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Abstract 
New network applications like intrusion detection systems 
and packet-level accounting require multi-match packet 
classification, where all matching filters need to be reported. 
Ternary Content Addressable Memories (TCAMs) have 
been adopted to solve the multi-match classification 
problem due to their ability to perform fast parallel 
matching. However, TCAM is expensive and consumes 
large amounts of power. None of the previously published 
multi-match classification schemes is both memory and 
power efficient. In this paper, we develop a novel scheme 
that meets both requirements by using a new Set Splitting 
Algorithm (SSA). The main idea of SSA is that it splits 
filters into multiple groups and performs separate TCAM 
lookups into these groups. It guarantees the removal of at 
least half the intersections when a filter set is split into two 
sets, thus resulting in low TCAM memory usage. SSA also 
accesses filters in the TCAM only once per packet, leading 
to low power consumption. We compare SSA with two best 
known schemes: MUD [1] and Geometric Intersection-
based solutions [2]. Simulation results based on the SNORT 
filter sets show that SSA uses approximately the same 
amount of TCAM memory as MUD, but yields a 75% to 
95% reduction in power consumption. Compared with 
Geometric Intersection-based solutions, SSA uses 90% less 
TCAM memory and power at the cost of one additional 
TCAM lookup per packet. 
 

1. Introduction 
In packet classification, an incoming packet is compared 
against a set of filters. Most traditional applications only 
require the highest priority match, e.g., the longest prefix 
match. However, many new applications demand multi-
match packet classification, where all matching filters need 
to be reported. For example, for accounting purposes, 
multiple counters may need to be updated for a given packet 
[1]. Therefore, multi-match classification is necessary to 
identify the relevant counters for each packet.  

Another application of multi-match classification is 
network intrusion detection systems, which monitor packets 
in a network and detect malicious intrusions or DoS attacks. 
Systems like SNORT [3] employ thousands of rules that 
contain intrusion patterns. Figure 1.a gives an example of a 
SNORT rule that detects a MS-SQL worm probe. Figure 1.b 
is a rule for detecting an RPC old password overflow 
attempt. Each rule has two components: a rule header and a 
rule option. The rule header is a classification filter that 
consists of five fixed fields: protocol, source IP, source port, 
destination IP, and destination port. The rule option 
specifies intrusion patterns used for scanning packet 
payloads. Rule headers may have overlaps, so a packet may 
match multiple rule headers (both examples blow). Multi-
match classification is used to find all the rule headers that 
match a given packet in order to identify the related rule 
options that must later be checked.   

 
Figure 1. SNORT rule examples. 

Multi-match classification is usually the initial step in 
choosing a set of functions (e.g., update a counter) related to 
a packet. Because multi-match classification is performed 
on every packet, we do not want this operation to bottleneck 
the system. To maintain high packet processing rates, we 
need an approach that has a deterministic and high lookup 
rate. Hence, TCAMs were adopted to solve the multi-match 
classification problem [1, 2]  as they can perform fast 
parallel searches across all filters in hardware. However, 
TCAMs are expensive and consume high amounts of power. 
In some high end routers, TCAMs consume around 30 to 40 
percent of the total line card power. As line cards are 
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stacked together, TCAMs impose a high cost on the cooling 
system. Figure 2 shows the power consumption of a 9Mbits 
TCAM based on the data from a TCAM manufacture. The 
energy used by a TCAM grows linearly with the number of 
entries searched in parallel and scales with the frequency of 
TCAM accesses. To be cost and energy efficient, TCAM-
based multi-match solutions must use an economic TCAM 
memory size and perform a limited number of TCAM 
lookups for each packet. 

None of the previously published multi-match 
classification schemes can meet all of the requirements 
above. For example, the MUD scheme proposed by 
Lakshminarayanan et al. encodes the extra bits in each 
TCAM entry to support range and multi-match lookup [1]. 
The amount of TCAM memory needed is linear in the size 
of the filter sets. However, the algorithm needs at least k 
TCAM lookups to get k matching results and all the entries 
in the TCAM are accessed during each lookup. This results 
in a long processing time and high power consumption for 
packets that match many filters. Another previously 
proposed Geometric Intersection-based solution can report 
classification results with just one TCAM lookup [2]. 
However, achieving this speed requires that all filter 
intersections (regions of overlap between filters) be inserted 
as new filters in the TCAM.  Theoretically, N filters with F 
fields can create O(NF) intersections. Therefore, this 
approach is not cost or energy efficient when filters have 
many intersections. 
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Figure 2. Power consumption for a 9Mbits TCAM.  

In this paper, we propose a Set Splitting Algorithm 
(SSA), which works by splitting the filters into several sets 
and performing separate TCAM lookups for each set. The 
benefits of SSA are summarized as follows: 
• Low Memory Usage. We will show later that it is not 

necessary to include the intersections caused by filters 
of different sets in the TCAM. Each time a filter set is 
split into two sets, SSA guarantees the removal of at 
least 50% of the intersections needed in TCAMs.  

• Low Power Consumption. SSA uses a small amount 
of TCAM memory and accesses each TCAM entry 
once per packet. Hence, the power consumption level is 
low.   

• Deterministic Lookup Rates. If SSA splits filters into 
k sets, then k TCAM lookups are needed. The number 
of TCAM lookups is independent of the input packet.  

• Supports Parallelism. The filter sets generated by SSA 
are uncorrelated. Thus, the lookups into these filter sets 
can be parallelized or pipelined. 

• Low Update Cost. Since filters are split into 
uncorrelated sets, the update cost is local to one set.  
Simulation results based on the SNORT rule sets and 

synthesized large filter sets show that SSA removes over 
95% of the intersections when splitting the filter set into two 
sets and almost eliminates the need to include extra 
intersections when splitting the filter sets into four sets. The 
total number of TCAM entries used is less than 1.2 times 
the original filter set size, which is 90% less space than the 
Geometric Intersection-based solutions Compared to MUD, 
SSA uses a similar amount of TCAM memory. However, 
SSA is faster than MUD, since each packet requires either 
two or four TCAM lookups (depending on whether the 
original filter set is split into two or four sets), while MUD 
requires 20 TCAM lookups in the worst case. In addition, 
although SSA involves multiple TCAM lookups, each 
lookup is performed on different sets. Each entry in the 
TCAM is accessed only once per packet. Hence, SSA yields 
a 75% to 95% reduction in power consumption over MUD, 
as MUD may require accessing each TCAM entry up to 20 
times for one packet. 

The rest of paper is organized as follows. We start by 
giving a brief introduction to TCAM in Section 2. Then we 
analyze the existing solutions for multi-match classification 
in Section 3. Our SSA scheme is presented in Section 4. We 
show the effectiveness of our approach by comparing it with 
two previously published TCAM-based solutions (MUD 
and Geometric Intersection-based solution), and two 
representative software-based solutions (EGT-PC[4] and 
HiCuts [5]) in Section 5. Finally, we state our conclusions in 
Section 6. 

2. Introduction to TCAM 
A TCAM consists of a list of fixed-length entries.  Each 
entry has several cells that can be used to store a string.  A 
TCAM works as follows: given an input string, it performs 
a parallel comparison of the string against all entries 
contained in memory and reports a bit vector of the 
matching results. This bit vector is passed to a priority 
encoder, and the lowest index match result is usually 
reported (shown in Figure 3). The lookup time (e.g., 4 ns 
[6]) is deterministic for any input.  

Unlike a binary CAM that has two states: (0 or 1), each 
cell in a TCAM can take one of three states: 0, 1, or ‘?’ (do 
not care). With the ‘do not care’ state, TCAMs can be used 
for matching variable prefix CIDR IP addresses and thus 
can be used in high-speed IP lookups [7, 8]. TCAMs report 
a longest prefix match result with just one lookup time (e.g., 
4 ns). Furthermore, there is a one-to-one correspondence 
between the bits in the filter sets and memory bits required.  
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Figure 3. A TCAM. 

However, TCAMs have some limitations. TCAMs cost 
about 30 times more per bit of storage than DDR SRAMs 
[9]. In addition, TCAMs consume 150 times more power 
per bit than SRAMs. TCAM power consumption grows 
linearly with the number of entries searched in parallel and 
is also directly related to the number of TCAM accesses, as 
mentioned in Section 1. 

3. Related Work 
Different approaches have been proposed to save TCAM 
space and reduce TCAM power consumption. For example, 
approaches like CoolCAMs [10] and load balancing 
TCAMs [11, 12] partition the TCAM so that for a given 
packet, only several partitions are searched to decrease 
power consumption. These approaches are designed for the 
one dimensional packet classification (destination IP 
lookup).  Spitznagel et al. [8] proposed a solution for the 
multi-dimensional case. They organized the TCAM as a two 
level hierarchy where an index block is used to 
enable/disable the query process of the main blocks. They 
also incorporated circuits for direct range comparisons. 
These approaches are all designed for single match packet 
classifications that require reporting only the highest priority 
match. In the rest of this section, we will review current 
solutions to the multi-match classification problem.  

3.1 Bit Vector Solution  
Currently, commercial TCAMs only report one matching 
result (usually the first match). This is because TCAMs 
have priority encoding circuits that take the matching vector 
and output the first matching index as previously shown in 
Figure 3. If we remove that priority encoder, the TCAM can 
output a bit vector of matching results, one bit for each 
entry. This solution works very efficiently when each 
matching result is connected directly to a hardware 
processing unit [13]. The related follow-up processing can 
be triggered immediately, and these follow-up processing 
units can run in parallel.  

However, if we don’t have the whole system built with 
the aforementioned hardware, the bit vector solution doesn’t 
work efficiently. In the common packet classification 
architecture, a processor (CPU or Network Processing Unit 
(NPU)) is connected to a TCAM. The processor sends 
packet information to the TCAM, and the TCAM sends 

back matching results. With the matching results, the 
processor performs the relevant operations (e.g., send to a 
port, update a counter) on the packet. If the TCAM returns a 
matching vector, the processor needs to step through the 
vector to extract the matching results. This is not an efficient 
approach when the number of entries N is large and the 
matching vector is sparse. First, the rate to transfer the N bit 
vector is limited by memory bandwidth. Second, processing 
complexity is O(N) to extract the matching results.  

Is it possible to change the priority encoder to output 
the matching results only? This is difficult to accomplish, 
because the number of matching entries and how they are 
spread over the N bit vector vary from application to 
application. It is also hard for TCAM vendors to come up 
with a general design that works efficiently for all 
applications.  

3.2 Current Industrial Solutions  
Some commercial TCAMs support multiple matching. 
There is a valid bit for each TCAM entry that indicates 
whether or not to compare this entry with the input. The 
valid bits of all entries are initially set to valid. Given an 
input, the first match will be reported in the first cycle. The 
valid bit for the first matching entry is then unset, and the 
TCAM will subsequently ignore that entry. The TCAM then 
performs another lookup, and the second match is reported.  
This process continues until there are no more matching 
results. Finally, all the valid bits are reset to valid for the 
next packet.  

As analyzed in [1], identifying k matching results 
requires 7k cycles, as it takes 6 cycles to invalidate and later 
revalidate an entry. Furthermore, all entries, excluding those 
that match the packet, are searched k times. Hence, the 
energy consumption level is high when packets match many 
entries.  

3.3 MUD Solutions 
Lakshminaryanan et al. proposed a novel solution to support 
both range matching and multiple matching in TCAMs [1]. 
Their approach is based on the observation that some 
commercially available TCAMs have 144 bits per entry, 
while the 5-tuple typically used for packet classification has 
only 104 bits. They proposed a scheme called Multi-match 
Using Discriminators (MUD). The basic idea is to encode 
the index of the entry and include the encoded value in each 
TCAM entry. For example, for the eighth entry in TCAM, 
put 1000 (binary form of 8) after the filter in that entry. 
When searching for a match, MUD appends the input packet 
with a set of discriminators. The packet information is 
compared with the filters in parallel, while the 
discriminators are compared with the encoding of the 
indexes in parallel. The initial discriminators are all set to 
don’t cares, meaning one can match results at any index. 
After finding a matching result at index j, the TCAM is 
searched again with a discriminator field value that is 
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‘greater than j’ to get the second match result. The scheme 
needs to expand ‘greater than j’ to prefixes, so MUD may 
need multiple TCAM lookups to obtain the second matching 
result.  The authors showed that MUD needs 1+d+(k-2)*(d-
1) TCAM lookups to get k matching results, where d is the 
logarithm of the number of entries in TCAM (d=log2N). 
The worst case lookups can be decreased to 1+d*(k-1)/r 
with DIRPE, where r (smaller than d) is a parameter used in 
DIRPE  [1].  

Compared to commercial solutions, MUD doesn’t need 
to store the per-search state in the TCAM (i.e., invalidating 
the previously matched TCAM entries) to get the multi-
match results. Therefore, it can be used in multi-threaded 
environments. However, it shares the same problem with 
commercial solutions: the number of TCAM accesses 
needed per packet is linear to the number of matching 
results. We will show later in Section 6 that a packet can 
match up to 12 unique filters for the SNORT rule sets and 
thus requires a maximum of 20 TCAM lookups. This is the 
worst case performance, but a common packet can result in 
many TCAM lookups as well. For example, a regular HTTP 
packet matches at least 4 unique filters. A Napster file-
sharing packet can match 8 unique filters and thus requires a 
maximum of 15 TCAM lookups. In addition, all the TCAM 
entries are accessed during each TCAM lookup, so the 
power consumption of MUD is high when packets match 
many entries. 

tcp  $SQL_SERVER  1433  $EXTERNAL_NET  139

tcp          any               any             any                139

Match

tcp  $SQL_SERVER  1433  $EXTERNAL_NET  any

Input

TCAM
Stores Rules

Filter 1

Filter 2

SRAM
Stores Match Results

(Index of rule)

tcp  $SQL_SERVER  1433  $EXTERNAL_NET  139 Filter 1&2

 
Figure 4. Geometric Intersection-based scheme 

3.4 Geometric Intersection-based Solutions 
The geometric intersection-based approach inserts filter 
intersections in the TCAM [2]. An illustrative example is 
shown in Figure 4. If we only put filter 1 and 2 into the 
TCAM, a packet matching both filters cannot get all the 
matching results. Therefore, intersection filters (e.g., the 
filter in the first entry of the TCAM) are created to handle a 
packet that matches both filters. These intersection filters 
and the original filters are inserted into the TCAM and 
compared in parallel with the input packet. Only one TCAM 
lookup is needed. Afterwards, the result can be used as an 
index into SRAM to get all the matching results as shown in 
Figure 4. Theoretically, the number of intersection filters 
can be O(NF), where N is the total number of filters, and F is 
the number of fields. Real-world filter sets are typically 
simpler than the theoretical worst case, but we still observe 

that the SNORT rule header set creates intersections that are 
ten times the original filter set size [2]. This approach is 
expensive both in memory and power consumption when 
the filter set has many intersections.  

3.5 Software solutions 
Most existing software-based packet classification 
algorithms are designed for single-match classification. The 
most relevant work on multi-match classification is on filter 
conflict detection in [14]. They showed that even for the 
single-match classification problem, classification filters can 
intersect and thus introduce conflicts. There are cases where 
commonly used conflict resolution schemes that are based 
on filter ordering do not work. The authors proposed a 
solution to solve the problem by adding new filters in a 
manner similar to the geometric intersection-based solution.    

There have been extensive studies on the single-match 
classification problem, and some of them can be extended to 
report multi-match results. For example, Grid of Tries and 
Extended Grid of Tries (EGT) [4, 15] use the source and 
destination IP addresses to build a trie. By traversing the 
tree, we can get all the related filters. Multi-match results 
can be obtained by comparing the input with these filters 
one by one. Other heuristic algorithms like Recursive Flow 
Classification (RFC) [16], HiCuts and Hypercuts [5, 17] 
work well for real world filter sets for single-match 
classification.  

These software solutions are developed based on 
typical characteristics of single match filter sets.  For 
example, the authors of the EGT scheme observed that in 
typical single match filter sets, at most 20 rules will match 
any packet when considering the source and destination 
fields. Hence, one can search the tree based on the source 
and destination fields and then perform a linear search 
among the returned filters. This appears to be an economic 
solution. However, this observation is no longer valid for 
multi-match classification sets. In SNORT rule sets, there 
are many wildcards in the source and destination addresses. 
One packet can match up to 153 filters when considering 
source and destination IP addresses only. We will show in 
Section 6 that two representative algorithms (EGT-PC and 
HiCut) either need to compare the input packet with many 
filters one by one, or need a large amount of memory when 
applied to the SNORT rule sets.  

4. A Memory and Power Efficient 
Solution to Multi-match Classification 
We want to develop a scheme that is both memory and 
energy efficient. In addition, we want our algorithm to be 
fast: access TCAMs as few times as possible. The 
Geometric Intersection-based solution is fast, requiring only 
one TCAM lookup per packet. However, intersection filters 
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results in high storage requirements and power 
consumption. This problem, however, can be solved if we 
are willing to sacrifice time for storage space and power 
consumption. Let’s look at the example in Figure 5, all the 
filters intersect with each other in a two dimensional space. 
Putting the filters into the TCAM with all the intersections 
requires O(N2) TCAM entries, and we can obtain the 
classification result with one TCAM access.  However, if 
we split the filters into two groups, we can check the two 
groups separately and report the matching results from both 
groups as shown in Figure 6. This approach can reduce the 
number of TCAM entries to N+1, but it costs two TCAM 
lookups.  

 
Storage cost: N filters +O(N2) intersection 
Classification speed: 1 TCAM lookup time 

Figure 5.  Include all intersections in the TCAM. 

 

Storage cost: N filters +1 intersection (F2 and F3) 
Classification speed: 2 TCAM lookups time  

Figure 6. Separate filters into two sets and perform TCAM lookups 
separately. 

We still need to keep intersections that are generated by 
filters in the same set. For example, in Figure 6, the 
intersection of filter F2 and F3 still needs to be included in 
the TCAM so that we can distinguish a packet matching 
both filters from packets matching only one of the filters. 
However, intersections of filters from different sets are no 
longer needed in the TCAM because separate TCAM 
lookups will be performed on each set. Hence, if a packet 
matches multiple filters from different sets, all the matches 
will be reported separately.  

Note that although we separate filters into two sets here, 
we don’t necessarily require two TCAMs. TCAM vendors 
now provide a blocking feature that can divide a TCAM into 
several blocks and allow users to selectively search one or 
several blocks in parallel. With this feature, different sets of 
filters can be put into different blocks of the same TCAM 
and be accessed separately. Since different sets generated by 
SSA are logically independent, we can even parallelize the 
lookups in different sets to achieve a higher rate. 

If we split the filter sets so that most intersections occur 
between filters in different sets, we do not need to include 
these intersections in the TCAM. This saves TCAM space 
and also reduces power consumption. Note that we only 
consider the intersections that are different from the original 
filters because these intersections require extra TCAM 
entries. For example, in Figure 7, although F1 and F2 
overlap, the intersection is the same as F2. We don’t need to 
include this intersection in the TCAM because when a 
packet matches F2, we can simply report a matching of both 
F2 and F1. However, when F2 and F3 intersect to create 
intersection I, we do need to consider I because it is 
different from F2 and F3, thus requiring an extra TCAM 
entry. F1 doesn’t contribute to the generation of this 
intersection, so I = intersect of F2 and F3 only. In other 
words, I can be eliminated only when F2 and F3 are in 
different sets,  

FN 

 
Figure 7. Example of filter intersections. 

This approach is memory and power efficient. These 
benefits come at the cost of more TCAM lookups. Hence, 
we want to find an algorithm that can automatically separate 
filters into a minimum number of sets, and keep the total 
number of filters (original filter set plus the remaining 
intersection filters) smaller than the TCAM capacity. 

4.1 Mathematical Formulation  
Suppose there are N filters F1, F2, …., FN, and filters create 
M intersections I1, I2, …., IM. For example, I1= intersection 
of (F1, F5, F6). We want to separate the filters into several 
sets. We define the residual intersection set I’ as 
intersections generated by filters in the same set, which is 
different from filters in that set. Our objective is to separate 
filters into a minimum number of sets that satisfy N + |I’| < 
TCAM size, which is an NP hard problem.  

Suppose we restrict the problem by dividing up the 
filters into two sets rather than multiple sets. Our new goal 
then would be to find a way to separate filters into two sets 
so that number of residual intersection is minimum. 
Unfortunately, this problem is still NP hard and is known as 
the maximum set splitting or maximum hypergraph cut 
problem [18].  

To our knowledge, the best known approximation 
algorithm for the maximum set splitting problem yields a 
performance ratio of 0.72 to the optimum solution [19]. 
However it requires quadratic programming, hence the 
solution will be too slow to be useful as there are usually 
hundreds to thousands of filters in the multi-match filter sets 
[1, 3]. We develop an efficient algorithm SSA to quickly 
divide filters into multiple sets so as to reduce the need of 
including intersection filters.  SSA guarantees the removal 

F1 One TCAM Lookup
Matching F1 and FN 
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of at least half of the intersections each time the filter set is 
split into two sets. In addition, it has a low complexity of 
O(NM), where N is the total number of filters, and M is the 
total number of intersections. 

4.2 Johnson’s Algorithm for the Maximum 
Satisfiability Problem 
SSA is based on Johnson’s algorithm [20], which we briefly 
summarize in this section.  The algorithm solves the 
maximum satisfiablity problem defined as follows. Let L be 
N literal pairs L={{ , 1F 1F  },  { , 2F 2F },.., { , NF NF  }}. 
Each literal can take either a true value or a false value. 
There are M clauses, with each clause consisting of a subset 
of literals either in a positive or negative form, e.g., C1 

={  1F ∨ 2F ∨ 6F }. The goal is to find an assignment of L 
that satisfies the maximum number of clauses. Define K as 
the minimum number of literals in each clause. For K 2, 
this problem is known to be NP complete [18].   

≥

Assign each clause with |C| literals a weight = 2-|c|; 
While (not all literals assigned weight yet){ 

Pick any remaining literal Fi;  
 If the total weight of clauses containing Fi > those containing 

iF { 

  Assign Fi  a true value; 
  Remove all clauses containing Fi ; 
  Double the weight of clauses containing iF ; 
 }else{ 
               Assign Fi a false value; 

Remove all clauses containing iF ; 

Double the weight of clauses containing Fi  
          } 
} 

Figure 8. Johnson’s algorithm. 

Johnson’s algorithm is an approximation algorithm for 
the maximum satisfiability problem. As presented in Figure 
8, it works as follows: At the very beginning, it assigns each 
clause C a weight = 2-|c|, where |C| denotes the number of 
literals in C. For example, weight of C1 ={  1F ∨ 2F ∨ 6F } 
is 2-3. Next, the algorithm examines literals one by one. For 
any literal  that has not been assigned a value yet, if the 
weight of all clauses containing  is higher than the clauses 
containing 

iF

iF

iF , assign  a true value. Now, all the clauses 
containing  are all satisfied and hence can be removed. 
Clauses containing 

iF

iF

iF  are not satisfied yet, so we want the 
other literals within the clauses to have a higher probability 
of being selected as true later. Hence, the algorithm 
multiplies the weight of all the clauses containing iF  by 2. 
For the case where the weight of all clauses containing iF  is 

higher than the clauses containing , the algorithm 
performs the opposite actions.  

iF

Johnson’s algorithm is very simple, it has O(NM) 
complexity. It is proven that Johnson’s algorithm can satisfy 
at least (2K-1)/ 2K fraction of the total clauses [20]. For 
instance, when K=2, it can satisfies at least ¾ of the clauses. 
Johnson’s algorithm achieves the best approximable bound 
for K>2 [20].  

4.3 Set Splitting Algorithm (SSA) 
In this section, we present SSA, which works by splitting 
filters that generate intersections into different sets, so that 
their intersections don’t need to be included in TCAMs. 
Every filter corresponds to a literal in the maximum 
satisfiablity problem, where literals can either take a true 
value or false value. For every intersection, two clauses are 
added into the clause set, one with all positive literals, and 
one with all negative literals. For example, if I1 represents 
the intersection of , and , add two clauses: 

C={ } and C’={
1F 2F 6F

1F ∨ 2F ∨ 6F 1F ∨ 2F ∨ 6F }. If there are 
M intersections, the total number of clauses is 2M. Then, we 
run Johnson’s algorithm and assign each filter  either a 
true or a false value.  If the literal takes a true value, the 
corresponding filter is placed in one set. Otherwise, it is put 
in the other set. Figure 9 shows the pseudo code.  

iF

Reduce the filter set splitting problem into a max satisfiablity 
problem: 

Each filter Fi corresponds to a literal  
For each intersection Ii generated by j filters: Fx1, Fx2,  …, 

Fxj, add two clauses: 
C={ Fx1  F∨ x2∨ ,…, F∨ xj) 
C’=( 1xF ∨  2xF ∨ ,…, ∨ xjF ) 

Run Johnson’s algorithm to assign each filter Fi  a true value or 
false value 

Put Fi in set one if it is true. 
Put Fi in set two if it is negative. 

Figure 9. Set  splitting algorithm (SSA). 

Lemma: If both clauses of an intersection are satisfied, this 
intersection is no longer needed in the TCAM.  
Proof: Suppose I1, which is the intersection of , , 
and , has both clauses C={ } and 

C’={

1F 2F

6F 1F ∨ 2F ∨ 6F

1F ∨ 2F ∨ 6F } satisfied. This means that at least one 
of ( , , ) is true and one of them is false. According to 
the algorithm, these filters are split into different sets. Thus 
this intersection does not need to be represented in the 
TCAM.□  

1F 2F 6F

Theorem: SSA can remove at least 50% of the intersections 
each time the filter set is split into two sets. 
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Proof: Each clause is generated by an intersection; hence, it 
has at least two literals. In other words, K >=2. From 
Johnson’s results, at least (2K-1)/ 2K=¾ of the clauses are 
satisfied. There are a total of 2M clauses, which means 
2M*3/4=1.5M of the clauses are satisfied. Since there are M 
intersections, and each intersection corresponds to two 
clauses, at least 0.5M of the intersections have both clauses 
satisfied and hence can be removed according to the lemma. 
□ 

If we want to split the filter set further into more 
subsets, this result still holds. Whenever the filter set is split, 
we can decrease at least 50% of the intersections. For 
example, if we split the filters into two sets, and then split 
both sets again, we can decrease the number of intersections 
to less than ¼ of the original number.  

The complexity of the SSA is same as Johnson’s 
algorithm: O(NM). Note that we didn’t impose any 
restriction on the order for literals to be examined in the 
Johnson’s algorithm. In our simulation, we select literals 
based on the ratio of positive weight (total weight of clauses 
containing positive literals) to negative weight. This results 
in a complexity of O(NM+N2).  

5. Simulation Results 
In this section, we compare SSA with two previously 
proposed TCAM approaches: MUD and Geometric 
Intersection-based approaches. In addition, we also will 
present the results of applying software-based solutions 
(EGT-PC and HiCuts) to the multi-match filter sets. We use 
the SNORT [3] rule header benchmark as the test sets for 
multi-match classification. Since the SNORT rule header 
sets are fairly small, we also test our algorithms on 
synthesized larger filter sets. 

5.1 Evaluation Metrics 
We are going to show the tradeoffs between different 
solutions in terms of the following metrics.  
• Memory consumption. We use the total number of TCAM 

entries to reflect memory consumption because all entries 
have the same width (e.g., 144 bits). 

• Speed. Memory lookup is usually the bottleneck of a 
packet classification system. For the three TCAM-based 
solutions (SSA, MUD and Geometric Intersection-based 
solution), the number of SRAM accesses needed per 
packet is equal to the number of TCAM accessesi. This is 
because we can use the TCAM output as an index to fetch 
the results stored in SRAM, as illustrated in Figure 4 of 
Section 3. Hence, we report the maximum number of 

                                                 
i SSA and Geometric Intersection-based solution may take longer than one 
SRAM access time if the matching results are longer than the memory 
bandwidth. However, it shouldn’t be a serious issue as a packet matches a 
maximum of 12 filters in the SNORT rule sets and pipelining data transfer 
scheme can be used to decrease the time. 

TCAM lookups per packet to reflect the worst case 
classification rate. 

• Power consumption. As shown in Figure 2 of Section 1, 
energy used by a TCAM grows linearly with the number 
of entries searched in parallel and is directly related to the 
number of TCAM accesses. Hence, we use the total 
TCAM entries accessed per packet as a metric for power 
consumption. It is defined as the product of the number of 
TCAM entries accessed per lookup and the number of 
lookups per packet.   

• Update costs. We randomly select 90% of the filter set as 
the base filter set and use the remaining 10% as the 
update filters. We test the insertion cost in terms of the 
number of newly inserted filters because the deletion of 
old filters is easier in TCAM-based approaches (just mask 
those entries out). Note that inserting a filter into a first 
match TCAM may require moving the existing filters. 
There are existing approaches that prepare empty spaces 
in TCAMs, or associate priority [21] or extra circuits with 
each entry [22]. Here, we only concentrate on the number 
of newly inserted filters as the metric of update cost.  

5.2 Results on the SNORT Rule Header Set 
We test all the versions of SNORT after 2.0. Although each 
rule set has around 1700-2000 rules, many rules share a 
common rule header (filter). The unique rule headers in 
each version vary from 240 to 257 as shown in Table 1. 
Note that we omitted the versions that share the same rule 
headers with the previous version. 

Table 1. SNORT rule headers statistics. 

Version Release Date Filter Set Size 
2.0.0 4/14/2003 240 
2.0.1 7/22/2003 255 
2.1.0 12/18/2003 257 
2.1.1 2/25/2004 263 

TCAM Memory Consumption  
The Geometrical Intersection-based solution inserts all the 
intersections into the TCAM. The second column in Table 2 
records the number of extra intersections (different from the 
original filters) that need to be included. Although it is well 
below the theoretical upper bound O(NF), it is still roughly 
10 times the size of the original filter set. After applying 
SSA to divide the filters into 2 sets (SSA-2), the number of 
extra filters that need to be included in TCAM falls below 
55, which means that we removed more than 98% of the 
intersections. When splitting the filters into four sets (SSA-
4), SSA almost removes the need to include extra filters 
caused by intersections. Note that the SNORT rule set 
contains range and negation (e.g., not port 80).  Filters 
containing range and negation may need to be mapped into 
multiple TCAM entries. There are many existing solutions 
to these two problems. For example, we can use extra 
encodings [1, 23] or hardware circuits [8] to solve the range 
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problem and the negation removing scheme proposed in [2] 
to efficiently map negations into TCAM. In this paper, we 
assume that range and negation can be efficiently solved 
using the previous solutions. This assumption won’t affect 
the comparison of the three TCAM-based solutions because 
all of them face similar percents of ranges and negations.  

Table 3 shows the total number of TCAM entries 
required by the three solutions. MUD uses the least number 
of TCAM entries: just the number of filters. The Geometric 
Intersection-based solution needs to include many 
intersections filters. Hence, it consumes the most number of 
TCAM entries. SSA dramatically removes the extra 
intersection filters that need to be inserted into the TCAM. 
The number of TCAM entries needed is extremely close to 
the MUD solution.  

Table 2. Total number of extra intersections filters in TCAMs. 

SSA-2 SSA-4 

Version 
Geometric 

Intersection-
based 

Extra 
Inter-

sections 
Saving 

Extra 
Inter-

sections 
Saving

2.0.0 3453 46 98.67% 1 99.97%
2.0.1 3754 47 98.75% 1 99.97%
2.1.0 3758 47 98.75% 0 100% 
2.1.1 4067 55 98.65% 0 100% 

Table 3. Total number of TCAM entries used. 

Version MUD Geometric 
Intersection-based 

SSA-2 SSA-4

2.0.0 240 3693 286 241 
2.0.1 255 4009 302 256 
2.1.0 257 4015 304 257 
2.1.1 263 4330 318 263 

Classification Speed  
For a given packet, only one TCAM lookup is required by 
the Geometric Intersection-based solution.  For our SSA 
solution, the number of lookups is deterministic. If the filter 
sets are split into two sets, then two separate TCAM 
lookups are needed. These two TCAM lookups access 
different sets of filters. Because no logical relationship 
exists between them, these two lookup processes can be 
fully parallelized. If we split the filter sets into four sets, 
then four TCAM lookups are needed.  

The number of TCAM lookups needed by MUD varies 
from packet to packet. Packets that don’t match any filters 
need only one TCAM lookup. However, for the SNORT 
filter sets, one packet can match a maximum of 12 filters. 
Hence, for such packets, MUD takes at least 12 TCAM 
lookups to get all the matching results.  The worst case 
number of TCAM lookups used by MUD is 1+d*(12-1)/r, 
where d is the logarithm of the total number of filters and r 
is the chunk size. For the SNORT rule sets, d is 8 or 9 and r 
can be 5 or less. Hence, the number of TCAM lookups can 
be as high as 20.   

The above analysis is the worst case performance of 
MUD. Since the number of TCAM lookups is workload 

dependent, we looked at some high frequency packets. A 
HTTP packet matches at least 4 unique filters and thus 
requires 5 to 9 TCAM lookups. A Napster file-sharing 
packet can match 8 unique filters and thus requires 9 to 15 
TCAM lookups.  

Update Cost  
The update cost for the Geometric Intersection-based 
solution is high, as newly inserted filters may intersect with 
the existing filters and result in potentially many insertion 
operations. Table 4 shows the average update costs per 
newly inserted filter in terms of the number of newly 
generated filters (including intersection filers) in the TCAM. 
The third column also shows the maximum number of 
insertions. One filter can generate up to 157 new TCAM 
entry insertions. This scheme will obviously be slow during 
the update process.  

Table 4. Update cost in terms of newly inserted filters. 
Geometric 

Intersection- 
based 

SSA-2 SSA-4 

Version MUD 
Avg  Max Avg  Max Avg  Max 

2.0.0 1 31.73 157 1.33 17 1.002 2 
2.0.1 1 35.24 135 1.34 19 1 1 
2.1.0 1 34.71 135 1.36 20 1.002 2 
2.1.1 1 36.00 172 1.41 26 1.006 2 

The number of newly inserted filters is always 1 for 
MUD, as it doesn’t need to include any intersections. The 
average insertion cost decreases to almost 1 when using 
SSA-2. However, the max update cost is still high (around 
20). If the filter set is split into 4 sets, the number of newly 
inserted filters is reduced to approximately 1 and the worst 
case cost is 2, which is similar to the MUD solution.  

Power Consumption  
The power consumption of the MUD-based solution is 
related to the incoming packets. As we explained before, in 
the worst case, a packet may need 20 TCAM accesses to get 
all the matching results. For each access, all the entries in 
TCAM are compared in parallel. Hence, the total number of 
TCAM entries accessed is 20 times the filter set size in the 
worst case, which is over 4000 entries as shown in the top 
curve of Figure 10. If all the packets are HTTP packets, then 
each packet needs at least 5 TCAM lookups, meaning that it 
accesses at least 1000 entries. A Napster packet needs at 
least 9 TCAM lookups, and hence access at least 2000 
entries. 

The Geometric Intersection-based algorithm only 
performs one TCAM lookup. Therefore, the number of 
TCAM entries accessed per packet is the same as the 
number of TCAM entries used. It is around 4000 due to 
large number of intersections included in the TCAM. For 
SSA, although we perform several TCAM lookups, they 
look into different groups of filters (stored in different 
TCAM blocks or different TCAMs). Each TCAM entry is 
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accessed only once per packet. Hence, the total number of 
TCAM entries accessed is just the number of entries in the 
TCAMs (less than 300). The energy used by SSA-4 and 
SSA-2 is similar as shown in the bottom curves in Figure 
10. SSA-2 saves at least 90% of the energy consumption 
compared to the Geometric Intersection-based solution. 
Compared to MUD, it saves over 95% compared to the 
worst case performance, and saves 76% for HTTP packets 
and 87% for Napster file-sharing packets. 

0
1000

2000
3000
4000

5000
6000

7000
8000

2.0.0 2.0.1 2.1.0 2.1.1
Snort version

N
um

be
r o

f T
C

A
M

 e
nt

rie
s 

ac
ce

ss
ed

 p
er

 p
ac

ke
t

MUD (HTTP Packets)
MUD (Napster Packets)
MUD (worst case)
Geometric Intersection-based 
SSA-2
SSA-4

 
Figure 10. TCAM entries accessed per packet. 

5.3 Results on a Synthesized Multi-match 
Filter Set 
Since the SNORT rule header set is fairly small, we 
generate synthetic multi-match classification test sets to test 
our algorithms.  We take a real-world single-match 
classification set used in a core router (more than 3000 
filters) and randomly insert new filters into it. Each field in 
these new filters is randomly selected from old filter sets 
according to their appearance frequencies. Since these new 
filters are randomly selected, they are likely to intersect with 
the old filters to create intersections. Because the 
performance of different algorithms is largely dependent on 
the number of intersections, we test our algorithms on 
different intersection rates, defined as the percentage of 
newly inserted filters to the size of the original filter set. We 
start at 5%, which constitutes around 150 new filters, and 
test to 100%, meaning that the number of newly inserted 
filters reaches the same size as the original filter set size 
(3060 filters).    

Table 5. Total number of extra intersections filters in TCAMs.  

SSA-2 SSA-4 Insertion 
Factor 

 

Geometric 
Intersection-

based 
Interse
ctions Saving Interse

ctions Saving 

0 359 22 93.87% 2 99.44% 
0.05 418 20 95.22% 1 99.76% 
0.1 488 45 90.78% 3 99.39% 
0.2 733 52 92.91% 4 99.45% 
0.3 1080 112 89.63% 1 99.91% 
0.4 1312 78 94.05% 9 99.31% 
0.6 2086 171 91.80% 9 99.57% 
0.8 2488 208 91.64% 4 99.84% 
1 2883 229 92.06% 7 99.76% 

  Although the synthesized filter sets are larger than the 
SNORT rule sets, they generate relatively fewer 
intersections, as shown in the second column of Table 5. 
SSA also works well for these large filter sets. Splitting the 
filter set into 2 sets removes over 90% of the extra 
intersections, while splitting the set into 4 sets almost 
eliminates the need to include extra intersections. 

Due to space limitations, we will not present detailed 
results on the classification speed and energy consumption. 
SSA-2 requires only 2 memory lookups per packet. 
However, MUD solution can match more than 20 filters in 
the worst case and thus requires more than 20 TCAM 
accesses per packet. Hence, SSA-2 is faster and more 
energy efficient than MUD.  

5.4 Software Solutions 
We apply the popular EGT-PC and HiCuts algorithm to the 
SNORT rule sets. EGT-PC can directly support multi-match 
results. We made slight modifications to the HiCuts 
algorithm to output all matching results.  

EGT-PC is optimized based on the characteristics of the 
typical single match filter sets, as discussed in Section 3.5. 
For the SNORT rule sets, many rules apply to the same 
common source and destination addresses. Therefore, if we 
search the EGT-PC tree based on the source and destination 
addresses, the algorithm may return up to 153 filters for an 
input packet. All these filters have to be compared to the 
packet one by one in software, making the approach highly 
inefficient. 

When we apply HiCuts to the SNORT rule sets, the 
high number of filter intersections cause filters to be copied 
to multiple leaf nodes. We optimized the HiCuts algorithm 
to report filters directly when they encounter a node that is 
fully covered by these filters to reduce filter duplications. 
However, these cases are not common, and we still see that 
the filters are copied many times at the leaf nodes. Table 6 
shows that for the SNORT 2.0.0 filter set, a filter is copied 
on average 745019/240=3108 times. This high degree of 
duplication results in a high SRAM storage requirement. 
More than 40MBytes of SRAM are needed for the SNORT 
filter sets. This requirement goes beyond the largest single 
chip SRAM density (around 8MBytes today). In addition, a 
high degree of filter duplication will cause large update 
costs, as the insertion of a new filter or deletion of an old 
filter needs to touch all the leaf nodes containing that filter.   

Table 6. Applying HiCuts to the SNORT rule set. 

Version Tree Height Number of Filters 
 in Leaf Nodes 

SRAM Used 
(KB) 

2.0.0 18 745,019 41,000 
2.0.1 19 803,645 46,297 
2.1.0 19 820,415 47,160 
2.1.1 18 827,651 49,378 
As we can see from the above results, due to the 

different characteristics of multi-match and single-match 
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