
Incremental Network Programming for Wireless
Sensors

Jaein Jeong

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2005-17

http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-17.html

November 21, 2005

Copyright © 2005, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Incremental Network Programming for Wireless Sensors

by Jaein Jeong

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the degree
of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Kristofer S.J. Pister
Research Advisor

(Date)

* * * * * * *

Professor David E. Culler
Second Reader

(Date)

Incremental Network Programming for Wireless Sensors

Copyright Spring 2004

by

Jaein Jeong

i

Abstract

Incremental Network Programming for Wireless Sensors

by

Jaein Jeong

Master of Science in Computer Science

University of California at Berkeley

Professor Kristofer S.J. Pister, Research Advisor

One problem of the current network programming implementation of TinyOS is

that it takes much longer than the traditional in-system programming due to the slow radio

connection. We extended the network programming implementation of TinyOS 1.1 release

so that it can reduce the programming time using the program code history. The host

program generates the difference of the two program images using the Rsync algorithm and

it sends the difference to the sensor nodes as script messages. The sensor nodes rebuild the

program image based on the previous program version and the received script messages.

The Rsync algorithm compares the two binary files and finds the matching blocks even

though they are located in an arbitrary location within the files. We were able to get speed

up of 9.1 for changing a constant and 2.1 to 2.5 for chaning a few lines in the source code.

ii

Contents

List of Figures iv

List of Tables v

1 Introduction 1

2 Background 4
2.1 In-System Programming . 4
2.2 Network Programming . 5

3 Design and Implementation 7
3.1 Design: Fixed Block Comparison . 8
3.2 Implementation . 13
3.3 Experiment Setup . 16
3.4 Results . 19

4 Optimizing Difference Generation 23
4.1 Design . 23
4.2 Implementation . 27
4.3 Results . 29

5 Optimizing Difference Delivery 32
5.1 Design . 33
5.2 Results . 36

6 Related Work 40
6.1 Wireless Sensor Network Programming . 40
6.2 Remote Code Update outside Wireless Sensor Community 42

7 Conclusion 45

Bibliography 47

A Message Format 49

iii

B Message Processing 54

C Sample Program Source Code 57

iv

List of Figures

1.1 Comparison of network programming with in-system programming. 1
1.2 Programming time of XNP and ISP . 3

2.1 Format of SREC file and its records with an example 5
2.2 Process of in-system programming . 5
2.3 Process of network programming . 6

3.1 Generating difference with Fixed Block Comparison 8
3.2 Protocol extension for incremental network programming 10
3.3 Memory allocation for Fixed Block Comparison 11
3.4 Program image rebuild with Fixed Block Comparison 12
3.5 Difference generation in the host program 13
3.6 Network programming module message handling 14

4.1 Rsync difference generation . 24
4.2 Copying a matching block . 25
4.3 Downloading a non-matching block . 26
4.4 CMD COPY BLOCK packet format modified for the Rsync algorithm . . . 27
4.5 Host program with Rsync implementation 29
4.6 Comparison of programming time . 31

5.1 Message format for CMD DOWNLOADING (data) 33
5.2 Message format for CMD DOWNLOADING (copy) 34
5.3 Message format for CMD DECODE SCRIPT 34
5.4 Receiving script commands . 35
5.5 Decoding script commands . 36
5.6 Comparison of programming time . 38

A.1 Network programming message format . 49
A.2 Network programming message format . 50
A.3 Incremental network programming message format (Fixed Block Comparison

and Rsync) . 51
A.4 Incremental network programming message format (Rsync with decode) . . 52
A.5 Network programming message format (debugging messages) 53

v

List of Tables

3.1 Message types for incremental network programming 9
3.2 Possible boot loader locations . 16
3.3 Code size of test applications . 17
3.4 Parameters for performance evaluation . 19
3.5 Transmission time for each case . 20
3.6 Level of code sharing in blocks, lines and bytes 21

4.1 Complexity of incremental network programming 29
4.2 Transmission time with the Rsync algorithm 30

5.1 Transmission time with the Rsync algorithm and script decode 37
5.2 Comparison of programming time . 39

B.1 Receiving the incoming message . 54
B.2 NPX STATEMACHINE() state transition 54
B.3 NPX STATEMACHINE() state transition (cont.) 55
B.4 NPX STATEMACHINE() state transition (added for incremental network

programming) . 55
B.5 Cost of message handling . 56

vi

Acknowledgements

Special thanks to Professor David Culler who gave valuable comments on this work. Thanks

to Crossbow Technology for providing the source code for the network programming module

and the boot loader. This work was supported in part by DARPA NEST Contract F33615-

01-C1895.

1

Chapter 1

Introduction

Typically, wireless sensors are designed for low power consumption and small size

and they don’t have enough computing power and storage to support the rich programming

development environment. Thus, the program code is developed in a more powerful host

machine and is loaded to a sensor node afterwards. The program code is usually loaded to a

sensor node through the parallel or serial port that is directly connected to the host machine

and this is called in-system programming (Figure 1.1). In-system programming (ISP) is the

most common way of programming sensor nodes because most microcontrollers support

program loading with the parallel or serial port. However, ISP can load the program code

to only one sensor node at a time. The programming time increases proportional to the

number of wireless sensors to be deployed.

Host Machine

Program
Code

Sensor Node

Parallel
Cable

Host Machine

Program
Code

Sensor Node

Radio
Channel

Sensor Node Sensor Node…

In-system programming Network programming

Figure 1.1: Comparison of network programming with in-system programming.

2

During the development cycle of wireless sensor software, the source code can be

modified for bug fixes for additional functionalities. With ISP, the cost of software update

is high; it involves all the efforts of collecting the sensor nodes placed in different locations

and possibly disassembling and reassembling the enclosures. Network programming reduces

these efforts by delivering the program code to each of the sensor nodes through the wireless

links (Figure 1.1).

The network programming has been used with the introduction of TinyOS 1.1

release [1], [2]. This implementation, XNP (Crossbow Network Programming), provides

the basic capability of the network programming; it delivers the program code to the sensor

nodes remotely. However, it has some limitations:

First, XNP does not scale to a large sensor network. XNP disseminates program

code only to the nodes that can be directly reached by the host machine. Thus, the nodes

outside the single hop boundary cannot be programmed.

Second, XNP has low effective bandwidth compared to ISP. An experiment in [1]

shows the programming time of XNP and ISP. In the experiment, we used a simple test

application ‘XnpCount’ which has basic functionalities: network programming, counting

numbers in LEDs and transmitting the numbers in radio packets. The version of ‘XnpCount’

we used is 37,000 bytes in size and it requires 841 XNP packets to transfer the whole

program. The programming time of XNP was more than 4 times longer than that of ISP

(Figure 1.2).

When XNP updates the program code with another version, it sends the whole

program code rather than the difference. This incurs the same programming time even when

the difference is small. If the sensor nodes can build program code image incrementally using

the previous code image, the overall programming time can be reduced.

Our idea is to achieve fast code delivery by transmitting the difference between

the two versions.

The rest of the thesis is organized as follows. Chapter 2 describes the in-system

3

24

72 63

106

106
106

30

0

20

40

60

80

100

120

140

160

180

200

XNP (4 motes) XNP (8 motes) XNP (16 motes) ISP

se
c

Download
(sec)

Retransmission
(sec)

Figure 1.2: Programming time of XNP and ISP

programming and the network programming as a background. Chapter 3 outlines the

incremental network programming and explains our first implementation. In Chapter 4,

we use the Rsync algorithm to generate the program and show how this implementation

improves the performance. In Chapter 5, we discuss the extension to the script delivery

which makes the program delivery more reliable and faster. Chapter 6 discusses the related

work on wireless sensor network programming. Finally, we conclude this thesis with Chapter

7.

4

Chapter 2

Background

2.1 In-System Programming

The program development for wireless sensors starts with writing the source code.

In UC Berkeley sensor platform, the source code is written in nesC programming language.

Once the source code is successfully compiled, the binary code is generated (main.exe). The

binary code is further converted to Motorola SREC format (main.srec) and is available for

loading. Motorola SREC format is an ASCII representation of binary code and each line

of an SREC file contains the data bytes of the binary code with additional house keeping

information (Figure 2.1).

With ISP, the binary code (SREC format) is loaded to a sensor node through the

direct connection (e.g. parallel port) from the host machine. The host programming tool

(uisp) sends a special sequence of bytes that leaves the microcontroller of the sensor node

in the programming mode. While the microcontroller is in programming mode, the data

bytes sent by the host programming tool are directly written to the program memory of

the microcontroller (Figure 2.2).

5

S01800006275696C642F6D696361322F6D61696E2E737265632D
S11300000C9426020C9443020C9443020C941C039B
S11300100C9443020C9443020C9443020C94430248
S11300200C9443020C9443020C9443020C94430238

.

.

.

S11348A0802D9DB30895E199FECF9FBB8EBB6DBB58
S10F48B00FB6F894E29AE19A0FBE089546
S10B48BC01007D012DCF4340F2
S9030000FC

SREC file example

S Type

Start Record

Offset CheksumLength Data

Data Record 1

Data Record 2

Data Record n

End Record

SREC record format SREC file format

1Byte Size 1 2 4 2n 2

n = Length - 3

Figure 2.1: Format of SREC file and its records with an example

Host Machine

SREC file Program Memory

Sensor Node

UISP

Figure 2.2: Process of in-system programming

2.2 Network Programming

Network programming takes a different approach to load the program code. Rather

than write program code directly to the program memory, network programming loads

program code in two steps. First, it delivers the program code to sensor nodes. Second, it

makes the sensor nodes move the downloaded code to the program memory (Figure 2.3).

In the first step, the network programming module stores the program code in the

external storage. Since the network programming module runs in the user level as a part

of the main application code, it does not have the privilege to write program code into the

program memory. In case of XNP, the network programming module writes the program

6

User app
SREC file

External
Flash

Network
Programming
Host Program

Boot
loader User

Application
Section

Program
Memory

Boot loader
Section

Network
Programming

Module
Radio

Packets

Host Machine Sensor Node

Figure 2.3: Process of network programming

code in the external flash memory outside the program memory. The external flash memory

of MICA2/MICA2DOT motes is 512KB in size and it is big enough for any application code

(the maximum size of 128KB). During the program delivery, part of the code can be missing

due to the packet loss. The network programming module requests any missing records of

the program code to make sure that there are no missing records.

In the second step, the boot loader copies the program code in the external flash

memory to the program memory. The boot loader is a program that resides in the high

memory area (which we call the boot loader section) of ATmega128 microcontroller and has

the privilege to write data bytes to the user application section of the program memory [16].

The boot loader starts execution when it is called by the network programming module.

After it copies the program code from the external flash memory to the program memory,

it restarts the system.

In the paragraphs above, we assumed that the sensor nodes can update the current

program image through the network programming. However, a sensor node cannot be

network programmed until it has the network programming module and the boot loader.

Thus, we need to load the initial program code and the boot loader with ISP.

For network programming, the host machine and the sensor nodes exchange XNP

packets. An XNP packet has Active Message ID of 47 and its function (e.g. start download,

download, query and reprogram) is specified in the command field of the packet.

7

Chapter 3

Design and Implementation

To design an incremental network programming mechanism, we need to consider

some factors that affect the performance. Compared to other sensor applications, network

programming keeps a large amount of data in sensor nodes and this contributes to the long

programming time. Since the programming time is proportional to the data size, reducing

the amount of transmission data will improve the programming time. External flash memory

which is used for the program storage also limits the performance. The downloaded code is

stored in the external flash memory because there is not enough space in on-chip memory.

However, this external flash memory is much slower than the on-chip SRAM. For better

performance, the access to the external memory should be made only when it is necessary.

Caching frequently accessed data can help reducing flash memory accesses.

Another consideration is how much functionality is to be processed in sensor nodes.

More sophisticated algorithms could reduce the overall programming time by reducing the

network traffic, but at the cost of higher complexity computation and memory accesses.

Finally, the design should be simple so that it can be understood and diagnosed

without difficulty.

8

3.1 Design: Fixed Block Comparison

As a starting point, we can design an incremental network programming by ex-

tending XNP. This consists of two main parts: (1) difference generation and code delivery,

(2) storage organization and image rebuild.

Difference Generation

To generate the program difference, the host program compares each fixed sized

block of the new program image with the corresponding block of the previous image. We set

the block size as the page size of the external flash memory (256 bytes). The host program

sends the difference as messages while it compares the two program versions. If the two

corresponding blocks match, the host program sends a CMD_COPY_BLOCK message. The

message makes the network programming module in the sensor node copy the block of the

previous image to the current image. When the two blocks don’t match, the host program

falls back to the normal download; it sends a number of CMD_DOWNLOADING messages for the

SREC records of the block (Figure 3.1).

B bytesB bytes

B bytes

B bytes

Remaining

Current
Program

Image

Previous
Program

Image

B bytes

B bytes

=? A copy command

or

The block from
the current program image

Figure 3.1: Generating difference with Fixed Block Comparison

The idea is that we can reduce the number of message transmission by sending a

CMD_COPY_BLOCK message instead of multiple CMD_DOWNLOADING messages when most of the

9

blocks are the same between the two program images.

Operations

Table 3.1 shows the message types used for the incremental network programming.

Message ID Value Description
CMD_START_DOWNLOAD 1 start network programming in normal mode
CMD_DOWNLOADING 2 deposit an SREC record
CMD_QUERY_COMPLETE 3 signals that it received all the capsules
CMD_DOWNLOAD_STATUS 4 request/response with download status
CMD_DOWNLOAD_COMPLETE 8 end of SREC record download
CMD_ISP_EXEC 5 execute the boot loader
CMD_GET_PIDSTATUS 7 Get Program ID
CMD_GET_CIDMISSING 6 Retransmission message from the host
CMD_REQ_CIDMISSING 6 Request retransmission for a missing cap
CMD_START_DOWNLOAD_INCR 10 start network programming incrementally
CMD_COPY_BLOCK 11 copy SREC records from previous to current
CMD_GET_CURRENT_LINE 22 Read the current SREC record
CMD_GET_PREV_LINE 23 Read the previous SREC record
CMD_REPLY_LINE 24 Reply to SREC record request

Table 3.1: Message types for incremental network programming

Based on XNP messages, we made the following extensions for the incremental

network programming (Figure 3.2). The entire message format is shown in Appendix A.

• Start Download: CMD_START_DOWNLOAD_INCR message notifies the beginning of net-

work programming in incremental mode. This message specifies not just the program

ID of the current program but also the program ID of the previous program to ensure

that the sensor node has the same program image as the host program.

• Download: Two operations CMD_DOWNLOADING and CMD_COPY_BLOCK are used to trans-

mit the program image difference.

• Query and Reboot: The format of query, reply and reboot messages is the same as

XNP messages.

• Debugging Messages: CMD_GET_CURRENT_LINE and CMD_GET_PREV_LINE messages re-

quest the SREC record at the specified line. In response, the sensor node sends

CMD_REPLY_LINE message.

10

CMD_GET_PREV_LINE

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data
0:4 5 6 7:8 11:end9:10

CMD_GET_CURRENT_LINE
or CMD_GET_PREV_LINE

Read the prev SREC record.

Replying Node ID

Capsule ID

Program ID

CMD_GET_CURRENT_LINE Read the current SREC record.

CMD_REPLY_LINE

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Data

0:4 5 6 7:8 11:end9:10

CMD_REPLY_LINE

Reply to SREC record request

Program ID

Capsule ID

SREC data

CMD_DOWNLOADING

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data
0:4 5 6 7:8 11:end9:10

CMD_DOWNLOADING

Deposit an SREC record

Program ID

Capsule ID

SREC data

CMD_START_DOWNLOAD_INCR

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Unused

0:4 5 6 7:8 13:end9:10

CMD_QUERY_COMPLETE

Start network programming incrementally

Capsule ID

Program ID

CMD_COPY_BLOCK (Fixed Block Comparison)

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Unused

0:4 5 6 7:8 16:end9:10

CMD_QUERY_COMPLETE

Copy SREC records from prev to current

Program ID of the current image

Starting address of the block in capsules

11:12
Prev
PID

Prev Program ID

PID
Prev

11:12

CID
Prev

13:14
BLK
Size

15

Program ID of the previous image

Starting address of the block in capsules (prev)

Block size in capsules (16 bytes)

Figure 3.2: Protocol extension for incremental network programming

11

Storage Organization

XNP stores the program image in a contiguous memory chunk in the external flash

memory. Fixed Block Comparison scheme extends this by allocating two memory chunks,

one for the previous program image and the other for the scratch space where the current

image will be built (Figure 3.3).

External Flash

L bytes

Program Memory

Current Image
Base Address

Previous Image
Base Address

L bytes

L bytes

Used
for

Other
Purposes

Boot loader
section

Data Checksum Fill

0:1 2:3 4 5 6:7 8:15

16: 8+datalen -1 8+datalen Remaining

PID CID Srec Type length Srec address Data

SREC line

Data Checksum Fill

0:1 2:3 4 5 6:7 8:15

16: 8+datalen -1 8+datalen Remaining

PID CID Srec Type length Srec address Data

SREC line

Figure 3.3: Memory allocation for Fixed Block Comparison

The two memory chunks have the same structure and they are swapped once the

newly built program is loaded to the program memory. The current program image is now

considered as the previous image and the space for the previous image is available for the

next version of program image. For the two memory chunks, two base address variables are

maintained in the flash memory. By changing the address values in these variables, the two

memory chunks can be swapped.

This memory organization has an advantage that it provides the same view of the

memory as XNP and minimizes the effort of rewriting the boot loader code. The boot

loader code of XNP reads the program code assuming that it is located at a fixed location

in the external flash memory. We modified the boot loader so that it reads the program

code from the base address passed by interprocess call argument. Thus, the boot loader

can read the program code from any memory chunk depending on the base address value

12

passed by network program module.

However, this scheme does not use the external flash memory space economically.

It allocates 256 KB of space regardless of the program code size (128 KB of space both for

the current and the previous image). This accounts for 50% of the flash memory space of

MICA2 motes and leaves less space for data logging.

Image Rebuild

The program image is built in a straightforward way. The network programming

module of the sensor node builds the program image by writing the SREC records based

on a list of download and copy messages (Figure 3.4).

Previous
Program

Image

Current
Program

Image

copy

download

copy

Copy

Download
Download

Copy

Difference
Message

download

Figure 3.4: Program image rebuild with Fixed Block Comparison

The download message makes the sensor node deposit the data bytes in the message

into the program image. The format of a download message is the same as an XNP download

message. Capsule ID field specifies the location (line number) in the current program image

and the data represents the data bytes to be written.

The copy message is introduced for the incremental network programming and it

makes the sensor node copy the SREC lines of a block in the previous program image to the

current program image. The capsule ID field specifies the location of the first SREC record

13

to be copied and the block size field specifies the number of SREC records to be copied.

3.2 Implementation

Difference Generation and Code Delivery

The host program, which is in charge of program image loading, difference gener-

ation and code delivery, is composed of the following classes:

• xnp: GUI, main module

• xnpUtil: loads the program image, generates the difference and provides utility func-
tions

• xnpQry: processes the query and retransmission

• xnpXmitCode: processes code delivery

• xnpMsg: defines the message structure

• MoteMsgIF: abstracts the interface to serial forwarder

xnp

Load Previous File Command

Load Current File Command

Download Command

User Input

xnpUtil

readPrevSrecCode()

readSrecCode()

CompareBlocks()

xnpXmitCode

Run_incremental()

For each block
xnpUtil.CompareBlocks()
if (true)

send CMD_COPY_BLOCK message
else

send CMD_DOWNLOADING
for each line of the current block.

Figure 3.5: Difference generation in the host program

14

If the user selects the download command after loading the current and the previ-

ous program images, xnp class spawns xnpXmitCode class. xnpXmitCode compares each pair

of blocks in the current and previous images by calling xnpUtil.CompareBlocks. Depend-

ing on the result, it sends a copy message (CMD_COPY_BLOCK) or sends a download message

(CMD_DOWNLOADING) for each line of the current block. Figure 3.5 illustrates this process.

Handling the Message

The network programming module for a sensor node is composed of the follow-

ing components: XnpM.nc (implementation), XnpC.nc (configuration), Xnp.nc (interface),

Xnp.h, XnpConst.h (constant definition). The implementation module has an event driven

structure (Figure 3.6). When a XNP message arrives, ReceiveMsg.receive() sets the next

state variable (cNextState) as the appropriate value and post NPX_STATEMACHINE() task.

This message loop structure readily processes an incoming message without interrupting the

message currently being processed. Tables B.1, B.2, B.4 show how an incoming message is

processed.

SetcNextState based on
message command.

ReceiveMsg.receive()
Arriving
XNP message

Based on cNextState
execute functions.

SetcNextState to
the next value.

NPX_STATEMACHINE()

post NPX_STATEMACHINE()

Figure 3.6: Network programming module message handling

One of the difficult parts was handling split phase operations like external flash

reads and writes. To read an SREC record from the external flash, EEPROMRead.read()

is called. But this function returns before actually reading the record. The event handler

EEPROMRead.readDone() is called when the record is actually read. And we specify the next

state in the event handler. This makes us use multiple intermediate states to process an

incoming message. Table B.2 and B.4 show which states were used to handle each message

15

type.

To estimate the cost of message handling, we counted the source code lines for the

two most important messages, CMD_DOWNLOADING, CMD_COPY_BLOCK. The number of lines

are 136 and 153 respectively. Table B.5 shows the cost at each step of the message loop.

Calling the boot loader

XnpM builds the new program image based on the previous version and the dif-

ference. In order to transfer the new image to the program memory, we modified XnpM

module and the boot loader.

The part of XnpM code that executes the boot loader is shown in the following.

wEEProgStart is passed as the starting address of the new program image in the external

flash memory.

task void NPX_ISP()

{

...

wPID = ~wProgramID; //inverted prog id

__asm__ __volatile__ ("movw r20, %0" "\n\t"::"r" (wPID):"r20", "r21");

wPID = wEEProgStart;

__asm__ __volatile__ ("movw r22, %0" "\n\t"::"r" (wPID):"r22", "r23");

wPID = wProgramID; //the prog id

__asm__ __volatile__ ("movw r24, %0" "\n\t"::"r" (wPID):"r24", "r25");

//call bootloader - it may never return...

__asm__ __volatile__ ("call 0x1F800" "\n\t"::); //bootloader at 0xFC00

...

}

Here, 0x1F800 is the starting address of the boot loader. In Atmega128 microcon-

troller memory map, the boot loader can reside at one of the possible locations (Figure 3.2).

We are using a boot loader of 4 KB in size.

The boot loader use the address passed as a parameter to access the new image

as shown in the following code.

16

Word Address Byte Address Boot loader size

0xF000 0x1E000 8 KB
0xF800 0x1F000 4 KB
0xFC00 0x1F800 2 KB
0xFE00 0x1FC00 1 KB

Table 3.2: Possible boot loader locations

char _start(UINT16 wProgID, UINT16 wPageStart, UINT16 nwProgID, UINT8 param1)

{

UINT16 EEPageA;

UINT16 EEByteA; //EEFlash Addresss

...

EEPageA = wPageStart >> 4;

EEByteA = 0;

...

fEEStartRead(EEPageA, EEByteA);

...

}

3.3 Experiment Setup

To evaluate the performance of this design choice, we will count the number of

block or packet transmissions of the test set. We considered the following three cases as a

test scenario:

Case 1 (Changing Constants)

This is the case with the minimum amount of change. We modified the constant

in XnpBlink that represents the blinking rate of the LED. XnpBlink is an application

written for demonstrating the network programming (Appendix C). It accepts the network

programming and blinks the red LED. The following code segment shows the modification

to this program.

17

command result_t StdControl.start() {

// Start a repeating timer that fires every 1000ms

// The 1000 ms period can be changed with different value.

return call Timer.start(TIMER_REPEAT, 1000);

}

Case 2 (Modifying Implementation File)

This is a more general case of program modification. We added a few lines of

code to XnpCount program (Appendix C). XnpCount is a simple network programmable

application. It counts a number, displays the number in its LEDs and broadcasts the number

in radio packets. The following code segment shows the modification to this program.

event result_t Xnp.NPX_DOWNLOAD_DONE(uint16_t wProgramID,

uint8_t bRet,uint16_t wEENofP){

if (bRet == TRUE)

call CntControl.start();

else // this line can be deleted

call CntControl.stop(); // this line can be deleted

return SUCCESS;

}

Case 3 (Major Change)

In this case, we used two programs, XnpCount and XnpBlink as input to generate

the difference. The difference is bigger than the first two cases. But, these two applications

still share large part of the code in source level (Table 3.3).

XnpBlink XnpCount

of source code lines for network programming modules 2049 2049

of source code lines for application specific modules 157 198

of SREC lines 1139 1166

Table 3.3: Code size of test applications

18

Case 4 (Modifying Configuration File – commenting out IntToLeds)

We commented a few lines in XnpCount program so that we do not use IntToLeds

module. IntToLeds is a simple module that takes an integer input and displays it in LEDs

of the sensor node. The following code segment shows the modification to this program.

configuration XnpCount {

}

implementation {

components Main, Counter, /* IntToLeds,*/ IntToRfm, TimerC, XnpCountM,

XnpC;

// Main.StdControl -> IntToLeds.StdControl;

// IntToLeds <- Counter.IntOutput;

}

Case 5 (Modifying Configuration File – commenting out IntToRfm)

We commented a few lines in XnpCount program so that we do not use IntToRfm

module. IntToRfm takes an integer input and transmits it over the radio packet. Since

commenting out IntToRfm makes the radio stack components not used, we expect bigger

change in the program image than commenting IntToLeds module.

configuration XnpCount {

}

implementation {

components Main, Counter, IntToLeds, /* IntToRfm,*/ TimerC, XnpCountM,

XnpC;

// Main.StdControl -> IntToRfm.StdControl;

// Counter.IntOutput -> IntToRfm;

}

19

3.4 Results

To evaluate the performance of Fixed Block Comparison, we estimated the trans-

mission time for each scenario. The host program calculates the estimated transmission

time by counting how many download and copy messages it has sent. If it takes tdown to

send a download message and tcopy to send a copy message, then the transmission time for

Fixed Block Comparison , T , can be calculated as follows:

T = Ldown · tdown + Ncopy · tcopy

where Ldown is the number of SREC lines sent by download messages and Ncopy is the num-

ber of copy messages. As a baseline for comparison, we can also calculate the transmission

time for the non-incremental delivery as follows:

Txnp = Ldown · tdown + Lcopy · tdown

where Lcopy is the number of SREC lines to be copied by a copy message. As for tdown and

tcopy, we found right values after a number of trials. We set these as 120 ms and 300 ms

respectively. Table 3.4 shows the parameters used for estimating the performance.

Parameter Description

tdown time to send a download message

tcopy time to send a copy message

Ldown number of SREC lines sent by download message

Lcopy number of SREC lines transferred by copy message

Ncopy number of copy messages

T transmission time of Fixed Block Comparison

Txnp transmission time of the non-incremental delivery

Table 3.4: Parameters for performance evaluation

Next we measured the transmission time by reading the system clock values. Ta-

ble 3.5 shows the estimation and measurement data.

In case 1, the difference between the two program images is small. Most SREC

20

Case 1 Case 2 Case 3 Case 4 Case 5

File size 48.9KB 50.1KB 50.1KB 49.7KB 49.6KB

Total SREC lines 1139 1167 1167 1156 1155

Ldown 19 911 1135 1124 1123

Lcopy 1120 256 32 32 32

Ncopy 70 16 2 2 2

Estimation

T 23280 ms 114120 ms 136800 ms 135480 ms 135360 ms

Txnp 136680 ms 138720 ms 140040 ms 138720 ms 138600 ms

Speed-up (Txnp/T) 5.87 1.22 1.02 1.02 1.02

Measurement

T 25094 ms 124403 ms 149044 ms 147149 ms 146848 ms

Txnp 149888 ms 152996 ms 152996 ms 150477 ms 150465 ms

Speed-up (Txnp/T) 5.97 1.23 1.03 1.02 1.02

Table 3.5: Transmission time for each case

lines (1120 out of 1139) are transferred by copy messages and the speed up (Txnp/T) is

about 5.9.

In case 2, where we added a few lines in the source code, we find that less than a

quarter of the SREC lines are transferred by copy messages (256 out of 1167) and the speed

up is 1.2.

In case 3, only 32 out of 1167 lines are transferred by copy messages and the

speed up is about 1.03. Even though XnpBlink and XnpCount share much in source code

level, they have little sharing in binary code level. The main reason is that XnpCount uses

the radio stack components while XnpBlink does not. The radio stack is one of the most

important modules in TinyOS and it takes a number of source code lines.

In case 4 and 5, where we commented out IntToLeds and IntToRfm components in

the configuration file XnpCount.nc, we find that only a small number of lines are transferred

by copy messages and the speed up is very small (1.02 for each case).

Fixed block comparison was not so effective for the incremental network program-

ming. It works well when the program structure doesn’t change (case 1). But, the level of

sharing was low when we added a few lines of code (case 2), which we think a more general

21

case of program modification.

We want to see why we have such a small level of binary code sharing. Does the

program code completely change after the source modification, or does the program code

still have much similarity in byte levels ? For this purpose, we compared the program code

in different levels: blocks (Fixed Block Comparison), SREC lines and bytes.

To compare program code in SREC lines, we used UNIX diff command. diff

takes two ASCII files and describes how one file can be transformed to the other. To

compare program code in byte level, we extracted the data bytes from an SREC file and

stored each data byte in a line of the temporary file. We used UNIX diff to find the

difference between the two byte list files.

Table 3.6 shows that case 2 and case 3 have much higher level of sharing in byte

level than in block level. For case 2, most of binary code was similar in byte level (98.3%)

while a small number of blocks were shared in block level (21.9 %). This implies that

modifying the source code shifts the binary program code, but the program code bytes are

still preserved. We can think of two ways to address this problem.

Case 1 Case 2 Case 3

Blocks 97.2% (= 70
72) 21.9% (= 16

73) 2.7% (= 2
73)

SREC lines 98.3% (= 1120
1139) 40.8% (= 476

1167) 12.0% (= 140
1167)

Bytes 100.0% (= 18185
18190) 98.3% (= 18320

18636) 90.5% (= 16866
18636)

Table 3.6: Level of code sharing in blocks, lines and bytes

One approach is to place the shared code at a fixed location in the binary code

with the help of the compiler. We can insert compiler directives and inline function calls.

Then, the compiler recognizes the network programming module and determines its location

in the topological order.

Another approach is to utilize the code sharing without modifying the code. As

Table 3.6 suggests, much of the binary code is shared in byte level. By comparing the two

22

binary images at a variable size boundary like Rsync [11] and LBFS [12], we can find more

chance of code sharing.

23

Chapter 4

Optimizing Difference Generation

Fixed Block Comparison, our first design choice for the incremental network pro-

gramming, was not effective in reducing the data transmission traffic. It worked well only

when the modified program image has the same structure has the previous program image.

When additional lines are inserted in the source code, the program image is shifted and

does not match the previous program image at the fixed sized block boundary.

In this section, we use the Rsync algorithm to generate the difference and rebuild

the program image. The Rsync algorithm was originally made for efficient binary data

update in a low bandwidth computer network. We expect the Rsync algorithm to find

more matching blocks than the fixed block comparison because it compares the program

image block at an arbitrary position.

4.1 Design

Difference Generation

The host program generates the difference using the Rsync algorithm as in Fig-

ure 4.1.

(1). The Rsync algorithm calculates a checksum pair (checksum, hash) for each fixed sized

24

block (e.g. B bytes) of the previous program image. And the checksum pair is inserted

into a lookup table.

(2). Rsync reads the current program image and calculates the checksum for the B byte

block at each byte. If it finds a matching checksum in the lookup table, Rsync

calculates the hash for the block and compares it with the corresponding entry in the

table. If the hash also matches, then the block is considered a matching block.

(3). Rsync moves to the next byte for comparison if the block doesn’t have a matching

checksum or a hash. A region of bytes that doesn’t have any matching blocks is tagged

as non-matching block and needs to be sent explicitly for rebuild.

Figure 4.1 illustrates how the Rsync algorithm captures a matching block. Suppose

there is a shift by a modification operation in the middle of the program image. Rsync forms

a B byte window and calculates the hash for it. If the modified bytes are different from any

blocks in the previous program image, then the hash of the modified bytes doesn’t match

any hash table entry with very high probability. Rsync moves the window one byte at a

time and calculates the checksum for any possible match. It doesn’t match until Rsync

starts to read unmodified blocks. At this moment, Rsync has found a matching block.

Current
Program

Image

Previous
Program

Image

(R0, H0)
(R1, H1)

(Checksum, Hash)

(R2, H2)

(R5, H5)
(R6, H6)

(R4, H4)

Hash Table

(R3, H3)

Insert hashLook up hash

Copy
Copy

Download

Copy
Copy

Copy

matching

nonmatching

Copy

Difference

…

…

…

…

…

…

…

…

Figure 4.1: Rsync difference generation

25

Program Code Storage and Rebuild

As with the case of fixed block comparison, we maintain two memory chunks in a

sensor node to build the program image from the previous program image and the difference.

The difference consists of a list of matching and non-matching blocks.

Previous
Program

Image

Current
Program

Image

Data Checksum Fill

0:1 2:3 4 5 6:7 8:15

16: 8+datalen-1 8+datalen Remaining

PID CID SrecType length Srecaddress Data

Data Checksum Fill

0:1 2:3 4 5 6:7 8:15

16: 8+datalen-1 8+datalen Remaining

PID CID SrecType length Srecaddress Data

Data Checksum Fill

0:1 2:3 4 5 6:7 8:15

16: 8+datalen-1 8+datalen Remaining

PID CID SrecType length Srecaddress Data

Data Checksum Fill

0:1 2:3 4 5 6:7 8:15

16: 8+datalen-1 8+datalen Remaining

PID CID SrecType length Srecaddress Data

Old CID

New CID

Old Offset

New Offset

Figure 4.2: Copying a matching block

The host program sends a CMD_COPY_BLOCK message for each matching block in

the difference. After hearing the message, the sensor node copies the block in the previous

image to the current image. The block size of a copy message is a multiple of SREC line and

the sensor node copies each SREC line iteratively. Since the block in the previous image

can be mapped to any location in the current image, the offset address field of the SREC

record needs be modified (Figure 4.2).

For each non-matching block in the difference, the host program sends one or

multiple download (CMD_DOWNLOADING) messages. When a non-matching block is bigger

than a single SREC record (16 bytes), the block is divided into multiple fragments and

each fragment is sent in a download message. The data bytes of a download message can be

26

Previous
Program

Image

Current
Program

Image

copy

download

copy

Copy

Download
Download

Copy

Difference
Message

download

Figure 4.3: Downloading a non-matching block

shorter than a full SREC record if the non-matching block is not a multiple of 16 bytes. The

host program does not fill the remaining bytes with the following data or copy messages.

This is to avoid extra flash memory accesses although the resulting program image can have

different layout with the original program image (Figure 4.3).

Unlike fixed block comparison, we use the base and the current program version

to generate the program code incrementally. If we rebuild the current program image by

comparing the last version and the current version, the host program and the sensor node

may have different code and this can lead to incorrect program build. Instead, we compare

the base and the current program version. This ensures that the sensor node reads the same

data bytes as the host program.

Operations

We modified the format of CMD_COPY_BLOCK to specify the starting byte address

of each copy block (Figure 4.4). When the Rsync algorithm generates the difference, the

starting byte address of each block may not be a multiple of the SREC record size. We need

to specify the starting byte address as well as the CID to correctly copy SREC records.

27

CMD_COPY_BLOCK (using Rsync)

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Unused

CMD_QUERY_COMPLETE

Copy SREC records from prev to current

Program ID of the current image

Starting address of the block in capsules

PID
Prev

CID
Prev

BLK
Size

Program ID of the previous image

Starting address of the block in capsules (prev)

Block size in capsules (16 bytes)

New
Offset

Old
Offset

The position in the current image in bytes

The position in the previous image in bytes

Offsets after the TOS header 0 1 2:3 4:5 6:7 15:288:9 11:1210 13:14

Figure 4.4: CMD COPY BLOCK packet format modified for the Rsync algorithm

4.2 Implementation

Difference Generation

We used Jarsync [13] for the Rsync algorithm implementation. The host pro-

gram calls the following methods to generate the difference: Rdiff.makeSignatures() and

Rdiff.makeDeltas(). makeSignatures() calculates the checksum pair for each block in

the image file and returns a list of checksum pairs. makeDeltas() compares the two image

files and returns the difference as a list of matching blocks and unmatched blocks. Since

these Jarsync methods assume a flat data file as input, the host program extracts only the

data bytes from the SREC program image file and stores them in a temporary file before it

calls the Jarsync module.

The difference returned by makeDeltas() needs postprocessing. The data bytes

of an unmatched block can be an arbitrary size, but a download message can contain only

up to 16 bytes. The host program divides an unmatched block into multiple blocks so that

the data bytes of each block can fit in an SREC record. List entries for matching blocks

are also postprocessed. Two matching blocks at the consecutive locations are merged into

a bigger block and this reduces the number of message transmissions.

28

Program Code Storage and Rebuid

The rebuilt program can be different from the original file due to the missing

packets. If the host program sends a query for the missing record (CMD_GET_CIDMISSING),

the sensor node scans the current program section of the external flash memory. Each

record contains program ID (PID) and the capsule ID (CID, sequence number) fields. The

PID should match the PID advertised at the start of the incremental network programming

(CMD_START_DOWNLOAD_INCR). The CID field should match the line number where the record

is written to. If either PID or CID does not match, then the sensor node considers this

a missing record and requests the retransmission of the SREC record. The host finds the

missing record and sends it back. Then, the sensor node can fill the hole.

When the sensor node requests the retransmission of a missing SREC record,

it specifies the missing record by CID field. Since the rebuilt program image can have

different layout from the original program file, just reading the specified record in the

original program file does not return the correct data. To address this issue, the host

program rebuilds the new program that has the same layout with the program image to

be built in a sensor node. And the host program reads SREC records of this image for

retransmission requests.

Code Complexity

To estimate the complexity of our implementation, we counted the source code

lines in XnpM.nc file. A CMD_DOWNLOADING message costs 136 lines and a CMD_COPY_BLOCK

message (for Rsync) costs 153 lines. The details are shown in Table B.5. These numbers

are comparable to those of other TinyOS modules. Sending and receiving radio packets are

handled in several modules and CC1000RadioIntM.nc is core module. A send operation

takes 112 lines and a receive operation takes 88 lines in this module. As another example,

we analyzed ADCM.nc module which handles the reading the data from an ADC channel. It

takes 35 lines to get a byte data with ADCM.nc. Table 4.1 summarizes this.

29

xnpUtil

readPrevSrecCode ()

readSrecCode ()

buildScript ()
convertBaseToFlat ()
convertNewToFlat ()
m_deltas =getDeltas()
buildScriptFromDelta ()
rebuildNewFromScript ()

xnpXmitCode

Run_delta()

For each block in the list
if (matching block)

send CMD_COPY_BLOCK message
else

send CMD_DOWNLOADING message

xnp

Load Previous F ile Command

Load Current File Command

Download Command

If two files are loaded?

User Input

Rdiff

makeSignatures ()

makeDeltas ()

Figure 4.5: Host program with Rsync implementation

Incremental Radio Stack ADC
Network Programming MAC Operation

Download Copy (Rsync) Send Receive Get and DataReady

136 153 112 88 35

Table 4.1: Complexity of incremental network programming

4.3 Results

To evaluate the performance of the incremental network programming with the

Rsync algorithm, we estimated and measured the transmission time for the three cases: (1)

changing a constant in XnpBlink, (2) adding a few lines in XnpCount and (3) transforming

XnpBlink to XnpCount. Table 4.2 shows the results.

In case 1, most SREC records (1116 lines out of 1120) were transferred and the

speed up over the non-incremental delivery was 6.25 (measurement). This is almost the

same as the speed up of Fixed Block Comparison (Case 1 in Figure 4.6).

In case 2, 954 lines out of 1154 lines were transferrred by copy messages and the

speed up over the non-incremental delivery was 2.44 (measurement). Whereas Fixed Block

Comparison has speed up of 1.2 (Case 2 in Figure 4.6). The improved speed up is caused

30

Case 1 Case 2 Case 3 Case 4 Case 5

File size 48.2KB 49.4KB 49.4KB 48.9KB 48.9 KB

Total SREC lines 1120 1154 1156 1140 1147

Ldown 4 200 888 326 871

Lcopy 1116 954 278 814 276

Ncopy 72 104 85 107 83

Estimation

T 22080 ms 55200 ms 132060 ms 71220 ms 129420 ms

Txnp 134400 ms 138480 ms 139920 ms 136800 ms 137640 ms

Speed-up (Txnp/T) 6.09 2.51 1.06 1.92 1.06

Measurement

T 23812 ms 61015 ms 142607 ms 77090 140314

Txnp 148823 ms 148889 ms 148889 ms 148172 148016

Speed-up (Txnp/T) 6.25 2.44 1.04 1.92 1.05

Table 4.2: Transmission time with the Rsync algorithm

by the efficient difference generation of the Rsync algorithm.

In case 3, the level of sharing was much smaller and the speed up was 1.04 (mea-

surement). We have some number of copy messages (85 messages), but they cover only a

small number of blocks and are not so helpful in reducing the programming time.

In case 4, 814 lines out of 1140 lines were transferrred by copy messages and the

speed up over the non-incremental delivery was 1.92 (measurement). In contrast, the speed

up with Fixed Block Comparison was almost negligible (1.02).

In case 5, 276 lines out of 1140 lines were transferrred by copy messages and the

speed up over the non-incremental delivery was quite small – 1.06 (measurement). Both

case 4 and case 5 commented a few lines in the configuration file. But, in case 5, commenting

out IntToRfm component made the radio stack not used and this changed the layout of the

program image file a lot.

In summary, using the Rsync algorithm achieves the speed up of 6 for changing

the constant and 2.4 for adding a few source code lines. These numbers are bigger than

those of Fixed Block Comparison, but using the Rsync algorithm is not still effective with

the major code change.

31

Speed up over non-incremental delivery

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Case 1 Case 2 Case 3 Case 4 Case5

S
p

ee
d

 u
p

Estimated Speed Up (Fixed)

Measured Speed Up (Fixed)

Estimated Speed Up (Rsync)

Measured Speed Up (Rsync)

Figure 4.6: Comparison of programming time

As for the results in Table 4.2, we have some comments.

First, we can ask why 4 SREC lines were transmitted as download messages in

case 1 when we changed only a constant in the source file. One of the reason is that the

network programming module includes a timestamp value that is given at each compile

time. This ensures that each program image is different each time we compile the program.

Another reason is that the previous SREC file is not aligned in the SREC record boundary

at the end of the file. When we convert the SREC file to a flat file for Rsync, the layout

changes.

Another question is that why we sent 72 copy messages even though we could

send fewer messages. In our design, the sensor node copies the program image blocks after

hearing a copy message. To bound the execution time, we made each copy message handle

up to 16 SREC lines (256 bytes).

32

Chapter 5

Optimizing Difference Delivery

Compared to Fixed Block Comparison, the Rsync algorithm achieves the shorter

programming time by efficiently finding the shared blocks between the two binary code files.

However, we can find something to improve:

First, the network programming module transfers only a limited number of SREC

records for each copy message. This is to bound the running time of a copy message so

that the network programming module finishes processing a copy request before it receives

another request.

Second, the network programming module interprets a copy request right after

it receives the request without saving the request. In case there is a missing command,

the network programming module has to check the rebuilt program image because it hasn’t

stored the script commands. Since the network programming module does not know whether

a missing hole is caused by a missing copy message or a number of download messages, it

sends a retransmission requests for each missing record in the current program image. This

will take more time than retransmitting only the missing command.

Thus, we propose extending the implementation of Chapter 4 as follows:

(1). The sensor node receives all the commands for the script.

33

(2). The sensor node checks any missing records for the script.

(3). The sensor node starts to decode script records in response to the script decode

message.

5.1 Design

Operations

Since the script commands are stored in the storage space of the sensor node,

we modified CMD_DOWNLOADING message to send script messages. This has an advantage

that we can reuse most of the code for handling normal data records to process the script

commands.

Figure 5.1 shows the packet format for the data download message. It is almost

the same as the format for the normal data record download message except the script

CID and new CID fields. Script CID field is the sequence number of the command within

the script and the new CID field is the location where the data record embedded in the

command will be copied for building the program image.

CMD_DOWNLOADING (data)

TinyOS Header
Command

ID
Sub
cmd PID Script

CID

0 1 2:3 4:5

CMD_DOWNLOADING

Send a script command to deposit data

Program ID
Script Capsule ID
SREC data

SREC
type

6
SREC
length

7
SREC
Offset

8:9

Data

10:10+datalen-1

check
sum

10+datalen

Unused
new
CID

11+datalen :
12+datalen

New Capsule ID

Offsets after the TOS header

Figure 5.1: Message format for CMD DOWNLOADING (data)

Figure 5.2 shows the packet format for a copy command. This command is also

stored in a similar way as a normal data record. A copy command has the SREC type field.

This is for the Motorola SREC type and only several values are allowed by the specification

(0,1,2,3,5,7,8 and 9). We extended the meaning of this field so that the value 10 represents

34

a copy record. This allows us to store a copy command in the same way as other data

records, but still interprets the copy command correctly.

Send a script command to copy data blocks

TinyOS Header
Command

ID
Sub
cmd PID Script

CID

CMD_DOWNLOADING
Program ID
Script Capsule ID

SREC
type

CID
new

CID
prev

New
Offset UnusedBLK

size
Old

Offset

Type number (10) for copy record

Starting address of the block in capsules (prev)
Block size in capsules (16 bytes)

Starting address of the block in capsules (new)

The position in the current image in bytes

The position in the previous image in bytes

Offsets after the TOS header 0 1 2:3 7:84:5 6 9:10 11:12 13:14 15:16 17:28
CMD_DOWNLOADING (copy)

Figure 5.2: Message format for CMD DOWNLOADING (copy)

Figure 5.3 shows the packet format for the decode command. Decode message

makes the network programming module start decoding downloaded script commands.

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data

CMD_DECODE_SCRIPT

Replying Node ID

Capsule ID
Program ID

CMD_DECODE_SCRIPT Starts to decode the received script records

Offsets after the TOS header 0 1 2:3 6:284:5

Figure 5.3: Message format for CMD DECODE SCRIPT

Storage Organization and Program Rebuild

As the storage space for the script commands, we need to choose among RAM,

internal flash memory and external flash memory. RAM would be better than the others

for its fast access time. However, the size of a script can be as large as a list of download

messages in worst case. Since the largest program size is 128 KB, it may not fit into RAM

35

(4 KB) or the internal flash memory (4 KB) when the program size is big. Thus, the script

should be stored in the external flash memory.

We divided the external flash memory into three sections: the previous program

image, the current program image and the script sections.

At first, the host program sends the script as CMD_DOWNLOADING messages. The

sensor node stores these messages in the script section if it is in the incremental network

programming state. This is shown in Figure ??.

Previous
Program

Image

Current
Program

Image

CMD_DOWNLOADING
Copy

Download
Download

Copy

Script
Commands

Figure 5.4: Receiving script commands

When the host program queries any missing script commands, the sensor node

scans the script section. When the difference between the two program versions is small,

the traversal of the script section can finish quickly. If the sensor node finds any missing

record, then it requests the retransmission of the record. Then, the host program sends the

record again.

After receiving the decode command from the host program, the sensor node starts

rebuilding the program code. This is shown in Figure 5.5.

A download command is copied from the script section to the current program

image section after the CID field is modified to the new CID value. As for a copy command,

36

Previous
Program

Image

Current
Program

Image

download

copy

Copy
Download
Download

Copy

Script
Commands

download

CMD_DECODE_SCRIPT

Figure 5.5: Decoding script commands

the sensor node starts copying SREC records from the previous program image to the current

program image. An SREC record from the previous section is copied to the current program

section after the CID and the byte offset fields are modified for the new values.

5.2 Results

Since a sensor node does not rebuild the program image until it receives all the

script commands, we modified the metrics for the evaluation. We measured the transmission

time and the decode time for the three cases.

The host program saves the time stamp value when it sends a decode command

and gets the next time stamp value when it receives the reply from the sensor node. The

decode time is calculated as the difference of the two time stamp values. Table 5.1 shows

the results.

For case 1, only 7 script messages were transmitted and this made the transmission

time very small. The sum of transmission time and the decode time is 16015 ms while the

non-incremental delivery took 154043 ms. This gives the speed up of 9.10

For case 2, more script lines were transmitted (337 script messages for the 1167

37

Case 1 Case 2 Case 3 Case 4 Case 5

File size 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB

Total SREC lines 1139 1167 1167 1156 1156

Number of commands 7 337 996 419 964

Measurement

T 922 ms 45843 ms 130653 ms 54544 125577

Tdecode 16015 ms 16687 ms 16874 ms 16765 16796

Txnp 154043 ms 158481 ms 158481 ms 150654 150525

Speed-up (Txnp/T) 9.10 2.53 1.07 2.11 1.06

Table 5.1: Transmission time with the Rsync algorithm and script decode

line program code) and the speed up over the non-incremental delivery is 2.53.

For case 3, we sent even larger number of script messages (996 messages for 1167

line program code) and the speed up was 1.07.

When we modified the configuration file, we had the similar results with the Chap-

ter 4. For case 4, 419 script messages for the 1156 line program code and the speed up over

the non-incremental delivery is 2.11. For case 5,most of the SREC records were transmitted

as download script commands (964 out of 1156) and the speed up was 1.06.

Figure 5.6 and Table 5.2 show the results of the three incremental network pro-

gramming implementations: Fixed Block Comparison, Rsync and Rsync with split decode.

We can find that splitting the script transmission and the program rebuild improves the

overall programming time. When the source code is modified at minimum, the implementa-

tion with Rsync and split decode saved programming time by sending fewer script messages

even though it has to decode the script messages. When a small number of source code

lines were added, the programming time was a little better than the implementation that

just uses the Rsync algorithm. For the major program change, it didn’t achieve the speed

up, but it was still as good as the non-incremental delivery.

We can comment on case 3. Even though we used the Rsync algorithm and split

decode, the speed up over the non-incremental delivery was negligible. This is because the

difference between the two program images cannot be described with a small number of

38

insert, copy and skip operations.

Speed Up over Non-incremental Delivery

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Case 1 Case 2 Case 3 Case 4 Case5

S
p

e
ed

u
p

Fixed Block Comparison

Rsync

Rsync + decode

Figure 5.6: Comparison of programming time

39

Fixed Block Comparison

Case 1 Case 2 Case 3 Case 4 Case 5

File size 48.9KB 50.1KB 50.1KB 49.7KB 49.6KB

Total SREC lines 1139 1167 1167 1156 1155

Ldown 19 911 1135 1124 1123

Lcopy 1120 256 32 32 32

Ncopy 70 16 2 2 2

T 23280 ms 114120 ms 136800 ms 135480 ms 135360 ms

Txnp 136680 ms 138720 ms 140040 ms 138720 ms 138600 ms

Speed-up (Txnp/T) 5.87 1.22 1.02 1.02 1.02

Rsync

Case 1 Case 2 Case 3 Case 4 Case 5

File size 48.2KB 49.4KB 49.4KB 48.9KB 48.9 KB

Total SREC lines 1120 1154 1156 1140 1147

Ldown 4 200 888 326 871

Lcopy 1116 954 278 814 276

Ncopy 72 104 85 107 83

T 22080 ms 55200 ms 132060 ms 71220 ms 129420 ms

Txnp 134400 ms 138480 ms 139920 ms 136800 ms 137640 ms

Speed-up (Txnp/T) 6.09 2.51 1.06 1.92 1.06

Rsync with split decode

Case 1 Case 2 Case 3 Case 4 Case 5

File size 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB

Total SREC lines 1139 1167 1167 1156 1156

Number of commands 7 337 996 419 964

T 922 ms 45843 ms 130653 ms 54544 125577

Tdecode 16015 ms 16687 ms 16874 ms 16765 16796

Txnp 154043 ms 158481 ms 158481 ms 150654 150525

Speed-up (Txnp/T) 9.10 2.53 1.07 2.11 1.06

Table 5.2: Comparison of programming time

40

Chapter 6

Related Work

6.1 Wireless Sensor Network Programming

XNP [1], [2] is the network programming implementation for TinyOS that was

introduced with 1.1 release version. XNP supports basic network programming - broad-

casting the program code to multiple nodes in a single hop. It doesn’t consider a large

sensor network and incremental update.

MOAP [4] is a multihop network programming mechanism developed by Stathopou-

los et al. Main contributions of MOAP is its code dissemination and buffer management.

One of the challenges of multihop network programming is propagating program code over

multiple sensor nodes without saturating the network. They used Ripple dissemination

protocol to regulate the network traffic. Ripple protocol disseminates the program code

packets to a selective number of nodes without flooding the network with packets. For

buffer management, they used sliding window scheme. Sliding window scheme maintains a

window of program code and allows lost packets within the window to be retransmitted.

Sliding window takes small footprint so that packets can be processed efficiently in on-chip

RAM. MOAP was tested in EmStar simulator and MICA2 motes.

Deluge [5] is a multihop network programming protocol developed by Hui and

41

Tolle. Deluge disseminates program code in an epidemic fashion to propagate program

code while regulating the excess traffic. The epidemic algorithm works like this: Some

nodes advertise the version of code they have. After hearing the advertisement, the nodes

missing any of pages make requests for the missing pages. Then, sender nodes transmit

the requested pages. In order to increase the transmission rate, Deluge used optimization

techniques like adjusting packet transmit rate and spatial multiplexing. Unlike MOAP,

Deluge uses a fixed sized page as a unit of buffer management and retransmission. Deluge

was tested with TOSSIM simulator [15] and MICA2 motes.

Reijers et al [3] developed algorithms for updating binary image incrementally. In

their algorithm, the host program generates “edit script” to describe the difference between

the two program code and the sensor nodes build the program image after interpreting the

edit script. The edit script consists of not only simple operations like copy and insert but

also more complex operations (address repair and address patch) that modify the program

code at the instruction level. This helps minimizing the edit script size. As an evaluation,

this paper consideres only the reduced script size on the host side. Since operations like

address repair and address patch incur memory intensive EEPROM scanning, the experi-

ments should have demonstrated the overall programming time in a sensor simulator or in

a real sensor node.

Kapur et al [6], [7] implemented an incremental network programming based on

the algorithm of Reijers et al [3]. Their implementation is composed of two parts: the diff

encoder on the host side and the diff decoder on the sensor node side. The diff encoder

generates the difference for the two versions of code at instruction level using copy, insert

and repair operations. The difference script is delivered to the sensor node using MOAP

[4] which was developed for reliable code dissemination. Then, the sensor node rebuilds the

program code after decoding the downloaded script.

These two works on the incremental network programming minimized the script

transmission at the cost of program modification at the instruction level. In contrast, the

42

implementation in this thesis put less computational complexity on the sensor nodes. The

difference generation, which is costly, is handled by the host program. The sensor nodes

just write the data blocks based on the script commands and this can be applied to less

powerful sensor nodes.

While the examples above disseminated the program code in native binary code,

Maté [8] distributes the program code in virtual machine instructions which are packed

in radio packets. While XNP transmits the binary code that contains both the network

programming module and the application, Maté only transmits the application code. This

allows Maté to distribute the code more quickly. One drawback of Maté is that it runs the

program code only in virtual machine instructions and a regular sensor application needs

to be converted to virtual machine instructions before execution.

Trickle [9] is an improvement over Maté. In Maté, each sensor node floods the

network with packets to distribute the code and this can lead to network congestion and

the algorithm can be used for a large sensor network. Trickle addresses this problem by

using “polite gossip” policy. Each sensor node periodically broadcasts a code summary to

its local neighbors and it stays quiet if it has recently heard a summary identical to its

summary. The sensor node broadcast an update only when it hears from an older summary

than its own.

6.2 Remote Code Update outside Wireless Sensor Commu-

nity

Outside the sensor network community, there have been efforts to update program

code incrementally. Emmerich et al [10] demonstrated updating XML code in an incremen-

tal fashion. Specifying the update in XML is easier than in binary image because XML

is a structured markup language and it allows specifying the update without changing the

structure of the rest of the code. In contrast, inserting or replacing code blocks in binary

43

code affects the rest of the code.

The cases of synchronizing general form of unstructured files can be found with

Rsync and LBFS. Rsync [11] is a mechanism to efficiently synchronize two files connected

over a low-bandwidth, bidirectional link. To find matching blocks between the two files, we

can divide the first file into fixed sized blocks of B bytes and calculate the hash for each

block. Then, we scan the second file and form a B byte window at each byte. After that we

compare the hash for the window with hash values of all the blocks in the first file. This does

not work that well. If the hash is expensive to calculate, then finding the matching blocks

will take long time. If the hash can be computed cheaply but with false match, we do not

find the correct block. The key idea of Rsync is to use two levels of hashes, rolling checksum

(fast hash) and hash (strong hash) to make the computation overhead manageable while

finding the matching blocks with high probability. Rsync calculates the rolling checksum

of the B byte window of the second file at each byte and computes the hash only when the

rolling checksums of the two blocks match. Since the hash is computed only for the possible

matches, the cost of calculating hash is managable and we can filter out the false match.

LBFS [12], another mechanism to synchronize two files in a low-bandwidth, bidi-

rectional link, takes a slightly different approach. Rather than divides a file into fixed

blocks, LBFS divides each file into a number of variable sized blocks, computes the hash

over each block. To find matching blocks between the two files, LBFS just compares these

hashes (SHA-1 hash). The key idea of LBFS is in dividing a file into variable sized blocks.

LBFS scans a file and forms 48-byte window at each byte and calculates 13-bit fingerprint.

If the fingerprint matches a specific pattern, then that position becomes the breakpoint of

the block. This scheme has a property that modifying a block in a file does not change

the hash values of the other blocks. When we are going to send a new version, we can

just compare the hash values of the each variable blocks and sends only the non-matching

blocks.

The patent filed by Metricom Inc. [14] describes a mechanism that disseminates

44

the program code over the multihop network in an efficient way. When a node V has a new

version of code, it tells its neighbors that a new version of code is available. On hearing the

advertisement from V , one of V ’s neighbor, P , checks whether it has the newly advertised

version. If it doesn’t have the version, P requests V transmit the version of code. After

that, V starts sending program code and finishes when it doesn’t hear any requests. With

this scheme, a sensor node can distribute the program code without causing much network

traffic.

45

Chapter 7

Conclusion

The network programming is a way of programming wireless sensor nodes by send-

ing the program code over the radio packets. By sending program code packets to multiple

sensor nodes with a single transfer, the network programming saves the programming ef-

forts for a large sensor network. The network programming implementation in the current

TinyOS release provides the basic capability of the network programming – delivering the

program code to the sensor nodes remotely. However, the network programming implemen-

tation is not optimized when part of the program code has changed. It transmits all the

code bytes even though the new version of program code is different only in small amount.

We extended the network programming implementation so that it reduces the

programming time by transmitting the incremental update rather than the whole program

code. The host program generates the difference of the two program images using the Rsync

algorithm and transmits the difference to the sensor nodes. Then, the sensor nodes decode

the difference script and build the program image based on the previous program version

and the difference script. We tested our incremental network programming implementation

with some test applications. We have speed up of 9.1 for changing a constant and 2.1 to

2.5 for chaning a few lines of code in the source code.

For future work, we plan to incorporate multihop delivery like Deluge [5] and

46

MOAP [4] into our incremental network programming implementation. This will allow

deploying incremental network programming over a large network. Our implementation

reliably delivers the difference script for a single hop case by extending the message trans-

mission of XNP. To support multihop incremental network programming, we can dissem-

inate the difference script and the decode command using the available multihop delivery

implementations.

We also plan to apply optimization techniques for TinyOS nesC compiler. We be-

lieve this will capture the source level sharing which is not handled by the Rsync algorithm.

The source for this thesis is publicly available in the following web site:

http://www.cs.berkeley.edu/~jaein/master_thesis

47

Bibliography

[1] Jaein Jeong, Sukun Kim and Alan Broad, “Network Reprogramming,” TinyOS docu-

ment, http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/NetworkReprogramming.pdf

[2] Crossbow Technology, “Mote In Network Programming User Reference,” TinyOS doc-

ument, http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Xnp.pdf

[3] Niels Reijers and Koen Loangendoen, “Efficient Code Distribution in Wireless Sensor

Networks,” WSNA ’03

[4] Thanos Stathopoulos, John Heidemann and Deborah Estrin, “A Remote Code Up-

date Mechanism for Wireless Sensor Networks,” CENS Technical Report # 30,

http://lecs.cs.ucla.edu/~thanos/moap-TR.pdf

[5] Adam Chlipala, Jonathan Hui and Gilman Tolle, “Deluge: Data Dissemination in

Multi-Hop Sensor Networks,” UC Berkeley CS294-1 Project Report, December 2003,

http://www.cs.berkeley.edu/~jwhui/research/projects/deluge/deluge poster.ppt

[6] Rahul Kapur, Tom Yeh and Ujjwal Lahoti, “Differential Wireless Reprogramming of

Sensor Networks,” UCLA CS213 Project Report, December 2003

[7] Tom Yeh, Haru Yamamoto and Thanos Stathopolous, “Over-the-air Reprogram-

ming of Wireless Sensor Nodes,” UCLA EE202A Project Report, December 2003,

http://www.cs.ucla.edu/~tomyeh/ee202a/project/EE202a final writeup.doc

48

[8] Philip Levis and David Culler, “Maté: A Tiny Virtual Machine for Sensor Networks,”

ASPLOS Oct. 2002

[9] Philip Levis, Neil Patel, Scott Shenker, and David Culler “Trickle: A Self-Regulating

Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks,” In

Proceedings of the First USENIX/ACM Symposium on Networked Systems Design and

Implementation (NSDI 2004).

[10] Wolfgang Emmerich, Cecilia Mascolo and Anthony Finkelstein, “Implementing Incre-

mental Code Migration with XML,” Proceedings of the 22nd International Conference

on Software Engineering, 2000

[11] Andrew Tridgell, “Efficient Algorithms for Sorting and Synchronization,” PhD thesis,

Austrailian National University, 1999

[12] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth network file system,”

Proc. 18th SOSP, pages 174–187, Oct. 2001

[13] Casey Marshall, “Jarsync: a Java implementation of the rsync algorithm,”

http://jarsync.sourceforge.net/

[14] George H. Flammer, III, “Method for Distributing Program Code to Intelligent Nodes

in a Wireless Mesh Data Communication Network,” US Patent No. 5,903,566, May

11, 1999

[15] Phil Levis et al, “TOSSIM: A Simulator for TinyOS Networks,”

http://today.cs.berkeley.edu/tos/tinyos-1.x/doc/nido.pdf

[16] Atmel, “ATmega 128 Microcontroller Reference,”

http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf

49

Appendix A

Message Format

CMD_REQ_CIDMISSING

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Data

0:4 5 6 7:8 11:end9:10

CMD_QUERY_COMPLETE

Request the retransmission for a missing capsule

Replying Node ID

Program ID

CMD_GET_CIDMISSING

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data
0:4 5 6 7:8 11:end9:10

CMD_QUERY_COMPLETE

Retransmission message from the host

Replying Node ID

Program ID

Capsule ID

Figure A.1: Network programming message format

50

CMD_START_DOWNLOAD

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Data

0:4 5 6 7:8 11:end9:10

CMD_START_DOWNLOAD

Start network programming in normal mode

Program ID

CMD_DOWNLOAD_COMPLETE

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Data

0:4 5 6 7:8 11:end9:10

CMD_DOWNLOAD_COMPLETE

End of SREC record download

CMD_DOWNLOADING

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data
0:4 5 6 7:8 11:end9:10

CMD_DOWNLOADING

Deposit an SREC record

Program ID

Capsule ID

SREC data

CMD_DOWNLOAD_STATUS

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Data

0:4 5 6 7:8 11:end9:10

CMD_DOWNLOAD_STATUS

Request / response with download status

Program ID

Capsule ID

Program ID

CMD_ISP_EXEC

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data
0:4 5 6 7:8 11:end9:10

CMD_DOWNLOADING

Execute the boot loader

Program ID

CMD_QUERY_COMPLETE

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data
0:4 5 6 7:8 11:end9:10

CMD_QUERY_COMPLETE

Signals that the node has received all the capsules

Replying Node ID

Capsule ID

Program ID

Figure A.2: Network programming message format

51

CMD_START_DOWNLOAD_INCR

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Unused

0:4 5 6 7:8 13:end9:10

CMD_QUERY_COMPLETE

Start network programming incrementally

Capsule ID

Program ID

CMD_COPY_BLOCK (Fixed Block Comparison)

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Unused

0:4 5 6 7:8 16:end9:10

CMD_QUERY_COMPLETE

Copy SREC records from prev to current

Program ID of the current image

Starting address of the block in capsules

11:12
Prev
PID

Prev Program ID

PID
Prev

11:12
CID
Prev

13:14
BLK
Size

15

Program ID of the previous image

Starting address of the block in capsules (prev)

Block size in capsules (16 bytes)

CMD_COPY_BLOCK (using Rsync)

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID Unused

0:4 5 6 7:8 20:end9:10

CMD_QUERY_COMPLETE

Copy SREC records from prev to current

Program ID of the current image

Starting address of the block in capsules

PID
Prev

11:12
CID
Prev

13:14
BLK
Size

15

Program ID of the previous image

Starting address of the block in capsules (prev)

Block size in capsules (16 bytes)

New
Offset

16:17
Old

Offset

18:19

The position in the current image in bytes

The position in the previous image in bytes

Figure A.3: Incremental network programming message format (Fixed Block Comparison
and Rsync)

52

CMD_DOWNLOADING (data)

TinyOS Header
Command

ID
Sub
cmd PID Script

CID

0 1 2:3 4:5

CMD_DOWNLOADING

Send a script command to deposit data

Program ID
Script Capsule ID
SREC data

SREC
type

6
SREC
length

7
SREC
Offset

8:9

Data

10:10+datalen-1

check
sum

10+datalen

Unused
new
CID

11+datalen :
12+datalen

New Capsule ID

Offsets after the TOS header

Send a script command to copy data blocks

TinyOS Header
Command

ID
Sub
cmd PID Script

CID

CMD_DOWNLOADING
Program ID
Script Capsule ID

SREC
type

CID
new

CID
prev

New
Offset UnusedBLK

size
Old

Offset

Type number (10) for copy record

Starting address of the block in capsules (prev)
Block size in capsules (16 bytes)

Starting address of the block in capsules (new)

The position in the current image in bytes

The position in the previous image in bytes

Offsets after the TOS header 0 1 2:3 7:84:5 6 9:10 11:12 13:14 15:16 17:28
CMD_DOWNLOADING (copy)

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data

CMD_DECODE_SCRIPT

Replying Node ID

Capsule ID
Program ID

CMD_DECODE_SCRIPT Starts to decode the received script records

Offsets after the TOS header 0 1 2:3 6:284:5

Figure A.4: Incremental network programming message format (Rsync with decode)

53

CMD_GET_PREV_LINE

TinyOS Header
Command

ID
Sub
cmd PID

Capsule
ID

Data

0:4 5 6 7:8 11:end9:10

CMD_GET_CURRENT_LINE
or CMD_GET_PREV_LINE

Read the prev SREC record.

Replying Node ID

Capsule ID

Program ID

CMD_GET_CURRENT_LINE Read the current SREC record.

CMD_REPLY_LINE

TinyOS Header
Command

ID
Sub
cmd PID Capsule

ID
Data

0:4 5 6 7:8 11:end9:10

CMD_REPLY_LINE

Reply to SREC record request

Program ID

Capsule ID

SREC data

Figure A.5: Network programming message format (debugging messages)

54

Appendix B

Message Processing

Message Command Next State Action
CMD_START_DOWNLOAD SYS_DL_START post NPX_STATEMACHINE()

CMD_DOWNLOADING SYS_DL_SRECWRITE post NPX_STATEMACHINE()

CMD_DOWNLOAD_COMPLETE SYS_DL_END post NPX_STATEMACHINE()

CMD_ISP_EXEC SYS_ISP_REQ post NPX_STATEMACHINE()

CMD_GET_CIDMISSING SYS_REQ_CIDMISSING post NPX_STATEMACHINE()

CMD_START_DOWNLOAD_INCR SYS_DL_START_INCR post NPX_STATEMACHINE()

CMD_COPY_BLOCK SYS_COPY_BLOCK_PREP post NPX_STATEMACHINE()

CMD_GET_CURRENT_LINE SYS_GET_CURRENT_LINE_PREP post NPX_STATEMACHINE()

CMD_GET_PREV_LINE SYS_GET_PREV_LINE_PREP post NPX_STATEMACHINE()

Table B.1: Receiving the incoming message

Start Download

Current State Next State Action
SYS_DL_START fNPXStartDownload()

signal Xnp.NPX_DOWNLOAD_REQ()
call from main application SYS_DL_START1 post NPX_STATE_MACHINE()

Xnp.NPX_DOWNLOAD_ACK()

SYS_DL_START1 SYS_DL_START2 call EEPROMWrite.endWrite()
post NPX_STATEMACHINE()

SYS_DL_START2 SYS_ACK post NPX_STATEMACHINE()

Download End

Current State Next State Action
SYS_DL_END SYS_DL_END_SIGNAL call EEPROMWrite.endWrite()

post NPX_STATEMACHINE()

SYS_DL_END_SIGNAL SYS_ACK signal Xnp.NPX_DOWNLOAD_DONE()
post NPX_STATEMACHINE()

Table B.2: NPX STATEMACHINE() state transition

55

Download

Current State Next State Action
SYS_DL_SRECWRITE SYS_EEFLASH_WRITEPREP post NPX_STATEMACHINE()

or SYS_ACK

SYS_EEFLASH_WRITEPREP SYS_EEFLASH_WRITE post NPX_STATEMACHINE()

SYS_EEFLASH_WRITE SYS_EEFLASH_WRITEDONE post NPX_STATEMACHINE()

SYS_EEFLASH_WRITEDONE SYS_ACK call EEPROMWrite.endWrite()
post NPX_STATEMACHINE()

Idle

Current State Next State Action
SYS_ACK SYS_IDLE post NPX_STATEMACHINE()

SYS_IDLE SYS_IDLE post NPX_STATEMACHINE()

Retransmission

Current State Next State Action
SYS_REQ_CIDMISSING SYS_GET_CIDMISSING call EEPROMWrite.endWrite()

post NPX_STATEMACHINE()

SYS_GET_CIDMISSING SYS_GETNEXTCID post NPX_STATEMACHINE()

SYS_GETNEXTCID SYS_GETNEXTCID post NPX_STATEMACHINE()

or SYS_GETDONE

SYS_GETDONE SYS_IDLE post NPX_STATEMACHINE()

Reprogram

Current State Next State Action
SYS_ISP_REQ SYS_ISP_REQ1 post NPX_STATEMACHINE()

SYS_ISP_REQ1 SYS_ACK post NPX_ISP()

SYS_DL_START_INCR fNPXStartDownloadIncr()

signal Xnp.NPX_DOWNLOAD_REQ()

Table B.3: NPX STATEMACHINE() state transition (cont.)

Start Download

Current State Next State Action
SYS_DL_START_INCR fNPXStartDownloadIncr()

signal Xnp.NPX_DOWNLOAD_REQ()
Copy Command

Current State Next State Action
SYS_COPY_BLOCK_PREP SYS_COPY_BLOCK_READ call EEPROMWrite.endWrite()

post NPX_STATEMACHINE()

SYS_COPY_BLOCK_READ SYS_EEFLASH_COPYWRITE call EEPROMRead.read()
fNPXCopyBlk()

post NPX_STATEMACHINE()

SYS_EEFLASH_COPYWRITE SYS_EEFLASH_COPYWRITEDONE post NPX_wEE_LineWrite()

post NPX_STATEMACHINE()

SYS_EEFLASH_COPYWRITEDONE SYS_COPY_BLOCK_PREP post NPX_STATEMACHINE()

or SYS_ACK

Debugging Commands

Current State Next State Action
SYS_GET_PREV_LINE_PREP SYS_ACK call EEPROMRead.read()

fNPXGetLine()

post NPX_STATEMACHINE()

SYS_GET_CURRENT_LINE_PREP SYS_ACK call EEPROMRead.read()
fNPXGetLine()

post NPX_STATEMACHINE()

Table B.4: NPX STATEMACHINE() state transition (added for incremental network
programming)

56

CMD DOWNLOADING

Step Source Lines Description
CMD_DOWNLOADING 29
SYS_DL_SRECWRITE 41
SYS_EEFLASH_WRITEPREP 22
SYS_EEFLASH_WRITE 31
SYS_EEFLASH_WRITEDONE 13
Total 136
CMD COPY BLOCK (Fixed Block Comparison)
Step Source Lines Description
CMD_COPY_BLOCK 46
SYS_COPY_BLOCK_PREP 16 Repeated for each SREC line
SYS_COPY_BLOCK_READ 40 Repeated for each SREC line
SYS_EEFLASH_COPYWRITE 29 Repeated for each SREC line
SYS_EEFLASH_COPYWRITEDONE 22 Repeated for each SREC line
Total 153
CMD COPY BLOCK (Rsync)
Step Source Lines Description
CMD_COPY_BLOCK 46
SYS_COPY_BLOCK_PREP 16 Repeated for each SREC line
SYS_COPY_BLOCK_READ 44 Repeated for each SREC line
SYS_EEFLASH_COPYWRITE 29 Repeated for each SREC line
SYS_EEFLASH_COPYWRITEDONE 22 Repeated for each SREC line
Total 157

Table B.5: Cost of message handling

57

Appendix C

Sample Program Source Code

XnpBlink

///

// XnpBlink.nc

///

configuration XnpBlink {

}

implementation {

components Main, XnpBlinkM, SingleTimer, LedsC, XnpC;

Main.StdControl -> SingleTimer.StdControl;

Main.StdControl -> XnpBlinkM.StdControl;

XnpBlinkM.Timer -> SingleTimer.Timer;

XnpBlinkM.Leds -> LedsC;

XnpBlinkM.Xnp -> XnpC;

}

///

// XnpBlinkM.nc

///

module XnpBlinkM {

provides {

interface StdControl;

}

uses {

interface Timer;

interface Leds;

interface Xnp;

}

}

implementation {

command result_t StdControl.init() {

call Leds.init();

call Xnp.NPX_SET_IDS();

return SUCCESS;

}

command result_t StdControl.start() {

58

// Start a repeating timer that fires every 1000ms

return call Timer.start(TIMER_REPEAT, 1000);

}

command result_t StdControl.stop() {

return call Timer.stop();

}

event result_t Timer.fired()

{

call Leds.redToggle();

return SUCCESS;

}

event result_t Xnp.NPX_DOWNLOAD_REQ(uint16_t wProgramID,

uint16_t wEEStartP, uint16_t wEENofP){

// Acknowledge NPX

call Xnp.NPX_DOWNLOAD_ACK(SUCCESS);

call StdControl.stop();

return SUCCESS;

}

event result_t Xnp.NPX_DOWNLOAD_DONE(uint16_t wProgramID,

uint8_t bRet,uint16_t wEENofP){

if (bRet == TRUE)

call StdControl.start();

return SUCCESS;

}

}

XnpCount

//

// XnpCount.nc

//

configuration XnpCount {

}

implementation {

components Main, Counter, IntToLeds, IntToRfm, TimerC, XnpCountM,

XnpC;

Main.StdControl -> Counter.StdControl;

Main.StdControl -> IntToLeds.StdControl;

Main.StdControl -> IntToRfm.StdControl;

Main.StdControl -> TimerC.StdControl;

Counter.Timer -> TimerC.Timer[unique("Timer")];

IntToLeds <- Counter.IntOutput;

Counter.IntOutput -> IntToRfm;

Main.StdControl -> XnpCountM.StdControl;

XnpCountM.Xnp -> XnpC;

XnpCountM.CntControl -> Counter.StdControl;

}

//

// XnpCountM.nc

//

module XnpCountM {

provides {

interface StdControl;

59

}

uses {

interface Xnp;

interface StdControl as CntControl;

}

}

implementation {

uint16_t dest;

uint8_t cAck;

command result_t StdControl.init() {

call Xnp.NPX_SET_IDS(); //set mote_id and group_id

return SUCCESS;

}

command result_t StdControl.start() {

return SUCCESS;

}

command result_t StdControl.stop() {

return SUCCESS;

}

event result_t Xnp.NPX_DOWNLOAD_REQ(uint16_t wProgramID,

uint16_t wEEStartP, uint16_t wEENofP){

//Acknowledge NPX

call Xnp.NPX_DOWNLOAD_ACK(SUCCESS);

call CntControl.stop();

return SUCCESS;

}

int dummy(int n)

{

int i;

int sum = 0;

for (i = 0; i < n; i++) {

sum += i;

}

return sum;

}

event result_t Xnp.NPX_DOWNLOAD_DONE(uint16_t wProgramID,

uint8_t bRet,uint16_t wEENofP){

// uint32_t ts;

// call TS.get_timestamp(&ts);

int temp;

if (bRet == TRUE)

call CntControl.start();

else

call CntControl.stop();

temp = dummy(10);

return SUCCESS;

}

}

