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Abstract 2 Background

We demonstrate a method for reconstructing the shape of a $f@@pe-from-ShadingStarting in ], most work in shape-from-
formed surface from a single view. After decomposing an imaggading makes simplifying assumptions: the scene is illuminated
into irradiance and albedo components, we combine normal c¥Yé§ @ point light source, the surface of the object is lambertian and
from shading and texture to produce a field of unambiguous n@ter'—reflectlons are mlnlmal. Methods typ|call3_/ use either local in-
mals. Using these normals, we reconstruct the 3D geometry. ERSity or local gradient information. Constraints such as surface
method works in two regimes: either requiring the frontal appe&foothness, integrability and boundary conditions break ambigui-
ance of the texture or building it automatically from a series BS. However, scenes exhibit effects from mutual illuminatidn [
images of the deforming texture. We can recover geometry Vﬂp{faces are not ent_irely lambertian and often therg are multiple
errors below four percent of object size on arbitrary textures, digiit sources. Even in the cases where the assumptions hold, cur-
estimate specific geometric parameters using a custom texture &Bhreconstruction methods are unreliablg|]

more accurately. Shape-from-Texture Texture normals can be computed as a

) transformation between an observed patch and a frontal view by
Keywords: Shape-from-texture, shape-from-shading, 3D recafssyming that the patch is locally flat. Local estimation of surface
struction, surface tracking, deformable models normals is limited by two problems: one must know the frontal ap-
pearance of the textured patch, and each estimated normal is actu-
ally an ambiguous pair: the estimated normal and its mirror across
the viewing direction. Forsyth?] 3] and Lobay and Forsyth/]

1 Overview focus on estimating the frontal texture from a single view of a re-
peating pattern and use surface smoothness to resolve the texture
normal ambiguity. Loh and Hartley also use perspective effects to

We demonstrate reconstructions from a single view using a contizeak ambiguitiesd].

nation of shape and texture cues. We show our reconstructions a{§e take a different stance on both topics. First, we estimate the
geometrically accurate by comparison with reconstructions frepgntg appearance of a non-repeating texture pattern using multi-
multiple views. Traditionally, reconstruction techniques are liije images of the deforming object. Second, we break ambiguities
ited by ambiguities in the local cues — and reconstructions gi&exture normals using shading cues. There is no reason to limit
performed by breaking these ambiguities using global consistengympinations of the two techniques. One could estimate the frontal
Instead, we break ambiguities locally and only introduce long scglgtern of a repeating texture and use shading cues to break ambi-
consistency in the finals steps of the geometric reconstruction. gyities. Though less reliable, one could also estimate the frontal
We start with an outline of the reconstruction process. First, wiew of an un-shaded deforming surface in multiple views and use
obtain an estimate of the frontal appearance of the texture. T$iigoothness to break texture normal ambiguities.
can be supplied manually, or reconstructed automatically from aombined Shading and TextureChoe et al {] reconstruct the
sequence of images (sectidnfigure 6). Second, we decomposesD shape of shaded images of physically generated random tex-
the image into an irradiance map and a texture map (se8tihn tures based on surface irregularities. They focus on models of nat-
figure5). Third, we obtain ambiguous estimates of the surface ngral textures (reconstructing the shape of a tree trunk) and do not
mals using the frontal texture, the texture map and the assumpgiensider using shading to break texture ambiguities.

of local orthography, 5]. The normals are disambiguated using a peformaple Surface TrackingSeveral methods have been pro-
shading model applied to the irradiance map (secti@n Finally, posed to track nonrigid motionLp, 9. Pilet et al ] describe

i

the surface is reconstructed using perspective effects to break g flsethod to detect the surface deformation using wide-baseline
nal concave convex ambiguity (sectiop matches between a frontal view and the image to estimate a trans-

The resulting reconstructions are highly accurate — estimatfognation smoothed using surface energy. This method has diffi-
geometry within four percent. Only a small number of papers multy stabilizing texture for 3 reasons: there are few reliable key-
merically quantify the accuracy of a geometric reconstruction frgmints in textures we consider; because internal keypoints are used,
a single image — and none of them in similar situations using réalundaries are not tracked well; and the surface energy term makes
data. Forsyth reconstructs the shape of a synthetic image of a itedifficult to track highly deformable objects. Also, they cannot ob-
tured sphered] and Savarese et al. reconstruct the shape of a cyliain an irradiance estimate using the surface track because errors in
drical mirror using the reflection of a calibration pattetri]f correspondence would make it impossible.
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Figure 1: While local cues for estimating normals are ambiguous when considering shading or texture alone, the ambiguities ca
be broken in most cases by combining cues. Ontdpewe view a gauss map of a sphere shaded with a point light source. The
red arc denotes an isophote (constant pixel intensity) — a single measurement of image intensity constrains the normal to this cur
Observations of texture produce a two-fold ambiguity symmetric across the viewing direction. In most cases, the ambiguities do not li
up (for exceptions, see figurgyand the normal can be determined. On th@tom we show the same phenomenon from the viewpoint

of the camera. An observation of a textured patch can have two possible normals, while a single measurement of intensity has
parameter family of normals. By combing cues, the normal can be determined.
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Figure 2:Shading usually breaks texture normal ambiguities; ho
ever, there are cases when the two ambiguities line up and the 5
biguity can not be broken. In this image, the two ambiguous texture

normals lie on the same arc of constant irradiance, meaning thafe know the surface albegg; and the lighting model parameters
the reconstruction is still ambiguous. The purple line shows the ggt L,, L,), then we can compute the angle between the light and
of all normals where shading will not break the texture ambiguitifie normal (although the normal direction itself is limited to a 1

igure 3:When the lighting direction and the viewing direction are
 same, none of the normals can be dis-ambiguated.

we call thiscombined cue ambiguity parameter family) and subsequently determine an irradiance image
. . — one where the surface albedo is constant for the entire image.
3 EStlmatmg Normals Estimating Irradiance: Following the work in [L4], we focus

hod . h ) ¢ | _on screen print items (ones that have a finite set of colors) and use
Our method requires the extraction of accurate normals to estimale, ssifier to determine which dye color generated each pixel. The

geometry. To compute surface normals, we estimate ambigu %ut of the classifier is the texture map for the image. To build

_normals using textur_e cues, then break the ambiguity using a "gl E irradiance map, we estimate an image with constant albedo
ing model and shading cues. As part of the process, we decom-_ 1). This image can be generated by dividing the observed

pose images into two components: albedo and irradiance — w | intensityZ, by the albedo for the dye colopg). While a

correspond to the two aspects of normal estimation: texture ure map may provide a rough guide to the surface albedo, the

shading. L o olor classifier is much better because it is not effected by small
Because there are several distinct ambiguities, we adopt the ﬂbnment erTors

lowing terminology: Texture normal ambiguity (or texture am-

biguity) refers the two-fold ambiguity in estimating a single nor- . L . .
mal from an observed textur€ombined cue ambiguityrefers to 3.2 Breaking Texture Ambiguity with Shading

the uncommon texture ambiguity that remain ambiguous after ggyure 1 provides a geometric perspective on the process of break-
ing shading cues to break ambiguities. Finadlgene ambiguity ng texture ambiguity. Each observation of irradian€g ¢onfines

refers to the concave convex ambiguity that results from confusigB syrface normal to a 1 parameter family of possible normals.
about the source of the lighting. o _ _ Each textured patch limits the normal to a set of size two. In the

In general, we breatexture normal ambiguity using shading jqeal case, the intersection of these sets produces one and only one

information. We use belief propagation and surface smoothnesgdfinal. However, in practice the sets do not intersect. Because
break the infrequentombined cue ambiguity Finally, we use \e pelieve normal estimates from texture to be substantially bet-
perspective effects on the scale of the scene to elimswee am- tar than normal estimates from lighting, we use the shading cue to

biguity . break the texture ambiguity.
We formulate the problem of breaking the texture ambiguity as
3.1 The Lighting Model an error between the irradiance computed using texture normals

under the lighting model and the irradiance image. Wri
In this section, we describe the lighting model and use it to deco, AN ghfing g thig

. . - . ;o for the two possible texture normals afycas an indicator
pose the image into two distinct parts: a texture map and an irr riable to switch between the two choices, we write the cost as:
ance map. We detail the process of breaking the texture ambiguity '
in the next section and subsequently discuss the determinatioE(L “Nip - Lp+ Lo —T;)%0 + (L-Nig- Ly + Lo — T;)*(1 - 6;)
the lighting parameters in secti@n3. 7

Following previous work in shape-from-shading, we assume that
our scene is lit by a combination of a point light source and a ndhWe assume that,, L, and L are known, then the process of

directional constant background illumination. Usigs the direc- °réaking the texture ambiguity (or, correspondingly the value of
tion to the light sourceN as the surface norma, as the surface 0;) is simple: for each ambiguous normal choose the normal with

albedo, L, as the point source intensity aig as the background € lower cost. o _
illumination intensity, the intensitg; of a pixeli in the image is: ~ OWever, when the lighting (cost) for the two possible texture
normals is the same, shading will not break the texture ambigu-

Zi=L-N-pg-L,+pa-Lqg ity, resulting in acombined cue ambiguity While this formal
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estimated radius: 542 cm
actual radius: 549 cm
average dist cyl to pts: 0.06 cm

estimated radius: 5.63cm
“Tactual radius: 549 cm
average dist cyl to pts: 0.16 cm

Figure 4:Using both texture and lighting cues, accurate models of shape can befroata single view Using a custom pattern taped

to a cylinder (a 2L bottle), we reconstruct the shape twice: in an image with minimal perspective ééfigcen@ in an image with

more prominent perspective effeatglit). In both cases, the reconstructions are performed using the same code, assuming orthography
on the scale of a triangle, and perspective effects on the scale of the scene. The 3D reconstructions are viewed down the axis of
best fit cylinder — where the blue x denotes the estimated axis and the arc denotes the best fit surface. The red point are the vert
of the points. The quality of the fit is the average distance between the cylinder and the point cloud — in the orthographic case 2.
pixels (0.637 mm) and 4.97 pixels (1.57 mm) in the perspective case. Errors in estimating the radius: 2.82 pixels (0.602 mm) in tl
orthographic image and 4.46 pixels (1.41 mm) in the perspective image.

ambiguity is limited to a single arc on the gauss map, becaus8of# Breaking the Remaining Ambiguities
unmodeled effects the region of remaining ambiguity is a thick line

region around the formal ambiguity. Even worse, when the Iightiﬂ%n,Oted N previous sef:t|0ns, there are some normals that are in-
direction and the viewing direction are the same, shading cues W s!cal_ly gmblguous using shading aﬂd texture cues. We_break the
not break any texture normal ambiguities. (fig8Je ambiguity in these normals by assuming that the surface is smopth
and that the surface normals change slowly — therefore neighboring
normals should be similar. While previous approaches used this
o o ) ) assumption to break all ambiguities, our methed is more reliable
3.3 Determining the Lighting Direction because only a small set of normals have combined cue ambiguity.
We detect ambiguous normals by comparing the lighting errors
Lighting parameter recovery is based on two observations: Fifgween the two texture normals. Small differences indicate ambi-
texture cues provide information about the accuracy of lighting Rftrity. We threshold, asserting that roughly 90% of the gauss map
rameters. Second, because the lighting model has a small numgst ambiguous. The confidence for remaining 10% of normals is
of degrees of freedom (four: two for the lighting directibnone eighted linearly by the difference in errors between the two tex-
each for the point light intensity.,, and the background intensityre normals. We set up a new graph, where the nodes in the graph
L,) itis not necessary to search over tévalues ofd; to find an  gre the triangles in the surface mesh and the edges in the graph are
optimal set of parametersiXis the number of normals) edges in the mesh. Using a probability model that favors neighbor-
In fact, for a given lighting model there are not values of ing normals that agree, a few steps of loopy belief propagation on
d; because some choices necessarily have higher costs than ottésyraph produces un-ambiguous results.
There are in facO(D*) by the following argument. The value of
0; changes at points where either of the two linear constraints is .
true: 4 Recovering Geometry

(L-Nj1-L,+ L,

— 1) =(L-Nig-Ly+ Lo — L) To recover a full 3D model from dis-ambiguated normals, we it-
(L-Njt - Lpy+ Lo —I;) = —(L-Njg- L, + Lo — ;)

erate over two stages: (1) compute scene depth assuming orthog-
raphy using normals; (2) adjust the point locations to account for
perspective effects. Becausesufene ambiguity the sign of the
This means that thé; are constant within the cells of the ardepth is ambiguous and we start the process twice: once for each
rangement of hyperplanes given by these constraints, and therggi¢ of the depth. By picking the solution with minimal error, we
O(D*) such cells. Given a particuldr, the error is a convex func-get a metric reconstruction of the scene from a single view.
tion within a convex cell and can be minimized by standard methWe assume that perspective effects are not observable on the
ods. Instead of building the arrangement, we grid the variabigsle of an individual triangle but are only observable (albeit mini-
(alsoO(D*)) and start an optimization problem at the minimal grighal) on the scale of the scene. If perspective effects were viewable
point. on the scale of the element, then either (a) the element is very large
The location of the lighting source, however, is still ambiguoasd not very descriptive; or (b) the element is at a highly oblique
up to ascene ambiguity a mirror light source across the viewingangle and detection is unreliable. In practice, the validity of these
direction will produce the same error. The two light sources trarssumptions is demonstrated by two empirical facts: (1) texture
late into an ambiguity in the sign of the depth for the entire imagermals computed assuming local orthography are very accurate;
(or a concave convex ambiguity). Even in scenes with little dep(B) in practice, scene ambiguity can be resolved in images with
this ambiguity can be broken with perspective effects. (seetjon incredibly weak perspective effects (figute
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Figure 5: By comparing the original image shading with two different shading reconstructions, we show (1) that agreement betwee
shading and texture cues is fairly robust and (2) that estimating 3D geometry effectively smoothes over noisy normals. In (a), we sh
an image of the shading (derived from the frontal image in the inset, also shown in &igutéis shading was estimated using the
method in [L4]. In (b), we render the lighting assuming our simplified lighting model, using the dis-ambiguated normal to generate
appropriate shading. Because the normals are calculated up to two-fold ambiguity from texture cues, we can interpret the agreeme
between this image and the extracted shading image as the agreement between texture and shading cues. Finally, in (c), we rendel
normals from the 3D geometry in the same way. While no additional information about shading was incorporated between the midc
and right images, by estimating 3D geometry, we effectively smooth the normal field — producing more realistic results. The differen
image (d) shows that the resulting errors are small.

4.1 Orthographic Depth from Normals previous section can be used on images with perspective effects.

. . . To compute the hypothetical orthographic image, we estimate the
We estimate the orthograpm_c depth from normals usIng a Mediih petween the scene and the camera and use this depth to adjust
constructed out of trlangles in the Image plane. U§|ng gra_dleaq observed (x,y) image locations to their orthographic equivalent.
descent, we constrain the x and y locations of the vertices whilegle, jistance between each point and the camera center is multi-

lowing the z value to vary. Our objective function Is a combinati%]ie by a depth adjustment term based on the relative distance be-
of two costs: agreement between the estimated and 3D normal n the point and the camera. We assume that the camera center

strain in the 3D mesh. Instead of computing the alignment betw *€the middle of the image and defingas the estimated depth of
the 3D normal £;) and the image normal, we use tangents to t 8inti andz as the average depth of the scene:
image normal4(, t?) to make our cost function quadratic: '

/ .
_ )2 4 (2 )2 v :d+Z_Z z
Cnormals= . (t-na)® + (6 i) y itz |y
ienormals

] o _ Using this adjustment term, nearby points move closer to the cen-
However, this problem has local minima: normals that flip acrogg of the image, while farther points move farther to eliminate per-
a tangent are unlikely to return — typically causing a single vertgxective effects. We optimize by running gradient descent over the

to appear far from the actual surface. . depth valuel, using the same cost function as in the previous sec-
We include the strain term to regularize the solution. Udires  tjon.

the rest length of a triangle edge afdd. as the observed change in

length, strain i%. By penalizing strain, the mesh acts like a set of

springs. Strain penalties have been useful in graphidsid cloth 5§ Estimating a Frontal Appearance

surface reconstruction f]. We include strain in the optimization

by adding a cost the square of the strain to our objective functioim general, a frontal view of a texture is required to compute the

This method of estimating the depth smoothes the normal fislttface normals in an arbitrary image. Forsythdonsidered the
because it computes the minimum error solution to an over caase of a single view of a repeating pattern, and showed that 3 views
strained problem. Roughly speaking, our cost has two constraoftthe repeating pattern (assuming no degeneracies) are enough to
per normal (one normal per triangle) with one degree of freeda@termine the frontal view. This method assumes that texture el-
per vertex. Although mesh connectivity varies, we typically haeenents are small and therefore approximately planar. We extend
more triangles than points — often by nearly a factor of two. Akis notion to larger textures with repetition in time instead of repe-
a result, there are roughly four times as many constraints as fiteen in space. By observing a video of a movingn-rigid texture,
variables. Using the lighting model, the estimated 3D normals pwee estimate the frontal view by assuming that small regions of the
duce smaller errors in estimated irradiance than the 2D normelgure are roughly flat. Stitching together the estimated frontal ap-
computed from the surface texture (figie pearance of each small region, we get the frontal appearance of the
entire texture.

As a result, we can reconstruct the shape of a deforming surface
from a single video. We only require that the user select the texture
We incorporate perspective effects by computing the image lotatrack by clicking four points in a single frame of the sequence.
tions for points viewed using a hypothetical orthographic camefAt present, we also require the user to individually select the colors
Using these modified points, the depth estimation procedure in ¢fithe screen print pattern in order to build a classifief])]

4.2 Adjusting for Perspective Effects
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Figure 6:We automatically compute the frontal appearance of a deforming surface — allowing us to compute normals and thus estima
shape (figurer). The estimated frontal texture is an average of the eight images, each pushed through the appropriate warping. W\
require the user to manually select the four corners of the texture in a single view (in this case, the upper right image). Then w
automatically deform this model to find matches in each of the other frames (a total of eight in this case). The blue mesh in each
the images on the left indicates the match. Following the method outlined in the text, we compute estimated frontal edge lengths, th
treating these lengths as rest-lengths for springs, we minimize energy. Without assuming any form of surface rigidity, this method requi
three views of the deforming surface. However, because of degeneracies that arise in practice, we use eight. Degenerate triangles o«
when there is a single axis of rotation between views — detecting these degeneracies is described B section

each triangle and iterating over triangles in the mesh, we have a list
of estimated edge lengths for each edge in the mesh. We pick the
median value, then minimize a spring energy term to confine the

original: points to a plane.

Lego)| _
6 Feature Representation

: 7
N

For arbitrary textures, we use an improved version of the track-
ing system proposed in.{]. This tracker is a deformable model
withoutsurface energy. The model is fit hierarchically: first with a
rough search for the location of the pattern, then gradient descent
to fit a 2 triangle model. To refine, we alternate between subdivid-
Figure 7: Using the frontal appearance estimated in figéewve ing the mesh and using gradient descent to fit. The mesh structure
use shading and texture cues to estimate the surface normalsiemglicitly gives us ambiguous texture normals — for convergence
consequently the 3D geometry. The original image is shown onda&sons, we use unit quaternions to parameterize the normal.

left. and a re-rendering of the extracted 3D geometry from a newThis representation has several advantages: first, even coarse
viewpoint is shown on theght. textures without many distinctive points can be localized. Second,
we can refine the transformation as appropriate. At some point,

Because we operate under the same assumptions as ForsytH;@hféued refinement is no longer appropriate: the surface texture
procedure requires only 3 views of the deforming surface. HoWay not have localizeable texture below a certain scale. (Figre
ever, in practice we typically need more — a degeneracy in any
triangle can cause problems in the resulting mesh. In figuse .
estimate the frontal appearance from 8 views of 128 triangles Ze- Experlments
cause no set of three views lacked degeneracies. Howevetr, in
namic video sequences a short segment should be sufficient.

\ﬁg'empirically establish the validity of our method by a sequence
of experiments of increasing difficulty.

First, we focus on images of custom textures with known frontal
5.1 Implementing Frontal Estimation appearance. These experiments are done in 3 forms: one with an

orthographic image of an object of known geometry (figreone

Assuming that we have a mesh of static connectivity that trackith a perspective image of an object known geometry (figire
the surface over a sequence of frames, we treat each triangle apg-finally a perspective image of a surface of unknown geometry
arately. A 3D reconstruction can be computed (with some sigigure8). In the first two cases, we reconstruct without knowledge
ambiguities) assuming orthography from 3 planar pointsif]. of the geometry, then compare the results to our model. In the
We extract sets of three triangles, compute a 3D reconstructitnird case, we use multi-view geometry to reconstruct the shape
check the reconstruction for degeneracies by computing the angle$ compare the results between the methods. In all cases, we
between cameras and add the lengths of each edge to separatgemerate highly accurate 3D models — errors in 3D geometry are
ning edge length lists. After iterating over sets of three views leks than three percent.
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Figure 8:We demonstrate the quality of the shape reconstruction by recovering the geometry of an unknown object, and compare tc
more accurate reconstruction obtained from multi-view geometry. In the reconstructed geometry, the red points are the reconstructit
obtained from single view texture and shading while the blue points are obtained using multi-view reconstruction from 4 images. Tt
green lines show the correspondence between the two methods — longer green lines indicate larger discrepancies. Because of
accuracy of multi-view reconstruction (reprojection error of 0.37 pixels and 0.0082 cm @n82 we can reasonably consider this
discrepancy to be the error in the single view reconstruction. The average discrepancy is 10.6 pixels or 2.335 mm on an object with
side-length of 7.8 cm. Note that this test is more challenging than the tests in figame® because it also penalizes texture slip — yet
results are still accurate to roughly 1 in 40. We use the multi-view calibration method describ&d.in [

Using Known Frontal View Using Estimated Frontal View
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Figure 9: Again, we compute the shafiem a single viewusing texture and shading cues. Instead of requiring a custom pattern to
compute the shape (figu#@, we use a supplied frontal view of the texture onright and our estimated frontal view from figuéen the

left. Using the supplied frontal texture the 3D point cloud is more consistent with the cylindrical model than the points generated usin
the estimated texture — however both textures produce accurate estimates of the radius of the cylinder. We use a deformable model
the mesh to a novel image of the pattern taped to a 2L bottle (seg}tidrhis transformation allows us to compute ambiguous normals.

A subsequent stage determines the location of the light source (s8ctjpbreaks the ambiguity (sectidéh?) and uses the normals to
produce a 3D mesh (sectidi. In images of the reconstructed geometry, we view the 3D point cloud down the axis of the cylinder.



Original Mesh Localizable Mesh\;_"r
By \ n / un-perturbed 4 (of 8) perturbations
‘ Easy to
, Localize

Vertex:

Hard to A\ 4‘

Localize

Vertex: V \(

Figure 10:We generate fine scale meshes by subdividing a coarse mesh, then measure the localizability of the mesh vertices — prur
points that cannot be easily localized. A pointis localizable if a perturbation of the location forces a significant change in the transforme
image. After throwing away points that are not localizable, we compute a delaunay triangulation of the resulting points and throw awa

triangles that are ill-conditioned to get a final mesh.

Second, we consider arbitrary textures. We reconstrut the shdpge
of a known geometry under two circumstances: a user-provided
frontal texture, and an estimated frontal texture (figBygener- [3]
ated from eight views of the different deformed surfaces (figjre
Despite the more challenging arbitrary texture, we are still able
estimate geometric parameters within four percent. The estimation
of the frontal texture causes only minor increases in fitting errctg]
compared to a user supplied frontal texture.

Finally, we reconstruct the frontal appearance of an arbitrary tex-
ture from several deformed views (figué and use this frontal
texture to estimate the geometry in one of the observed views (fig-
ure7). We test this method visually on a video sequence of a dé&/]
forming t-shirt by reconstructing the geometry in one view and ren-
dering the result from a alternate view and compare with an actyél
recording (figurell).

(9]
8 Discussion (101
We have demonstrated high quality reconstructions from single
views. Our method requires a texture estimate, which could [bg]
obtained as prior knowledge, by observing a moving object, or
possibly from repeated texture. We think that this method of gz
taining shape has several applications: including object recognition

D.A. Forsyth. Shape from texture and integrability.lih. Conf. on
Computer Vision2001. 1

D.A. Forsyth. Shape from texture without boundaries. Phoc.
ECCV, volume 3, 2002.1, 5

D.A. Forsyth and A.P. Zisserman. Reflections on shadiRgM],
13(7):671-679, 19911

B.K.P. Horn. Shape from shading : a method for obtaining the shape
of a smooth opaque object from one view. Ai tr-232, MIT, 1970.

] T.S. Huang and C.H. Lee. Motion and structure from orthographic

projections.PAMI, 1989. 6

A. Lobay and D.A. Forsyth. Recovering shape and irradiance maps
from rich dense texton fields. IGVPR 2004. 1

A. Loh and R. Hartley. Shape from non-homogeneous, non-
stationary, anisotropic, perspective textureBMVC, 2005. 1

Julien Pilet, Vincent Lepetit, and Pascal Fua. Real-time non-rigid
surface detection. I@VPR 2005. 1

Xavier Provot. Deformation constraints in a mass-spring model to
describe rigid cloth behavior. IBraphics Interface1995. 5

S. Savarese, M. Chen, and P. Perona. Recovering local shape of a
mirror surface from reflection of a regular grid. BECCV, 2004. 1

L. Tsap, D. Goldgof, and S. Sarkar. Nonrigid motion analysis based
on dynamic refinement of finite element modeé?&\MI, 2000. 1

and scene understanding, graphics, and physical measurement 15']‘% Ullman.The Interpretation of Visual MotiorMIT press, 1979.6

quality of our reconstruction provides a middle ground between the
flexibility of single cue single view reconstruction and the accura@;fl]
of multi-view techniques.

We have considered the estimation of normals to be a process
that simply breaks texture ambiguities. However, fighiseiggests
that we could take the process a step further — and produce a Hc?ll
mal estimate that minimizes the error between the texture estimate
and the shading estimate.

We have put considerable effort into reconstructing shaitie

o ) 2 [16]

out boundary conditions. However, boundaries provide S|gn|f|cin?3
shape cues. A method that identifies boundaries and provides addi-
tional constraints would add another information source and prob-
ably provide more accurate reconstructions.

References

[1] Yoonsik Choe and R. L. Kashyap. 3-d shape from a shaded and
textural surface imagePAMI, 1991. 1

Ryan M White and David Forsyth. Deforming objects provide bet-
ter camera calibration. Technical Report UCB/EECS-2005-3, EECS
Department, University of California, Berkeley, October 03 2065.

5,6

Ryan M White and David Forsyth. Retexturing single views using
texture and shading. Technical Report UCB/EECS-2005-4, EECS
Department, University of California, Berkeley, October 03 2005.
57

R. Zhang, P. Tsai, J. Cryer, and M. Shah. Shape from shading: A
survey.PAMI, 1999. 1



Estimated Frontal Texture

View 1 Geometry
View 2 Viewpoint

n.f",'"m"”'"
(/] “N"\"‘VERSARY

Figure 11:We use a dynamic sequence of the back of a t-shirt to recover the frontate@warid subsequently recover surface geometry
(bottom). In this case, we film the scene from two angles: one that we use to compute the geometry and the frontal view and anothel
use for comparison. By rendering geometry from the first view from the perspective of the second view, we can visually verify the qual
of the result. The shape is only recovered for the localizable textured region of the cloth as described ih(figithre frontal texture

was computed from a total of 24 frames.



