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Abstract

We demonstrate a method for reconstructing the shape of a de-
formed surface from a single view. After decomposing an image
into irradiance and albedo components, we combine normal cues
from shading and texture to produce a field of unambiguous nor-
mals. Using these normals, we reconstruct the 3D geometry. Our
method works in two regimes: either requiring the frontal appear-
ance of the texture or building it automatically from a series of
images of the deforming texture. We can recover geometry with
errors below four percent of object size on arbitrary textures, and
estimate specific geometric parameters using a custom texture even
more accurately.

Keywords: Shape-from-texture, shape-from-shading, 3D recon-
struction, surface tracking, deformable models

1 Overview

We demonstrate reconstructions from a single view using a combi-
nation of shape and texture cues. We show our reconstructions are
geometrically accurate by comparison with reconstructions from
multiple views. Traditionally, reconstruction techniques are lim-
ited by ambiguities in the local cues — and reconstructions are
performed by breaking these ambiguities using global consistency.
Instead, we break ambiguities locally and only introduce long scale
consistency in the finals steps of the geometric reconstruction.

We start with an outline of the reconstruction process. First, we
obtain an estimate of the frontal appearance of the texture. This
can be supplied manually, or reconstructed automatically from a
sequence of images (section5, figure6). Second, we decompose
the image into an irradiance map and a texture map (section3.1,
figure5). Third, we obtain ambiguous estimates of the surface nor-
mals using the frontal texture, the texture map and the assumption
of local orthography [2, 3]. The normals are disambiguated using a
shading model applied to the irradiance map (section3.2). Finally,
the surface is reconstructed using perspective effects to break a fi-
nal concave convex ambiguity (section4).

The resulting reconstructions are highly accurate – estimating
geometry within four percent. Only a small number of papers nu-
merically quantify the accuracy of a geometric reconstruction from
a single image — and none of them in similar situations using real
data. Forsyth reconstructs the shape of a synthetic image of a tex-
tured sphere [3] and Savarese et al. reconstruct the shape of a cylin-
drical mirror using the reflection of a calibration pattern [11].

2 Background

Shape-from-ShadingStarting in [5], most work in shape-from-
shading makes simplifying assumptions: the scene is illuminated
with a point light source, the surface of the object is lambertian and
inter-reflections are minimal. Methods typically use either local in-
tensity or local gradient information. Constraints such as surface
smoothness, integrability and boundary conditions break ambigui-
ties. However, scenes exhibit effects from mutual illumination [4],
surfaces are not entirely lambertian and often there are multiple
light sources. Even in the cases where the assumptions hold, cur-
rent reconstruction methods are unreliable [16].

Shape-from-Texture Texture normals can be computed as a
transformation between an observed patch and a frontal view by
assuming that the patch is locally flat. Local estimation of surface
normals is limited by two problems: one must know the frontal ap-
pearance of the textured patch, and each estimated normal is actu-
ally an ambiguous pair: the estimated normal and its mirror across
the viewing direction. Forsyth [2, 3] and Lobay and Forsyth [7]
focus on estimating the frontal texture from a single view of a re-
peating pattern and use surface smoothness to resolve the texture
normal ambiguity. Loh and Hartley also use perspective effects to
break ambiguities [8].

We take a different stance on both topics. First, we estimate the
frontal appearance of a non-repeating texture pattern using multi-
ple images of the deforming object. Second, we break ambiguities
in texture normals using shading cues. There is no reason to limit
combinations of the two techniques. One could estimate the frontal
pattern of a repeating texture and use shading cues to break ambi-
guities. Though less reliable, one could also estimate the frontal
view of an un-shaded deforming surface in multiple views and use
smoothness to break texture normal ambiguities.

Combined Shading and TextureChoe et al [1] reconstruct the
3D shape of shaded images of physically generated random tex-
tures based on surface irregularities. They focus on models of nat-
ural textures (reconstructing the shape of a tree trunk) and do not
consider using shading to break texture ambiguities.

Deformable Surface TrackingSeveral methods have been pro-
posed to track nonrigid motion [12, 9]. Pilet et al [9] describe
a method to detect the surface deformation using wide-baseline
matches between a frontal view and the image to estimate a trans-
formation smoothed using surface energy. This method has diffi-
culty stabilizing texture for 3 reasons: there are few reliable key-
points in textures we consider; because internal keypoints are used,
boundaries are not tracked well; and the surface energy term makes
it difficult to track highly deformable objects. Also, they cannot ob-
tain an irradiance estimate using the surface track because errors in
correspondence would make it impossible.
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Figure 1: While local cues for estimating normals are ambiguous when considering shading or texture alone, the ambiguities can
be broken in most cases by combining cues. On thetop, we view a gauss map of a sphere shaded with a point light source. The
red arc denotes an isophote (constant pixel intensity) — a single measurement of image intensity constrains the normal to this curve.
Observations of texture produce a two-fold ambiguity symmetric across the viewing direction. In most cases, the ambiguities do not line
up (for exceptions, see figures2)and the normal can be determined. On thebottom, we show the same phenomenon from the viewpoint
of the camera. An observation of a textured patch can have two possible normals, while a single measurement of intensity has a 1
parameter family of normals. By combing cues, the normal can be determined.
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Figure 2:Shading usually breaks texture normal ambiguities; how-
ever, there are cases when the two ambiguities line up and the am-
biguity can not be broken. In this image, the two ambiguous texture
normals lie on the same arc of constant irradiance, meaning that
the reconstruction is still ambiguous. The purple line shows the set
of all normals where shading will not break the texture ambiguity:
we call thiscombined cue ambiguity.

3 Estimating Normals

Our method requires the extraction of accurate normals to estimate
geometry. To compute surface normals, we estimate ambiguous
normals using texture cues, then break the ambiguity using a light-
ing model and shading cues. As part of the process, we decom-
pose images into two components: albedo and irradiance — which
correspond to the two aspects of normal estimation: texture and
shading.

Because there are several distinct ambiguities, we adopt the fol-
lowing terminology:Texture normal ambiguity (or texture am-
biguity ) refers the two-fold ambiguity in estimating a single nor-
mal from an observed texture.Combined cue ambiguityrefers to
the uncommon texture ambiguity that remain ambiguous after us-
ing shading cues to break ambiguities. Finally,scene ambiguity
refers to the concave convex ambiguity that results from confusion
about the source of the lighting.

In general, we breaktexture normal ambiguity using shading
information. We use belief propagation and surface smoothness to
break the infrequentcombined cue ambiguity. Finally, we use
perspective effects on the scale of the scene to eliminatescene am-
biguity .

3.1 The Lighting Model

In this section, we describe the lighting model and use it to decom-
pose the image into two distinct parts: a texture map and an irradi-
ance map. We detail the process of breaking the texture ambiguity
in the next section and subsequently discuss the determination of
the lighting parameters in section3.3.

Following previous work in shape-from-shading, we assume that
our scene is lit by a combination of a point light source and a non-
directional constant background illumination. UsingL as the direc-
tion to the light source,N as the surface normal,ρd as the surface
albedo,Lp as the point source intensity andLa as the background
illumination intensity, the intensityIi of a pixeli in the image is:

Ii = L ·N · ρd · Lp + ρd · La
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Figure 3:When the lighting direction and the viewing direction are
the same, none of the normals can be dis-ambiguated.

If we know the surface albedoρd and the lighting model parameters
(L, Lp, La), then we can compute the angle between the light and
the normal (although the normal direction itself is limited to a 1
parameter family) and subsequently determine an irradiance image
— one where the surface albedo is constant for the entire image.

Estimating Irradiance: Following the work in [14], we focus
on screen print items (ones that have a finite set of colors) and use
a classifier to determine which dye color generated each pixel. The
output of the classifier is the texture map for the image. To build
the irradiance map, we estimate an image with constant albedo
(ρd = 1). This image can be generated by dividing the observed
pixel intensityIi by the albedo for the dye color (ρd). While a
texture map may provide a rough guide to the surface albedo, the
color classifier is much better because it is not effected by small
alignment errors.

3.2 Breaking Texture Ambiguity with Shading

Figure1 provides a geometric perspective on the process of break-
ing texture ambiguity. Each observation of irradiance (Ii) confines
the surface normal to a 1 parameter family of possible normals.
Each textured patch limits the normal to a set of size two. In the
ideal case, the intersection of these sets produces one and only one
normal. However, in practice the sets do not intersect. Because
we believe normal estimates from texture to be substantially bet-
ter than normal estimates from lighting, we use the shading cue to
break the texture ambiguity.

We formulate the problem of breaking the texture ambiguity as
an error between the irradiance computed using texture normals
under the lighting model and the irradiance image. WritingNi1

andNi2 for the two possible texture normals andδi as an indicator
variable to switch between the two choices, we write the cost as:∑

i

(L ·Ni1 ·Lp +La −Ii)2δi +(L ·Ni2 ·Lp +La −Ii)2(1− δi)

If we assume thatLa, Lp andL are known, then the process of
breaking the texture ambiguity (or, correspondingly the value of
δi) is simple: for each ambiguous normal choose the normal with
the lower cost.

However, when the lighting (cost) for the two possible texture
normals is the same, shading will not break the texture ambigu-
ity, resulting in acombined cue ambiguity. While this formal
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Figure 4:Using both texture and lighting cues, accurate models of shape can be madefrom a single view. Using a custom pattern taped
to a cylinder (a 2L bottle), we reconstruct the shape twice: in an image with minimal perspective effects (left) and in an image with
more prominent perspective effects (right). In both cases, the reconstructions are performed using the same code, assuming orthography
on the scale of a triangle, and perspective effects on the scale of the scene. The 3D reconstructions are viewed down the axis of the
best fit cylinder — where the blue x denotes the estimated axis and the arc denotes the best fit surface. The red point are the vertices
of the points. The quality of the fit is the average distance between the cylinder and the point cloud — in the orthographic case 2.98
pixels (0.637 mm) and 4.97 pixels (1.57 mm) in the perspective case. Errors in estimating the radius: 2.82 pixels (0.602 mm) in the
orthographic image and 4.46 pixels (1.41 mm) in the perspective image.

ambiguity is limited to a single arc on the gauss map, because of
unmodeled effects the region of remaining ambiguity is a thick line
region around the formal ambiguity. Even worse, when the lighting
direction and the viewing direction are the same, shading cues will
not break any texture normal ambiguities. (figure3)

3.3 Determining the Lighting Direction

Lighting parameter recovery is based on two observations: First,
texture cues provide information about the accuracy of lighting pa-
rameters. Second, because the lighting model has a small number
of degrees of freedom (four: two for the lighting directionL, one
each for the point light intensityLp and the background intensity
La) it is not necessary to search over the2D values ofδi to find an
optimal set of parameters. (D is the number of normals)

In fact, for a given lighting model there are not2D values of
δi because some choices necessarily have higher costs than others.
There are in factO(D4) by the following argument. The value of
δi changes at points where either of the two linear constraints is
true:

(L · Ni1 · Lp + La − Ii) = (L · Ni2 · Lp + La − Ii)
(L · Ni1 · Lp + La − Ii) = −(L · Ni2 · Lp + La − Ii)

This means that theδi are constant within the cells of the ar-
rangement of hyperplanes given by these constraints, and there are
O(D4) such cells. Given a particularδi, the error is a convex func-
tion within a convex cell and can be minimized by standard meth-
ods. Instead of building the arrangement, we grid the variables
(alsoO(D4)) and start an optimization problem at the minimal grid
point.

The location of the lighting source, however, is still ambiguous
up to ascene ambiguity: a mirror light source across the viewing
direction will produce the same error. The two light sources trans-
late into an ambiguity in the sign of the depth for the entire image
(or a concave convex ambiguity). Even in scenes with little depth,
this ambiguity can be broken with perspective effects. (section4).

3.4 Breaking the Remaining Ambiguities

As noted in previous sections, there are some normals that are in-
trinsically ambiguous using shading and texture cues. We break the
ambiguity in these normals by assuming that the surface is smooth
and that the surface normals change slowly – therefore neighboring
normals should be similar. While previous approaches used this
assumption to break all ambiguities, our methed is more reliable
because only a small set of normals have combined cue ambiguity.

We detect ambiguous normals by comparing the lighting errors
between the two texture normals. Small differences indicate ambi-
guity. We threshold, asserting that roughly 90% of the gauss map
is not ambiguous. The confidence for remaining 10% of normals is
weighted linearly by the difference in errors between the two tex-
ture normals. We set up a new graph, where the nodes in the graph
are the triangles in the surface mesh and the edges in the graph are
edges in the mesh. Using a probability model that favors neighbor-
ing normals that agree, a few steps of loopy belief propagation on
this graph produces un-ambiguous results.

4 Recovering Geometry

To recover a full 3D model from dis-ambiguated normals, we it-
erate over two stages: (1) compute scene depth assuming orthog-
raphy using normals; (2) adjust the point locations to account for
perspective effects. Because ofscene ambiguity, the sign of the
depth is ambiguous and we start the process twice: once for each
sign of the depth. By picking the solution with minimal error, we
get a metric reconstruction of the scene from a single view.

We assume that perspective effects are not observable on the
scale of an individual triangle but are only observable (albeit mini-
mal) on the scale of the scene. If perspective effects were viewable
on the scale of the element, then either (a) the element is very large
and not very descriptive; or (b) the element is at a highly oblique
angle and detection is unreliable. In practice, the validity of these
assumptions is demonstrated by two empirical facts: (1) texture
normals computed assuming local orthography are very accurate;
(2) in practice, scene ambiguity can be resolved in images with
incredibly weak perspective effects (figure4).
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Figure 5: By comparing the original image shading with two different shading reconstructions, we show (1) that agreement between
shading and texture cues is fairly robust and (2) that estimating 3D geometry effectively smoothes over noisy normals. In (a), we show
an image of the shading (derived from the frontal image in the inset, also shown in figure8). This shading was estimated using the
method in [14]. In (b), we render the lighting assuming our simplified lighting model, using the dis-ambiguated normal to generate
appropriate shading. Because the normals are calculated up to two-fold ambiguity from texture cues, we can interpret the agreement
between this image and the extracted shading image as the agreement between texture and shading cues. Finally, in (c), we render the
normals from the 3D geometry in the same way. While no additional information about shading was incorporated between the middle
and right images, by estimating 3D geometry, we effectively smooth the normal field — producing more realistic results. The difference
image (d) shows that the resulting errors are small.

4.1 Orthographic Depth from Normals

We estimate the orthographic depth from normals using a mesh
constructed out of triangles in the image plane. Using gradient
descent, we constrain the x and y locations of the vertices while al-
lowing the z value to vary. Our objective function is a combination
of two costs: agreement between the estimated and 3D normal and
strain in the 3D mesh. Instead of computing the alignment between
the 3D normal (ni) and the image normal, we use tangents to the
image normal (t1i , t2i ) to make our cost function quadratic:

cnormals=
∑

i∈normals

(t1i · ni)2 + (t2i · ni)2

However, this problem has local minima: normals that flip across
a tangent are unlikely to return — typically causing a single vertex
to appear far from the actual surface.

We include the strain term to regularize the solution. UsingL as
the rest length of a triangle edge and∆L as the observed change in
length, strain is∆L

L . By penalizing strain, the mesh acts like a set of
springs. Strain penalties have been useful in graphics [10] and cloth
surface reconstruction [15]. We include strain in the optimization
by adding a cost the square of the strain to our objective function.

This method of estimating the depth smoothes the normal field
because it computes the minimum error solution to an over con-
strained problem. Roughly speaking, our cost has two constraints
per normal (one normal per triangle) with one degree of freedom
per vertex. Although mesh connectivity varies, we typically have
more triangles than points — often by nearly a factor of two. As
a result, there are roughly four times as many constraints as free
variables. Using the lighting model, the estimated 3D normals pro-
duce smaller errors in estimated irradiance than the 2D normals
computed from the surface texture (figure5).

4.2 Adjusting for Perspective Effects

We incorporate perspective effects by computing the image loca-
tions for points viewed using a hypothetical orthographic camera.
Using these modified points, the depth estimation procedure in the

previous section can be used on images with perspective effects.
To compute the hypothetical orthographic image, we estimate the
depth between the scene and the camera and use this depth to adjust
the observed (x,y) image locations to their orthographic equivalent.
The distance between each point and the camera center is multi-
plied by a depth adjustment term based on the relative distance be-
tween the point and the camera. We assume that the camera center
is the middle of the image and definezi as the estimated depth of
point i andz̄ as the average depth of the scene:[

x′

y′

]
=

d + zi

d + z̄

[
x
y

]
Using this adjustment term, nearby points move closer to the cen-
ter of the image, while farther points move farther to eliminate per-
spective effects. We optimize by running gradient descent over the
depth valued, using the same cost function as in the previous sec-
tion.

5 Estimating a Frontal Appearance

In general, a frontal view of a texture is required to compute the
surface normals in an arbitrary image. Forsyth [3] considered the
case of a single view of a repeating pattern, and showed that 3 views
of the repeating pattern (assuming no degeneracies) are enough to
determine the frontal view. This method assumes that texture el-
ements are small and therefore approximately planar. We extend
this notion to larger textures with repetition in time instead of repe-
tition in space. By observing a video of a movingnon-rigid texture,
we estimate the frontal view by assuming that small regions of the
texture are roughly flat. Stitching together the estimated frontal ap-
pearance of each small region, we get the frontal appearance of the
entire texture.

As a result, we can reconstruct the shape of a deforming surface
from a single video. We only require that the user select the texture
to track by clicking four points in a single frame of the sequence.
(At present, we also require the user to individually select the colors
of the screen print pattern in order to build a classifier [14])
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Figure 6:We automatically compute the frontal appearance of a deforming surface — allowing us to compute normals and thus estimate
shape (figure7). The estimated frontal texture is an average of the eight images, each pushed through the appropriate warping. We
require the user to manually select the four corners of the texture in a single view (in this case, the upper right image). Then we
automatically deform this model to find matches in each of the other frames (a total of eight in this case). The blue mesh in each of
the images on the left indicates the match. Following the method outlined in the text, we compute estimated frontal edge lengths, then,
treating these lengths as rest-lengths for springs, we minimize energy. Without assuming any form of surface rigidity, this method requires
three views of the deforming surface. However, because of degeneracies that arise in practice, we use eight. Degenerate triangles occur
when there is a single axis of rotation between views — detecting these degeneracies is described in section5.1.

original:
 new
view:

Figure 7: Using the frontal appearance estimated in figure6, we
use shading and texture cues to estimate the surface normals and
consequently the 3D geometry. The original image is shown on the
left. and a re-rendering of the extracted 3D geometry from a new
viewpoint is shown on theright.

Because we operate under the same assumptions as Forsyth, this
procedure requires only 3 views of the deforming surface. How-
ever, in practice we typically need more — a degeneracy in any
triangle can cause problems in the resulting mesh. In figure6 we
estimate the frontal appearance from 8 views of 128 triangles be-
cause no set of three views lacked degeneracies. However, in dy-
namic video sequences a short segment should be sufficient.

5.1 Implementing Frontal Estimation

Assuming that we have a mesh of static connectivity that tracks
the surface over a sequence of frames, we treat each triangle sep-
arately. A 3D reconstruction can be computed (with some sign
ambiguities) assuming orthography from 3 planar points [6, 13].
We extract sets of three triangles, compute a 3D reconstruction,
check the reconstruction for degeneracies by computing the angles
between cameras and add the lengths of each edge to separate run-
ning edge length lists. After iterating over sets of three views of

each triangle and iterating over triangles in the mesh, we have a list
of estimated edge lengths for each edge in the mesh. We pick the
median value, then minimize a spring energy term to confine the
points to a plane.

6 Feature Representation

For arbitrary textures, we use an improved version of the track-
ing system proposed in [14]. This tracker is a deformable model
withoutsurface energy. The model is fit hierarchically: first with a
rough search for the location of the pattern, then gradient descent
to fit a 2 triangle model. To refine, we alternate between subdivid-
ing the mesh and using gradient descent to fit. The mesh structure
implicitly gives us ambiguous texture normals — for convergence
reasons, we use unit quaternions to parameterize the normal.

This representation has several advantages: first, even coarse
textures without many distinctive points can be localized. Second,
we can refine the transformation as appropriate. At some point,
continued refinement is no longer appropriate: the surface texture
may not have localizeable texture below a certain scale. (Figure10)

7 Experiments

We empirically establish the validity of our method by a sequence
of experiments of increasing difficulty.

First, we focus on images of custom textures with known frontal
appearance. These experiments are done in 3 forms: one with an
orthographic image of an object of known geometry (figure4), one
with a perspective image of an object known geometry (figure4)
and finally a perspective image of a surface of unknown geometry
(figure8). In the first two cases, we reconstruct without knowledge
of the geometry, then compare the results to our model. In the
third case, we use multi-view geometry to reconstruct the shape
and compare the results between the methods. In all cases, we
generate highly accurate 3D models – errors in 3D geometry are
less than three percent.
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Figure 8:We demonstrate the quality of the shape reconstruction by recovering the geometry of an unknown object, and compare to a
more accurate reconstruction obtained from multi-view geometry. In the reconstructed geometry, the red points are the reconstruction
obtained from single view texture and shading while the blue points are obtained using multi-view reconstruction from 4 images. The
green lines show the correspondence between the two methods — longer green lines indicate larger discrepancies. Because of the
accuracy of multi-view reconstruction (reprojection error of 0.37 pixels and 0.0082 cm or 82µm), we can reasonably consider this
discrepancy to be the error in the single view reconstruction. The average discrepancy is 10.6 pixels or 2.335 mm on an object with a
side-length of 7.8 cm. Note that this test is more challenging than the tests in figures4 and9 because it also penalizes texture slip — yet
results are still accurate to roughly 1 in 40. We use the multi-view calibration method described in [15].
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Figure 9: Again, we compute the shapefrom a single viewusing texture and shading cues. Instead of requiring a custom pattern to
compute the shape (figure4), we use a supplied frontal view of the texture on theright and our estimated frontal view from figure6 on the
left. Using the supplied frontal texture the 3D point cloud is more consistent with the cylindrical model than the points generated using
the estimated texture — however both textures produce accurate estimates of the radius of the cylinder. We use a deformable model to fit
the mesh to a novel image of the pattern taped to a 2L bottle (section6). This transformation allows us to compute ambiguous normals.
A subsequent stage determines the location of the light source (section3.3), breaks the ambiguity (section3.2) and uses the normals to
produce a 3D mesh (section4). In images of the reconstructed geometry, we view the 3D point cloud down the axis of the cylinder.
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Figure 10:We generate fine scale meshes by subdividing a coarse mesh, then measure the localizability of the mesh vertices — pruning
points that cannot be easily localized. A point is localizable if a perturbation of the location forces a significant change in the transformed
image. After throwing away points that are not localizable, we compute a delaunay triangulation of the resulting points and throw away
triangles that are ill-conditioned to get a final mesh.

Second, we consider arbitrary textures. We reconstrut the shape
of a known geometry under two circumstances: a user-provided
frontal texture, and an estimated frontal texture (figure9) gener-
ated from eight views of the different deformed surfaces (figure6).
Despite the more challenging arbitrary texture, we are still able to
estimate geometric parameters within four percent. The estimation
of the frontal texture causes only minor increases in fitting error
compared to a user supplied frontal texture.

Finally, we reconstruct the frontal appearance of an arbitrary tex-
ture from several deformed views (figure6) and use this frontal
texture to estimate the geometry in one of the observed views (fig-
ure7). We test this method visually on a video sequence of a de-
forming t-shirt by reconstructing the geometry in one view and ren-
dering the result from a alternate view and compare with an actual
recording (figure11).

8 Discussion
We have demonstrated high quality reconstructions from single
views. Our method requires a texture estimate, which could be
obtained as prior knowledge, by observing a moving object, or
possibly from repeated texture. We think that this method of ob-
taining shape has several applications: including object recognition
and scene understanding, graphics, and physical measurement. The
quality of our reconstruction provides a middle ground between the
flexibility of single cue single view reconstruction and the accuracy
of multi-view techniques.

We have considered the estimation of normals to be a process
that simply breaks texture ambiguities. However, figure5 suggests
that we could take the process a step further — and produce a nor-
mal estimate that minimizes the error between the texture estimate
and the shading estimate.

We have put considerable effort into reconstructing shapewith-
out boundary conditions. However, boundaries provide significant
shape cues. A method that identifies boundaries and provides addi-
tional constraints would add another information source and prob-
ably provide more accurate reconstructions.
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Figure 11:We use a dynamic sequence of the back of a t-shirt to recover the frontal view (top) and subsequently recover surface geometry
(bottom). In this case, we film the scene from two angles: one that we use to compute the geometry and the frontal view and another to
use for comparison. By rendering geometry from the first view from the perspective of the second view, we can visually verify the quality
of the result. The shape is only recovered for the localizable textured region of the cloth as described in figure10. The frontal texture
was computed from a total of 24 frames.
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