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Abstract

We present a new approach to the old problem of adding side effects to purely functional languages.

Our idea is to extend the language with “witnesses,” which is based on an arguably more pragmatic

motivation than past approaches. We give a semantic condition for correctness and prove it is sufficient.

We also give a static checking algorithm that makes use of a network flow property equivalent to the

semantic condition.

1 Introduction

Adding side-effects to a purely functional language is a well-known problem with a number of solutions [7,
9, 11, 14, 6, 1] with monads [10, 11, 7, 9] being arguably the most popular. In this paper, we propose
a new approach to this old problem by attacking it from a different angle. Instead of starting from a
language theoretic point of view, we start by introducing a simple programming feature called witnesses so
that programs can explicitly order side-effects. This feature is motivated by a pragmatic observation and is
straightforward. The catch is that, because it is so simple, it actually does not guarantee that a program is
correct (i.e., that it can be viewed as a purely functional program). Instead, we argue that the feature makes
it easy for programmers to write correct programs. We then formally state a natural semantic condition that
is sufficient to guarantee correctness and give a static checking algorithm. The result is a new framework for
guaranteeing correctness of side-effects in purely functional programs.

Besides arguably being more intuitive to programmers, our approach is more expressive than previous
approaches. In particular, our approach does not force side-effects to occur in a sequential order. For
example, a program is allowed to read from a reference cell in two unordered contexts as well as write to
two different cells in two unordered contexts.

Besides providing new insights into the old problem of fitting side effects into functional languages for
conventional von Neumann architectures, our work is motivated by the emergence of commercial parallel
computer architectures (e.g., chip-multiprocessors or “multi-core” chips) that encourage parallel program-
ming. It is well-known that the “explicit dependence” property of functional languages makes parallelization
easier for both programmers and compilers.1 However, frequent use of side-effects, namely manual destruc-
tive memory/resource updates, are believed to be important for programming high-performance parallel
applications in practice. Hence a functional way to add side-effects without imposing parallelism-destroying
sequentiality may be of practical interest for exploiting parallelism within these new architectures.

∗This research was supported in part by NASA Grant No. NNA04CI57A; NSF Grant Nos. CCR-0234689, CCR-0085949,
and CCR-0326577. The information presented here does not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

1But not easy, since there are other challenging issues such as selecting the right granularity of parallelism, but these issues
apply equally to other languages and many solutions such as data-parallel operators and thread annotations already exist.
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e := x | i | λx.e | e e′ | let x = e in e′ | e⊗ e′ | πi(e) | write e1 e2 e3 | read e e′ | ref e | join e e′ | •

Figure 1: The syntax of the language λwit .

1.1 Contributions and Overview

This paper makes the following contributions:

• A simple language feature called witnesses that can be used to order side-effects. (Section 2)

• A semantic condition called witness race freedom for correct usage of witnesses and a proof of its
sufficiency. (Section 3)

• An automatic algorithm for checking the afore-mentioned semantic condition that makes use of a
network flow property. (Section 4)

The semantic condition is intuitive in the sense that it is directly motivated by the implications of writing
race-free programs. The automatic algorithm is derived as a type inference algorithm for a substructural
type system. The type system and its inference problem are somewhat subtle and interesting in their own
right. Section 5 discusses related work. Section 6 concludes.

2 Preliminaries

We need a precise definition of what it means for side-effects to be “correct” within a functional language.
A helpful idea is to show that a program’s semantics is independent of a class of “functional” program
transformation rules. However, there is no consensus on the right set of transformations. For example,
the transformation (let x = e in e′) ≡ (e′[x/e]) for x /∈ free(e) is not always true in systems based on
linear-types. (Here free(e) is the set of free variables of e.)

To define correctness, we fix a set of program transformations expressive enough to model different
functional reduction strategies, including call-by-value, call-by-need (i.e., lazy-evaluation), and parallel eval-
uation.2 So, for example, a program that is invariant under this set of transformations evaluates to the
same result regardless of whether the evaluation order is call-by-value or call-by-need. In parallel evaluation,
invariance implies that a program is deterministic under any evaluation schedule.

For ease of exposition, we include the afore-mentioned program transformations directly in the semantics
as non-deterministic reduction rules. The correctness criteria then reduces to showing that a program is
confluent with respect to this semantics. Also, for the purpose of exposition, we restrict side-effects to
imperative operations on first class references.

Figure 1 gives the syntax of λwit , a simple functional language with side-effects and witnesses. Note λwit

has the usual features of a functional language: variables x, integers i, function abstractions λx.e, function
applications e e′, variable bindings let x = e in e′, pairs e⊗ e′, and projections πi(e) where i = 1 or i = 2.
Bindings let x = e in e′ can be recursive, i.e., x ∈ free(e). Three expression kinds work with references:
reference writes write e1 e2 e3, reference reads read e e′, and reference creations ref e. A read read e e′ has
a witness parameter e′ along with a reference parameter e such that it does not read the reference e until
it sees the witness e′. (Section 3 defines the formal meaning of “seeing the witness.”) Similarly, a write
writee1 e2 e3 writes the expression e2 to the reference e1 after it sees the witness e3. After completion of the
read, reade e′ returns a pair of the read value and a witness. Similarly, writee1 e2 e3 returns a witness after
the write. In general, any side-effect primitive returns a witness of performing the corresponding side-effect;
in the case of λwit , the side-effect primitives are just write e1 e2 e3 and read e e′.

2The results in Section 3 are general enough for most other functional transformations too, but the static checking algorithm
requires a more stringent definition.
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E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗E | πi(E) | writeE e e′ | write e E e′ | write e e′ E
| read e E | readE e | refE | joinE e | join e E

App (S, E[(λx.e) e′])⇒ (S, E[e[a/x]] ] {a 7→ e′})
Let (S, E[let x = e in e′])⇒ (S, E[e′[a/x]] ] {a 7→ e[a/x]})
Pair (S, E[πi(e1 ⊗ e2)])⇒ (S, E[ei])
Write (S, E[write ` e •])⇒ (S[`← a], E[•] ] {a 7→ e})
Read (S, E[read ` •])⇒ (S, E[S(`)⊗ •])
Ref (S, E[ref e])⇒ (S ] {` 7→ a}, E[`] ] {a 7→ e})
Join (S, E[join • •])⇒ (S, E[•])
Arrive (S, E[a] ] {a 7→ e})⇒ (S, E[e] ] {a 7→ e}) where e ∈ V
GC (S, D ]D′)⇒ (S, D) where � /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Figure 2: The semantics of λwit .

Before describing the formal semantics of λwit , we describe novel properties of λwit informally by examples.
Programs in λwit can use witnesses to order side-effects. For example, the following program returns 2

regardless of the evaluation order because the read requires a witness of the write:

let x = (ref 1) in let w = (write x 2 •) in read x w

(The symbol • is used for dummy witnesses.) On the other hand, λwit does not guarantee correctness. For
example, the following λwit program has no ordering between the read and the write and hence may return
1 or 2 depending on the evaluation order:

let x = (ref 1) in let w = (write x 2 •) in read x •

The expression kind join e e′ joins two witnesses by waiting until it sees the witness e and the witness
e′ and returning a witness. For example, the following program returns the pair 1 ⊗ 1 regardless of the
evaluation order because the write waits until it sees witnesses of both reads:

let x = (ref 1) in
let y = (read x •) in let z = (read x •) in

let w = (write x 2 (join π2(y) π2(z))) in
π1(y)⊗ π1(z)

Note that the two reads may be evaluated in any order. In general, witnesses are first class values and
hence they can be passed to and returned from a function, captured in function closures, and even written
to and read from a reference. Witnesses are a simple feature that can be used to order side-effects in a
straightforward manner.

In the rest of this section, we describe the semantics of λwit so that we can formally define when a
λwit program is correct, i.e., when it is confluent. Figure 2 shows the semantics of λwit , which is defined via
reduction rules of the form (S, D)⇒ (S ′, D′) where S, S′ are reference stores and D, D′ are expression stores.
A reference store is a function from a set of reference locations ` to ports a, and an expression store is a
function from a set of ports to expressions. Here, expressions include any expression from the source syntax
extended with reference locations and ports. Given a program e, evaluation of e starts from the initial state
(∅, {� 7→ e}) where the symbol � denotes the special root port. Ports are used for evaluation sharing.3 The
reduction rules are parametrized by the evaluation contexts E. For an expression e, free(e) is the set of free
variables, ports, and reference locations of e. For an expression store D, free(D) = dom(D)∪

⋃

e∈ran(D) free(e).
We briefly describe the reduction rules from top-to-bottom. The rule App corresponds to a function

application. For functions F and F ′, F ] F ′ denotes F ∪ F ′ if dom(F ) ∩ dom(F ′) = ∅ and is undefined

3In the literature, top-level let-bound variables often double as variables and ports.
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otherwise. Thus App creates a fresh port a and stores e′ at a. The rule Let is similar. The rule Pair
projects the ith element of the pair. The rule Write creates a fresh port a, stores the expression e′ at the
port a, and stores the port a at the reference location `. We use S[`← a] as a shorthand for {`′ 7→ S(`′) | `′ ∈
dom(S) ∧ `′ 6= `} ∪ {` 7→ a}. Note that we use the dummy witness symbol • as the run-time representation
of any witness because only its presence is important to the semantics, i.e., operationally, a witness is like
a dataflow token in dataflow machines. The rule Read reads from the reference location ` and, as noted
above, returns the value paired with a witness. The rule Ref creates a fresh location ` and a fresh port
a, initializes a to the expression e and ` to the port a. The rule Join takes two witnesses and returns one
witness.

The rule Arrive might look somewhat unfamiliar. Here V is the set of “safe to duplicate” expressions.
Partly for the sake of the static-checking algorithm to be presented later, we fix V to values generated by
the following grammar:

v := x | i | a | • | ` | v ⊗ v′ | λx.e

Arrive says that if e is safe to duplicate, then we can replace a by e; we say a safe to duplicate expression has
arrived at port a. In essence, while standard operational semantics for functional languages [12, 8] implicitly
combine Arrive with other rules, we separate Arrive for increased freedom in the evaluation order. Lastly,
the rule GC garbage-collects unreachable (from the root port �) portions of the expression store.

Here is an example of a λwit evaluation:

(∅, {� 7→ (λx.read x •) ref 1})
⇒ ({` 7→ a}, {� 7→ (λx.read x •) `, a 7→ 1}) Ref
⇒ ({` 7→ a}, {� 7→ read a′ •, a 7→ 1, a′ 7→ `}) App
⇒ ({` 7→ a}, {� 7→ read ` •, a 7→ 1, a′ 7→ `}) Arrive
⇒ ({` 7→ a}, {� 7→ a⊗ •, a 7→ 1, a′ 7→ `}) Read
⇒ ({` 7→ a}, {� 7→ 1⊗ •, a 7→ 1, a′ 7→ `}) Arrive
⇒ ({` 7→ a}, {� 7→ 1⊗ •}) GC

The semantics is non-deterministic and therefore also allows other reduction sequences for the same program.
For example, we may take an App step immediately instead of first creating a new reference by a Ref step:

(∅, {� 7→ (λx.read x •) ref 1})⇒ (∅, {� 7→ read a •, a 7→ ref 1}) App

Before defining confluence, we point out several important properties of this semantics. Firstly, note that
the evaluation contexts E do not extend to subexpressions of a λ abstraction λx.e, i.e., we do not reduce
under λ. The evaluation contexts also do not extend to subexpressions of an expression let x = e in e′,
but e and e′ may become available for evaluation via applications of the Let rule. As with call-by-value
evaluation or call-by-need evaluation, evaluation of an expression is shared. For example, in the program
(λx.x ⊗ x) e, the expression e is evaluated at most once.

The semantics of λwit has strictly more freedom in evaluation order than both call-by-value and call-by-
need. In particular, call-by-need evaluation can be obtained by using the same reduction rules but restricting
the evaluation contexts to the following

E := D ∪ {� 7→ E} | [ ] | E e | πi(E) | writeE e e′ | write ` e E | readE e | read ` E
| joinE e | join •E

Call-by-value evaluation can be obtained by adding the following contexts to the evaluation contexts of the
call-by-need evaluation

E := . . . | (λx.e) E | E ⊗ e | v ⊗E | write ` E • | refE |let x = E in e

in addition to restricting the rule App to the case e′ ∈ V , the rule Let to the case e ∈ V , the rule Pair to
the case e1, e2 ∈ V , the rule Write to the case e′ ∈ V , and the rule Ref to the case e ∈ V .4 Note that both
lazy writes and strict writes are possible in λwit .

4Strictly speaking, the context let x = E in e is not in the semantics of λwit . But λwit can simulate the behavior via a Let

step and then reducing e[a/x] which is now in an evaluation context.
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It is important to understand that we are only concerned with side-effects via references, and hence we
are not concerned about issues like the number of ports that are created during an evaluation.

Having defined the semantics, we can formally define when a λwit program is confluent. To this end, we
define observational equivalence as the smallest reflexive and transitive relation D ≈ D′ on expression stores
satisfying:

• D ≈ D[a/a′] where a /∈ free(D)

• D ≈ D[`/`′] where ` /∈ free(D)

That is, expression stores are observationally equivalent if they are equivalent up to consistent renaming of
free ports and reference locations. Let ⇒∗ be a sequence of zero or more ⇒.

Definition 1 (Confluence) A program state (S, D) is confluent if for any two states (S1, D1) and (S2, D2)
such that (S, D)⇒∗ (S1, D1) and (S, D)⇒∗ (S2, D2), there exist two states (S ′

1, D
′
1) and (S′

2, D
′
2) such that

(S1, D1) ⇒∗ (S′
1, D

′
1), (S2, D2) ⇒∗ (S′

2, D
′
2), and D′

1 ≈ D′
2. A program e is confluent if its initial state

(∅, {� 7→ e}) is confluent.

Note that the definition does not require any relation between reference location stores S ′
1 and S′

2. So,
for example, a program that writes but never reads would be confluent. As shown before, λwit contains
programs that are not confluent. Indeed, the difference between call-by-need and call-by-value is enough to
demonstrate non-confluence:

(λx.read x •) (let x = (ref 1) in let y = (write x 2 •) in x)

The above program evaluates to the pair 1⊗• under call-by-need and to the pair 2⊗• under call-by-value.
No further reductions can make the two states observationally equivalent. (Here we implicitly read back the
top-level expression from the root port instead of showing the actual expression stores for brevity.)

We have shown earlier that witnesses can aid in writing correct programs by directly ordering side-effects.
Witnesses are first class values and hence can be treated like other expressions. For example, the program
below captures a witness in a function which itself returns a witness to ensure that reads and writes happen
in a correct order:

let x = ref 1 in

let w = write x 2 • in
let f = λy.read x w in

let z = (f 0)⊗ (f 0) in
let w = write x 3 join π2(π1(z)) π2(π2(z)) in z

Note that a witness of the first write is captured in the function f . Hence both reads from the two calls
to f see a witness of the write. A witness of each read is returned by f , and the last write waits until it
sees witnesses from both reads. Therefore, the result of the program is (2 ⊗ •) ⊗ (2 ⊗ •) regardless of the
evaluation order. Note that the two calls to f , and thus the reads in the calls, can occur in either order.

3 Witness Race Freedom

As discussed in Section 2, witnesses aid in writing correct programs in the presence of side-effects but do not
enforce correctness. In this section, we give a sufficient condition for guaranteeing confluence.

The guideline for writing a correct program should be intuitively clear at this point: we ensure that
reads and writes happen in some race-free order by partially ordering them via witnesses. We now make this
intuition more precise. First, we formally define what we mean by the phrase “ side-effect A sees a witness
of side effect B” that we have used informally up to this point.

Intuitively, a trace graph is a program trace with all information other than reads, writes, and witnesses
elided. There are three kinds of nodes: read nodes read(`), write nodes write(`), and the join node join.
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Read and write nodes are parametrized by a reference location `. There is a directed edge (A, B) from node
A to node B if B directly sees a witness of A. A trace graph (V, E) is constructed as the program evaluates
a modified semantics:

Write (S, E[write ` e A])⇒ (S[`← a], E[B] ] {a 7→ e})
V:=V ∪ {B} where B is a new write(`) node
E:=E ∪ {(A, B)}

Read (S, E[read ` A])⇒ (S, E[S(`)⊗B])
V:=V ∪ {B} where B is a new read(`) node
E:=E ∪ {(A, B)}

Join (S, E[join A B])⇒ (S, E[C])
V:=V ∪ {C} where C is a new join node
E:=E ∪ {(A, C), (B, C)}

Note that we now use nodes as witnesses instead of •. The line below each reduction rule shows the graph
update action corresponding to that rule. The other rules remain unmodified and hence have no graph
update actions. An evaluation starts with V = E = ∅ and performs the corresponding graph update when
taking a Write step, a Read step, or a Join step. Notice that a trace graph and the annotated semantics
are only needed to state the semantic condition for correctness and are not needed in the actual execution
of a λwit program.

We can now define what it means for a node A to see a witness of a node B, a notion we have used
informally until now.

Definition 2 Given a trace graph, we say that a node A sees a witness of a node B if there is a path from
B to A in the trace graph. We write B ; A.

The following is a trivial observation:

Theorem 1 If B ; A in a trace graph, then the side effect corresponding to B must have happened before
the side effect corresponding to A in the evaluation that generated the trace graph.

Clearly, any trace graph is acyclic.
Having defined trace graphs and the ; relation, we are now ready to state the semantic condition for

correctness. Before showing the condition formally, we informally motivate it by making analogies to the
conventional programming guideline for writing correct concurrent programs: prevent race conditions.

We first note that a program could produce different trace graphs depending on the choice of reductions,
even when those trace graphs are from terminating evaluations. Furthermore, it is not necessarily the case
that such a program is non-confluent. Therefore, instead of trying to argue about confluence by comparing
different trace graphs, we shall define a condition that can be checked by observing each individual trace
graph in isolation.

Let us write A : nodetype as a shorthand for a node A of type nodetype. If we have A : read(`) and
B : write(`), then we want either A ; B or B ; A to ensure that A always happens before B or B always
happens before A because otherwise we may get a read-write race condition due to non-determinism. Also,
for any A : read(`), if there are two nodes B1, B2 : write(`) such that neither B1 ; B2 nor B2 ; B1 (so we
do not know which write occurs first) and A could happen after both B1 and B2, then we want C : write(`)
such that C ; A, B1 ; C and B2 ; C, because otherwise the read at A might depend on whether the
evaluation chose to do B1 first or B2 first, i.e., we have another kind of race-condition. Perhaps somewhat
surprisingly, satisfying these two conditions turns out to be sufficient to ensure confluence.

We now formalizes this discussion. For B : write(`), we use the shorthand B
!

; A if for any C : write(`)
such that C ; A and C 6= B, we have C ; B. Now, for any A : read(`), there exists at most one B : write(`)

such that B
!

; A. Note that the second condition above is equivalent to requiring that for any A : read(`),

either there is no B : write(`) such that B ; A or there is a B : write(`) such that B
!

; A
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Figure 3: Possible orderings between pairs of reads and writes in a witness race free trace graph.

Definition 3 (Witness Race Freedom) We say that a trace graph (V, E) is witness race free if for every
location `,

• for every A : read(`) ∈ V and B : write(`) ∈ V, either A ; B or B ; A, and

• for every A : read(`) ∈ V, either there is no B : write(`) ∈ V such that B ; A or there is a

B : write(`) ∈ V such that B
!

; A.

We say that a program e is witness race free if every trace graph of e is witness race free.

Theorem 2 If e is witness race free then e is confluent.

The proof appears in the appendix.
While witness race freedom is a sufficient condition, it is not necessary. For example, if for each reference

location writes happen to never change the location’s value, then the program is trivially confluent regardless
of the order of reads and writes. Another example is a program using implicit order of evaluation: e.g., in
λwit , expressions are not reduced under λ so a function body is evaluated only after a call. Hence a program
that stores a function in a reference location, reads the reference location to call the function, and then
writes in the same reference location from the body of the called function is confluent because the write
always happens after the read despite the write not seeing the witness of the read.

Nevertheless, witness race freedom is “almost complete” in a sense that if the only way to order two side-
effects is to make one see a witness of the other, and if we cannot assume anything about what expressions
are written and how the contents are used, then it is the weakest condition guaranteeing correctness. In
particular, if the trace graphs are the only information available about a program, then witness race freedom
becomes a necessary condition.

The result in this section can be extended to most other functional program transformations, because
witness race freedom is an entirely semantic condition. However, the static checking algorithm described in
Section 4 is not as forgiving, which is why we have restricted the set of program transformations to that of
the semantics of λwit . For example, the algorithm is unsound for general call-by-name reduction.

4 Types for Statically Checking Witness Race Freedom

While the concept of witnesses is straightforward, it may nevertheless be desirable to have an automated way
of checking whether an arbitrary λwit program is witness race free. Witness race freedom may be checked
directly by checking every program trace, which is computationally infeasible. Instead, we exploit a special
property of witness-race-free trace graphs to design a sound algorithm that can efficiently verify a large
subset of witness-race-free λwit programs.

The key observation is that any witness-race-free trace graph contains for each reference location ` a
subgraph that we shall call a read-write pipeline with bottlenecks. We shall design an algorithm that detects
these subgraphs instead of directly checking the witness race freedom condition. Consider a witness-race-free

trace graph. Suppose there are A1, A2 : write(`) and B1, B2 : read(`) such that A1 6= A2, A1
!

; B1 and

A2
!

; B2. Due to witness race freedom, it must be the case that B2 ; A1 or A1 ; B2. If the former is
the case, we have the relation as depicted in Figure 3 (a). Suppose that the latter is the case. Then, since
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Figure 4: A read-write pipeline with bottlenecks for a reference location `.

A2
!

; B2, it must be the case that A1 ; A2. Consider A2 and B1. Due to witness race freedom again, it

must be the case that either A2 ; B1 or B1 ; A2. But if A2 ; B1, then since A1
!

; B1, it must be the
case that A2 ; A1. But this is impossible since A2 ; A1 ; A2 forms a cycle. So it must be the case that
B1 ; A2, and we have the relation as depicted in Figure 3 (b).

Further reasoning along this line of thought reveals that for a witness-race-free trace graph, for any

reference location `, the nodes in the set X = {A : write(`) | ∃B : read(`).A
!

; B} are totally ordered (with
; as the ordering relation), and that these nodes partition all read(`) nodes and write(`) nodes in a way
depicted in Figure 4 where X = {A1, . . . , An}. In the figure, each Ri and Wi is a collection of nodes. No
Ri contains a write(`) node and no Wi contains a read(`) nodes. Each Ai is one write(`) node. An arrow
from X to Y means that there is a path from each write(`) node or read(`) node in X to each write(`) node
or read(`) node in Y , except if a Wi contains no such node, then there is a path from each read(`) ∈ Ri

to Ai. Each Ri for i 6= 1 must contain at least one read(`). Arrows just imply the presence of paths, and
hence there can be more paths than the ones implied by the arrows, e.g., paths to/from nodes that are not
in the diagram, paths to and from nodes in the same collection, and even paths relating the collections in
the diagram such as one that goes directly from Ri to Ai, bypassing Wi.

The graph in Figure 4 can be described formally as a subgraph of the trace graph satisfying certain
properties.

Definition 4 Given a trace graph (V, E) and a reference location `, we call its subgraph G` a read-write
pipeline with bottlenecks if G` consists of collections of nodes R1, R2, . . . , Rn and W1, W2, . . . , Wn with the
following properties:

• {A | A : read(`) ∈ V} ⊆
⋃n

i=1 Ri,

• {A | A : write(`) ∈ V} ⊆
⋃n

i=1 Wi,

• R1, . . . , Rn, W1, . . . , Wn, restricted to write(`) nodes and read(`) nodes are pairwise disjoint,

• for each A : read(`) ∈ Ri and B : write(`) ∈Wi, A ; B,

• for each Ri such that i 6= 1, there exists at least one A : read(`) ∈ Ri, and

• there exists A : write(`) ∈Wi for all i 6= n such that for all B : read(`) ∈ Ri+1 and all C : write(`) ∈Wi,

A
!

; B and C ; A.

Note that each collection Ri and Wi corresponds to the collection of nodes marked by the same name in
Figure 4 but with each node Ai included in the collection Wi. The “bottlenecks” are the Ai’s. Note that a
trace graph (V, E) actually contains a read-write pipeline with bottlenecks per each reference location ` as
a subgraph G` (but the subgraphs may not be disjoint because the paths may involve other locations and
share join nodes).

The following theorem formalizes our earlier informal discussion.

Theorem 3 A trace graph (V, E) is witness race free if and only if it has a read-write pipeline with bottlenecks
for every `.

The proof appears in the appendix. The following is an immediate consequence:
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e := x | i | λx.e | e e′ | let x = e in e′ | e⊗ e′ | πi(e) | write e1 e2 e3 | read e e′ | ref e e′

| join e e′ | • | letreg x e

Figure 5: The syntax of λreg
wit .

E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗E | πi(E) | writeE e e′ | write e E e′ | write e e′ E
| read e E | readE e | refE e | ref e E | joinE e | join e E

App (R, S, E[(λx.e) e′])⇒ (R, S, E[e[a/x]] ] {a 7→ e′})
Let (R, S, E[let x = e in e′])⇒ (R, S, E[e′[a/x]] ] {a 7→ e[a/x]})
Pair (R, S, E[πi(e1 ⊗ e2)])⇒ (R, S, E[ei])
Write (R, S, E[write ` e •]⇒ (R, S[`← a], E[•] ] {a 7→ e})
Read (R, S, E[read ` •])⇒ (R, S, E[S(`)⊗ •])
Ref (R, S, E[ref e r])⇒ (R, S ] {` 7→ a}, E[`] ] {a 7→ e})
Join (R, S, E[join • •])⇒ (R, S, E[•])
LetReg (R, S, E[letreg x e])⇒ (R ] {r}, S, E[e[a/x]] ] {a 7→ r})
Arrive (R, S, E[a] ] {a 7→ e})⇒ (R, S, E[e] ] {a 7→ e}) where e ∈ V
GC (R, S, D ]D′)⇒ (R, S, D) where � /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Figure 6: The semantics of λreg
wit .

Corollary 1 A λwit program e is witness race free if and only if every trace graph of e has a read-write
pipeline with bottlenecks for every reference location `.

4.1 Regions

Corollary 1 reduces the problem of deciding whether a program e is witness race free to the problem of
deciding if every trace graph of e has a read-write pipeline with bottlenecks for every reference location
`. Therefore it suffices to design an algorithm for solving the latter problem. But before we do so, we
make a slight change to λwit to make the problem more tractable. In λwit , there is a read-write pipeline
with bottlenecks for each reference location `, but distinguishing dynamically allocated reference locations
individually is difficult for a compile-time algorithm. Therefore, we add regions to the language so that
programs can explicitly group reference locations that are to be tracked together.

Figure 5 shows λreg
wit , λwit extended with regions. The syntax contains two new expression kinds:

letreg x e which creates a new region and ref e e′ which places the newly created reference in region
e′; ref e e′ replaces ref e. Figure 6 gives the semantics of λreg

wit which differs from λwit in two small ways.
First, a state now contains a set of regions R. We use symbols r, r′, ri, etc. to denote regions. Regions are
safe to duplicated, i.e., r ∈ V . The R’s are used only for ensuring that the newly created region r at a
LetReg step is fresh. (We overload the symbol ] such that R]R′ = R∪R′ if R∩R′ = ∅ and, is undefined
otherwise.) Note that evaluation contexts E do not extend to the subexpressions of letreg x e. The second
difference is that a Ref step now takes a region r along with the initializer e to indicate that the newly
created reference location ` belongs to the region r. Note that the semantics does not actually associate the
reference location ` and the region r, and therefore grouping of reference locations via regions is entirely
conceptual.5

Regions force programs to abide by witness race freedom at the granularity of regions instead of at the
granularity of individual reference locations. That is, instead of read(`) nodes and write(`) nodes, we use
read(r) nodes and write(r) nodes. Formally, a trace graph for λreg

wit is constructed by the following graph

5Regions are traditionally coupled with some semantic meaning such as memory management [13, 5]. It is possible to extend
λreg
wit to do similar things with its regions.

9



construction semantics:

Write (R, K, S, E[write ` e A])⇒ (R, K, S[`← a], E[B] ] {a 7→ e})
V:=V ∪ {B} where B is a new write(K(`)) node
E:=E ∪ {(A, B)}

Read (R, K, S, E[read ` A])⇒ (R, K, S, E[S(`)⊗B])
V:=V ∪ {B} where B is a new read(K(`)) node
E:=E ∪ {(A, B)}

Join (R, K, S, E[joinA B])⇒ (R, K, S, E[C])
V:=V ∪ {C} where C is a new join node
E:=E ∪ {(A, C), (B, C)}

Ref (R, K, S, E[ref e r]) ⇒ (R, K ] {` 7→ r}, S ] {` 7→ a}, E[`] ] {a 7→ e})

Note that these reduction rules use an additional function K which is a mapping from reference locations to
regions. The mapping K starts empty at the beginning of evaluation. Other reductions rules are unmodified
except that the function K is passed from left to right in the obvious way.

Since there is less information available in a λreg
wit trace graph than in a λwit trace graph, the witness race

freedom condition is more conservative for λreg
wit . That is, we still need the condition that for any A : write(r)

and B : read(r), either A ; B or B ; A. But we need to tighten the second condition so that for any
A : read(r) if there are B1, B2 : write(r) such that B1 ; A and B2 ; A, then either B1 ; B2 or B2 ; B1.
This condition is strictly more conservative than for λwit , which only requires some C : write(r) such that

C
!

; A in such a situation. The reason for this conservativeness is that we do not know from a trace graph
of λreg

wit whether B1 and B2 both write to the same reference location.
Formally, witness race freedom for λreg

wit can be defined as follows.

Definition 5 (Witness Race Freedom for λreg
wit) We say that a λreg

wit trace graph (V, E) is witness race
free if for every region r,

• for every A : read(r) ∈ V and B : read(r) ∈ V, either A ; B or B ; A, and

• for every A : read(r) ∈ V and B1, B2 : write(r) ∈ V such that B1 ; A and B2 ; A, we have B1 ; B2

or B2 ; B1.

Theorem 4 If a λreg
wit program e is witness race free, then e is confluent.

Proof (Sketch): For any evaluation of e, carry out the same reduction sequence with the trace graph building
action of λwit , i.e., the trace graph G generated is at the granularity of reference locations. Then it is easy
to see that if G satisfies the above two conditions, G also satisfies the two conditions of Theorem 2. 2

It is easy to see that Definition 5 is the weakest possible restriction to the original witness race freedom
under the region abstraction because for any λreg

wit trace graph that is not witness race free, one can easily
find a non-confluent program that produces the graph.

In a witness-race-free trace graph for λreg
wit , the read-write pipeline with bottlenecks for a region r consisting

of the collections (R1, . . . , Rn, W1, . . . , Wn) has the following property: each set {A | A : write(r) ∈ Wi}
for i 6= n can be totally ordered (with ; as the ordering relation). The theorem below is immediate from
Corollary 1 under this additional property.

Theorem 5 A λreg
wit program e is witness race free if and only if every trace graph of e has a read-write

pipeline with bottlenecks for every region r.

This additional property helps in designing a static checking algorithm.
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τ := int | τ
q
→ τ ′ | τ ⊗ τ ′ | ref (τ, τ ′, ρ) | reg(ρ) |W

Figure 7: The type language.

4.2 From Network Flow to Types

Now our goal is to design an algorithm for statically checking if every trace graph of a λreg
wit program e has

a read-write pipeline with bottlenecks for every region r. Our approach exploits a network flow property of
read-write pipelines with bottlenecks. Consider a trace graph as a network of nodes with each edge (A, B)
able to carry any non-negative flow from A to B. (Recall edges are directed.) As usual with network flow,
we require that the total incoming flow equal the total outgoing flow for every node in the graph. Now, let
us add a virtual source node AS and connect it to every node B by adding an edge (AS , B). We assign
incoming flow 1 to AS . Then it is not hard to see that if there exists a read-write pipeline with bottlenecks
for the region r then there exists flow assignments such that every read(r) node and write(r) node gets a
positive flow and every A : write(r) ∈Wi for i 6= n gets a flow equal to 1.

It turns out that the converse also holds. That is, given a trace graph, if there is a flow assignment such
that each read(r) node and write(r) node gets a positive flow and each A : write(r) such that there exists
B : read(r) with A ; B gets a flow equal to 1, then there is a read-write pipeline with bottlenecks for the
region r. By Theorem 5, this implies that there exists such a flow assignment for every region r if and only
if the trace graph is witness race free. Because edges in a trace graph are traces of witnesses, our idea is to
assign a type to a witness such that the type contains flow assignments for each (static) region. We use this
idea to design a type system such that a well-typed program is guaranteed to be witness race free.

Formally, a witness type W is a function from the set of static region identifiers RegIDs to rational
numbers in the range [0, 1], i.e., W : RegIDs→ [0, 1]. The rational number W (ρ) indicates the flow amount
for the static region identifier ρ in the witness type W . We use the notation {ρ1 7→ q1, . . . , ρn 7→ qn} to mean
a witness type W such that W (ρ) = qi if ρ = ρi for some 1 ≤ i ≤ n and W (ρ) = 0 otherwise. (We use the
symbols q, qi, q′, etc for non-negative rational numbers, including those larger than 1.)

The rest of the types are defined in Figure 7, including types include integer types int, function types

τ
q
→ τ ′, pair types τ ⊗ τ ′, reference types ref (τ, τ ′, ρ), and region types reg(ρ). The non-negative rational

number q in τ
q
→ τ ′ represents the number of times the function can be called. We allow the symbols q, q′,

etc to take the valuation ∞ to imply that the function can be called arbitrarily many times. We use the
following arithmetic relation: q +∞ =∞, q ×∞ =∞ for q 6= 0, and 0×∞ = 0.

Figure 8 shows the main type judgment rules. Our type system belongs to the family of substructural
type systems, which includes linear types. We discuss the rules from top-to-bottom and left-to-right, except
for the rule Sub which we defer to the end. The rules Var and Int are standard. The rule Dummy gives
a dummy witness • an empty witness type; note that ∅(ρ) = 0 for any static region identifier ρ.

The rule Source uses additive arithmetic over types defined in Figure 9. The rule adds W3 amount of
flow from the virtual source nodes (i.e., nodes AS from the first paragraph of this section) to W2. In the
type judgment relation Γ; W ` e : τ , the witness type W represents the flow the expression e receives from
the virtual source nodes. Therefore, the rule Source says that assuming that we took W1 flow from the
virtual source nodes in the precondition, we are now taking W3 more.

In the rule Abs, we multiply the left hand side of the judgments by the number of times that the function
can be used. Multiplication over type environments Γ is defined as follows:

(Γ, x:τ) × q = (Γ× q), x:(τ × q)

So for example, if the λ abstraction λx.e captures a witness as a free variable y and that Γ(y) = W , then
(Γ× q)(y) = W × q. Thus if the function body requires W amount of flow in the witness, then we actually
require W × q amount of flow because the function may be called q times.

In the rule App, the precondition q ≥ 1 says that the number of times the function can be used must be
at least 1. The left hand side of the two judgments in the precondition are added so that we can compute the
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Γ; W ` e : τ τ ≥ τ ′

Γ; W ` e : τ ′
Sub

Γ(x) = τ

Γ; W ` x : τ
Var

Γ; W ` i : int
Int

Γ; W ` • : ∅
Dummy

Γ; W1 ` e : W2

Γ; W1 + W3 ` e : W2 + W3

Source
Γ, x:τ ; W ` e : τ ′

Γ× q; W × q ` λx.e : τ
q
→ τ ′

Abs

Γ; W ` e : τ
q
→ τ ′ Γ′; W ′ ` e′ : τ q ≥ 1

Γ + Γ′; W + W ′ ` e e′ : τ ′
App

Γ; W ` e : τ Γ′; W ′ ` e′ : τ ′

Γ + Γ′; W + W ′ ` e⊗ e′ : τ ⊗ τ ′
Pair

Γ; W ` e : τ1 ⊗ τ2

Γ; W ` πi(e) : τi

Proj
Γ; W ` e : τ Γ′; W ′ ` e′ : reg(ρ)

Γ + Γ′; W + W ′ ` ref e e′ : ref (τ, τ, ρ)
Ref

Γ1; W1 ` e1 : ref (τ, τ ′, ρ) Γ2; W2 ` e2 : τ ′ Γ3; W3 ` e3 : W W (ρ) ≥ 1

Γ1 + Γ2 + Γ3; W1 + W2 + W3 ` write e1 e2 e3 : W
Write

Γ; W1 ` e : ref (τ, τ ′, ρ) Γ′; W2 ` e′ : W W (ρ) > 0

Γ + Γ′; W1 + W2 ` read e e′ : W ⊗ τ
Read

Γ, x:reg(ρ); W + {ρ 7→ q} ` e : τ
q ≤ 1 ρ /∈ free(Γ) ∪ free(W ) ∪ free(τ)

Γ; W ` letreg x e : τ
LetRegion

Γ; W1 ` e : W Γ; W2 ` e′ : W ′

Γ + Γ′; W1 + W2 ` join e e′ : W + W ′
Join

Γ; W ` e′[(let x = e in x)/x] : τ e ∈ V +

Γ; W ` let x = e in e′ : τ
LetA

Γ, x:τ ; W ` e : τ Γ′, x:τ ; W ′ ` e′ : τ ′

τ ≥ τ ×∞ if x ∈ free(e)

Γ + Γ′; W + W ′ ` let x = e in e′ : τ ′
LetB

Figure 8: Type judgment rules.

combined flow required for the expressions e and e′. Addition over type environments is defined as follows:

(Γ, x:τ) + (Γ′, x:τ ′) = (Γ + Γ′), x:(τ + τ ′)

The rules Pair and Proj are self-explanatory.
In a reference type ref (τ, τ ′, ρ), the static region identifier ρ identifies the region where the reference

belongs while the type τ is the read type of the reference and the type τ ′ is the write type of the reference.
Initially the read and write types are the same as seen in the rule Ref. The rule Write matches the type of
the to-be-assigned expression e2 with the write type of the reference while the rule Read uses the read type
of the reference type. Note that we require W (ρ) ≥ 1 at Write and W (ρ) > 0 at Read; both correspond to
the flow requirement for writes and reads. The reason read-type/write-type separation is subtle. Consider
the following expression where the expressions e1 and e3 are witnesses and the expression e2 is a region:

let x = (ref e1 e2) in let w = (write x e3 •) in read x w

Suppose we just have read types so that the type system uses read types at instances Write as well as at
instances Read. Then the type system is unsound (even without Sub) for the following reason. The type
system may assign some flow W to the occurrence of the variable x at the write and some flow W ′ to the
occurrence of the variable x at the read. But there is no constraint to force W = W ′, so the type system
can let W ′ > W while keeping the sum W + W ′ fixed, i.e., we get more flow from a reference than what
was assigned to the reference. Separating read and write types prevents this problem because addition and
multiplication do not act on write types.
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reg(ρ) + reg(ρ) = reg(ρ)
int + int = int

τ
q
→ τ ′ + τ

q′

→ τ ′ = τ
q+q′

→ τ ′

τ1 ⊗ τ2 + τ3 ⊗ τ4 = (τ1 + τ3)⊗ (τ2 + τ4)
ref (τ1, τ, ρ) + ref (τ2, τ, ρ) = ref (τ1 + τ2, τ, ρ)
W + W ′ = {ρ 7→ W (ρ) + W ′(ρ) | ρ ∈ RegIDs}

reg(ρ)× q = reg(ρ)
int× q = int

τ
q′

→ τ ′ × q = τ
q′×q
→ τ ′

τ ⊗ τ ′ × q = (τ × q)⊗ (τ ′ × q)
ref (τ, τ ′, ρ)× q = ref (τ × q, τ ′, ρ)
W × q = {ρ 7→W (ρ)× q | ρ ∈ RegIDs}

Figure 9: Arithmetic over types.

τ ≥ τ

τ1 ≤ τ ′
1 τ2 ≥ τ ′

2 q ≥ q′

τ1
q
→ τ2 ≥ τ ′

1
q′

→ τ ′
2

τ1 ≥ τ ′
1 τ2 ≥ τ ′

2

τ1 ⊗ τ2 ≥ τ ′
1 ⊗ τ ′

2

τ1 ≥ τ ′
1 τ2 ≤ τ ′

2

ref (τ1, τ2, ρ) ≥ ref (τ ′
1, τ

′
2, ρ)

W (ρ) ≥W (ρ) for all ρ ∈ RegIDs

W ≥W ′

Figure 10: Subtyping.

The rule LetRegion introduces a fresh static region identifier ρ. The witness type {ρ 7→ q} represents
the virtual source node for the new region. We constrain q ≤ 1 to ensure that we do not use more than 1
unit total from the source.

The rule Join combines two witnesses by adding their types.
There are two rules, LetA and LetB, for the expression kind let x = e in e′. LetA is less conservative

and should be used whenever x occurs more than once in e′ and e ∈ V + where V + is the smallest set such
that V + = V ∪ {let x = e in x | e ∈ V +}. This rule corresponds to the usual substitution interpretation of
let-based predicative polymorphism with the value restriction. LetB is used if e /∈ V + or x occurs at most
once in e′. Here, free(τ) is the set of static region identifiers in the type τ where free(W ) = {ρ |W (ρ) 6= 0},
and free(Γ) =

⋃

τ∈ran(Γ) free(τ).
Finally, we come return to Sub. The subtyping relation is defined in Figure 10. As usual, argument types

of function types are contravariant. Write types of reference types are also contravariant; this treatment
of reference subtyping is identical to that of a type-based formulation of Andersen’s points-to analysis [4].
Intuitively, the rule Sub expresses the observation that the flow graph property may be relaxed so that
the sum of the outgoing flow can be less than the sum of the incoming flow, i.e., if we could find a flow
assignment satisfying the required flow constraints at reads and writes under this relaxed condition, then we
still have a read-write pipeline with bottlenecks.

We say that a λreg
wit program e is well-typed if ∅; ∅ ` e : τ for some type τ . The following theorem states

that the type system is sound.

Theorem 6 If a λreg
wit program e is well-typed, then it is witness race free.

The proof, which uses the network flow property, appears in the appendix.
We point out a few of the positive properties of this type system. If a program contains no reads or writes

and can be typed by a standard Hindley-Milner polymorphic type system, then it can also be typed by our
type system; for example, we may use the qualifier∞ for all function types and use 0 for all flows. In general,
we can give the ∞ qualifier to the function type of any function that does not capture a witness (directly or
indirectly). We can also assign flow 0 to any flow for a region r that does not flow into a side-effect primitive
operating on the region r.

The type system is quite expressive. In particular, it is able to type all of the examples that were used as
correct programs up to this point in the paper (with straightforward modification to translate λwit programs
into λreg

wit ). In fact, assuming that for each region r, write(r) nodes in each collection Wi are totally ordered,
the type system is “complete” for the first-order fragment (i.e., no higher order functions) with no recursion
and no storing of witnesses in references. That is, such a program e is witness race free and well-typed by a
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Fresh(int) = int

Fresh(σ→σ) = Fresh(σ)
β
→ Fresh(σ) where β is fresh

Fresh(σ ⊗ σ′) = Fresh(σ)⊗ Fresh(σ)
Fresh(ref (σ, σ′, ρ)) = ref (Fresh(σ),Fresh(σ′), ρ)
Fresh(reg(ρ)) = reg(ρ)
Fresh(I) = {ρ 7→ α | ρ ∈ I} where α is fresh

Figure 11: Fresh.

Γ, W `b eI : τ, C

Γ, W + Fresh(I) `a eI : τ + Fresh(I), C

Γ, W `b eσ : τ, C σ /∈ type I

Γ, W `a eσ : τ, C

Figure 12: Type inference `a.

standard Hindley-Milner type system if and only if it is well-typed by our type system. We also show later
in Section 5 that the type system is more expressive than past approaches.

The limitations of the type system are the standard ones: let-based predicative polymorphism, flow-
insensitivity of reference types, and unsoundness under call-by-name semantics; the latter is a typical lim-
itation of a non-linear substructural type system. Another limitation is that the type system enforces for
each region r that write(r) nodes in every collection Wi are totally ordered whereas witness race freedom
permits an absence of ordering for the case i = n; we believe that this is a minor limitation.

4.3 Inference

We next present a type inference algorithm. By Theorem 6, this results in an automatic algorithm for
statically checking witness race freedom.

At a high-level, our type system is a standard Hindley-Milner type system with some additional rational
arithmetic constraints. Therefore we could perform inference by employing a standard type inference tech-
nique to solve all type-structural constraints while generating rational arithmetic constraints on the side,
and then solving the generated arithmetic constraints separately. Unfortunately, the arithmetic constraints
may be non-linear since they involve the multiplication of variables. Because there is no efficient algorithm
for solving general non-linear rational arithmetic constraints, we need to dive into lower-level details of the
type system.

Let us separate type inference into two phases. The first phase carries out type inference after erasing
all rational numbers from the type system. That is, the types inferred in this phase are:

σ := int | σ→σ′ | σ ⊗ σ′ | ref (σ, σ′, ρ) | reg(ρ) | I

where a type I is a subset of RegIDs. Intuitively, each type I represents the non-0 domain of some witness
type W . The first phase can be carried out by a standard Hindley-Milner type inference, albeit with regions,
which is no harder than type variables. We omit the details of this phase. We may safely reject the program
if the first phase fails. Otherwise we annotate each subexpression e by its inferred type σ: eσ. In the
second phase, we use the annotated program to generate the appropriate rational arithmetic constraints via
bottom-up type-inference. Let e be an annotated program. Then the generated constraints for e is C where
Γ, W `a e : τ, C for some Γ, W , and τ .

The second-phase type inference rules are separated into two kinds, `a (Figure 12) and `b (Figure 13),
which must occur in strictly interleaving manner. The purpose of `a is to account for the type judgment
rule Source, whereas `b accounts for all other rules.

We should note that, strictly speaking, types τ appearing in the algorithm are different from the ones in
the type judgment rules. That is, instead of rational numbers, the types τ in the algorithm are qualified by
rational number variables α, β, γ, etc. Also the domain of a witness type W is not the entire RegIDs set
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τ = Fresh(σ)

{x:τ}, ∅ `b xσ : τ, ∅ ∅, ∅ `b i : int, ∅ ∅, ∅ `b • : ∅, ∅

Γ, W `a e : τ, C β is fresh

Γ× β, W × β `b λx.e : Γ(x)
β
→ τ, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
τ = Fresh(σ) τ ′ = Fresh(σ′) β is fresh

C = C1 ∪ C2 ∪ {τ1 ≥ τ
β
→ τ ′, β ≥ 1, τ2 ≥ τ}

Γ1 + Γ2, W1 + W2 `b eσ→σ′

1 e2 : τ ′, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
Γ1 + Γ2, W1 + W2 `b e1 ⊗ e2 : τ1 ⊗ τ2, C1 ∪ C2

Γ, W `a πi(e) : τ, C
τ1 = Fresh(σ) τ2 = Fresh(σ′)

Γ, W `b πi(e
σ1⊗σ2) : τi, C ∪ {τ ≥ τ1 ⊗ τ2}

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2

Γ1 + Γ2, W1 + W2 `b ref e1 e
reg(ρ)
2 : ref (τ1, τ2, ρ), C1 ∪ C2

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2 Γ3, W3 `a e2 : τ3, C3 τ = Fresh(σ) τ ′ = Fresh(σ′)
C = C1 ∪ C2 ∪ {τ1 ≥ ref (τ, τ ′, ρ), τ2 ≥ τ ′, τ3(ρ) ≥ 1} Γ = Γ1 + Γ2 + Γ3 W = W1 + W2 + W3

Γ, W `b write e
ref (σ,σ′,ρ)
1 e2 e3 : τ3, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
τ = Fresh(σ) τ ′ = Fresh(σ′) C = C1 ∪ C2 ∪ {τ1 ≥ ref (τ, τ ′, ρ), τ2(ρ) > 0}

Γ1 + Γ2, W1 + W2 `b read e
ref (σ,σ′,ρ)
1 e2 : τ ⊗ τ2, C

Γ, W `a e : τ, C

Γ, W `b letreg xreg(ρ) e : τ, C ∪ {W (ρ) ≤ 1}

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
Γ1 + Γ2, W1 + W2 `b join e1 e2 : τ1 + τ2, C1 ∪ C2

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
x /∈ free(e1) C = C1 ∪ C2 ∪ {τ1 ≥ Γ2(x)}

Γ1 + Γ2, W1 + W2 `b let x = e1 in e2 : τ2, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
x ∈ free(e1)

C = C1 ∪ C2 ∪ {τ1 ≥ Γ1(x)×∞, τ1 ≥ Γ2(x)}

Γ1 + Γ2, W1 + W2 `b let x = e1 in e2 : τ2, C

Figure 13: Type inference `b.
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but only some subset of it. In other words, a witness type W is a partial function from RegIDs to rational
number variables. We re-define the addition of witness types as follows to reflect the change:

W + W ′ =
{ρ 7→ W (ρ) + W ′(ρ) | ρ ∈ dom(W ) ∧ ρ ∈ dom(W ′)}
∪{ρ 7→W (ρ) | ρ ∈ dom(W ) ∧ ρ /∈ dom(W ′)}
∪{ρ 7→W ′(ρ) | ρ ∈ dom(W ′) ∧ ρ /∈ dom(W )}

We also re-define the addition of type environments:

Γ + Γ′ =
{x:Γ(x) + Γ′(x) | x ∈ dom(Γ) ∧ x ∈ dom(Γ′)}
∪{x:Γ(x) | x ∈ dom(Γ) ∧ x /∈ dom(Γ′)}
∪{x:Γ′(x) | x ∈ dom(Γ′) ∧ x /∈ dom(Γ)}

Note that we omit annotations when they are not used (i.e., we say e instead of eσ, etc.). There are only
two cases for `a. The first case is for expressions that were given a witness type I in the first phase. In
this case, we add Fresh(I) to τ and W to account for a possible application of Source. Fresh is defined in
Figure 11. The second case is for expressions that were not given a witness type. In this case, we simply
pass the result of the subderivation `b up.

We discuss a few representative `b rules. Note that `b rules are syntax directed. In the case of a variable
xσ , we create a fresh τ from σ and pass {x :τ}, ∅ `b xσ : τ, ∅ up to the parent derivation. (Recall our type
inference is bottom-up.) The case for integers and dummy witnesses are trivial. In the case of an abstraction
λx.e, we multiply Γ and W passed from the subderivation by β. In the case of a function application

eσ→σ′

1 e2, we add the constraints {τ1 ≥ τ
β
→ τ ′, β ≥ 1, τ2 ≥ τ} to connect arguments and returns as well as

requiring β to be at least 1. Note that the type rule Sub is implicitly incorporated in the constraints. In the

case of write e
ref (σ,σ′,ρ)
1 e2 e3, we add the constraint τ2(ρ) ≥ 1 to match the type rule Write. Note that the

first phase guarantees that ρ ∈ dom(τ3). In the case letreg xreg(ρ) e, the constraint W (ρ) ≤ 1 is effective
only when ρ ∈ dom(W ) as ρ /∈ dom(W ) implies that the region was not used at all. Note that there is no
case corresponding to the type rule LetA. Prior to running the algorithm, we replace each occurrence of the
expression let x = e in e′ in the program by the expression e′[(let x = e in x)/x] whenever e ∈ V and x
occurs more than once in e′.

As an example, consider the following program (a λreg
wit version of the last example from Section 2):

letreg r
let x = ref 1 r in

let w = write x 2 • in
let f = λy.read x w in

let z = (f 0)⊗ (f 0) in
let w = write x 3 join π2(π1(z)) π2(π2(z)) in z

Suppose the first phase assigns r the type reg(ρ). Assume each let-bound variable is treated monomorphi-
cally. The second phase generates the following constraints for the let-bound expressions (slightly simplified
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for readability):
{r :reg(ρ)}; ∅ `a ref 1 r : ref (int, int, ρ), ∅

Γ; {ρ 7→ γ1 + γ2} `a write x 2 • : {ρ 7→ γ1 + γ2}, {γ1 ≥ 1}
where Γ = {x:ref (int, int, ρ)}

Γ; W `a λy.read x w : int
β1

→ int⊗ {ρ 7→ α1 + γ3}, C
where Γ = {x:ref (int, int, ρ), w :{ρ 7→ α1 × β1}}
and W = {ρ 7→ γ3 × β1}
and C = {α1 + γ3 > 0}

Γ; ∅ `a (f 0)⊗ (f 0) : τ, C

where Γ = {f :int
β2+β3

→ int⊗ {ρ 7→ α2}}
and τ = (int⊗ {ρ 7→ α2})⊗ (int⊗ {ρ 7→ α2})
and C = {β2 ≥ 1, β3 ≥ 1}

Γ; {ρ 7→ γ4} `a write x 3 . . . : {ρ 7→ α3 + α4 + γ4}, C
where Γ = {x:ref (int, int, ρ), z :τ}
and τ = (int⊗ {ρ 7→ α3})⊗ (int⊗ {ρ 7→ α4})
and C = {α3 + α4 + γ4 ≥ 1}

The final constraints, after some simplification, is as follows:

γ1 ≥ 1, 1 ≥ γ1 + γ2 + γ3 × β1 + γ4, β1 ≥ β2 + β3,
β2 ≥ 1, β3 ≥ 1, γ1 + γ2 ≥ α1 × β1, α1 + γ3 > 0,
α1 + γ3 ≥ α2, α3 + α4 + γ4 ≥ 1, α2 ≥ α3, α2 ≥ α4

Note that the constraints are satisfiable, e.g., by the substitution

β1 = 2 β2 = β3 = γ1 = 1 α1 = α2 = α3 = α4 = 0.5 γ2 = γ3 = γ4 = 0

In general, a program e is well-typed if and only if the constraints C generated by type inference are
satisfiable. So it suffices to show that the satisfaction problem for any C generated by the type inference
algorithm can be solved.

To this end, we first note that because of the first phase, any constraint τ ≥ τ ′ ∈ C can be reduced
to a set of rational arithmetic constraints of the form p ≥ p′ where p, p′ are rational polynomials. The
troublesome non-linearity comes from Γ× β and W × β in the λx.e case. Let us focus our attention on the
set B of variables used in such multiplications. (Note that we have used β instead of α just for this case in
the pseudo-code to make it clear that these variables are special.) We can show that the following holds:

Theorem 7 Let p � p′ ∈ C where � ∈ {≥, >}. If β ∈ B occurs in the polynomial p, then it must be the case
that � =≥, p = β, and that the polynomial p′ consists only of symbols in the set {+,×, 1,∞}∪ B.

Proof (Sketch): Let Γ, W `a e : τ, C. For any τ ′ ∈ Γ, × and + only appear at the top-level, i.e., not within
argument and return types of a function type. Secondly, we can show by induction that within the type τ ,
× only appears in negative positions. More precisely, for any p ∈ Pos(τ), the polynomial p contains no ×
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where Pos is defined as follows:

Pos(τ
p
→ τ ′) = Neg(τ) ∪ Pos(τ ′) ∪ {p}

Pos(τ ⊗ τ ′) = Pos(τ) ∪ Pos(τ ′)
Pos(ref (τ, τ ′, ρ)) = Pos(τ) ∪ Neg(τ ′)
Pos(W ) = ran(W )
Neg(int) = Pos(int) = Neg(reg(ρ)) = Pos(reg(ρ)) = ∅

Neg(τ
p
→ τ ′) = Pos(τ) ∪ Neg(τ ′)

Neg(τ ⊗ τ ′) = Neg(τ) ∪ Neg(τ ′)
Neg(ref (τ, τ ′, ρ)) = Neg(τ) ∪ Pos(τ ′)
Neg(W ) = ∅

Third, for any + that appears in a positive position of τ , i.e. in some p ∈ Pos(τ), the polynomial p does not
contain any β ∈ B. Then the result follows from inspection of the subtyping rules. 2 The theorem implies

that we can compute all assignments to the variables in B by computing the minimum satisfying assignment
for C′ = {β ≥ p | β ∈ B} ⊆ C. It is easy to see that such an assignment always exists. (Recall that the
range is non-negative.) This problem can be solved in quadratic time by an iterative method in which all
variables are initially set to 0, and at each iteration the new values for the variables are computed by taking
the maximum of the right hand polynomials evaluated at the current values. It is possible to show that if
the minimum satisfying assignment for a variable β is some q <∞, then the iterative method finds q for β in
2|C′| iterations. Hence any variable changing after the 2|C ′|th iteration can be safely set to ∞. All variables
are then guaranteed to converge within 3|C ′| iterations. Because each iteration examines every constraint,
the overall time is at most quadratic in the size of C ′.

Substituting the computed assignments for B in C results in linear rational constraints, which can be
solved efficiently by a linear programming algorithm.

5 Related Work

Adding side-effects to a functional language is an old problem with many proposed solutions. Here we
compare our technique against two of the more prominent approaches: linear types [14, 6, 1] and monads [10,
11, 7, 9].

In linear types, there is an explicit world program value (or one world per region for languages with
regions) that conceptually represents the current program state. By requiring each world have a linear type,
the type system ensures that the world can be updated in place.

The linear type system can be expressed in our type system by restricting every flow to 1, every witness
to contain only one flow, and designating one dummy witness to serve the role of the “starting” witness (or
for regions, one dummy witness per region). Thus our approach is more expressive than such an approach.
Note that this also implies that every function type can be restricted to have either 1 or ∞ as the qualifier.
It is easy to see that the program is well-typed under this restriction if and only if it is well-typed by the
linear type system. The restriction limits programs to manipulate witnesses only in a linear fashion. In
practice, this implies that there can be no parallel reads, no dead witnesses, no redundant witnesses, and no
duplication of values containing witnesses.

Our approach can implement monadic primitives as follows (for concrete comparison, we use state mon-
ads [9]):

newVar = λx.λy.let z = (ref x π2(y)) in y ⊗ z
readVar = λx.λy.let z = (read x π1(y)) in (π2(z)⊗ π2(y))⊗ π1(z)
writeVar = λx.λw.λy.let z = (write x w π1(y)) in (z ⊗ π2(y))⊗ w
>>= = λf.λg.λx.let y = (f x) in g π2(y) π1(y)
returnST = λx.λy.y ⊗ x
runST e = letreg x π2(e (• ⊗ x))
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The idea behind these definitions is to implement each state monad of the type ST (α, τ) as a function that
takes a witness and the region α as arguments and returns a witness, the region α, and a value of the type
τ . It is easy to see that if a state monad program is well-typed by the monadic type system, then it is also
well-typed with our type system using the above definitions for the monadic primitives. Thus, our approach
is more expressive than monads.

In practice, a monadic approach shares essentially the same limitations as linear types; for example,
side-effects are restricted to a linear, sequential order. (In fact, it is not too hard to see that we can actually
implement monadic primitives with the linear types restriction with only slightly longer code.) On the other
hand, a monadic type system has an engineering advantage as it only requires Hindley-Milner type inference.

In addition to the above technical differences, our approach differs from previous approaches in its
design motivation. That is, while our language feature, witnesses, is motivated by a pragmatic observation,
understanding the motivation behind linear types and monads (i.e., not just knowing how to use them)
arguably requires an appreciation of their underlying theory.

The technique used in our type system has some resemblance to fractional permissions [2] which can
guarantee non-interference in imperative programs. Indeed, it may be possible to give an “interpretation”
of witnesses as some relaxation of permissions or capabilities [3] (after promoting permissions or capabilities
to first class values) in situations where the program is witness race free.

6 Conclusions

We have presented a new approach to adding side-effects in purely functional languages based on witnesses.
We have stated a natural semantic correctness condition called witness race freedom and proposed a type-
based approach for statically checking witness race freedom.
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A Proof of Theorem 2

Theorem 2 If e is witness race free then e is confluent.

We prove the theorem by showing that the λwit semantics is equivalent to an alternative semantics provided
that e is witness race free. The alternative semantics is confluent for any program, witness-race-free or not.
Hence it follows that e is confluent with the λwit semantics.

Figure 14 shows this alternative semantics. Evaluation contexts E are unchanged. L is some set of
reference locations. The new expression kind 〈`, a〉 is merely a pair of a reference location and a port, and is
also a value (i.e., 〈`, a〉 ∈ V ). A table T is a partial function from reference locations to ports. The symbol
• is interpreted as an empty partial function, i.e., •(`) = ⊥ for all `. Operations on tables are defined as
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follows:
write(T, `, a) = {`′ 7→ a′ | `′ 7→ a′ ∈ T ∧ `′ 6= `} ∪ {` 7→ a}

read(T, `, a) =

{

a if T (`) = ⊥

T (`) if T (`) 6= ⊥

join(T, T ′) = {` 7→ T (`) | T ′(`) = T (`) ∨ T ′(`) = ⊥}
∪{` 7→ T ′(`) | T (`) = ⊥}
∪{` 7→ ⊥ | T (`) = T ′(`) = ⊥ ∨ T (`) 6= T ′(`)}

Two states (L, D) and (L′, D′) are defined to be observationally equivalent if Erase(D) ≈ Erase(D′)
where Erase(D) is D but with each occurrence of a table replaced by • and each occurrence of 〈`, a〉
replaced by `. Note that there are no reference stores in the alternative semantics, i.e., the alternative
semantics is trivially side-effect free. Therefore, while we will not prove it formally, it is not hard to see
that the alternative semantics is always confluent, i.e., for any states (L, D), (L1, D1) and (L2, D2) such
that (L, D) ⇒∗

alt (L1, D1) and (L, D) ⇒∗
alt (L2, D2), there exist states (L′

1, D
′
1) and (L′

2, D
′
2) such that

(L1, D1) ⇒∗
alt (L′

1, D
′
1), (L2, D2) ⇒∗

alt (L′
2, D

′
2), and Erase(D′

1) ≈ Erase(D′
2). 2Hence, it suffices to prove

that if a program e is witness race free then for any evaluation (∅, D = {� 7→ e}) ⇒∗ (S, D1) there is an
evaluation (∅, D) ⇒∗

alt (L, D2) such that for any evaluation (L, D2) ⇒∗
alt (L′, D′

2) there is an evaluation
(S, D1)⇒∗ (S′, D′

1) such that D′
1 ≈ Erase(D′

2).
We augment the graph constructing semantics slightly by adding information about the written port to

each write(`) node:

Write (S, E[write ` e A])⇒ (S[`← a], E[B] ] {a 7→ e})
V:=V ∪ {B} where B is a new write(`, a) node; E:=E ∪ {(A, B)}

For obsevational equivalence, we ignore this information, i.e., formally, each node is replaced by •.
Our idea is to show that for a witness-race-free program e, ⇒ and ⇒alt can simulate each other while

maintaining the following relationship.

Definition 6 (S, D1) ∼(V,E) (L, D2) if

• L = dom(S),

• D1 = Erase(D2),

• if ` has not been written, i.e., there is no write(`) nodes in V, then for any occurrence of 〈`, a〉 in D2,
a = S(`), and

• for any table T occurring in D2, T (`) = a if there exists a node B : write(`, a) such that B
!

; A where
A is the node associated with T .

The phrase node associated with a table used in the last sentence is defined as follows: the table T at the
expression store D2 = E[T ] is associated with the node A at the expression store D1 = Erase(E)[A].

We now state the main claim which carries out the aforementioned simulation.

Lemma 1 Let a program e be witness race free. Then there exists a set Ωe such that ((∅, {� 7→ e}), (∅, ∅), (∅, {� 7→
e})) ∈ Ωe and for any triple ((S, D1), (V, E), (L, D2)) ∈ Ωe,

• (S, D1) ∼(V,E) (L, D2),

• (∅, {� 7→ e})⇒∗ (S, D1) with the trace graph (V, E),

• if (S, D1) ⇒ (S′, D′
1) with the corresponding trace graph action updating the trace graph from the

state (V, E) to the state (V′, E′), then there exists a state (L′, D′
2) such that (L, D2)⇒alt (L′, D′

2) and
((S′, D′

1), (V
′, E′), (L′, D′

2)) ∈ Ωe, and
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• if (L, D2)⇒alt (L′, D′
2), then there exists a state (S ′, D′

1) and a trace graph (V′, E′) such that (S, D1)⇒
(S′, D′

1) with the corresponding trace graph action updating the trace graph from the trace graph (V, E)
to the trace graph (V′, E′) and ((S′, D′

1), (V
′, E′), (L′, D′

2)) ∈ Ωe.

The first condition says that the two states in a triple in Ωe are ∼-related with the trace graph in the triple.
The second condition says that these states can be reached while generating the trace graph. The third and
fourth conditions are the simluation steps, i.e., showing that a step in ⇒ can be simulated by a step in ⇒alt

and vice versa.
Proof: Our proof constructs Ωe inductively. For the base case, it is easy to see that (∅, {� 7→ e}) ∼(∅,∅)

(∅, {� 7→ e}) and (∅, {� 7→ e}) ⇒∗ (∅, {� 7→ e}) with the trace graph (∅, ∅). Therefore, we may set Ωe =
{((∅, {� 7→ e}), (∅, ∅), (∅, {� 7→ e}))} initially.

The inductive case is split into case by reduction kinds. Pick ((S, D1), (V, E), (L, D2)) ∈ Ωe.

App, Let, Pair, Arrive, GC

Suppose D1 = E1[(λx.e) e′] and we took a App step so that

(S, E1[(λx.e1) e′1])⇒ (S, E1[e1[a/x]] ] {a 7→ e′1})

Note that the trace graph (V, E) is not updated by this reduction. Let us take a ⇒alt version of App from
the state (L, D2) so that

(L, D2 = E2[(λx.e2) e′2])⇒alt (L, E2[e2[a/x]] ] {a 7→ e′2})

where Erase(E2) = E1. Such E2 exists since D1 = Erase(D2). Also, it is easy to see that

(S, E1[e1[a/x]] ] {a 7→ e′1}) ∼(V,E) (L, E2[e2[a/x]] ] {a 7→ e′2})

So we add ((S, E1[e1[a/x]] ] {a 7→ e′1}), (V, E), (L, E2[e2[a/x]] ] {a 7→ e′2})) to Ωe. The converse case where
we take the App step from the state (L, D2) is analogous. A similar argument works for the case a Let
step, a Pair step, an Arrive step, or a GC step is taken from the state (S, D1) or the state (L, D2).

Write
Suppose D1 = E1[write ` e1 A]] and we took a Write step so that

(S, E1[write ` e1 A]])⇒ (S[`← a], D1 = (E1[B] ] {a1 7→ e}))

with V
′ = V ∪ {B} and E

′ = E ∪ {(A, B)} where B : write(`, a). Let us take a ⇒alt version of Write from
(L, D2) so that

(L, D2 = E2[write 〈`, a
′〉 e2 T ])⇒alt (L, D′

2 = (E2[write(T, `, a)] ] {a 7→ e2}))

where Erase(E2) = E1. Clearly, D′
1 = Erase(D′

2). For any table T in the expression store D2 other than the
table T ′ = write(T, `, a) at the context E2[ ], it is easy to see that the fourth condition from the definition
of ∼(V′,E′) holds since there is no node reachable from the newly added node B. So consider the port T ′(`′).

If `′ = `, then T ′(`) = a, which is consistent with the condition since B
!

; B and B : write(`, a). On the
other hand, if `′ 6= `, then T ′(`′) = T (`), and again this is consistent with the condition because the node

A is associated with the table T and for any C : write(`′, a′), C
!

; B if and only if C
!

; A. Therefore,
(S[` ← a], D1) ∼(V′,E′) (L, D2). So we add the triple ((S[` ← a], D1), (V

′, E′), (L, D2)) to the set Ωe. The
converse case where we take a Write step from the state (L, D2) is analogous.

Ref
Suppose D1 = E1[ref e1] and we took a Ref step so that

(S, D1 = E1[ref e1])⇒ (S ] {` 7→ a}, D′
1 = (E1[`] ] {a 7→ e1}))

22



Note that the trace graph (V, E) is not updated by this reduction. Let us take a ⇒alt version of Ref from
the state (L, D2) so that

(L, D2 = E2[ref e2])⇒alt (L ] {`}, D′
2 = (E[〈`, a〉] ] {a 7→ e2}))

where Erase(E2) = E1. Clearly, D′
1 = Erase(D′

2). Also, L ] {`} = dom(S ] {` 7→ a}). The reference
location ` has not been written and a = (S ]{` 7→ a})(`). Therefore (S]{` 7→ a}, D1) ∼(V′,E′) (L]{`}, D2).
So we add the triple ((S ]{` 7→ a}, D1), (V, E), (L]{`}, D2)) to Ωe. The converse case where we take a Ref
step from the state (L, D2) is analogous.

Read
Suppose D1 = E1[read ` A] and we took a Read step so that

(S, D1 = E1[read ` A])⇒ (S, D′
1 = E[S(`)⊗B])

with V
′ = V∪{B} and E

′ = E∪{(A, B)} where B : read(`). Let take a⇒alt version of Read from the state
(L, D2) such that

(L, D2 = E2[read 〈`, a〉 T ])⇒alt (L, D′
2 = E2[read(T, `, a)⊗ T ])

where Erase(E2) = E1. Now consider the table read(T, `, a). If the reference location ` has not been
written, i.e., there are no write(`) nodes in the vertex set V, then we have S(`) = a. Also, T (`) = ⊥ since

otherwise there is some C : write(`) such that C
!

; A, which contradicts the statement we just made. Hence
read(T, `, a) = a. Otherwise, the reference location ` has been written, i.e., there exists C : write(`) in the
vertex set V. By witness race freedom, it must be the case that either C ; B or B ; C, but since B is a
newly added node, it must be the case that C ; B. Therefore, again by witness race freedom, it must be

the case that there exists a node C ′ : write(`, a′) for some port a′ such that C ′ !
; B. Obviously, C ′ !

; A.
Therefore read(T, `, a) = a′. Suppose for contradiction that S(`) = a′′ 6= a′. Then there must be a node
C ′′ : write(`, a′′) such that this node was added after C ′ was added. But by witness race freedom, it must be

the case that C ′′
; B. Hence C ′′

; C ′ by the definition of
!

;. But this implies that C ′′ was added before

C ′ was added, a contradiction. Hence S(`) = a and D′
1 = Erase(D′

2). Lastly, for any C, C
!

; A if and only

if C
!

; B. Therefore (S, D1) ∼(V′,E′) (L ] {`}, D2). So we add the triple ((S, D1), (V
′, E′), (L, D2)) to the

set Ωe. The converse case where we take a Read step from the state (L, D2) is analogous.

Join
Suppose D1 = E1[joinA B] and we took a Join step so that

(S, E[joinA B])⇒ (S, E[C])

with V
′ = V ∪ {C} and E

′ = E ∪ {(A, C), (B, C)} where C : join. Let us take a ⇒alt version of Join from
the state (L, D2) so that

(L, D2 = E2[join T T ′])⇒alt (L, D′
2 = E2[join(T, T ′)])

where Erase(E2) = E1. Clearly, D′
1 = Erase(D′

2). Consider the table join(T, T ′)(`). Because C is a new

node, if there exists C ′ : write(`, a) such that C ′ !
; C, it must be the case that either

1. C ′ !
; A and C ′ !

; B,

2. C ′ !
; A and there exists no C ′′ : write(`, a) such that C ′′ 6= C ′ and C ′′ !

; B, or

3. C ′ !
; B and there exists no C ′′ : write(`, a) such that C ′′ 6= C ′ and C ′′ !

; A.
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For case 1, T (`) = T ′(`) = a. For case 2, T (`) = a and T ′(`) = ⊥. For case 3, T (`) = ⊥ and T ′(`) = a.
In all three cases, join(T, T ′)(`) = a. Therefore (S, D1) ∼(V′,E′) (L ] {`}, D2). So we add the triple
((S, D1), (V

′, E′), (L, D2)) to the setΩe. The converse case where we take a Join step from the state (L, D2)
is analogous. 2

The preceding lemma implies that for a witness-race-free e, any evaluation (∅, {� 7→ e})⇒∗ (S, D) has a
corresponding simulation (∅, {� 7→ e})⇒∗

alt (L, Dalt) such that any evaluation (L, Dalt)⇒∗
alt (L′, D′

alt) has a
corresponding simulation (S, D)⇒∗ (S′, D′) such that D′ ≈ Erase(D′

alt).
6

So suppose (∅, {� 7→ e}) ⇒∗ (S1, D1) and (∅, {� 7→ e}) ⇒∗ (S2, D2). Then there are (L1, D1,alt) and
(L2, D2,alt) such that

• (∅, {� 7→ e})⇒∗
alt (L1, D1,alt),

• (∅, {� 7→ e})⇒∗
alt (L2, D2,alt),

• for any evaluation (L1, D1,alt) ⇒∗
alt (L′

1, D
′
1,alt), there is (S′

1, D
′
1) such that (S1, D1) ⇒∗ (S′

1, D
′
1) and

D′
1 ≈ Erase(D′

1,alt), and

• for any evaluation (L2, D2,alt) ⇒∗
alt (L′

2, D
′
2,alt), there is (S′

2, D
′
2) such that (S2, D2) ⇒∗ (S′

2, D
′
2) and

D′
2 ≈ Erase(D′

2,alt).

But since ⇒alt is confluent, there are (L′
1, D

′
1,alt) and (L′

2, D
′
2,alt) such that Erase(D′

1,alt) ≈ Erase(D′
2,alt).

Hence there are (S′
1, D

′
1) and (S′

2, D
′
2) such that (S1, D1)⇒∗ (S′

1, D
′
1), (S2, D2)⇒∗ (S′

2, D
′
2), and Erase(D′

1) ≈
Erase(D′

2), i.e., e is confluent even with ⇒.

B Proof of Theorem 3

Theorem 3 A trace graph (V, E) is witness race free if and only if it has a read-write pipeline with bottlenecks
for every `.

If
Suppose (V, E) has a read-write pipeline with bottlenecks for every `. Let R1, R2, . . . , Rn and W1, W2, . . . , Wn

be the collection of the nodes making up the read-write pipeline with bottlenecks for `. Let A : read(`), B :
write(`) ∈ V. Then A ∈ Ri and B ∈ Wj for some i, j. If i ≤ j, then A ; B. Otherwise, i > j and B ; A.
Let A : read(`), B : write(`) ∈ V and B ; A. Then A ∈ Ri for some i 6= 0. So there is C : write(`) ∈ Ri−1

such that C
!

; A.

Only If

Suppose (V, E) is witness race free. Let ` be a reference location. Let Aw
1 , Aw

2 , . . . , Aw
n−1 be the write(`)

nodes such that for each Aw
i , there is some B : read(`) such that Aw

i

!
; B. As discussed in Section 4,

Aw
1 , Aw

2 , . . . , Aw
n−1 are in some total order. Without loss of generality, we assume that Aw

1 ; Aw
2 ; . . . ;

Aw
n−1.

We construct the collections R1, R2, . . . , Rn and W1, W2, . . . , Wn as follows. First, we add the node Aw
i

to the collection Wi for each i 6= n. Let A : read(`). Suppose there is some B : write(`) where B ; A. Then

Aw
i

!
; A for some i. As discussed in Section 4, it must be the case that A ; Aw

i+1 if i 6= n− 1. So we put A
in the collection Ri+1. Figure 15 depicts this case when (a) i 6= n− 1 and (b) i = n− 1.

Otherwise, there is no B : write(`) such that B ; A. Hence A ; C for any C : write(`). In particular,
A ; Aw

1 . So we put A in the collection R1. This case corresponds to the diagram (c) in Figure 15.
At this point, we have successfully partitioned read(`) nodes with respect to Aw

i ’s. What remains are
the write(`) nodes that are not among the Aw

i ’s. Let A : write(`) be such a node. Suppose that there is no

6In fact, Lemma 1 implies that there is one that maintains ≈ relation at every step of the simulation. But ≈ at the end of
the simulation is sufficient to prove the theorem.
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Aw
i

!

��
�O
�O
�O

A

��
�O
�O
�O

Aw
i+1

Aw
n−1

!

��
�O
�O
�O

A

A

��
�O
�O
�O

Aw
1

(a) (b) (c)

Figure 15: The three cases for partitioning read nodes with respect to Aw
i nodes.

B : read(`) such that A ; B. Then it must be the case that for all B : read(`), B ; A. In particular, for all
B : read(`) ∈ Rn, B ; A. So we put such a node A in the collection Wn. Otherwise, there exists B : read(`)
such that A ; B. Let i be the largest such that there is no C : read(`) ∈ Ri with A ; C. Note that such i
always exists since no read(`) nodes in the collection R1 can be reached from a write(`) node. So, for each
C : read(`) ∈ Ri, we have C ; A. And since i is the largest, there exists D : read(`) ∈ Ri+1 such that
A ; D. Therefore, A ; Aw

i . Hence we can put the node A in the collection Wi.

C Proof of Theorem 6

Theorem 6 If a λreg
wit program e is well-typed, then it is witness race free.

We prove the result by showing that any evaluation of e generates a witness-race-free trace graph. By
Theorem 3, it suffices to show that the evaluation builds a read-write pipeline with bottlenecks for every r.
Then, as discussed in Section 4.2, it suffices to show that for each r there exists flow assignments to the trace
graph with a source node having flow 1 such that every read(r) node gets a positive flow (i.e., flow > 0) and
every write(r) node gets a flow equal to 1.

To this end, we annotate the semantics with flow information such that generated trace graph is con-
structed together with flow assignments. The resulting semantics⇒flow shown in Figure 16 has the following
differences from the unannotated version.

1. R’s are now mapping from some set of regions to rational numbers in the range [0, 1]. Intuitively, R(r)
represents the amount of flow remaining in the source node for r.

2. Each witness (i.e., a graph node) is paired with a packet P . A packet P is a function from regions to
rational numbers in the range [0, 1]. Intuitively, the pair 〈A, P 〉 implies that P (r) amount of flow for
region r is flowing from the node A.

3. Arrive “splits” the expression e into expressions e1 and e2 instead of duplicating e. Splitting is defined
using the additive arithmetic e1 + e2 = e given in Figure 17.7 Note that the addition P1 + P2 is also
used at the Join rule to combine two packets.

4. Flow assignments are made at Read, Write, and Join.

5. The new reduction rule Source is introduced to account for flow from the source node to an arbitrary
node.

Any⇒flow evaluation sequence has a corresponding unannotated evaluation sequence, i.e., replace packets
by • and bypass Source steps. Conversely, any ⇒ evaluation sequence has at least one corresponding

7We do not need to split below the body of λx.e since there cannot be any packets captured in a λ abstraction.
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E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗E | πi(E) | writeE e e′ | write e E e′

| write e e′ E | read e E | readE e | refE e | ref e E | joinE e | join e E

App (R, K, S, E[(λx.e) e′])⇒flow (R, K, S, E[e[a/x]] ] {a 7→ e′})
Let (R, K, S, E[let x = e in e′])⇒flow (R, K, S, E[e′[a/x]] ] {a 7→ e[a/x]})
Pair (R, K, S, E[πi(e1 ⊗ e2)])⇒flow (R, K, S, E[ei])
Write (R, K, S, E[write ` e 〈A, P 〉]⇒flow (R, K, S[`← a], E[〈B, P 〉] ] {a 7→ e})

V:=V ∪ {B} where B is a new write(K(`)) node
E:=E ∪ {(A, B)}
for each r flow P (r) from A to B

Read (R, K, S, E[read ` 〈A, P 〉])⇒flow (R, K, S, E[S(`)⊗ 〈B, P 〉])
V:=V ∪ {B} where B is a new read(K(`)) node
E:=E ∪ {(A, B)}
for each r flow P (r) from A to B

Ref (R, K, S, E[ref e r])⇒flow (R, K ] {` 7→ r}, S ] {` 7→ a}, E[`] ] {a 7→ e})
Join (R, K, S, E[join 〈A, P 〉 〈B, P ′〉])⇒flow (R, K, S, E[〈C, P + P ′〉])

V:=V ∪ {C} where C is a new join node
E:=E ∪ {(A, C), (B, C)}
for each r flow P (r) from A to C
for each r flow P ′(r) from B to C

LetReg (R, K, S, E[letreg x e])⇒flow (R ] {r 7→ 1}, K, S, E[e[a/x]] ] {a 7→ r})
Arrive (R, K, S, E[a] ] {a 7→ e})⇒flow (R, K, S, E[e1] ] {a 7→ e2}) where e ∈ V ∧ e = e1 + e2

GC (R, K, S, D ]D′)⇒flow (R, K, S, D) where � /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅
Source (R + P ′, K, S, E[〈A, P 〉])⇒flow (R, K, S, E[〈A, P + P ′〉])

for each r flow P (r) from the source node to A

Figure 16: Flow annotated λreg
wit semantics.

e + e = e where e = x, i, a, r, `, or λx.e
e1 ⊗ e2 + e′1 ⊗ e′2 = (e1 + e2)⊗ (e′1 + e′2)
〈A, P1〉+ 〈A, P2〉 = 〈A, P1 + P2〉
P1 + P2 = {r 7→ P1(r) + P2(r) | r ∈ Regions}

Figure 17: Additive arithmetic of e ∈ V .

flow-annotated evaluation sequence. However, this correspondence is not a bijection since different ⇒flow

evaluation sequences may correspond to the same ⇒ evaluation sequence. In particular, even for a well-
typed-program program, there may be a ⇒flow evaluation sequence which does not have the proper flow
requirement, i.e., some read(r) node gets flow ≤ 0 or some write(r) node gets flow < 1.

Our goal is to show that for any⇒ evaluation sequence of a well-typed program e, there is a corresponding
⇒flow evaluation sequence with proper flow assignments. The proof is by subject reduction, i.e., a ⇒ step
from a well-typed state X always has (a) corresponding ⇒flow step(s) taking X to another well-typed state
Y . As we shall see, we can always assign proper flow as long as we are in well-typed states. But before we
define well-typed states, we need to extend the type system to type non-source expression kinds:

for each r ∈ dom(Γ), P (r) = W ′(ρ) where Γ(r) = reg(ρ)

Γ; W ` 〈A, P 〉 : W ′
Packet

Γ(r) = reg(ρ)

Γ; W ` r : reg(ρ)
Region

Γ(`) = ref (τ, τ ′, ρ)

Γ; W ` ` : ref (τ, τ ′, ρ′)
Loc

Γ(a) = τ

Γ; W ` a : τ
Port
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Also, we need to extend arithmetic over type environments such that

(Γ, e:τ) + (Γ′, e:τ ′) = (Γ + Γ′), e:(τ + τ ′)

and
(Γ, e:τ) × q = (Γ× q), e:(τ × q)

for any expression e that is either a port, a variable, a reference location, or a region.
We are now ready to define well-typed states.

Definition 7 The state (R, K, S, D) is well-typed under the environment Γ; W (written Γ; W ` (R, S, K, D))
if

• dom(R) = dom(Γ) ∩Regions,

• dom(S) = dom(K) = dom(Γ) ∩ Locations,

• dom(D) = dom(Γ) ∩Ports,

• For any region r ∈ dom(R), R(r) = W (ρ) where Γ(r) = reg(ρ),

• For any reference location ` ∈ dom(K), Γ(K(`)) = reg(ρ) where Γ(`) = ref (τ, τ ′, ρ) for some τ and τ ′,
and

• Suppose D = {a1 7→ e1, . . . , an 7→ en} and S = {`1 7→ a′
1, . . . , `m 7→ a′

m}, then there exists environ-
ments Γ1; W1, . . . , Γn; Wn, Γ′

1; W
′
1, . . . , Γ

′
m; W ′

m such that Γ =
∑n

i=1 Γi +
∑m

i=1 Γ′
i, W =

∑n

i=1 Wi +
∑m

i=1 W ′
i , for each port ai, Γi; Wi ` D(ai) : Γ(ai), and for each reference location `i, Γ′

i; W
′
i ` S(`i) : τ

where Γ(`i) = ref (τ, τ ′, ρ) for some types τ and τ ′ such that τ ≤ τ ′ and a static region identifier ρ such
that Γ(K(`)) = reg(ρ).

The last bullet is somewhat verbose, and so it becomes cumbersome later when we repeatedly pick just
one Γi; Wi or Γ′

i; W
′
i . So for convenience, given Γ; W ` (R, S, K, D ] {a 7→ e}), we often say “Γ′; W ′ is the

environment for {a 7→ e}” to mean that the environment Γ′; W ′ is one of the environments Γi; Wi from the
last bullet such that Γi; Wi ` e : Γ(a). Similarly, given Γ; W ` (R, S ] {` 7→ a}, K, D), we often say “Γ′; W ′

is the environment for {` 7→ a}” to mean that the environment Γ′; W ′ is one of the environments Γ′
i; W

′
i

from the definition above such that Γ′
i; W

′
i ` a : Γ(`).

Before we prove the main subject reduction lemma (Lemma 6), we need a few side lemmas. The following
lemma is needed to “convert” an application of a Source type rule to a step of a Source ⇒flow rule.

Lemma 2 Suppose Γ; W + W ′ ` (R, K, S, D ] {a 7→ E[〈A, P 〉]}) such that one application of the type rule
Source with W ′ is applied at the context E[ ] following the type rule Packet in the type judgment for the
expression E[〈A, P 〉], i.e., . . .

Γ′; W ′′ ` 〈A, P 〉 : WP

Packet

Γ′; W ′′ + W ′ ` 〈A, P 〉 : WP + W ′

appears in the judgment for the expression E[〈A, P 〉] in Γ; W + W ′ ` (R, K, S, D ] {a 7→ E[〈A, P 〉]}). Then
there exists P ′ such that Γ; W ` (R′, S, K, D ] {a 7→ E[〈A, P + P 〉′]}) where R = R′ + P ′ without using the
type rule Source at the context E[ ].

Proof: Choose a packet P ′ such that for each region r, P ′(r) = W (ρ) where Γ(r) = reg(ρ) and P ′(r) = 0
if r /∈ dom(Γ). Suppose the environment Γi; Wi is the environment for {a 7→ E[〈A, P 〉]} in the environment
Γ; W+W ′, i.e., Γi; Wi ` E[〈A, P 〉] : τ for some type τ . Then it is easy to see that Γi; Wi−W ′ ` E[〈A, P+P ′〉] :
τ by not using the type rule Source at the context E[ ]. Hence Γ; W ` (R′, S, K, D]{a 7→ E[〈A, P +P ′〉]}).
2

The following side lemma shows that any expression e ∈ V can be “split” according to a splitting of its
types. This lemma is used only to prove Lemma 4.
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Lemma 3 Suppose e ∈ V , Γ; W ` e : τ , and τ = τ1 + τ2. Then there exists expressions e1 and e2, and
environments Γ1; W1 and Γ2; W2 such that e = e1 + e2, Γ = Γ1 + Γ2, W = W1 + W2, Γ1; W1 ` e1 : τ1, and
Γ2; W2 ` e2 : τ2.

Proof: By structural induction on the expression e. The case e = i is trivial. For the case the expression e
is x, a, `, or r, we let e1 = e2 = e and split the type Γ(e) accordingly (the rest of the environment Γ may be
split in any way), and if Γ(e) = W ′ for some witness type W ′, then we also split the witness W in case the
type rule Source was used in the judgment Γ; W ` e : τ .

For the case e = 〈A, P 〉, τ1 and τ2 are witness types. Therefore there exist packets P1 and P2 such that
P = P1 + P2, Γ1; W1 ` 〈A, P1〉 : τ1, and Γ2; W2 ` 〈A, P2〉 : τ2 where W1 + W2 = W and Γ1 + Γ2 = Γ. Here,
W1 and W2 are split according to the uses of Source in typing τ1 and τ2. Γ1 and Γ2 can be split in any way.

The case e = v ⊗ v′ follows from the induction and the type rule Pair. I.e., since τ = τ ′ ⊗ τ ′′ for some
τ ′ and τ ′′, we split v and v′ according to how τ ′ and τ ′′ are split, and add the environments of each half to
obtain Γ1; W1 and Γ2; W2. Details are omitted but are straightforward.

For the case e = λx.e′, as discussed before, we only consider the case when e′ contains no packets
because no evaluation produces a λ abstraction containing a packet. So we may let e1 = e2 = λx.e. Since

τ1 = τ ′ q1

→ τ ′′ and τ2 = τ ′ q2

→ τ ′′ for some τ ′, τ ′′, q1, and q2, we may split Γ into Γ1 = Γ× q1 and Γ2 = Γ× q2,
and split W into W1 = W × q1 and W2 = W × q2. Checking the arithmetic is straightforward. 2

The following side lemma is required when we take Arrive steps in the subject reduction argument.

Lemma 4 Suppose Γ; W ` (R, S, K, E[a] ] {a 7→ e}) and e ∈ V , then there exist expressions e1, e2 and a
type environment Γ′ such that e = e1 + e2 and Γ′; W ` (R, S, K, E[e1] ] {a 7→ e2}).

Proof: Let D = E[a] ] {a 7→ e}. Let environments Γ1; W1, . . . , Γn; Wn, Γ′
1; W

′
1, . . . , Γ

′
m; W ′

m be such that
Γ =

∑n
i=1 Γi +

∑m
i=1 Γ′

i, W =
∑n

i=1 Wi +
∑m

i=1 W ′
i , for each ai, Γi; Wi ` D(ai) : Γ(ai), and for each `i,

Γ′
i; W

′
i ` S(`i) : Γ(`i). Suppose a = ai and E[ ] = {aj 7→ E′[ ]} ∪D′. Note that i 6= j.

Then by Lemma 3 and by induction on the structure of E and the type judgment rules, it follows that
there exist expressions e1 and e2 such that D(ai) = e1 + e2 where there exist Γi1 , Γi2 , τ1, τ2, Wi1 , and Wi2

such that

• Γi = Γi1 + Γi2 ,

• Wi = Wi1 + Wi2 ,

• Γi1 ; Wi1 ` e1 : τ − τ2, and

• Γj − {a:τ2}+ Γi2 ; Wj + Wi2 ` E′[e2] : Γ(aj)

Let Γ′ = Γ− Γi − Γj + Γi1 + (Γj − {a:τ2}+ Γi2) = Γ− {a:τ2}. Then it follows that

Γ′; W ` (R, S, K, E[e1] ] {a 7→ e2})

2

The following lemma allows us to elide the type checking rule LetA when proving the main lemma.

Lemma 5 Let e and e′ be programs such that e′ is identical to e except that an occurrence of the expression
let x = e1 in e2 is replaced by the expression e2[(let x = e1 in x)/x] where e1 ∈ V +. Then if an evaluation
of e′ generates a trace graph G, then there is an evaluation of e that generates G.

Proof:[sketch] The evaluation of the program e′ cannot evaluate any occurrences of the expression e1 (with
possible substitutions made during evaluation) until it is in an evaluation context. Once an occurrence is in
an evaluation context, the evaluation of the program e can “simulate” e′ by applying a Let step immediately
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followed by some finite number of Arrive steps to copy the expression e1 (with the same substitutions, if
any). 2

Based on Lemma 5, we implicitly assume in the next lemma that no type judgment uses LetA. Let
Erase be an operation that replaces each occurrence of 〈A, P 〉 by A. We are now ready to state and prove
the main lemma.

Lemma 6 Suppose Γ; W ` (R, S, K, D) and (dom(R), S,Erase(D)) ⇒ (Ro, So, Do). Then there exist Rf ,
Kf , Sf , Df , Γ′, and W ′ such that

• (R, S, K, D)⇒flow (Rf , Sf , Kf , Df ),

• Γ′; W ′ ` (Rf , Sf , Kf , Df ),

• dom(Rf ) = Ro,

• So = Sf , and

• Erase(Do) = Df .

Furthermore, if the above ⇒flow step is a Write step writing to location ` then P (Kf (`)) ≥ 1 where P is the
packet at the write, and if it is a Read step reading from ` then P (Kf (`)) > 0 where P is the packet at the
read.

Note that this lemma implies that there is a proper flow assignment for a trace graph constructed from
reducing a well-typed state.
Proof: We prove the lemma by case analysis on ⇒.

App

We have
(dom(R), S,Erase({a′ 7→ E[(λx.e) e′]} ]D′))⇒ (Ro, So, Do)

where {a′ 7→ E[(λx.e) e′]}]D′) = D, Ro = dom(R), So = S, and Do = Erase({a′ 7→ E[e[a/x]]}]D′]{a 7→
e′}). Pick a App step for ⇒flow such that

(R, K, S, D = {a′ 7→ E[(λx.e) e′] ]D′})⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a′ 7→ E[e[a/x]]} ] D′ ] {a 7→ e′}). It is easy to see that
dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a′ 7→ E[(λx.e) e′]} in Γ; W ` (R, S, K, D) such
that

Γ2; W2 ` λx.e : τ
q
→ τ ′ Γ3; W3 ` e′ : τ q ≥ 1

Γ2 + Γ3; W2 + W3 ` (λx.e) e′ : τ ′

appears in the subderivation at the context E[ ]. Then because q ≥ 1, by inspection of the type checking
rules, it follows that Γ2, a:τ ; W2 ` e[a/x] : τ ′.

We construct an environment Γ′; W ′ by keeping the portions for the expression store D′ and the reference
location store S the same as the environment Γ; W and by using the environment Γ1 + Γ2, a : τ ; W1 + W2

for {a′ 7→ E[e[a/x]]} and by using the environment Γ3; W3 for {a 7→ e′}. Then it follows that Γ′; W ′ `
(Rf , Sf , Kf , Df ).

Let
We have

(dom(R), S,Erase(D = ({a′ 7→ E[let x = e in e′]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a′ 7→ E[e′[a/x]]}]D′ ]{a 7→ e[a/x]}). The case x /∈ free(e)
identical to the App case. So suppose x ∈ free(e). Pick a Let step for ⇒flow such that

(R, K, S, D = ({a′ 7→ E[let x = e in e′]} ]D′))⇒flow (Rf , Kf , Sf , Df )
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where Rf = R, Kf = K, Sf = S, Df = ({a′ 7→ E[e′[a/x]]} ] D′ ] {a 7→ e[a/x]}). It is easy to see that
dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Since x ∈ free(e), Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a′ 7→ E[let x = e in e′]} in
Γ; W ` (R, S, K, D) such that

Γ2, x:τ ; W2 ` e : τ Γ3, x:τ ; W3 ` e′ : τ ′ τ ≥ τ ×∞

Γ2 + Γ3; W2 + W3 ` let x = e in e′ : τ ′

appears in the subderivation at the context E[ ]. Then by inspection of the type checking rules, it follows
that Γ2, a :τ ; W2 ` e[a/x] : τ and Γ3, a :τ ; W3 ` e′[a/x] : τ ′. We construct an environment Γ′; W ′ by keeping
the portions for the expression store D′ and the reference location store S the same as the environment Γ; W
and by using the environment Γ2, a:τ ; W2 for {a 7→ e[a/x]} and using the environment Γ1 + Γ3; W1 + W3 for
{a′ 7→ E[e′[a/x]]}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ) since τ ≥ τ ×∞ implies that τ + τ = τ .

Pair
We have

(dom(R), S,Erase(D = ({a 7→ E[πi(e1 ⊗ e2)]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a 7→ E[ei]} ]D′). Pick a Pair step for ⇒flow such that

(R, K, S, D = {a 7→ E[πi(e1 ⊗ e2)] ]D′})⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a 7→ E[ei]} ]D′). It is easy to see that dom(Rf ) = Ro, So = Sf ,
and Erase(Do) = Df .

Let Γ1 + Γ2; W1 + W2 be the environment for {a 7→ E[πi(e1 ⊗ e2)]} in Γ; W ` (R, S, K, D) such that

Γ2, W2 ` e1 ⊗ e2 : τ1 ⊗ τ2

Γ2; W2 ` πi(e1 ⊗ e2) : τi

appears in the subderivation at the context E[ ]. Then by inspection of the type checking rules, it follows
that Γ2; W2 ` ei : τi. We construct an environment Γ′; W ′ by keeping the portions for the expression store
D′ and the reference location store S the same as Γ; W and by using the environment Γ1 + Γ2; W1 + W2 for
{a 7→ E[ei]}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

Write
We have

(dom(R), S = (S′ ] {` 7→ a′′}),Erase(D = ({a′ 7→ E[write ` e 〈A, P 〉]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = (S′ ] {` 7→ a}), and Do = Erase({a′ 7→ E[〈B, P 〉]} ]D′ ] {a 7→ e}).
Suppose in Γ; W ` (R, S, K, D = ({a′ 7→ E[write ` e 〈A, P 〉]} ] D′)) the type rule Source is applied

at E[write ` e [ ]] with some witness type W6. Then by Lemma 2, there exists P ′ such that Γ; W −W6 `
(R−P ′, S, K, {a′ 7→ E[write` e 〈A, P + P ′〉]}]D′). Pick a Source step followed by a Write step for⇒flow

such that
(R, K, S = (S′ ] {` 7→ a′′}), D = ({a′ 7→ E[write ` e 〈A, P 〉]} ]D′))
⇒flow (R − P ′, S′ ] {` 7→ a′′}, K, {a′ 7→ E[write ` e 〈A, P + P ′〉]} ]D′)
⇒flow (Rf , Kf , Sf , Df )

where Rf = R−P ′, Kf = K, Sf = (S′ ] {` 7→ a}), Df = ({a′ 7→ E[〈B, P + P ′〉]}]D′ ]{a 7→ e}). It is easy
to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3 + Γ4; W1 + W2 + W3 + W4 be the environment for {a′ 7→ E[write ` e 〈A, P + P ′〉]} in
Γ; W −W6 ` (R− P ′, S, K, {a′ 7→ E[write ` e 〈A, P + P ′〉]} ]D′) such that

Γ2; W2 ` ` : ref (τ, τ ′, ρ) Γ3; W3 ` e : τ ′ Γ4; W4 ` 〈A, P + P ′〉 : W5 W5(ρ) ≥ 1

Γ2 + Γ3 + Γ4; W2 + W3 + W4 ` write ` e 〈A, P + P ′〉 : W5
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appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′ by keeping the portions
for the expression store D′ and the reference location store S ′ the same as the environment Γ; W −W6 and
by using the environment Γ3; W3 for {a 7→ e}), the environment Γ1 +Γ4; W1 +W4 for {a′ 7→ E[〈B, P +P ′〉]},
and the environment a :τ ; ∅ for {` 7→ a}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ) since τ ′ ≥ τ . Also,
since we eliminated the type rule Source for the expression 〈A, P + P ′〉 at the context E[write ` e [ ]], it
must be the case that (P + P ′)(r) ≥ 1 where Γ(r) = reg(ρ). Since Γ2; W2 ` ` : ref (τ, τ ′, ρ) implies that
Kf (`) = r, we have (P + P ′)(Kf (`)) ≥ 1 as required.

Read
We have

(dom(R), S = (S′ ] {` 7→ a}),Erase(D = ({a′ 7→ E[read ` 〈A, P 〉]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a′ 7→ E[a⊗ 〈B, P 〉]} ]D′).
Suppose in Γ; W ` (R, S, K, D = ({a′ 7→ E[read ` 〈A, P 〉]} ] D′)), the type rule Source is applied at

the context E[read ` [ ]] with some witness type W5. Then by Lemma 2, there exists a packet P ′ such that
Γ; W −W5 ` (R − P ′, S, K, {a′ 7→ E[read ` 〈A, P + P ′〉]} ] D′). Pick a Source step followed by a Read
step for ⇒flow such that

(R, K, S = (S′ ] {` 7→ a}), D = ({a′ 7→ E[read ` 〈A, P 〉]} ]D′))
⇒flow (R − P ′, S, K, {a′ 7→ E[read ` 〈A, P + P ′〉]} ]D′)
⇒flow (Rf , Kf , Sf , Df )

where Rf = R − P ′, Kf = K, Sf = S, Df = ({a′ 7→ E[a ⊗ 〈B, P + P ′〉]} ] D′). It is easy to see that
dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a′ 7→ E[read ` 〈A, P + P ′〉]} in Γ; W −W5 `
(R− P ′, S, K, {a′ 7→ E[read ` 〈A, P + P ′〉]} ]D′) such that

Γ2; W2 ` ` : ref (τ, τ ′, ρ) Γ3; W3 ` 〈A, P + P ′〉 : W4 W4(ρ) > 0

Γ2 + Γ3; W2 + W3 ` read ` 〈A, P + P ′〉 : W4 ⊗ τ
Read

appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′ by keeping the portions
for the expression store D′ and the reference location store S ′ the same as the environment Γ; W −W5. Let
Γ6; W6 be the environment for {` 7→ a} in Γ; W −W5 ` (R − P ′, S, K, {a′ 7→ E[read ` 〈A, P + P ′〉]} ]D′).
Then in the environment Γ′; W ′, we use the environment Γ6 − {a :τ}; W6 for {` 7→ a} and the environment
Γ1+Γ3+{a:τ}; W1+W3 for {a′ 7→ E[a⊗〈B, P+P ′〉]}. This implies that Γ′(`) = (Γ−Γ2)(`) ≥ ref(τo − τ , τ ′

o, ρ)
where Γ(`) = ref (τo, τ

′
o, ρ). Therefore,Γ′; W ′ ` (Rf , Sf , Kf , Df ). Also, since we eliminated the type rule

Source at the expression 〈A, P + P ′〉 at the context E[read ` [ ]], it must be the case that (P + P ′)(r) > 0
where Γ(r) = reg(ρ). Since Γ2; W2 ` ` : ref (τ, τ ′, ρ) implies that Kf (`) = r, we have (P + P ′)(Kf (`)) ≥ 1 as
required.

Ref
We have

(dom(R), S,Erase(D = ({a′ 7→ E[ref e r]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = (S ] {` 7→ a}), and Do = Erase({a′ 7→ E[`]} ]D′ ] {a 7→ e}). Pick a Ref step
for ⇒flow such that

(R, K, S, D = ({a′ 7→ E[ref e r]} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = (K ] {` 7→ r}), Sf = (S ] {` 7→ a}), Df = ({a′ 7→ E[`]} ]D′ ] {a 7→ e}). It is easy to
see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a′ 7→ E[ref e r]} in Γ; W ` (R, S, K, {a′ 7→
E[ref e r]} ]D′) such that

Γ2; W2 ` e : τ Γ3; W3 ` r : reg(ρ)

Γ2 + Γ3; W2 + W3 ` ref e r : ref (τ, τ, ρ)
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appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′ by keeping the portions
for the expression store D′ and the reference location store S the same as the environment Γ; W and by
using the environment Γ2; W2 for {a 7→ e}, the environment Γ1, ` : ref (τ, τ, ρ); W1 for {a′ 7→ E[`]}, and the
environment a:τ ; ∅ for {` 7→ a}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

Join
We have

(dom(R), S,Erase(D = ({a 7→ E[join 〈A, P 〉 〈B, P ′〉]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a 7→ E[〈C, P +P ′〉]}]D′). Pick a Join step for ⇒flow such
that

(R, K, S, D = ({a 7→ E[join 〈A, P 〉 〈B, P ′〉]} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a 7→ E[〈C, P + P ′〉]} ]D′). It is easy to see that dom(Rf ) = Ro,
So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a 7→ E[join 〈A, P 〉 〈B, P ′〉]} in Γ; W `
(R, S, K, {a 7→ E[join 〈A, P 〉 〈B, P ′〉]} ]D′) such that

Γ2; W2 ` 〈A, P 〉 : W4 Γ2; W3 ` 〈B, P ′〉 : W5

Γ2 + Γ3; W2 + W3 ` join 〈A, P 〉 〈B, P ′〉 : W4 + W5

appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′ by keeping the
portions for the expression store D′ and the reference location store S the same as the environment Γ; W
and by using the environment Γ1 + Γ2 + Γ3; W1 + W2 + W3 for {a 7→ E[〈C, P + P ′〉]}. Then it follows that
Γ′; W ′ ` (Rf , Sf , Kf , Df ).

LetReg

We have
(dom(R), S,Erase(D = ({a′ 7→ E[letreg x e]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R]{r 7→ 1}), So = S, and Do = Erase({a′ 7→ E[e[a/x]]}]D′ ]{a 7→ r}). Pick a LetReg
step for ⇒flow such that

(R, K, S, D = ({a′ 7→ E[letreg x e]} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R ] {r 7→ 1}, Kf = K, Sf = S, Df = ({a′ 7→ E[e[a/x]]} ]D′ ] {a 7→ r}). It is easy to see that
dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1+Γ2; W1+W2 be the environment for {a 7→ E[letreg x e]} in Γ; W ` (R, S, K, {a 7→ E[letreg x e]}]
D′) such that

Γ2, x:reg(ρ); W2 + {ρ 7→ q} ` e : τ q ≤ 1 ρ /∈ free(Γ2, W2, τ)

Γ2; W2 ` letreg x e : τ

appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′ by keeping the portions
for the expression store D′ and the reference location store S the same as the environment Γ; W and by
using the environment Γ1 + Γ2 + {a:reg(ρ)}; W1 + W2 + {ρ 7→ 1} for {a′ 7→ E[e[a/x]]} and the environment
r :reg(ρ); ∅ for {a 7→ r}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ) since q ≤ 1.

Arrive
We have

(dom(R), S,Erase(D = ({a′ 7→ E[a]} ] {a 7→ e} ]D′)))⇒ (Ro, So, Do)

where e ∈ V , Ro = dom(R ] {r 7→ 1}), So = S, and Do = Erase({a′ 7→ E[e]} ] {a 7→ e} ]D′).
By Lemma 4, there exist expressions e1, e2, and a type environment Γ′ such that Γ′; W ` (R, S, K, {a′ 7→

E[e1]} ] {a 7→ e2} ]D′). Pick an Arrive step for ⇒flow with the above e1 and e2, i.e.,

(R, K, S, D = ({a′ 7→ E[a]} ] {a 7→ e} ]D′))⇒flow (Rf , Kf , Sf , Df )

32



where Rf = R, Kf = K, Sf = S, Df = ({a′ 7→ E[e1]}]{a 7→ e1}]D′). It is easy to see that dom(Rf ) = Ro,
So = Sf , and Erase(Do) = Df . Let W ′ = W . Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

GC
We have

(dom(R), S,Erase(D = (D′ ]D′′)))⇒ (Ro, So, Do)

where � /∈ dom(D′′), dom(D′′)∩ free(D′) = ∅, Ro = dom(R), So = S, and Do = Erase(D′). Pick a GC step
for ⇒flow such that

(R, K, S, D = (D′ ]D′′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = D′. It is easy to see that dom(Rf ) = Ro, So = Sf , and
Erase(Do) = Df .

We construct an environment Γ′; W ′ by subtracting the portions for the expression store D′′ from the
environment Γ; W . Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ). 2

Finally, to start off subject reduction, we need the initial state to be well-typed.

Lemma 7 If e is a well-typed program, then ∅; ∅ ` (∅, ∅, ∅, {� 7→ e}). That is, the initial state is well-typed.

Combining Lemma 6 and Lemma 7, it follows that any trace graph of a well-typed program has a proper
flow assignment.
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