
In-network Video Prioritization via iBox Classification
Predicates

George Manning Porter
Randy H. Katz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2005-1

http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-1.html

September 29, 2005

Copyright © 2005, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

In-network Video Prioritization via iBox Classification Predicates

George Porter Randy H. Katz∗

29 Sep 2005

Abstract

We propose a novel datapath mechanism for track-
ing and acting on headers in a variety of layer-7
protocols called Classification Predicates, or “cPred-
icates”. We apply this mechanism to the emerging
field of in-network storage (Storage Area Networks,
or SANs), and consider a multimedia streaming ser-
vice with video stored in a converged SAN that also
contains non-video content. We show that cPredi-
cates have a low, amortized overhead because they
only have to examine a small subset of the packet
stream in depth. In our experimental environment,
only 5% or fewer packets are examined in depth, lead-
ing to less than a 10% amortized latency increase.
We built a content-based prioritization system for an
iSCSI-based SAN and show that it can provide better
than best-effort service for video files in a converged
SAN containing both video and non-video content.

1 Introduction

The increasing demands on edge networks (includ-
ing corporate, campus, and access networks) have
driven a demand for new functionality from the net-
work itself. A proliferation of so called “network
appliances” have sprung up to meet this demand,
including Checkpoint’s VPN endpoint[3], Packe-
teer’s PacketShaper[9], Nortel’s Alteon HTTP load
balancer[11], and many others. While the growth of
in-network packet processing has enabled new net-
work services, it has complicated the task of net-
work management. Given a myriad of devices from

∗Both authors: EECS Department, Univ of California,
Berkeley, CA.

separate vendors, network administrators must of-
ten cope with different configuration interfaces, unex-
pected device interactions, and increased power and
rack space demands. This ad-hoc drive towards spe-
cialization and “stovepipe” solutions naturally leads
to a desire for a more general-purpose platform for
deploying edge services. We call this emerging class
of devices Inspection-and-Action boxes, or iBoxes[5].

iBoxes, like network appliances, will exist in the
edges of the network, near servers and clients, rather
than in the core. iBoxes are enabled by the increas-
ing availability of powerful new network processors,
RISC cores, and raw computational power that can
be put into switches and other network devices at
minimal cost. An iBox resides in the data path,
and for anticipated functions it might have hardware
dedicated to TCP header processing (for applications
such as NAT and firewalling). Likewise it has support
for a set of actions such as drop packet. Because
the iBox is programmable, it is possible to extend its
classifications and actions to some extent. It is clear
that the on-board hardware has limits as to its repro-
grammability, and so a “backdoor” to a more general-
purpose processor will be available. This path en-
ables rich classification and action processing on the
packet, but its overhead will likely be expensive rel-
ative to the standard classification path. For this
reason it is important to process as few packets as
possible in depth. This observation drives the design
of our cPredicates mechanism.

In this paper we address storage in the context of
our envisioned iBox design, specifically for the sup-
port of video content delivery. Our goal is to support
a variety of storage functions in the network itself to
improve the performance and ease of management of

1

Figure 1: An iBox consists of some classification en-
gine, state respository, and a set of actions. Extend-
ing this functionality further is enabled by a gen-
eral processor that can handle exceptional cases and
events that occur infrequently.

storage subsystems of multimedia services. Central
to that is the ability to process storage commands
efficiently in the iBox. Our design integrates into
what we envision will be the structure of these de-
vices. We consider as an application service the pri-
oritization of video content in a converged SAN. By
processing storage traffic at the application layer, we
get a visibility into the semantic meaning of storage
commands. Based on these commands, we can give
those clients accessing video files higher priority than
clients doing backups, or accessing mailboxes or web
pages. This will make it easier to incorporate video
and other files with strict access requirements with
typical SAN content, rather than keeping a seperate
SAN for multimedia content.

Section 2 motivates some requirements for cPred-
icates as well as the need to introduce storage func-
tions for supporting multimedia storage systems.
Section 3 presents our mechanism for doing this state
management called cPredicates, as well as the design
of our prioritization framework. Section 4 describes
an evaluation of our design in a deployed multimedia
service and compares it to a non-iBox based alterna-
tive. Section 5 discusses related work.

2 Video Delivery and Net-
worked Storage

Because of its strict real-time requirements, we con-
sider a multimedia delivery service as the target of
our iBox application. Multimedia streaming envi-
ronments are characterized by the movement of large
amounts of data from storage to the video servers
with large numbers of concurrent users accessing the
video content.

2.1 TCP Dynamics, Stream Process-
ing, and Protocol Layering

The iSCSI protocol exists entirely above the TCP
layer, and consists of a sequence of data units, each
with a 48-byte long header and variable length data.
These data units can be very large, in some cases
hundreds of kilobytes (certainly larger than an Eth-
ernet frame), forcing these large iSCSI data units to
span multiple TCP/IP packets. Also, given that the
minimum length of an iSCSI data unit is 48 bytes,
several iSCSI commands can fit into one 1500-byte
Ethernet frame. These headers do not necessarily
exist at any particular offset within the packet, and
their location generally can only be determined using
length and offset information from the previous data
unit’s header.

Observing and modifying an iSCSI stream in the
network presents some unique challenges compared
to other in-network packet processing tasks such as
IP routing and network address translation. Unlike
IP and TCP headers, which reside in each packet at
an easily calculated offset, iSCSI headers might exist
at an arbitrary offset into the packet. Alternatively, a
packet might contain multiple headers, or no headers
at all. Each of these cases has been observed in our
testbed using commercially available iSCSI initiators
and targets.

One way to handle this complexity would be to
have the iBox become a TCP endpoint. In this situ-
ation, the iBox would be acting as a proxy. Stream
processing in this case would be simple, because the
TCP layer in the iBox would ensure that iSCSI data
units are delivered in order and without loss. Unfor-

2

tunately, this option would entail examining the data
payloads of all packets transiting the iBox, which
would grealy limit its scalability. We assume that
general processing of data portions of packets is only
practical for a small percent of the packets transiting
the iBox. This is especially true in iBox environ-
ments which contain programmable computational
units (RISC cores, etc.) that can process some–but
not all–of the data stream. Our solution is to take ad-
vantage of iSCSI’s large data unit size to reduce the
number of packets that we must process to keep track
of the state of the iSCSI session. We observe that for
streams consisting of large data units, we must ex-
amine only a small percent of the packets to track
each of the iSCSI headers. Consider a sequence of
128-Kilobyte data units made up of 1500-byte pack-
ets. The first packet in the stream contains the iSCSI
header of the first data unit, while the next 85 pack-
ets contain data alone (with the possible exception
of the last packet in the stream, which might contain
the beginning of the next iSCSI data unit). In this
stream, only about 1.1% of the packets need to be ex-
amined to process the stream. This amortization is
especially true of multimedia workloads, which tend
to consist of large data transfers. For this reason our
mechanism is especially suited towards the transfer of
video and audio files. The relation between file size
and number of packets examined in depth (i.e., of the
data payload of TCP segments) is given in Figure 2.

2.2 Multimedia Delivery Service

Consider a multimedia service consisting of a tier
of N video servers (see Figure 2). These servers
source their video content (i.e., MPEG4 files [15])
from a storage area network (SAN) through a net-
work switch. This design is desirable because each of
the video servers has easy access to the devices that
comprise the SAN, and so any client can utilize any
of the servers to access content. Furthermore, offline
processes and users can access the SAN directly and
periodically add new video content without disrupt-
ing the video servers.

Consider such a video-based SAN providing con-
tent to a large news website such as CNN.com. For
the highest performance one might design such a sys-

1k 10k 100k 1M 10M 100M
0%

5%

10%

15%

20%

25%

30%

35%
Packets Examined vs. File Size

File Size

D
at

a
P

ay
lo

ad
s

E
xa

m
in

ed

Figure 2: Data payloads examined vs. total packets
in an iSCSI transfer of various files of different sizes.
The files resided on the Linux ext2 filessystem and
the Intel iSCSI drivers were used on both the initiator
and target.

Figure 3: A multimedia service consisting of a tier
of video servers sourcing content from an attached
SAN through a switch. Our deployment replaces this
switch with a Click-based cPredicate element

3

tem with a dedicated SAN for video content, and an-
other SAN for HTML, images, databases, and other
non-realtime content. For economic as well as ease-of-
management reasons, however, it makes more sense
to converge these two SANs into a single storage sys-
tem. However, such a system will need to ensure
that despite low-priority crosstraffic the high-priority
video content is able to reach the video servers be-
fore their deadline expires so that end clients will get
good performance. We consider this application as a
target of our design.

In our multimedia service, we deploy our iBox in
place of the switch connecting the video server net-
work and the storage network. There, the iBox will
be able to observe, intercept, and modify SAN trans-
actions to and from the video servers. This is desir-
able since in an iBox the cPredicates module is able to
see the crosstraffic patterns, and is able to take those
into account when assigning priorities to packets (as
well as higher-level units such as iSCSI commands
and responses). The alternative–implementing this
prioritization at the edge–is undesirable since edge
devices are not able to observe crosstraffic patterns,
and thus are not able to lower their sending rates
when crosstraffic levels increase. We examine this
process analytically in section 5.

2.3 Multimedia Testbed Deployment

To evaluate our iBox design and cPredicates mech-
anism, we have built a deployment in the Berkeley
Oasis testbed. This testbed is a collection of twenty
Pentium-III Linux server blades connected together
through a configurable high-speed interconnect (Nor-
tel Passport 8000 series routers). Through this inter-
connect we can configure many topologies and net-
work conditions using the NISTnet network emula-
tion software. We have implemented the cPredicates
software in the Click Modular Router[8]. The testbed
is configured into a video LAN connected to a SAN
through our Click-based cPredicates element.

We chose to use Apple’s Darwin Streaming
Server[12] due to its open-source nature and its abil-
ity to stream MPEG-4 and Quicktime files. The Dar-
win server sources video content from Intel’s iSCSI
driver suite[7]. Our overhead measurements are gen-

erated using the workload presented by the Darwin
streaming service running on Linux, while prioritiza-
tion throughput is provided by accessing ranges of
blocks from a custom-written C application. Some of
those blocks are defined to be high-prioirty, while the
others are considered low priority.

2.4 Server/iBox integration

One intriguing environment to utilize iBoxes is in so-
called “Blade Servers” such as IBM’s BladeCenter[4],
Sun’s SunFire[10], and HP’s Proliant BL[16]. These
platforms tightly integrate multiple servers with a
fast switching interconnect to simplify server man-
agement and application deployment. With the in-
creased ability to add computational power to the
switches that reside in Blade Server platforms, more
intelligent server load balancing, storage functions,
and stream processing capabilities can be deployed
in tight integration with application programs resid-
ing on the blade server. In this case, server blades in
the blade server would host the multimedia streaming
software and the content itself would reside in net-
work attached storage accessible through the fast in-
terconnect provided by the blade server. In this case,
the cPredicates mechanism could easily be extended
to support the processing of both storage traffic as
well as HTTP-based web traffic.

3 Enabling Video Storage with
iBoxes

3.1 cPredicates

The heart of our stream processing engine is the
cPredicates mechanism. This multi-protocol mecha-
nism tracks the boundaries of application-layer appli-
cation data units (ADUs) and forwards packets con-
taining application-layer headers (such as iSCSI and
HTTP) to a processing element that performs the
per-application function. By examining only those
packets that contain application-layer headers, and
sending all other packets along a low-latency fast
path, it will be able to run at high rates in iBoxes

4

Figure 4: cPredicates elements utilizing fixed-header
protocol logic block. Only packets that contain the
header of the next ADU are sent to the Protocol-
Logic block. All others are sent along the fast path
directly through the cPredicates module.

containing programmable computational engines be-
cause those processing engines would only have to
process a small fraction of packets transiting the
iBox. This mechanism is designed to process applica-
tion protocols that exist on top of a reliable transport
layer such as TCP. Its efficiency is obtained from the
fact that only those packets with application-layer
headers in them are examined in depth. All other
packets can transit a fast path. cPredicates are not
suitable for application protocols in which a major-
ity of the packets must be examined in depth, and so
another mechanism–likely an application proxy–must
be used to process these types of protocols.

3.1.1 Mechanism

Figure 4 shows the cPredicates element in the datap-
ath of an iBox. We envision that each line card in the
router or switch could contain this element as part of
it’s packet classification step. The cPredicates ele-
ment is responsible for keeping TCP (Layer-4) state
for each connection. Attached to the cPredicates is a
protcol-specific header processing logic element called
ProtocolLogic. This element is responsible for un-
derstanding the structure of a particular application-
layer protocol. Different application-layer protocols
can be supported in the iBox by connecting differ-
ent ProtocolLogic elements to the cPredicate. By

Figure 5: cPredicates and ProtocolLogic Interfaces

class cPredicates {
notifyNextHeader(FID flowId,

TcpSeq nxtSeq);
}

class ProtocolLogic {
ProtocolLogic();
process(Packet p,

int offsetIntoPacket);
}

class FixedLogic extends ProtocolLogic {
FixedLogic(int headerLength);
setDataLengthField(int offset,

int length);
}

class iSCSILogic extends FixedLogic {
iSCSILogic() {

// The iSCSI header is
// 48 bytes long
super(48);

// The data length field
// starts at the 5th
// byte in the header
// and is 3 bytes long
setDataLengthField(5, 3);

}
}

5

Figure 6: Per-Flow State in cPredicates

struct flowState {
uint32t expSeqNumber;

// q_ is only nonnull during
// loss and reorder events
PriorityQueue<Packet *> * q_;

}

separating the packet processing and TCP header
management (cPredicate) from the application-level
protocol procesing (ProtocolLogic) by a clean in-
terface, we enable more configurable, multi-protocol
stream processing applications. The interface be-
tween these two elements is given in Table 5. In
our deployment, the two elements communicate via
inter-element Handler connections. In a network-
processor implementation, this communication could
use shared memory or busses.

When the first packet from a flow arrives in the
cPredicate, it is sent to the ProtocolLogic element
(in our case, the iSCSILogic element) for header pro-
cessing. The iSCSILogic element extracts the data
length field from the packet and signals that value
to the cPredicate. cPredicates then update the next
expected header location by adding the length of the
ADU to the sequence number of its header. If the
priority queue is nonempty, then any packets belong-
ing to this flow are removed and sent on their way
out of the cPredicates element. Subsequent packets
that arrive while the header is being processed by the
iSCSILogic element are stored in the priority queue
located in the cPredicates module. Once the header
is processed, any buffered packets belonging to that
ADU are released to the switching fabric of the iBox.

Once the iSCSILogic element determines the
length of the next iSCSI command or data trans-
fer, it notifies the cPredicate element of that length.
The cPredicate element is able to use that updated
length to calculate the expected sequence number of
the next application-layer header. Packets arriving
to the cPredicate element can easily and quickly be
checked to see if they belong to the current applica-

tion data unit by comparing the sum of their length
and sequence number to the expected sequence num-
ber. This process is outlined in Figure 4. Addition-
ally, other elements in the router can register with the
ProtocolLogic element to receive information about
the layer-7 header. In the next section, this will be
used to assign priorities to flows based on which data
blocks they access. The state requirement of cPred-
icate module is given in Table 6. The ProtocolLogic
element is stateless, and once it processes the header
of an ADU, it sends it directly out to the rest of the
switching fabric.

The cPredicates’s priority queue is used when
TCP segments containing the next application-layer
header are lost. In such a case, received TCP seg-
ments are queued until the header is retransmitted.
Note that no buffering is done when TCP segments
known to contain data alone are lost. For example,
assume that the sequence number of the header of
the next iSCSI ADU is Snxt. If TCP segments whose
sequence space is less than Snxt are lost, reordered,
or corrupted, no special action is taken. They are
delivered to the endpoint unmodified. Only in the
case where a packet has a starting sequence number
greater than or equal to Snxt is it queued. This is be-
cause cPredicates have no way of knowing to which
ADU it belongs, since it must process the header lo-
cated at sequence number Snxt before it can deter-
mine the status of any segments located later in the
sequence space. For this reason, in the steady state,
we expect that the q pointer will be null. Only in
cases of reorder or loss does this queue become used.

3.2 Video Prioritization

To support the prioritization of video content in a
converged SAN, we embed the cPredicates mecha-
nism into the configuration shown in Figure 7. As
before, the iSCSI Protocol Logic block notifies the
cPredicate element of the location of the next header
in the protocol stream. In our application though, the
Protocol Logic block also notifies a Priority Manager
element. This element contains a mapping between
disk block ranges and priority levels. The details
of how this element is configured is given in Section
3.2.1. In general the Priority Manager has a number

6

StreamTracker

iSCSI
Protocol
Logic

Flow
Switch

High
Priority
Queue

Low
Priority
Queue

2Mbps
Bandwidth
Shaper

Prio
Scheduler

Priority
Manager

Figure 7: The iSCSI Protocol Logic block notifies
the priority manager of block requests. This prior-
ity manager in turn directs the requesting flow into
either a high priority queue or a bandwidth-shaped
low priority queue.

of actions that it can perform on the flows transiting
the iBox given that it has visibility into the seman-
tics of the protocol (as furnished from the Protocol
Logic block). For example, it could set Differenti-
ated Services[1] bits in the packet, which would allow
for policy enforcement elsewhere in the network. In
our case, we choose the simple in-iBox enforcement
scheme of bandwidth shaping the low-priority traffic.

When the Priority Manager is notified of an access
to a high priority disk block, it configures the Flow
Switch with the layer-4 information about that flow
(Source IP address, Destination IP address, Source
TCP port, and Destination TCP port). The flow
switch sends packets from that layer-4 flow to a high
priority queue. The Priority Scheduler looks for pack-
ets to send to the routing fabric from the high-priority
queue first. If that queue is empty, it will then look in
the low-priority queue. When the Priority Manager
is notified that a flow is accessing a data block that
is not considered high priority, it configures the flow
switch to direct that flow to the low-priority queue.
In our application, this queue is bandwidth-shaped
to a rate of 2 MBits/sec.

3.2.1 Configuration and Management

In our testbed deployment, we statically configure the
Priority Manager with a set of disk blocks represent-
ing video files. All other disk blocks (which represent
data files, email, etc.) are considered low-priority. In
a real deployment, the Priority Manager would have
to be configured with the locations of video content in
the SAN. This could be done by a tool that searches
the SAN looking for known video formats. The tool
would install entries in the Priority Manager contain-
ing the locations of video files that it finds. If the
Priority Manager were to fall out of synchronization
with the SAN, then blocks would still be served cor-
rectly, however some blocks might receive either a
higher priority, or a lower priority, then they should.

Consider a SAN storing HTML, images, video, and
other content required for a large news portal such as
CNN.com. Since a tier of front-end servers need to
serve HTML content and static images, as well as
full-motion video, the prioritization framework pre-
sented above could be used to ensure that video traf-
fic reaches video servers with high priority. Alterna-
tively, there could be two high-priority queues: one
for paying customers’ video, and one for nonpaying
customers’s video. The system is flexible both in
what characteristics of the layer-7 protocol stream
can be used to determine priority, as well as mecha-
nism of enforcment.

3.3 Additional Considerations

An immediate concern exposed by introducing pro-
cessing into the network is the interaction between
network appliances (both fixed-function and pro-
grammable) and data encryption. The presence of
IPsec[6] and SSL make packet inspection and modifi-
cation impossible. We explicitly assume that data
connections transiting the iBox are unencrypted.
This could be a policy of the edge network, or it
could be the case that SSL and IPsec tunnels are
terminated before they reach the iBox. For exam-
ple, in a BladeServer environment, SSL offloading
might be utilized to remove the data encryption as
the connection reaches the BladeServer. Among the
blades, data would remain unencrypted, which would

7

additionally allow in-network functions such as server
load balancing and XML offloading. When responses
are sent back to the client, they are reencrypted in
a manner transparent to the client. An example of
this type of environment is the Alteon HTTP load
balancer[11].

4 Evaluation

To evaluate our design, we have deployed cPredicates
in a Click[8] software-based router in our testbed.
This router intercepts traffic between the SAN net-
work and a video server running the Apple Darwin
Streaming Server. Our SAN consists of a 100-Mbyte
ramdisk exported to our video server with Intel’s
iSCSI driver suite. Traffic to the SAN is generated
from the three workloads described in Table I:

Clip Name Bitrate Length File Size
Mpeg1 357 Kbits/sec 125 s 5.5 Mb
Mpeg2 803 Kbits/sec 185 s 18 Mb
Mpeg3 644 Kbits/sec 347 s 27 Mb

Table 1: Workloads utilized in our evaluation. All
clips are encoded at 24 frames/sec and at a resolua-
tion of 360x240.

4.1 High-vs-low Priority SAN Con-
tent

Figure 8 shows the result of our prioritization
framework. Specifically, it shows the instantaneous
throughput as seen by a single iSCSI client access-
ing a set of files from the SAN. Some of those files
are marked as high-priority, and the rest are low-
priority. As the figure shows, the throughput ex-
perienced accessing the high-priority files is approxi-
mately 7 Mbits/sec., which is the maximum through-
put that our experimental testbed can support. For
those files not marked as high-priority, the through-
put seen is approximately 2 Mbits/sec. The through-
put seen by this client is determined by the set of
blocks that it accesses. If the client were to access
only video files, its throughput would be close to

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Block request number

Throughput with Prioritization

Figure 8: Instantaneous throughput seen by a sin-
gle client accessing a series of high- and low-priority
files. The low points of the square wave represent
bandwidth-shaped low-priority file accesses, while the
high points high-prioirty block accesses.

7 Mbits/sec. for the duration of connection. Like-
wise, if it accessed only email or other documents, its
throughput would remain at 2 Mbits/sec.

We now consider the overhead in tracking an
application-layer protocol using the cPredicates
mechanism.

4.2 Overhead of the cPredicates
Mechanism

As Table 4.2 shows, the results of our experiment are
encouraging. In the three multimedia workloads con-
sidered, approximately 95% of the packets transited
the iBox through the fast path. For these packets,
the iBox had to perform a hash lookup to determine
the sequence number of the next ADU. It then had to
perform an addition (of the packet’s sequence num-
ber and its payload length) followed by a comparison.
The packet is then sent through the normal switch
forwarding path. The other 5% of the packets had to
have their data payloads examined and their iSCSI
headers extracted and processed.

In our Click implementation, processing a non-

8

MPEG1 MPEG2 MPEG3
Avg. Latency Overhead Avg. Latency Overhead Avg. Latency Overhead

Stock Click 36.32 µs 0.00 % 37.67 µs 0.00 % 38.02 µs 0.00 %
cPredicates (Data) 37.67 µs 3.72 % 38.99 µs 3.50 % 39.28 µs 3.31 %

cPredicates (Header) 73.23 µs 201.62 % 75.10 µs 199.36 % 75.42 µs 198.37 %

Percent Headers 5.23 % 4.56 % 4.58 %
Amortized Cost 39.44 µs 8.59 % 40.65 µs 7.91 % 40.94 µs 7.68 %

Table 2: Performance of stock Click vs. cPredicates-enabled Click (as measured in CPU Cycles/sec) as well
as number of data payloads examined (to perform header processing).

header packet takes approximately 3-4% longer (or
about 1.5 µs) than standard Click packet forwarding.
As expected, header processing takes much longer–in
some cases over 200% longer. This high overhead is
offset by the low percentage of headers in the ob-
served protocol stream. As shown in Table 4.2, this
leads to an amortized overhead of approximately 8%.
In the case of iSCSI, this overhead is unlikely to lead
to a significant reduction in throughput since iSCSI
requests and responses can be pipelined, leading to
a less interactive protocol, and thus less effected by
latency.

4.3 Network-vs-edge Prioritization

An alternative to implementing a prioritization
framework in the network would be to perform that
function in the endpoints (specifically the clients ac-
cessing the SAN). To do that, the clients could be
configured to bandwidth-shape their request traffic
to 2 Mbits/sec when accessing databases, mailboxes,
and other low-priority content. For high-priority con-
tent, they would not restrict the rate at which data
is accessed in the SAN.

While this scheme would work well in the ab-
sense of crosstraffic, once other clients begin to join
the SAN and access low-priority content, the perfor-
mance of a high-priority flow would begin to suffer.
This is because the endhosts do not have visibility
into the conditions in the SAN–specifically the sta-
tus of crosstraffic and congestion. An iBox configured
with cPredicates could put all low-priority traffic into
a single bandwidth-shaped queue, which would in ef-

fect cause all clients accessing low-priority traffic to
share a “virtual” 2MBits/sec link. As the number of
low-priority clients join the system, they would con-
tend for their portion of that restricted bottleneck
bandwidth, while the high-priority traffic would be
able to use the rest of the bandwidth without being
affected. In an endhost-based scheme, clients can-
not tell which other clients are accessing high-priority
traffic and which are accessing low-priority traffic,
and so while the number of low-priority clients in-
creases, each continues to send at 2Mbits/sec. This
quickly causes the high-priority flow to share the link
with the low-priority flows, and as Figure 9 shows,
this leads to decreased performance as the number of
clients increases.

In addition to prioritization, there are a variety of
storage applications that benefit from existing in the
network fabric itself, such as storage virtualization,
redirection, and mirroring. In each of these cases, by
placing the functionality in the network system ad-
ministrators are able to centrally manage a storage
subsytem. This leads to better efficiency and uti-
lization as compared to endhost-based control of the
SAN content. Although not convered in the work
presented thus far, cPredicates could be extended to
support the storage functions just mentioned.

5 Related Work

Several network-appliances process application-level
protocol flows ([11],[9],[3]). One proposed mechanism
for accelerating TCP proxies (encompassing HTTP

9

High-priority Throughput in the Presence of Low-
Priority Crosstraffic

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 1 2 3 4 5 6 7 8

Number of Low-Priority Senders

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

PNE-based Endhost-basedRate Control Method:

Figure 9: Analytical projection of the throughput of
a single high-priority data transfer in the presense of
increasing numbers of 2 Mbits/sec crosstraffic flows.
In this example, we assume MAX-MIN fairness with
the high-priority flow requesting infinite bandwidth.
The network consists of 10Mbits/sec links with 10ms
delay per segment.

load balancers, Telnet proxies, etc.) is called TCP
Splicing[13, 14]. Our proposal extends this work by
providing programmers with a well-defined interface
between cPredicates and the application-specific Pro-
tocolLogic elements. In this way, we have separated
packet processing at the IP and TCP levels from
application-layer protocol processing. This allows for
multiple, protocol-specific modules to be introduced
to extend the functionality of the iBox at runtime.

There have been several proposed software-based
routers[8, 2]. Their focus has primarily been to enable
rapid deployment of new router features. Our iBox
model differs in that it provides a more restricted set
of primitives designed to support a variety of edge
services through a specification language encompass-
ing commonly used packet classification and action
steps.

6 Conclusion

We have proposed a mechanism for supporting
application-layer protocol streams in programmable
iBoxes. We envision that iBoxes will consolodate
several network-based functionalities currently de-
ployed in numerous domain-specific network appli-
ances into one box. To support these applications,
we require a mechanism to track state for protocol
flows in a flexible and efficient manner. This mecha-
nism is called cPredicates. cPredicates are defined by
application-specific ProtocolLogic elements that sep-
arate protocol logic from TCP/IP packet processing
with support from a CPU-based “backdoor” path.
Taking network-based storage as an example appli-
cation, we built a multimedia streaming service that
supports content-based prioritization of video con-
tent based on application-level access patterns. We
found that iSCSI protocol processing could be done
on a command-by-command basis with little over-
head (less than 10% amortized latency increase) as
compared to stock IP forwarding. This is made possi-
ble because approximately 95% of packets transiting
the iBox do so through a lightweight fast path. The
other 5% are examined by the ProtocolLogic element
that encapsulates more general purpose processing.
This enables efficient processing of multimedia work-

10

load between video servers, web servers, and other
content severs and producers. We envision that this
mechanism can be extended to other application do-
mains as well.

References

[1] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. RFC 2475: An ar-
chitecture for differentiated services, December
1998. Status: PROPOSED STANDARD.

[2] Dan Decasper, Zubin Dittia, Guru Parulkar,
and Bernhard Plattner. Router plugins: a soft-
ware architecture for next-generation routers.
IEEE/ACM Trans. Netw., 8(1):2–15, 2000.

[3] Checkpoint VPN-1 Edge. http://www.check-
point.com/products/enterprise/index.html.

[4] IBM eServer BladeCenter. http://www-1.ibm-
.com/servers/eserver/bladecenter/.

[5] In Submission. Router-transparent annotations.

[6] IETF IP Security Protocol (ipsec) Char-
ter. http://www.ietf.org/html.charters/ipsec-
charter.html.

[7] Intel iSCSI Reference Implementation. http:/-
/sourceforge.net/projects/intel-iscsi.

[8] Eddie Kohler, Robert Morris, Benjie Chen, John
Jannotti, and M. Frans Kaashoek. The click
modular router. ACM Transactions on Com-
puter Systems, 18(3):263–297, August 2000.

[9] Packeteer PacketShaper. http://www.packet-
eer.com/prod-sol/products/packetshaper.cfm.

[10] SunFire B1600 Blade Platform. http:/-
/www.sun.com/servers/entry/blade/.

[11] Nortel Alteon Portfolio. http://www.nortel-
networks.com/products/01/alteon/.

[12] Apple Darwin Streaming Server. http:-
//developer.apple.com/darwin/projects-
/streaming/.

[13] Oliver Spatscheck, Jørgen S. Hansen,
John H. Hartman, and Larry L. Peterson. Opti-
mizing tcp forwarder performance. IEEE/ACM
Trans. Netw., 8(2):146–157, 2000.

[14] TCP splicing for applica-
tion layer proxy performance.
ftp://ftp.cs.cmu.edu/user/dmaltz/doc/splice-
perf-tr.ps.

[15] ISO Mpeg standards. http://www.iso.ch/iso/en-
/prods-services/popstds/mpeg.html.

[16] HP ProLiant BL Systems. http:/-
/h18004.www1.hp.com/products/servers-
/platforms/index-bl.html.

11

