorithm for the Maximum Satisfiability Probl
	4.3 Set Splitting Algorithm (SSA)
	5.1 Evaluation Metrics
	5.2 Results on the SNORT Rule Header Set
	TCAM Memory Consumption
	Classification Speed
	Update Cost
	Power Consumption
	5.3 Results on a Synthesized Multi-match Filter Set
	5.4 Software Solutions

