Secure Information Flow as a Safety Problem

Tachio Terauchi Alex Aiken

Report No. UCB/CSD-5-1396

/' June 2005

[

\

\

| | Computer Science Division (EECS)
\ University of California

| Berkeley, California 94720

\

\

4

Secure Information Flow as a Safety Problem *

Tachio Terauchi Alex Aiken
EECS Department Computer Science Department
University of California, Berkeley Stanford University
June 2005
Abstract

The termination insensitive secure information flow problem can be reduced to solving a safety
problem via a simple program transformation. Barthe, D’Argenio, and Rezk coined the term “self-
composition” to describe this reduction. This paper generalizes the self-compositional approach with a
form of information downgrading recently proposed by Li and Zdancewic. We also identify a problem
with applying the self-compositional approach in practice, and we present a solution to this problem that
makes use of more traditional type-based approaches. The result is a framework that combines the best
of both worlds, i.e., better than traditional type-based approaches and better than the self-compositional
approach.

1 Introduction

A termination insensitive secure information flow problem can be defined as follows:

Definition 1 (Secure Information Flow) Given a program P whose variables H = {hy,ha, ..., hyp} are
high security variables and L = {l1,...,l,} are low-security variables, P is said to be secure if and only if
the values of L at the point P terminates are independent of the initial values of H.

In this paper, we only deal with the case where programs are deterministic. The secure information flow
problem is a type of non-interference problem. In practice, it expresses the problem of whether some
selected information in a program or a fragment of a program (i.e., the information stored in the high-
security variables) does not leak to an adversary (i.e., the low-security variables). Secure information flow
has applications in software security. There is an excellent survey by Sabelfeld and Myers on issues ranging
from applications to analysis techniques [11]. We note that the definition above can be extended to multi-
label cases (i.e., beyond just “high” and “low”) by posing the problem multiple times with different choices
of high-security variables and low-security variables.
An equivalent way to state the termination insensitive secure information flow problem is:

Definition 2 (Secure Information Flow - Alternative Definition) Given a program P whose vari-
ables H = {hq,...,hy} are high security variables and L = {l1,...,l,} are low-security variables, P is
said to be secure if and only if for any stores My and My such that Mi|ge = Ma|pe,

((Mq, Py # LA (M, P) # L) = (M, P)|1, = (M2, P)|1,

*This research was supported in part by NASA Grant No. NNA04CI57A; NSF Grant Nos. CCR-0234689, CCR-0085949,
and CCR-0326577. The information presented here does not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

Formally, a store M is a mapping from variables to values. The notation M|x is the restriction of the store
M to the variable domain X, i.e., M|x = {x — v | (z — v) € M Az € X}. The set X¢ is the complement of
X. If P terminates given the initial store M, (M, P) denotes the final store; (M, P) = L if non-terminating.

Both definitions appear frequently with some variation in superficial details. It is easy to see that the
definitions are equivalent. The second definition is particularly nice for our purpose because it is easy to
see the reduction from the definition into a safety problem. Intuitively, a safety property is a property of a
program which can be refuted by observing a finite trace of the program. Our definition of secure information
flow only concerns the final store. Then a safety problem can be formally defined as

Definition 3 (Safety) Let Pr be the set of all programs (for some fized programming language). Then a
safety property is a set S C Pr such that there exists a logical formula ¢(X,Y) such that

S ={P|VYM.(M,P) # L = ¢((M,P), M)}

A safety problem is a membership problem for some safety property.

Secure information flow, termination sensitive or not, is not a safety property (see, e.g., [9] for a proof).
However, the termination insensitive secure information flow problem is almost a safety problem. To this
end, we introduce the concept of a 2-safety property which is intuitively a property that can be refuted by
observing two finite traces. More formally,

Definition 4 (2-Safety) Let Pr be the set of all programs (for some fized programming language). Then a
2-safety property is a set S C Pr such that there exists a logical formula ¢(X,Y,Z, W) such that

S = {P | VMl,MQ.(<M1,P> 7§ 1A <M2,P> }é J_) = ¢(<M1,P>, <M2,P>,M1,M2)}

To distinguish, we say 1-safety when we mean safety. Clearly, any 1-safety property is a 2-safety property.
The following is immediate:

Theorem 1 The termination insensitive secure information flow problem is a 2-safety problem.

For any program P, let V(P) be the set of all variables appearing in P and let C'(P) be the copy of P
with each # € V(P) replaced by a fresh variable C(x). Any 2-safety problem can be reduced to a 1-safety
problem by the following self-composition reduction:

Definition 5 (Self-Composition) Let S be a 2-safety property, i.e., S = {P | VM, Ma.((My,€e) # L A
(Ma,e) # 1) = ¢((My,e), (Ma,e), My, M)} for some ¢. Then a self-composition reduction of S is the set

{P/|P/:P,C(P)/\VM1,M2<M1UO(M2),P/>¢J_:>9}
where 0 = ¢((M1 U C(M2), P')|v(py, (M1 UC(M2), P')v(c(p)), M1, Ma).

where the symbol ; is the sequential composition. It is easy to see that a self-composition of any 2-safety
property S is a recursive subset of some 1-safety property S’, i.e., given an oracle access to S’, we can decide
(in fact easily) if P € S” where S” is the self-composition reduction of S. Furthermore it is easy to see that
the self-composed form is equivalent to the original in the following sense:

Theorem 2 Let S be a 2-safety property and let S’ be its self-composition. Then P € S if and only if
P;C(P)e S

Thus any 2-safety problem can be solved by reducing it to an equivalent 1-safety problem via self-composition
and then solving the 1-safety problem.

In the case of the termination insensitive secure information flow problem, self-composition reduces the
problem into the following problem:

z = 1;

if (h) then z := 1 else skip;
if (—h) then z := z else skip;
l =z +y

Figure 1: The variable h is high-security and the variable [is low-security. (The variable y is not high-
security.) This code is secure: regardless of the valuation of h, the low-security variable [will be 1 + y at
the end of the program.

z = 1;

if (h) then z := 1 else skip;
if (—h) then = := z else skip;
l =z + y;

Z =1

if (') then 2’/ := 1 else skip;
if (=h') then 2’/ := 2/ else skip
U :=2a +y

Figure 2: Self-composition reduction applied to the program in Figure 1. For each variable z, C(x) = a’.

Definition 6 (Secure Information Flow - Self-Composed Version) Given a program P whose vari-
ables H = {hq,...,hy} are high security variables and L = {ly,...,1l,} are low-security variables, P is said
to be secure if and only if for any stores My and My such that dom(My) = V(P) and dom(Mz) = V(C(P))
and M1|Hc = M2|C(HC)7

(My U Ma, P;C(P)) # L = C({MyUMa, P;C(P))|r) = (M1 U My, P;C(P))|c(r)

where C'(M) is a store identical to M except that each variable x appearing in M is replaced by C(z).
Note that it is possible to see the above formulation directly from Definition 2 without going through
the generalization of defining a 2-safety property as we have done here. As far as we know, the direct
formulation appears in at least two recent papers [1, 5]. We borrowed the term “self-composition” from
Barthe, D’Argenio, and Rezk [5], although they define it slightly differently.

Self-composition is a promising approach to solving difficult secure information flow instances thanks to
the recent success on generic automatic software safety analysis tools such as SLAM [4] and BLAST [7],
to name a few. Both SLAM and BLAST combine theorem proving and model checking in an iteratively
refining manner to achieve robust safety analysis that can scale to programs of non-trivial size written in
feature-rich programming languages like C. Also, they are in theory almost complete [3]. In practice, they
have been able to verify many safety properties that were too difficult for older approaches that were not
fully path-sensitive and sometimes not even flow-sensitive.

What does this progress in automatic safety analysis actually mean to secure information flow? For
example, type-based information flow analysis algorithms, flow-sensitive or not, cannot show that the pro-
gram shown in Figure 1 is secure since the low-security variable [is assigned in a branch of a conditional
that depends on the high-security variable h. But a self-compositional approach can easily check that this
program is secure as follows. Figure 2 is the result of applying the self-composition reduction to the program.
The safety problem of whether [= I’ at the end of the program given z = 2’ Ay =y Az =2' Al =1" at
the entry can be verified easily by a modern safety analysis tool. So by Theorem 2, we have automatically
proved that the original program is secure. In fact, Theorem 2 implies that given a complete safety analysis,
we can solve the termination insensitive secure information flow problem completely.

Before we go on to the main results of the paper, we note that it is fairly easy to carry out a similar
construction for termination sensitive secure information flow problem by defining a “2-liveness” property
which may observe up to two possibly infinite traces to refute the property. Self-composition can then be

defined using a parallel composition instead of a sequential composition to reduce any 2-liveness problem
to a 1-liveness problem. But since there are not practical frameworks for checking general software liveness
properties (though some promising proposals are starting to appear [10]), we limit the content of this paper
to the termination insensitive case. Also, non-deterministic programs are outside of the scope of this paper.

1.1 Contributions

The two main contributions of this paper are as follows:

e We extend the self-compositional approach to the secure information flow problem with information
downgrading recently proposed by Li and Zdancewic [8].

e We identify a problem with applying the self-compositional approach in practice. We then present a
solution to this problem that makes use of more traditional type-based approaches.

The first contribution was motivated by an elegant characterization of information downgrading called
relazed non-interference proposed recently by Li and Zdancewic [8]. Their paper contains a type-based
approach for automatically checking relaxed non-interference. The self-compositional approach can in theory
verify a wider range of secure programs than their type-based approach.

The second contribution starts from a disappointing discovery that the self-compositional approach, even
when combined with current state-of-the-art generic automatic safety analysis tools, is too inefficient in
practice. We will point out why this is the case, and offer a remedy based on previous and on-going research
on type-based approaches to secure information flow, including Li and Zdancewic type system for information
downgrading. The result is a framework that combines the best of both worlds, i.e., better than type-based
approaches and better than the self-compositional approach.

2 Information Downgrading

“Vanilla” secure information flow as defined in Section 1 is often criticized for being too strict. For example,
a security policy may permit information stored in the high-security variable secret to leak as long as the
hash of the password from the user, say initially stored in the non-high-security variable input, matches with
the high-security variable hash. For example, the following program is secure according to this policy:

if C(hashfunc(input) = hash) then [:= secret else skip;

where [is a low-security variable. Unfortunately, the above program is not secure according to the definition
of vanilla secure information flow because the valuation of I depends on the valuation of the high-security
variable secret (and on hash too). In general, vanilla secure information flow does not allow any method of
leaking anything about the high-security variables.

Researchers have proposed various ways to relax secure information flow to permit policies like the one
above, such as robust declassification [15], delimited information release [12], and abstract non-interference [6].
A particularly nice approach called relazed non-interference has been recently proposed by Li and Zdancewic [8].
Their idea is to express downgrading by the existence of a clean function that takes “downgraded” high-
security information but does not look directly at high-security variables. Their paper is restricted to the
purely functional setting, but when extended to the imperative setting, their idea can be described roughly
as follows. A security policy is stated by associating each high-security variable h; to a downgrading function
fr;, and then we define the security of a program P by the existence of a program F(fx, (h1),..., fr, (hn))
such that F' does not mention the high security variables and F(fn, (h1),..., fn, (hs)) agrees with P on low-
security variables at termination. Here, the notation F'(ey,...,e,) refers to a program that first evaluates
€1, ..., e, and stores them in some variables prior to the evaluation of the rest of the program. F(eq,...,e,)
can be arbitrary powerful, i.e., it need not be computable. (Readers familiar with relaxed non-interference
may notice another difference — in addition to the imperative extension — from Li and Zdancewic’s original
definition, i.e., the use of semantic equivalence instead of syntactic equivalence rules. The consequence of this

difference is discussed later in this section.) Note that secure information flow with information downgrading
is more general than vanilla secure information flow; vanilla secure information flow can be expressed by
setting all downgrading functions to the constant function Az.0.

For example, in our password example, the downgrading function for secret can be set to

f = Az.if (hashfunc(input) = hash) then x else ¢

where ¢ is some constant not in the range of values for secret. Then, one only needs to prove that there
exists F' such that F'(f(secret)) is equivalent to our original program, which in this case is true by inspection.
Relaxed non-interference is surprisingly general and natural. For example, it is easy to see that associating
the downgrading function Az.length(z) to a secret string data implies that only the length of the string may
be leaked.

We simplify the definition slightly for purpose of exposition. Formally, we use the following definition of
the terminating insensitive secure information flow with information downgrading.

Definition 7 (Secure Information Flow with Information Downgrading) Given a program P whose
variables H = {hy,...,h,} are high security variables and L = {l1,...,1l,} are low-security variables, P is
said to be secure with respect to the downgrading policy e if and only if there exists F' such that F' does not
mention any variable in H and for any M,

(M, P) # L= ({(M,F(e)) # LN (M, P)|L = (M, F(e))|r)

Here, e is any side-effect free expression. It is easy to see that our definition is at least as expressive as Li
and Zdancewic style of using explicit downgrading functions. For example, vanilla secure information flow
can be obtained by setting e to be the tuple (hy,...,h,). For the password example, e is

if (hashfunc(input) = hash) then secret else ¢

It is worth pointing out that the above definition is slightly different from that of Li and Zdancewic’s
since we use semantic equivalence to check that (M, P)|, = (M, F(e))|r whereas Li and Zdancewic take
a less complete (but still sound) equivalence relation as the definition. Their paper contains a discussion
on why a weaker equivalence may be desirable in some situations. However, it is not clear whether us-
ing a weaker equivalence based on intentional syntactic equivalence rules as done in their paper is best.
Perhaps a more principled approach is to equate some computational hardness properties as well as se-
mantic equivalence. For example, any F(Az.if (password = x) then 1 else 0) semantically equivalent to
l := password on the variable | will be computationally expensive assuming that the set of valuations of
password is large. Note that there is an F' such that semantic equivalence alone will not be able to dis-
tinguish F(Ax.if (password = z) then 1 else 0) from [:= password, namely the one that tries all possible
strings. In this paper, we stick with semantic equivalence.

We now prove the following.

Theorem 3 The termination insensitive secure information flow with information downgrading is a 2-safety
problem.

Proof: Consider the following predicate

VMlaMQ(<M17P>7EJ-/\<M27P>7£J-):> (1)
(Mi]ge = Ma|ue A (M, e) = (Mg, €)) = (M, P)| = (M2, P)|1)

Here (M, e) is the result of evaluating e in the store M. Clearly, (1) is a 2-safety property. Therefore it
suffices to show that (1) is equivalent to termination insensitive secure information flow with downgrading.

Suppose the predicate (1) is true. Let G be the set such that for all M, ((M,e), M|n<,{M,P)|L) € G.
It suffices to show that G is actually a function on the first two indexes because then there exists an F' that
does not mention any variables in H such that (M, F(e))| = G((M,e), M|ge) = (M, P)|r. So suppose for

if (hashfunc(input) = hash) then
t =t + 1; 1 :=1+ secret
else skip

Figure 3: The variables secret and hash are high-security and the variable input and [are low-security.
This code is secure according to the downgrading policy if (hashfunc(input) = hash) then secret else 0.

contradiction that G is not a function. That is, there exists M; and My such that (Mj,e) = (Ms,e) and
Mi|ge = Ma|ge but (My, P)|r # (M2, P)|r. But this contradicts the first assumption. So G is a function.

Conversely, suppose the predicate (1) is false, i.e., for some M; and My, (M1|ge = Ma|ge A (M7, e) =
(Ms, e) but (My, P)|r, # (M, P)|r. Then it must be the case that for all F' that does not mention any
variables from H, if (My, F(e))|r, = (M, P)|r then (Ms, F(e))|r = (My, P)|p # (M, P)|r. A similar
argument holds for the case (M, F(e))|r, = (Ma, P)|,. And so there exists no F such that (M, P)|; =
(M, F(e))|r for all M. 0
Note that the proof above establishes the equivalence of Definition 7 to the following predicate

VMl,MQ.(<M1,P> 7§ 1A <M2,P> 7§ J_) =
(My|ae = Ma|ue N (My,e) = (My,€)) = (My, P)|1, = (M2, P)|1)

The predicate is actually equivalent to the definition of delimited information release [12] restricted to
the safety case. Therefore, the above proof shows that relaxed non-interference with semantic equivalence
is roughly (modulo the imperative extension) equivalent to that of delimited information release. Since
Barthe, D’Argenio, and Rezk [5)’s formulation of self-composition is flexible enough to handle delimited
information release, our result also shows that their framework can be used as a black box to solve secure
information flow problems with information downgrading in the style of relaxed non-interference.

Concretely, self-composition reduces the termination insensitive secure information flow with information
downgrading to the following problem:

Definition 8 (Secure Information Flow with Information Downgrading - Self-Composed Version)
Given a program P whose variables H = {hy, ..., hy,} are high security variables and L = {l1,...,l,} are
low-security variables, P is said to be secure with respect to the downgrading policy e if and only if for
any stores My and My such that dom(M;) = V(P) and dom(My) = V(C(P)), Mi|g- = Ma|c(ue), and
(M, €> = <M27 C(€)>,

(My U Ma, P;C(P)) # L = C({MyUMa, P;C(P))|r) = (M U My, P;C(P))|cw)

As in the case of vanilla secure information flow, this self-compositional reduction is complete. Hence in
theory, a complete safety analysis can decide any instance of the problem. In practice, the self-compositional
approach can check cases where Li and Zdancewic’s type-based approach would fail. For example, the pro-
gram in Figure 3 is secure according the downgrading policy if (hashfunc(input) = hash) then secret else c.
Essentially, the program is same as our original example except that we have added a few small things so
that the code isn’t exactly like the downgrading policy. The program can be easily proved to be secure
via the self-compositional approach; the downgrading policy leads to a conditional predicate, but that is no
harder than handling conditionals in the program body, and therefore a path-sensitive safety analysis can
quickly check that the safety property is satisfied in the self-composed program (not shown). On the other
hand, conventional type-based approaches would break in the presence of these small changes since they are
more dependent on the structure of downgrading operations.

3 Self-composition in practice, its problem, and a solution

The main appeal of the self-compositional approach to secure information flow comes from the recent suc-
cesses with automatic safety analysis tools in verifying a very broad range of safety properties in real pro-
grams, including ones that are path-sensitive, flow-sensitive, and (linear) arithmetic sensitive. Furthermore,

while (n > 0) do
fii=fi+ fo; fo = fr - fa; noi=n - 1;
if (fy > k) then ! := 1 else | :=

Figure 4: The while loop computes the nth Fibonacci number. The variable [is low security, which is set
to 1 if the nth Fibonacci number is greater than k, and is set to 0 otherwise. There are no high-security
variables.

while (n > 0) do

i :=fi+ fos foi=fi - fas moi=n - 1
if (f1 > k) then | := 1 else | := 0;
while (n’ > 0) do

P fLr B f = - Sl = -
if (ff > k') then I’ := 1 else I’ := 0;

Figure 5: The program in Figure 4 after self-composition.

automatic safety property checking is an active area of research with frequent improvements, and therefore
even if some self-composed instances of a secure information flow problem cannot be solved by the existing
tools today, it may not be unreasonable to expect them to be solved by the next generation of safety analysis
tools. That is, the self-compositional approach automatically benefits from improvements to the underlying
safety analysis. Furthermore, the self-compositional approach needs nothing more than off-the-shelf tools,
and so it has an engineering advantage over type-based approaches.

In this section, we argue that such an optimistic prospect is unrealistic in practice. When we actually
applied the self-composition approach, we found that not only are the existing automatic safety analysis
tools not powerful enough to verify many realistic problem instances efficiently (or at all), but also that
there are strong reasons to believe that it is unlikely to expect any future advance in safety analysis designed
for “natural” safety problems (i.e., ones that are naturally 1-safety) to be able to close the gap significantly.

We first motivate our argument by a simple example. Figure 4 is a program which computes the nth
Fibonacci number and sets the low-security variable [to 1 if the nth Fibonacci number is greater than k
and to 0 otherwise. The program contains no high-security variables, so it is trivially secure. Let us apply
the self-composition reduction by renaming each variable x to 2’ in the copy (shown in Figure 5). We would
like the safety analysis tools to check that [= I’ at the end of the program provided that for each variable
x in the original, x = 2’ at the beginning of the program. However, a state-of-the-art safety analysis tool
BLAST [7] fails to terminate given this query; more precisely, BLAST endlessly keeps discovering more and
more predicates getting closer and closer to the answer but never actually converging.’

Why does this happen? The reason is that the modern generic safety analysis tools gain their robustness
by moving away from structure-dependent reasoning and instead trying to solve the problem semantically.
In the case above, if BLAST could verify that [= I’ at the end of the self-composed program, then that
roughly means that it was able to show that the upper part of the original code was computing a Fibonacci
number for each n. We believe that this problem also applies to other safety analysis tools for imperative
languages based on a Hoare-style reasoning framework since the framework encourages verifying a property
about the whole program by locally reasoning about the store update at each statement. We give more
details supporting this argument in Section 3.1.

Even if BLAST was improved with more arithmetic-related reasoning power or if we used another tool
that can verify the correctness of our Fibonacci computation loop, there would be always another example
whose partial correctness would be too difficult for the tool to verify automatically. Why does this matter to
the self-compositional approach to secure information flow? Because there are many programs that compute
arbitrary values in complex ways, and it is fair to expect that these values can flow to low-security variables

IWe used the latest version (as of March 2005) obtained directly from the BLAST group.

P = x:=e¢|if ethen P; else P> |while edo P | Pi; P> | skip

Figure 6: The syntax of While. e is some reasonable expression such as integer arithmetics, comparisons,
and boolean operations.

e u= |[]|x:=c|if e then P; else P, | if e thene else P | if e then P else ¢ |
whilee do P |whileedoce|e; P| P;e

Figure 7: The contexts of While.

since the low-security variables are the observable outputs of the program. (On the other hand, parts of
the program where high-security values flow can be expected to be small and not too complex in most real
security-aware applications.)

Therefore, what the self-compositional approach needs is some reasoning extension that can make use
of the inherent symmetry and redundancy in self-composed programs but not in ordinary programs. For
example, in the case of the Fibonacci program, this reasoning extension should be able to tell that the loops
are equivalent by the fact that both loops are just copies of the same code with each copied variable in the
code starting with the same value as the original. On the other hand, if copies of some code actually use
variables with different initial values, then this reasoning system should safely say that “I do not know if
they are equivalent” so that a more powerful reasoning logic can work out the details.

Such a reasoning extension is exactly where type-based approaches to secure information flow excel.
That is, the “same value variables” are the low security variables, and “different value variables” are the
high-security variables. Indeed, type-based approaches can easily verify our Fibonacci program by carrying
out roughly the following logical reasoning: f1 is only assigned low-security values in a while loop with
a low-security guard, and hence [is assigned only in a conditional statement of a low-security condition
which implies that [is low-security. But as we have seen in the previous sections, there are instances of
secure information flow that cannot be verified by type-based approaches but can be easily verified by the
self-compositional approach. To this end, we generalize this line of thought to design an approach to secure
information flow that combines the best parts of the two approaches.

3.1 Type-directed transformation for secure information flow

We illustrate our idea using the imperative language While defined in Figure 6. The semantics of While is
completely standard. While we choose this simple language for purpose of exposition, it is not hard to adapt
our approach to more complex languages.

To motivate the idea, consider the program P = if e then P; else P,. If a secure information flow
type system gives e a low-security type, then the self composition P;C(P) is equivalent to the program
if e then (Py;C(Py)) else (P2; C(P2)) provided that the values of the low-security variables between the
original and the copy are equal at the beginning of the program. Now, suppose that e is (or was the result
of) a complex computation like our Fibonacci loop. Then using the second form instead of P; C(P), a safety
analysis tool is able to bypass checking whether e is equal to C(e) without losing precision or efficiency.
Furthermore, we may recursively apply the same idea to P; and P» so that we may not even need to use
C(Pl) and C(PQ)

We now generalize this idea to design a type-directed transformation for secure information flow. To this
end, we first define the contexts ¢ of While in a completely standard manner given in Figure 7. Our type-
directed transformation is parametrized by a secure information flow type system. Rather than defining
a type-directed transformation for each different type system and proving the correctness each time, we
formally state what our type-directed transformation expects from a secure information flow type system so

I' - e : 7 where 7 is a low-security type

x:i=e—rpx:=¢C(x):=x

't/ e: 7 where T is a low-security type
x:i=e—ra:=¢C(z) :=C(e)

I'Fe: 7 where 7 is a low-security type Py —»r P Py —rp Py
if e then P, else P, —r if e then P| else Py

I' /e : 7 where 7 is a low-security type
if e then P; else P, —r if e then P; else Py;if C(e) then C(Py) else C(P)

I' Fe: 7 where 7 is a low-security type P —p P*

while e do s —r while e do P*

I' /e : 7 where 7 is a low-security type
while e do P — while e do P;while C(e) do C(P)

P1 —T Pl* P2 —T PQ*
Py Py, —r P P35 skip —r skip

Figure 8: Type-directed translation —p. “I' /e : 7 where 7 is a low-security type” means that I' - e : 7 is
not derivable for any low-security type 7.

that we can design one type-directed transformation for all type systems satisfying the definition and prove
its correctness once and for all.

Definition 9 Given a secure information flow problem with information downgrading problem instance
(P,H, L,e) (see Definition 7), secure information flow type inference is an algorithm that outputs a type
environment I with the relation ~r satisfying all of the following.

(1) For any My and Ms, if Mi|ge = Ma|ge and (My,e) = (Ma,e) then My ~p M.
(2) For any P such that T+ P and for any My and My such that My ~p Ms, (M7, P) ~r (Ma, P).

(8) For any e such that T' e : 7 and T is a low-security type, for any My and My such that My ~r Ma,
<M1, 8> = <M2, 8>.

(4) For any e and P, if T' - ¢[P], then T + P.
(5) TP

Intuitively, the first condition says that the precondition of the original security policy is at least as strong
as the relation ~p. The second condition says that ~rp is preserved by the program semantics. The third
condition says that if an expression is typed with a low-security type, then it in fact is low-security with
respect to ~p. The fourth condition is a standard structural property for (flow-insensitive) type systems.
The last condition says that P itself can be typed under I'.

For example, the well-known Volpano and Smith type inference algorithm [14] when restricted to the
language While can satisfy the above requirement for vanilla secure information flow (i.e., the downgrading
policy e is some constant) by letting

~r= {(My, M2) | My(x) = Mz(x),x:7 € T where 7 is a low-security type}

while (n > 0) do
fii=fi+ fo; fo = fr - fa; noi=n - 1;
if (h) then z := 1 else skip;
if (—h) then z := 1 else skip;
while (¢ < f;) do
l =1l +x; 1 :=1+1

Figure 9: The variable A is high-security and the variable [is low-security. The program is secure but
cannot be verified by either a type-based approach or self-composition.

while (n > 0) do

fii= fi+ fas fli= f1s f2oi= f1 - fas fy = fas

n:=n-1; n :=n;
if (h) then z := 1 else skip; if (h’) then 2’ := 1 else skip;
if (—h) then x := 1 else skip; if (—h') then 2’ := 1 else skip;
while (i < f1) do

L=l +ax; U ;= +2'; 4 :=9+1; ¢ :=14

Figure 10: The program from Figure 9 after the type-directed transformation.

Defining ~r for Li and Zdancewic type system [8] (when adapted to the language While in a natural way)
is also not difficult:

~r={(My, M3) | (My,e) = (Ma,e), T F e: 7 where 7 is a low-security type}

(Indeed, this definition, also works for the Volpano and Smith type system although it is unnecessarily more
elaborate than the one above. This fact is not surprising since Li and Zdancewic system can be thought of
as an extension to the Volpano and Smith system.) Due to space constraints, we do not formally describe
any specific type inference algorithm in this paper and instead ask readers to refer to the cited references.
Section 3.2 discusses how to adapt our approach to secure information flow type systems that do not quite
meet these requirements [13].

It is important to note that we do not need an algorithm that actually computes the relation ~p. Instead,
merely the existence of such a relation is enough since ~r is only used explicitly when proving the correctness
of the type-directed transformation.

We now describe our type-directed transformation. Given a problem instance (P, H, L, e) and T" produced
by the corresponding secure information flow type inference, the type-directed transformation —r is defined
by the rules shown in Figure 8. In order to solve the given problem instance, we first apply this transformation
to P to obtain a program P*,i.e., P —p P*. Then we ask a safety analysis tool whether for any M; and M,
such that dom(M;) = V(P), dom(Mz) = V(C(P)), Mi|ge = Ma|c(me), and (M, e) = (Ma, C(e)), whether

<M1 UMQ,P*> 7§ 1= O(<M1 UMQ,P*>|L) = <M1 UMQ,P*>|C(L)

That is, we ask the same query as the self-compositional approach except that we use P* in place of P; C(P).

As an example, consider the program shown in Figure 9. The program exhibits interactions of features
discussed in previous sections that made type-based approaches and the self-composition approach fail (at
least when using BLAST as the underlying safety analysis). Therefore, it can be checked by neither method.
Applying the type-directed transformation using Volpano and Smith type inference algorithm, we obtain the
program P* shown in Figure 10. Note that both loop conditions remain unduplicated (though their bodies
are duplicated) since both conditions can be given low-security types. BLAST can easily decide that [=1’
at the end of P* provided that n =n', fi = f{, fa = f5, i =1, and I =’ at the beginning, i.e., it can prove
that the program is secure. In fact, BLAST is clever enough that it will not even bother to look carefully at

10

the first loop (which was the part that made BLAST fail in the self-composition approach!) since it quickly
notices simply by looking at the code following the loop that it can prove [= I’ at the end of the program
regardless of what values are stored in f1, fi, f5, n, and n’ after the loop.

We now prove the correctness of the type-directed transformation approach. The following lemma is the
main technical result.

Lemma 1 Suppose P —r P* whereT is the output of a secure information flow type system given (P, H, L, e)
satisfying Definition 9. Then, for any My and Ms such that My ~r Ms, if (My,P) # L and (M3, P) # L
then

(My, P) = (M1 U C(Mz), P*)|vp) A C((Mz, P)) = (M1 UC(Mz), P*)|v(c(py)

Proof: We prove this lemma by structural induction on the type-directed transformation. For easy reference,
we mark the rules in Figure 8 as (Assign Low), (Assign High), (Cond Low), (Cond High), (While Low), (While
High), (Sequence), and (Skip) from top-to-bottom and left-to-right.

Suppose the last rule applied is (Assign Low) and M; ~r My. Then by condition (3) in Definition 9,
(M, e) = (Mas,e). Therefore

C({Mz,x :=¢)) = (M1 UC(Ms),z :=¢;C(x) :=a:>|v(c(p))
Also, trivially,
(My,x:=e) = (M; UC(Mz),z :=e;C(x) :=x)|y(p)
Suppose the last rule applied is (Assign High). It is easy to see that
(My,x =€) = (M, UC(M3),x :=¢;C(x) :=C’(e)>|v(p)
and
C((Mz,z :=¢)) = (MyUC(M2),z :=e;C(z) := C(e))|v(c(py

The argument for the case where (Cond High) or (While High) is the last rule is similar.

Suppose the last rule applied is (Cond Low) and My ~pr M. Then by condition (3) in Definition 9,
(M, e) = (Ma,e). Suppose (M7, e) = true. Then (M7, if e then Py else Po) = (Mj, P1) and (Ms,if e then P; else P) =
(M3, P1). By condition (4) in Definition 9 and the induction hypothesis,

(My, Pr) = (M1 U C(Ma), P{)|vpy A C((Mz, Pr)) = (M1 UC(M2), P{) v

Now suppose (M, e) = false. Then (M;,if e then P; else P) = (M;, Po) and (M, if e then Py else Po) =
(Ms, Po). By condition (4) in Definition 9 and the induction hypothesis,

(My, Py) = (My U C(Mz), Py)lv(py) A C((Ma, P2)) = (M1 UC(Mz), Py)lvc(r))
Therefore,
(My,if e then P| else P) = (M; UC(M2),if e then Py else Py)|y(p)
and
C((Mz,if e then P else P»)) = (M U C(Mz),if e then Py else Py)|v(c(py)

The case the last rule applied is (While Low) can be reduced to the other cases by using the program
equivalence while e do P = if e then (P;whileedo P) else skip. More precisely, the conditions
(M;,while e do P) # 1 and (Mz,while e do P) # L implies that there exists some n such that unrolling
the while loop n times, i.e., if e then (P;if e then (P;...if e then P else skip...) else skip) else skip
is equivalent to while e do P for M7 and Ms.

Suppose the last rule applied is (Sequence). By condition (4) in Definition 9 the induction hypothesis,

(My, Pr) = (M1 UC(M2), P{')|vpy AN C((Mz, Pr)) = (M1 UC(M2), P)|vcp))

11

Hence by conditions (2), (4), and (5) in Definition 9 and the induction hypothesis,
((My, Pr), Po) = ((My U C(Ma), PY'), P3)lv(py) A C((Ma, P1), P2)) = ((My U C(Mz), Pr), Py)lv(c(p)
Therefore
(My, Pr; Po) = (M1 UC(M2), Pl P)|yvpy A C((Ma, Pr; P2)) = (M1 UC(M2), P'; P3)lvcpy
The case for (Skip) is trivial. Hence by induction, the lemma holds. O

Theorem 4 For any My and Ms such that Mi|ge = Ma|ge, (Myi,e) = (Ma,e), (M1,P) # L, and
<M2,P> 7£ 1

(My, P)|, = (M2, P)|c() «— C({(M1 U C(Mz), P*)|r) = (M1 U C(Mz), P*)|c(r)

where P —p P* and T is the output of a secure information flow type system given (P, H, L,e) satisfying
Definition 9.

Proof: ITmmediate from condition (1) in Definition 9 and Lemma 1. O
Therefore the type-directed transformation approach is sound and complete up to the soundness and com-
pleteness of the underlying safety analysis.

The type-directed transformation is inexpensive relative to the complexity of the underlying type inference
algorithm. It is easy to see that for P —p P*, the size of P* is at most two times the size of P. Computing
P* from P takes time linear in P and the number of I' - e : 7 queries made to the type inference algorithm.
However, most secure information flow type systems actually compute the principal types for each expression.
In such a case, asking whether there is a low-security type 7 such that I' - e : 7 is a constant time operation
once the principal types have been computed for P.

It is clear that the type-directed transformation approach is better than a type-based approach alone
since it runs the type inference algorithm as a sub-process, and therefore it may accept the program if the
type inference successfully assigned low-security types to the low-security variables.

Before we argue that the type-directed transformation approach is better than the self-compositional
approach, we point out that in their full generality, the two approaches are equivalent since they are both
a complete characterization of the same secure information flow problem, i.e., they are no different to a
hypothetical safety analysis having infinite deduction power. Even restricted to the class of safety analysis
tools that are “fast” and sound (but not necessarily complete), we cannot compare the two because, for
example, this class includes one that rejects all programs not of the form P; C'(P), i.e., the self-composition
approach is always better for such a safety analysis, and conversely, there is a sound safety analysis that
rejects all programs of the form P; C(P).

Instead, we argue that type-directed-transformed programs tend to be more digestible than self-composed
programs for most automatic safety analysis tools assuming that they are targeted toward the general class
of “natural” safety (i.e., naturally 1-safety) problems for imperative languages. Such tools typically reason
about a program by interpreting each program statement as an abstract store update operation where an
abstract store may be a set of abstract values stored in abstract memory cells, a set of predicates over program
variables where each predicate represents a possible store, or something similar. With self-composition, the
store space for the copies P and C(P) are completely disjoint. However, the query is all about connecting
these two stores, i.e., it is about whether some portion of the two disjoint store spaces is equivalent after the
program terminates given that some portion of the two disjoint store spaces is equivalent before the program.
Therefore 1-safety analysis tools generally suffer from not being able to relate the two stores within the
abstract interpretation phase. Our type-directed transformation directly makes relevant connections between
the two stores locally within the program. These connections help the safety analysis significantly in some
situations as seen in the example in this section (Figure 9, 10) where the self-compositional approach would
perform poorly.

12

3.2 Extensions to the type-based transformation

While the exposition of the type-directed transformation was restricted to the While language and secure
information flow type systems that satisfy Definition 9, it is possible to extend the approach to more ex-
pressive languages and other type systems. For example, flow sensitive type systems ala the one by Amtoft
and Banerjee [2] 2 whose judgments are of the form I' = P;T’, where I is the type environment after P is
executed, may be accommodated by massaging Definition 9 a little so that the condition (2) reads: for any
P such that I' - P;T" and for any M; and My such that My ~p My, we have (My, P’y ~p/ (Ma, P'). The
type-directed transformation rules are then modified in the obvious way.

We found that before applying the type-directed transformation, applying code motion sometimes makes
the program even more digestible to safety analysis tools. Code motion is a standard compiler optimization
technique that involves moving a piece of code outside of a loop body or conditional branches. Consider the
following program:

while (I) do (while (h) do (...e ...))
where e can be moved outside of the inner loop. That is,
while (I) do (¢ := e; while (h) do (...t ...))

is an equivalent program. Suppose that [and e are assigned a low-security type and h is assigned a high-
security type. Then the type-directed transformation gives

while (I) do
t :=e; t' :=t; (while (h) do ...t ...); (while (R') do ...t ...)

If we had not performed code motion prior to the type-directed transformation, we would have instead
duplicated e in the body of the loop. One caveat is that modern safety analysis tools are so smart that they
automatically perform extensive “program slicing.” So if e did not matter to the value of the low-security
variables at the end of the program, then the above code motion would have little impact since these tools
will barely look at e anyway.

4 Related Work

Darvas, Hihnle, and Sands [1] used a self-compositional approach to prove secure information flow properties
for Java CARD programs. They used an interactive approach instead of an automatic approach. Barthe,
D’Argenio, and Rezk coined the term “self-composition” in their paper [5]. Their paper is mostly theo-
retical results on characterizing various secure information flow problems, including non-deterministic and
termination-sensitive cases, in a self-compositional framework. We believe that our paper is the first one to
examine applying an automatic safety analysis in the self-compositional setting.

Barthe, D’Argenio, and Rezk in the same paper showed that their self-compositional framework can
handle delimited information release as originally proposed by Sabelfeld and Myers [12]. We have shown
that Li and Zdancewic’s recently proposed relaxed non-interference [8] is equivalent to delimited information
release when strengthened with semantic equivalence. Relaxed non-interference is arguably a more natural
formulation of information downgrading than delimited information release. Our paper suggests a promising
practical approach toward making complete use of properties definable as relaxed non-interference.

5 Conclusions and future work

We have shown that Li and Zdancewic’s relaxed non-interference can be incorporated into both self-composition
and its generalization, the type-directed transformation approach. We have presented the type-directed

2Their paper actually does not call it a type system but we can think of it as one by interpreting precondition and post-
conditions as type environments.

13

transformation approach as a solution to a problem with applying self-composition in practice with off-the-
shelf automatic safety analysis tools. The type-directed transformation approach combines the best parts of
traditional type-based approaches and self-composition.

One possible improvement to our type-directed transformation is to make it iterative, i.e., in the event
that the safety analysis fails, instead of failing the whole process completely it may report back to the type
system with information about which expressions are low-security at which program points. Then the type
system can “cast” these expressions to low-security types to obtain more low-security expressions, and the
process repeats. To make this work, we need a way to obtain partial results from the safety analysis tool.
Obtaining useful partial results may be difficult for a demand-driven framework such as BLAST.

References

1] Adém Darvas, R. Héhnle, and D. Sands. A theorem proving approach to analysis of secure information
flow. In R. Gorrieri, editor, Workshop on Issues in the Theory of Security, WITS. IFIP WG 1.7, ACM
SIGPLAN and GI FoMSESS, 2003.

[2] T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Giacobazzi, editor, Static
Analysis, Eleventh International Symposium, volume 3148 of Lecture Notes in Computer Science, pages
100-115, Verona, Italy, August 2004. Springer-Verlag.

[3] T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction refinement for software
model checking. In J.-P. Kaoen and P. Stevens, editors, Proceedings of TACAS02: Tools and Algorithms
for the Construction and Analysis of Systems, volume 2280 of LNCS, pages 158-172. Springer-Verlag,
2002.

[4] T. Ball and S. K. Rajamani. The SLAM project: debugging system software via static analysis. In
Proceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 1-3, Portland, Oregon, Jan. 2002.

[5] G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-composition. In Computer
Security Fundation Workshop (CSFW’17). IEEE Press, 2004.

[6] R. Giacobazzi and 1. Mastroeni. Abstract non-interference: parameterizing non-interference by abstract
interpretation. In Proceedings of the 31st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 186197, Venice, Italy, Jan. 2004.

[7] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proceedings of the 29th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 5870,
Portland, Oregon, Jan. 2002.

[8] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proceedings of the 32nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 158-170,
Long Beach, California, Jan. 2005.

[9] J. McLean. A general theory of composition for trace sets closed under selective interleaving functions.
In SP ’94: Proceedings of the 1994 IEEE Symposium on Security and Privacy, page 79, Washington,
DC, USA, 1994. IEEE Computer Society.

[10] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termination. In Proceedings
of the 32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 132-144, Long Beach, California, Jan. 2005.

[11] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEFEE J. Selected Areas in
Communications, 21(1):5-19, Jan. 2003.

14

[12] A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proceedings of the Inter-
national Symposium on Software Security (1555°03), 2003.

[13] T. Terauchi and A. Aiken. Secure information flow as a safety problem. Technical report.

[14] D. Volpano and G. Smith. A type-based approach to program security. In M. Bidoit and M. Dauchet,
editors, Theory and Practice of Software Development, 7th International Joint Conference, volume 1214
of Lecture Notes in Computer Science, pages 607621, Lille, France, Apr. 1997. Springer-Verlag.

[15] S. Zdancewic and A. C. Myers. Robust declassification. In CSFW ’01: Proceedings of the 14th IEEE
Workshop on Computer Security Foundations, pages 15-23. IEEE Computer Society, 2001.

15

