
What Motivates Programmers to Comment?

David Patrick Marin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2005-18

http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-18.html

November 23, 2005

Copyright © 2005, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

What Motivates Programmers to Comment?

David Marin
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720-1776 USA

dmarin@cs.berkeley.edu

November 23, 2005

Contents

1 Introduction 1

2 A Statistical Study of Commenting 2
2.1 Data Collection . 4
2.2 Data Sources . 4
2.3 Finding Correlations . 6
2.4 Setting the Ground Rules . 8
2.5 Correlations by Size of Change 9
2.6 Correlations Based on File Size 11
2.7 Correlations Based on Age . 12
2.8 Correlations Having to do with Collaboration 13
2.9 Correlations Based on State of Previous Version 14
2.10 Conclusions . 16

2.10.1 Caveats: Representativeness 16
2.10.2 Caveats: Methodology . 17
2.10.3 “Natural Laws” of Commenting 17

3 Testing the Implicit Standards Hypothesis 19
3.1 Experiment Protocol . 19
3.2 The Source Code: Counting Comments 21
3.3 The Source Code: Solution Structure 21
3.4 The Source Code: Style and Placement of Comments 22
3.5 The Questionnaire: Quantitative Questions 24
3.6 The Questionnaire: Qualitative Results 26

3.6.1 Quantity of Comments . 26
3.6.2 Style and Placement of Comments 28

3.7 Videos, and the Copying Problem 29
3.8 Conclusions . 32

3.8.1 Caveats: Representativeness 32
3.8.2 Making Use of My Results 34

4 Related Work 35
4.1 Comments and Readability . 35
4.2 Affecting Commenting Behavior 35

1

4.3 Tools to Help Programmers Comment 36
4.4 Mining Software Repositories . 37

5 Future Work 38
5.1 Improving on the Statistical Study 38
5.2 Improving on the Experiment . 39
5.3 Other Future Work . 40

A The Comment Counter 44

B Experimental Materials 46
B.1 Recruitment Message . 46
B.2 Instructions . 47
B.3 Source Code . 48

B.3.1 Group C (commented) . 48
B.3.2 Group UC (uncommented) 54

B.4 Questionnaire . 60

2

List of Tables

2.1 Is creation equivalent to modification? 8
2.2 Do older files tend to be larger? 9
2.3 Do programmers comment more when they make large changes,

or small ones? . 10
2.4 Is there a threshold for size of change that’s most significant for

predicting rate of commenting? 10
2.5 Do bug fixes tend to be less thoroughly commented? (versions

with a unique commit message only) 11
2.6 Do programmers tend to comment larger files more, or less? . . . 11
2.7 Do larger files tend to be more or less thoroughly commented? . 12
2.8 Do programmers tend to comment older files more, or less? . . . 12
2.9 Do older files tend to be more or less thoroughly commented? . . 13
2.10 Will programmers comment a file more or less often if it has many

previous authors? . 13
2.11 Do files with more authors tend to more or less thoroughly com-

mented? . 14
2.12 Do programmers tend to comment more or less when modifying

a file that is already thoroughly commented? 14
2.13 Do programmers tend to comment more or less when modifying

a file whose original version thoroughly commented? 15
2.14 Do thoroughly commented files tend to stay thoroughly com-

mented over time? . 15

3.1 Did participants who received more thoroughly commented code
make more thoroughly commented changes? 21

3.2 What style of comments did participants use? 23
3.3 How did participants respond to quantitative survey questions? . 25
3.4 Did participants who received more thoroughly commented code

make more thoroughly commented changes? (revised) 31
3.5 Did participants who received more thoroughly commented code

make more thoroughly commented changes? (descriptive com-
ments only) . 32

3

Abstract

Though programmers are often encouraged to comment their source code
more thoroughly, there has been very little scientific investigation into what
kinds of situations actually cause programmers to do so. I conducted a statistical
study of the CVS repositories of nine Open Source projects, and made four ma-
jor findings. First, the rate at which programmers comment varies widely from
project to project and programmer to programmer; even the same programmer
will comment at different rates on different projects. Second, programmers tend
to comment larger modifications to source code more thoroughly. Third, more
programmers modifying the same file does not, in general, mean more com-
menting. Finally, programmers tend to comment more when they are modifying
code that is thoroughly commented to begin with. I then determined through
an experiment with programmers that there is a causal link behind my last
finding; that is, the more throughly a source code file is commented, the more
thoroughly programmers will comment when they make modifications to it.

Chapter 1

Introduction

It has been long understood that source code comments can make source code
easier for programmers to read and modify. Code readability is vitally important
for both software maintenance and software reuse.1

If we had a better understanding of what motivated programmers to com-
ment, we could probably get programmers to comment more often, and thus
produce more readable code. We might also be able to avoid situations that
lead to insufficiently commented code.

In order to better understand commenting behavior, I carried out two re-
search investigations. First, I did a statistical study of several real-world soft-
ware projects, to try to discover “natural laws” of commenting; that is, patterns
that one could expect to be exhibited by most programmers in most software
projects. That study is described in Chapter 2. Second, I ran an experiment
with real programmers in an attempt to validate one such law as a causal rela-
tionship. The experiment and its outcome are explained in Chapter 3. Chapter 4
briefly summarizes other research on these topics; Chapter 5 suggests directions
for future research.

1A more thorough discussion of the relationship between comments and readability can be
found in Section 4.1.

1

Chapter 2

A Statistical Study of
Commenting

The Concurrent Version System [CVS], provides an excellent vehicle for study-
ing commenting behavior because it provides a repository to which programmers
periodically commit the most recent version of source code files. Thus, by study-
ing a CVS repository, we can look at a file’s entire history, rather than just the
current version.

My thinking in starting on this project was that by studying the CVS repos-
itories of real projects, I would be able to answer several kinds of quantitative
questions about how often programmers comment in certain situations. For ex-
ample, do programmers comment more...

• in big changes or small ones?

• on big files or small ones?

• on old files or young ones?

I also wanted to ask questions about variance between programmers, and
variance from project to project:

• Do all programmers tend to comment about the same amount, or does it
vary from programmer to programmer?

• Do all projects tend to get about the same amount of comments, or does
it vary from project to project?

• If the same programmer works on different projects, will she tend to com-
ment the same amount on all projects, or will she comment more when
working on some projects, and less when working on others?

Finally, I had two specific theories about commenting that I wanted to try to
validate. First, I theorized that because one of the main purposes of commenting

2

was to communicate how source code works, programmers would comment more
often in situations involving more collaboration. Second, I theorized that pro-
grammers would try to maintain whatever rate of commenting already existed
in a file; if the file was thoroughly commented, programmers would comment
their changes thoroughly, and the opposite would also be true.

Of course, this raises the question of what it means, quantitatively, to com-
ment “more.” Does this mean more total comments? More words in comments?
What if someone modifies an existing comment? What if someone comments
out a chunk of code; does that count as commenting?

For this study, I used the same measurement of commenting that Shum and
Cook employed in an early study about Literate Programming [SC95]; I took
the total number of characters that were part of a comment, and divided them
by the total number of characters in a file. Hereafter, I refer to this ratio as
the “rate of commenting.” A higher rate of commenting indicates that a given
version of a file is more thoroughly commented; a lower rate indicates that it is
less so.

In one of my preliminary studies, [Mar02] I invented a more complicated
“scoring” system to attempt to measure how much effort programmers were
putting into commenting. For instance, it probably takes less effort to make a
comment like /********************************/ than a descriptive com-
ment of the same length. However, in terms of the correlations I found, there was
little or no difference between my scoring system and the simpler calculation of
commenting rate, so in this study, I opted for the simpler system.

By identifying which characters in a file were added since the previous version
of a file, I could determine how thoroughly commented a given modification to a
file was by taking the rate of commenting among just the new characters (i.e. new
characters in comments, divided by the total number of new characters). This
was my fundamental way of gaining insight into what programmers were doing;
if a particular modification had a higher rate of commenting, the programmer
making that modification was commenting more, and if it had a lower rate of
commenting, that programmer was commenting less.

This method of measuring commenting partially solves the problem of commented-
out code automatically: if a programmer comments out a section of code, only
the characters that begin and end the comment will be considered “added”,
and thus there will be very little effect on the measurement of how throughly
commented that programmer’s modifications were. Subsequent versions of the
file taken as a whole, however, will be measured, incorrectly, as “more thor-
oughly commented” due to the commented-out section of code. In any case,
commented-out source code does not account for enough of the comments to
significantly skew my results. An informal inspection revealed that, for any given
project in my study, commented-out source code accounts for less than 20% of
the characters in comments; in most projects, the figure is more like 5%.

3

2.1 Data Collection

In order to collect the data I needed, I wrote a program hereafter referred to
as the “Comment Counter.” For its technical specifications, and some practical
considerations about collecting data on comments, see Appendix A. For the
purposes of data collection, the ubiquitous copyright notice comments found in
Open Source projects were effectively considered not part of the file.

For each version of each file that the Comment Counter recognized as source
code, I collected the following data:

• total number of characters in the file

• number of characters inside comments

• total number of new characters

• number of new characters inside comments

• version number

• revision date (when the version was checked in)

• author (who checked it in)

• commit message (the message that the author submitted to CVS when
checking in that version)

Because of the large volume of code, and the automated fashion in which
I gathered statistics, I did not make any attempt to categorize comments as
to their purpose or usefulness (other than to screen out copyright notices).
Comments are meant to be read by human beings, so it is surprisingly difficult
to determine what a comment pertains to without actually understanding the
code (for instance, does a comment followed by a variable declaration refer
to just the variable declaration, or the next section of code?); Van De Vanter
[Van02] explains these difficulties in detail, with several real-world code excerpts.
Usefulness is of course subjective, though misleading comments are almost never
useful. I discuss possible ways of changing my methodology to gather these more
subjective kinds of data in Section 5.1.

2.2 Data Sources

Now all I needed were CVS repositories to study. After making some prelimi-
nary tests on projects at UC Berkeley, I turned to SourceForge.net [SF], a public
repository of open source projects. I chose SourceForge because the CVS repos-
itory for each project on SourceForge was easily accessible via an anonymous
login. I also chose SourceForge because of its wide variety of projects; in October
2002 when I ran a script on SourceForge’s web site to find projects to study,
SourceForge had 13208 users working on 3320 projects, 1914 of which had code

4

in their CVS repositories; today it has nearly 50 times as many users, and 20
times as many projects.

Running the Comment Counter on a single SourceForge project could take
several hours, so collecting data for every project on SourceForge (not to mention
processing it) was infeasible. Because I was interested in learning whether the
same programmer would ever comment at different rates on different projects,
I chose the two users1 who worked on the most projects, and looked at all the
projects that they worked on. I found that some projects were too small to
yield useful results (one such project had only four source code files that the
Comment Counter could read). This left me with nine projects: aeongdk, alleg,
allegrogl, dumb, exult, fblend, fink, hexedit, and scummvm, each of which
had at least 100 distinct versions of files.

I collected the data for exult, hexedit, and scummvm in October 2002, and
the remaining projects in December 2002. The data I collected comprised 200002

distinct versions of 2119 distinct files.
Unfortunately, I realized after collecting my data that the diff tool on the

Solaris box I used had suffered transient, apparently random failures (it was
not simply due to large file sizes, for instance). As a result, for some versions I
effectively had no information about the number of characters added to a file.
It was the output of diff that was missing, not the versions of files themselves,
so the fact that a data point was missing did not affect the correctness of other
data points. These failures occurred so often for aeongdk that I re-collected its
data in December 2003 (aeongdk was last updated in September 2001, so the re-
collected data was otherwise identical to the original). I was unable to re-collect
data for the other (mostly larger) projects because at the time, SourceForge
was experiencing bandwidth problems that made it very difficult to run the
Comment Counter.

However, assuming that these failures were indeed unrelated to the data I
collected, they should have had very little effect on my final results, other than
possibly obscuring a few correlations I would have otherwise found. No more
than a quarter of the versions in any project other than aeongdk were missing
this information, and because of the scoring method I used, such data points
were effectively excluded from any results having to do with the commenting
rate of a change.

Finally, due to an architectural weakness of the Comment Counter, I was
not able to collect data on previous versions of files which had been marked in
the CVS repository as “removed,” at the time of data collection.

1All the data I used in this study is publicly available. However, out of respect for the
privacy of the programmers, I do not refer to any individual programmer by his or her Source-
Forge login in this paper.

2Exactly 20000!

5

2.3 Finding Correlations

The next step was to start looking for interesting correlations in my data set.
But first, I had to decide how I wanted to group my data; lumping together all
programmers and all projects, and searching for correlations in the aggregate,
proved not to be very useful.

What I found is that even on the same project, different programmers
would comment their modifications at very different rates. Moreover, even the
same programmer would tend to comment at vastly different rates on different
projects.3

Figures 2.1 and 2.2 show these variations using standard box-and-whisker
plots, a way of summarizing a large number of data points without plotting
them all. In this case, a data point is the commenting rate of an individual
change to an individual file. For each project, the large rectangle (the “box”)
represents half of the data points, from the first quartile to the third. The median
commenting rate for each project is shown as a line across the box (for many
projects, the median commenting rate for changes is 0). The dotted lines, or
“whiskers”, extend beyond the box in each direction by 3

2 the height of the box
(or to the end of the range of values); any data point outside the whiskers is
considered an outlier,4 and is plotted individually as a +. Additionally, to give
an idea of the number of data points in each project, the width of the boxes
is proportional to the square root of the number of data points in each project
(including outliers).

What I decided to do was to group my data in three ways:

• by project

• by the programmer making the modification

• by programmer and project

Within each group, for each kind of grouping, I looked for statistical correla-
tions between interesting pairs of variables, usually the commenting rate of the
change relative to the previous version of the file, and one other variable (e.g. file
size). To determine whether a correlation was significant, I used the arbitrary
(but standard) rule that a correlation was significant if it had a less than 5%
probability of occurring by chance. That is, if I found a significant correlation
between two variables, there was less than a 5% chance that no relationship be-
tween those two variables existed. Many groups were too small to produce useful
data (for instance, within in my data set, some programmers only contributed
one or two modifications), so I filtered out any group containing less than 100
data points. I wrote a short program in a statistical package [R] to help count
significant correlations.

3Interestingly, the fact that different programmers tend to comment at different rates,
taken with several other metrics, can actually be used to identify the author of a program
from the program’s source code [Krs94].

4Some projects in Figure 2.1 appear to have a large number of outliers simply because they
have so many data points; for example, the data for exult comprises 9790 versions.

6

++++

++++

+

+++++

+
+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+++

+

++

+

+

+

+

+

++

+

+
+

+

++

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

++

+

+

+

++
+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
+

+

+
+

+

+

+
+

++
+

+

+

++

+++

+

+

+

++

+

++

++

+

+
+

+

+

+

++

+

++

+

+

+

+

+

+
+
+

+

+

++

+

+

++

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+
+

+

+
+
+

+

+

++

+

++

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+++

+

+

++

+

+

+

++

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+
+

+

+

+

+

+

+
+
+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+++

+

++

+

+

+

+
+

+

+
+
+

+

+
+

++

+

+

+

+

+

+

+

+

+

+
++

++

+

+

+
+

+

+

+

+

+

+

++

+

++

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++++

+
+

+

+
+

++
+

+

++

+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+++

+

+
+
+
+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

++

+

+
++

+
+

+

+

+

+
+

+

+

+
++

+

+

+

+

+

+
+
+

+

+++

+

+

++

+

+

+
+

+

+

+

+

++

+

+

+

++

++

++
++
+

+
+

+

+

+

+

+
+

+

+

+
+

+

++
+

++

++

+
+

+

+

+
++

+

+
+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+
+

+

+

+

+

+

+
+
+

+

+

+
++

++

+
+

+

+

+

+
+

+

+

+

++

++
+

+

+

+
+

+

+
+
+

+

+

+

+

+

+
+
+

+

+

+++

+

+
+
+

+

++

+

++

+

+

+

+

+
+

+

++

++

+

+

++
+
+
+
++

+

+

+

++

+

+++++

+
+
+

+

+

+

++

+

+

+

+

+

+

+

++
+
+

+

+

+
+
+

+

+

+

+

+

+
+

++

+

+

+

++
+

++

++

+

+
+

+

+

+

+

+

+

+
+
+

+

+

+
+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
++

+
+

+

+

+

+

+

+
++
+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

++
+

+

+
++

+

+

+

+

+

+
+

+

+

+

++

++

+

+
+
++

+

+

+

+

+

+

+

+

++

+
+
+

+

+

+

+

+

+
+

+

++
+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+
+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

++

+

+

++

+

+

+

+

++

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

++
+

+

++

+
+

+

+

+

+

+

+++

+
+

+

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+
+
+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

++

+

++

+

+

+

+

+

+

++

+
+
++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

++

+

+

+

+
+

++

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+
++

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+

+

++

aeongdk alleg allegrogl dumb exult fblend fink hexedit scummvm

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

project name

co
m

m
en

tin
g

ra
te

 o
f c

ha
ng

es

Figure 2.1: Commenting rates of individual changes by all programmers, grouped
by project. This is a standard box-and-whisker plot; the width of the boxes is
proportional to the square root of the number of data points in each project.

+ +

+
+

+
+

+

++

++

+

+
+
++

+

aeongdk alleg allegrogl dumb fblend

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

project name

co
m

m
en

tin
g

ra
te

 o
f c

ha
ng

es

Figure 2.2: Commenting rates of individual changes made by a single program-
mer, grouped by project. This is a standard box-and-whisker plot; the width
of the boxes is proportional to the square root of the number of data points in
each project.

7

My goal was not simply to find correlations, but to find “natural laws”
of commenting, that is, correlations related to commenting that I could expect
most programmers to exhibit in most software projects. What I sometimes found
is that for some pairs of variables, significant correlations appeared in more than
5% of the groups (which is what I would expect if my data were purely random),
but they were a mix of positive and negative correlations, so I couldn’t make
any universal conclusion about the relationship between the two variables.

As an example, in some projects, older files tended to be more thoroughly
commented (positive correlation), and in some projects, the opposite was true
(negative correlation). Although significant events may have happened in partic-
ular projects, such as a programmer joining the project who tended to comment
very thoroughly, I wasn’t able to make any general claims about the relationship
between the age of files and their commenting rates.

What I was looking for were the cases where there was a significant positive
correlation between an interesting pair of variables in many or most groups, and
very few or no negative correlations (or vice versa). If I could find such a pair
of variables, then I was on to a potential “natural law” of commenting.

2.4 Setting the Ground Rules

An important issue I faced in looking for correlations was whether to include
the first version of a file. The Comment Counter counts all characters in the first
version of a file as “added,” but the situation is different. Rather than making
a modification to an existing file, the programmer is in fact creating an entirely
new file.

But did this make any difference to programmers? Could I, for the purposes
of my study, consider creating a file, and making a modification, to be the
same thing? To answer this question, I created a predicate variable that was
1 when programmers were creating the first version of a file, and 0 when they
were modifying an existing file, and then looked for correlations between that
predicate variable, and the commenting rate of the new code.

In fact, in several cases, programmers did indeed comment files they created
more thoroughly than their changes. Refer to Table 2.1 for a tally of the groups
where I found significant correlations.

variables # of correlations (+/-/# of groups)
by project by programmer by both

first version? c. r. of change/creation 4/0/9 10/0/25 12/0/28

Table 2.1: Is creation equivalent to modification?

I use tables of this format throughout this chapter. For each pair of variables,
and each kind of grouping, I give the number of groups where I found a significant
positive or negative correlation, and the total number of groups. For instance,
Table 2.1 indicates a significant positive correlation in 4 out of 9 projects, and a

8

significant negative correlation in 0 out of 9 projects. In these tables, predicate
variables always end with a “?”, and “commenting rate” is abbreviated to “c.
r.”. I use “by both” as shorthand for “by project and programmer”, that is,
groups of versions of files which the same programmer checked into the CVS
repository for the same project.

So as not to confuse the file creation effect with other effects I tried to
observe, I filtered out data about the first version of a file whenever I searched
for correlations relating to the commenting rate of modifications. Unfortunately,
dropping the first version left one project (fblend) with less than 100 data
points, causing it to be filtered out.

I must also mention one correlation that, while not directly related to com-
menting, was not completely obvious. The longer a file has been in the repository,
the larger it tends to be, and vice versa. Table 2.2 tallies significant correlations
of file size against both version number of a file, and a file’s chronological age.5

variables # of correlations (+/-/# of groups)
by project

version number file size 9/0/9
age of file (in seconds) file size 7/0/9

Table 2.2: Do older files tend to be larger?

These results told me that if I observed an effect for large files, I should not
be terribly surprised to see the same effect for files with a high version number,
and vice versa. Also, these results suggested that version number may be a more
meaningful measurement of the age of a file than its actual chronological age,
at least as far as CVS repositories were concerned.

2.5 Correlations by Size of Change

Do programmers comment more when they make large changes, or small ones?
Table 2.3 shows the correlations between various measurements of the size of a
change, and the commenting rate of a change.

There did indeed appear to be a (positive) relationship between the size
of a change and its commenting rate; that is, the larger a change, the more
thoroughly commented it is. However, a significant correlation to this effect did
not appear in all groups of data (e.g. for all projects), or, depending on how
size of change was measured, even most groups. More striking was the fact that
most correlations were between the commenting rate of the change and the log
of the number of new characters. This suggested that the size of small changes
was particularly important.

5Note that when I present data having to do with static versions of a file, rather than
modifications, I include data for the first version of files as well, so the project fblend is no
longer filtered out (thus there are 9 projects instead of 8). In this case, I do not group data
by the programmer making changes because it would not be meaningful to do so.

9

variables # of correlations (+/-/# of groups)
by project by programmer by both

new characters c. r. of change 2/0/8 11/0/25 11/0/27
log of # new characters c. r. of change 6/0/8 15/1/25 17/1/27
∆ (net change) of file size c. r. of change 1/0/8 5/0/25 6/0/27
log of ∆ of file size c. r. of change 5/0/8 17/0/25 19/0/27
% change of file size c. r. of change 4/0/8 9/0/25 10/0/27
log of % change of file size c. r. of change 4/0/8 9/0/25 10/0/27

Table 2.3: Do programmers comment more when they make large changes, or
small ones?

But how small is a small change? To find out, I created a predicate variable
that was 0 when the size of the change was less than a given threshold, and
1 otherwise. I used four different numbers for the threshold: 50, 100, 500, and
1000 characters (see Table 2.4). Overall, a threshold of 100 characters seems to
be the best predictor (in terms of turning up correlations) for how thoroughly
programmers will comment their changes.

variables # of correlations (+/-/# of groups)
by project by programmer by both

≥ 50 chars in change? c. r. of change 7/0/8 16/0/25 18/0/27
≥ 100 chars in change? c. r. of change 6/0/8 18/0/25 20/0/27
≥ 500 chars in change? c. r. of change 6/0/8 13/0/25 15/0/27
≥ 1000 chars in change? c. r. of change 3/0/8 8/1/25 8/1/27

Table 2.4: Is there a threshold for size of change that’s most significant for
predicting rate of commenting?

Thus, I found that in general, the larger a change is, the more thoroughly
commented it is, and I discovered two useful ways of measuring size of change
(log of size of change, and setting a threshold of 100 characters for size of change)
in order to better observe this effect.

I originally theorized that small changes tend to be less thoroughly com-
mented simply because many of them are bug fixes, and bug fixes tend to be
less thoroughly commented because they merely make the code do what it was
supposed to have done already, so there is no need to add or change comments.
Certainly, small changes do tend to be bug fixes; scanning the CVS commit mes-
sages accompanying changes revealed that a disproportionate number (about
half) of changes of less than 100 characters were bug fixes.

What is less clear is whether bug fixes are actually less thoroughly com-
mented than other changes of the same size. At least, I was not able to come
up with a heuristic for identifying bug fixes that yielded interesting results;
simply looking for the strings “bug” and“fix” in commit messages doesn’t do
it. Certainly, programmers do not identify all bug fixes as such in their commit
message, but (based on scanning my data by hand) commit messages containing

10

these strings almost always indicate a bug fix, so if there is something special
about bug fixes, such heuristics ought to turn up correlations.

Part of the problem with analyzing CVS commit messages in an automated
fashion is that a programmer may check in changes to several different files
at the same time, but only make one commit message for the whole batch;
thus a commit message that mentions a bug could be referring to another file
entirely. However, even when I reduced my search to the 3009 versions of files
with a unique commit message (that is, changes that were not checked in as part
of a batch), I was still not able to turn up any correlations whatsoever using
such string-matching heuristics (see Table 2.5); note that many groups dropped
below the threshold of 100 data points and were filtered out, so there are only
5 projects and 8 programmers in the table.

variables # of correlations (+/-/# of groups)
by project by programmer by both

“bug” in commit message c. r. of change 0/0/5 0/0/8 0/0/8
“bug” and “fix” in commit message c. r. of change 0/0/5 0/0/8 0/0/8

Table 2.5: Do bug fixes tend to be less thoroughly commented? (versions with
a unique commit message only)

In summary, the connection between change size and rate of commenting
has a lot to do with small changes, but little or nothing to do with bug fixes
specifically.

2.6 Correlations Based on File Size

Do programmers tend to comment more when modifying large files, or small
ones? Table 2.6 shows correlations between the size of a file (before the modifi-
cation) and the commenting rate of the change.

variables # of correlations (+/-/# of groups)
by project by programmer by both

of chars in file c. r. of change 3/2/8 7/4/25 7/3/27
log of # of chars c. r. of change 3/3/8 5/3/25 4/3/27

Table 2.6: Do programmers tend to comment larger files more, or less?

Essentially, the results are all over the map. For particular programmers and
projects, the size of a file may matter, but not in any generally applicable way.
More than anything, this is a demonstration of the fact that in any set of data,
you can find all sorts of correlations that are statistically significant, but not
meaningful.

However, I found more interesting results when I asked the analogous ques-
tion about files: do larger files tend to be more or less thoroughly commented?

11

I correlated the commenting rate of a file with both the number of characters
in the file, and the log of the number of characters (see Table 2.7).

variables # of correlations (+/-/# of groups)
by project

of chars in file c. r. of file 1/6/9
log of # of chars c. r. of file 1/7/9

Table 2.7: Do larger files tend to be more or less thoroughly commented?

In the majority of projects I studied, the larger a file was, the less thoroughly
commented it was. However, in one project, alleg, the reverse was true, and
in one project, aeongdk, it made no difference. My guess is that it may have to
do with a coding standard specific to these projects whereby each file has its
own descriptive comment (distinct from a copyright notice), and this comment
makes up a larger portion of smaller files. In any case, these results illustrate
the fact that the fate of a programming project is determined by more than the
tendencies of the individual programmers participating in it.

2.7 Correlations Based on Age

My results based on age were similarly fruitless. To measure age, I used both
the version number of a change, and the chronological age of a file at the time
of the change, as well as the log of the file’s age (see Table 2.8).

variables # of correlations (+/-/# of groups)
by project by programmer by both

version number c. r. of change 3/2/8 6/5/25 6/5/27
age of file c. r. of change 5/1/8 8/5/25 7/5/27
log of age of file c. r. of change 4/2/8 8/6/25 7/6/27

Table 2.8: Do programmers tend to comment older files more, or less?

As with file size, correlations are all over the map. Probably these correla-
tions are as a result of events specific to particular projects and programmers;
for instance, a programmer who tends to comment significantly more might
have checked in changes to a lot of files, making age appear to be a factor in
commenting for that project.

I found similarly unimpressive results when I looked for correlations between
the age of a file and its overall commenting rate (see Table 2.9). This is partic-
ularly remarkable because old files tend to be larger, and larger files tended to
be less thoroughly commented in many projects.

In conclusion, the age of a file seems to have very little relationship in general
with how much programmers modifying that file will comment, nor on how
thoroughly commented the file will be.

12

variables # of correlations (+/-/# of groups)
by project

version number c. r. of file 1/5/9
age of file c. r. of file 3/3/9
log of age of file c. r. of file 4/4/9

Table 2.9: Do older files tend to be more or less thoroughly commented?

2.8 Correlations Having to do with Collabora-
tion

Now we move from the more basic questions to testing the first of my theo-
ries about commenting. Because one of the the purposes of commenting is to
communicate with other programmers, I theorized that the more collaboration
between programmers was going on, the more people would comment.

But how to measure collaboration? I had to pick some method of measuring
collaboration that I could measure using the data I had, and that programmers
were presumably somewhat aware of. For instance, I could not base my mea-
surements on when programmers were reading other programmers’ comments,
because I did not have that data, but even if I could, what I would really want
to measure is the fact that programmers knew that other programmers were
reading their comments.

Finally, I decided that I would narrowly define collaboration as the situation
of several programmers modifying the same file. For my purposes, a programmer
was considered to be involved in collaboration when he or she was modifying
a file which other programmers had previously modified. In some ways, this is
a weak measurement (two programmers who fix bugs in the same file probably
aren’t really collaborating), but it is accurate in the negative sense; if a file has
only a single author, there is probably no collaboration going on with respect
to that file.

Thus, for each change that a programmer made to a file, I measured the
number of programmers who had previously modified that file, and attempted
to correlate it against the commenting rate of the change. I also speculated that
a programmer modifying a file that no other programmer had touched might be
a special case, so I also created a predicate variable that was 0 when no other
programmers had previously modified a file, and 1 otherwise. My results are in
Table 2.10.

variables # of correlations (+/-/# of groups)
by project by programmer by both

of prev other authors c. r. of change 2/1/8 5/5/25 5/5/27
has other authors? c. r. of change 1/2/8 2/7/25 1/7/27

Table 2.10: Will programmers comment a file more or less often if it has many
previous authors?

13

What I found cast doubt on my theory. In fact, seven programmers tended
to do the opposite of what I expected; they commented more on “their own”
files, that is, files that no one else had modified.

For completeness, I asked the related question about the state of files in a
project; did files that were the result of collaboration tend to be more or less
thoroughly commented? For every version of every file, I calculated the total
number of programmers who had contributed to that file, up until the current
version, and correlated that number against the commenting rate of the file (see
Table 2.11).

variables # of correlations (+/-/# of groups)
by project

total # of authors c. r. of file 2/3/9

Table 2.11: Do files with more authors tend to more or less thoroughly com-
mented?

Again, I found no overall pattern. In many cases, collaboration appears to
have led to less thoroughly commented code.

In summary, I found little evidence to support the theory that having many
people working on the same code leads to more commenting. If such an effect
does exist, it cannot be measured simply by looking for cases in which two or
more people modify the same file.

2.9 Correlations Based on State of Previous Ver-
sion

If the prospect of other programmers having to read code with few comments
did not inspire programmers to comment, what about a different form of social
pressure? Perhaps the mere fact that the code a programmer was modifying was
thoroughly commented would inspire that programmer to comment more. To
find out, all I needed to do was look for correlations between the commenting
rate of a modification, and the commenting rate of the previous version of the
file modified (see Table 2.12).

variables # of correlations (+/-/# of groups)
by project by programmer by both

c. r. of prev version c. r. of change 6/0/8 20/0/25 20/0/27

Table 2.12: Do programmers tend to comment more or less when modifying a
file that is already thoroughly commented?

These were the most striking results I had found so far. Indeed, it appeared
that such a correlation existed in nearly all groups.

14

But was this really because programmers were trying to duplicate what they
saw in the file they were modifying? Perhaps some files simply required more
comments than others; for instance, some C header files might require extensive
comments to explain how some API worked. To test this theory, I correlated the
commenting rate of changes with the commenting rate of the original version
of a file. The idea was to assume that in general, though the contents of a file
might change over its lifetime, its role in the project would not, and thus it
would require the same rate of commenting. Thus if it was really the role of a
file that mattered, not how thoroughly commented it was, I should expect to
see at least as many correlations as with the previous test

variables # of correlations (+/-/# of groups)
by project by programmer by both

c. r. of version 1 c. r. of change 3/0/8 14/0/25 14/0/27

Table 2.13: Do programmers tend to comment more or less when modifying a
file whose original version thoroughly commented?

However, this turned out not to be the case (see Table 2.13); commenting
rate of the original version of a file was a weaker predictor than commenting
rate of the previous version. Thus my theory about the role of files affecting how
thoroughly they were commented was insufficient to explain the correlations I
found.

This suggested the question, if thoroughly commented code indeed causes
programmers to more thoroughly comment their changes, how powerful is this
effect? If the first version of a file is thoroughly commented, will future versions of
that file be thoroughly commented as well? To answer this question, I considered
only versions of files which had a version number of 20 or greater, and among
these datapoints, looked for a correlation between the commenting rate of the
original version, and the commenting rate of the later version (version 20 or
greater). Table 2.14 has my results; note that filtering out versions less than
20 resulted in some projects dropping below the threshold of 100 data points,
which is why there are only 6 projects in the table. Even 20 or more versions
later, the original rate of commenting matters, in all projects!

variables # of correlations
by project

c. r. of version 1 c. r. of current version (≥ 20) 6/0/6

Table 2.14: Do thoroughly commented files tend to stay thoroughly commented
over time?

Thus, in almost all cases, programmers tend to comment changes to a file
more thoroughly when the file is itself more thoroughly commented.

15

2.10 Conclusions

I was indeed successful in discovering some “natural laws” of commenting, in
the sense that I found correlations which appeared in nearly all of my groups of
data. These laws are summarized in Section 2.10.3.

2.10.1 Caveats: Representativeness

However, there are two major caveats in any study like this. The first has to
do with representativeness. In this study, I made several interesting discoveries
about nine specific Open Source projects. In order for these discoveries to be
generally useful, I need some way of convincing the reader that the patterns
I found might apply not only to the nine projects I studied, but to whatever
project the reader might be interested in. The question to ask is, was there
something special about these particular projects that caused me to find the
correlations I did?

For one thing, all the projects I studied were Open Source projects. Though
I would guess that any inherent tendencies of programmers would hold true in,
say, proprietary commercial projects as well, there are simply so many factors
that I cannot speak for these other programming environments without actu-
ally studying some of them. For instance, commercial environments might be
more rigorous about enforcing certain commenting practices; the increased time
pressure in a commercial environment could conceivably alter programmers’
commenting habits significantly as well.

All the projects I studied were hosted on SourceForge, but I doubt this in
itself makes much difference; the only requirement for a project to be hosted on
SourceForge is that it be Open Source.

The more serious problem is that I selected the projects to study arbitrarily.
Recall that I selected these nine projects because I wanted to study the com-
menting habits of two programmers across several projects. The fact that all the
projects I studied included these programmers does not skew my results directly,
because I observed the same effects when I broke down data by programmer, and
these were only two of 25 programmers that I studied. However, sharing a pro-
grammer may be part of more subtle similarities between projects. In fact, both
programmers had a penchant for working on programming related to games. Of
the nine projects I studied, four of them were game libraries (aeongdk, alleg,
exult, and scummvm), and three of them were extensions to the alleg library
(allegrogl, dumb, and fblend).

There were also practical considerations that constrained the size of the
projects I studied. There was a fairly wide range of number of distinct files
(19 in fblend to 996 in alleg), and number of contributing programmers (1
in fblend to 23 in scummvm). However, projects any smaller would have had
too little data to glean useful correlations from (fblend itself was in excluded
my measurements having to do with changes within a project because it had
too few distinct versions to study). And projects larger than alleg would have
been cumbersome to collect data for and study; I actually ran the Comment

16

Counter on mozilla (unfortunately, before I realized the importance of exclud-
ing copyright comments), and it took over a week to run! It is conceivable that
commenting works differently on very small projects or even very large ones; if
so, my data says nothing about them.

Finally, all the projects that I studied (and any project I might study with the
tools I have built) made use of CVS. This is directly important to commenting,
though maybe not in a way that significantly impacts the quantity of comments:
as Warren and Nafees [WN02] point out in their study of Nethack, some Open
Source projects use comments to track the history of changes in a project. CVS
makes such comments unnecessary because programmers can store comments
about changes directly in CVS; out of all the source code files I collected data
from, I could only find two such comments.

2.10.2 Caveats: Methodology

The second caveat has to do with my methodology. A correlation simply means
that two variables in a group of data vary together; statisticians are free to
choose or define variables any way they want. Thus, in any body of data, it is
possible to find any number of correlations simply by defining variables cleverly;
these correlations may or may not be meaningful, but probably would not appear
in another dataset of the same type.

These methodological concerns are somewhat mitigated by the fact that I
planned out in advance the questions I wanted to ask, and looked for the same
correlations in not just one group of data but several, side by side. However, in
order to verify my findings, I need to take another, fresh set of data, and find
the same correlations (or lack thereof) that I found in this study.

Thus, though my findings may in fact be representative of other Open Source
projects, or programming projects in general, it is most scientific to view my
statistical study as an exploratory study, used to find what sort of interesting as-
pects of commenting can be captured statistically, rather than a clear statement
about how commenting works in Open Source projects.

2.10.3 “Natural Laws” of Commenting

Keeping these caveats in mind, to the extent that my results do apply to com-
menting in general, I made four major findings about commenting that could
be used in future studies with less flawed methodology.

First, commenting rates vary widely from project to project and program-
mer to programmer; even the same programmer will comment at different rates
on different projects. Second, programmers tend to comment more when they
make larger modifications to source code. Third, more programmers modifying
the same file does not, in general, mean more comments. And finally, program-
mers tend to comment more when they are modifying code that is thoroughly
commented to begin with.

My results suggest (but of course do not prove) that when programmers de-
cide whether or not to comment their modifications, it has little to do with their

17

concrete expectation of whether other programmers will read their comments.
Instead, programmers are attempting to uphold a standard of commenting,
based on the perceived social norms of the project they are working on, their
own training, and whatever implicit standard they perceive in the code they are
modifying.

My results also suggest an easy answer to the big question, how can we get
programmers to comment? Simply place code in front of them that is thoroughly
commented, and they will try to keep it that way.

However, this assumes a causal relation (thoroughly commented code im-
plies thoroughly commented changes). The danger of relying on statistics is
that statistics cannot prove causality; they can only give us correlations. The
correlation I found might be for some entirely different reason; for instance, it
may be that programmers who like to thoroughly comment their changes simply
avoid modifying code that is not thoroughly commented.

If there is indeed a causal relation here, it should be possible to devise an
experiment to demonstrate it. This is the second half of my study.

18

Chapter 3

Testing the Implicit
Standards Hypothesis

To determine whether thoroughly commented code could actually be used to
induce people to comment more, I devised an experiment where some partici-
pants were given thoroughly commented code to modify, and some were given
similar code, but with very few comments. My hypothesis was that, all else
being equal, programmers modifying more thoroughly commented code would
themselves produce changes that were more thoroughly commented than pro-
grammers modifying less thoroughly commented code.

My hypothesis fit into a much grander theory that programmers would try
to imitate not only the amount of commenting, but also any other standards
they perceived in the source code, including indentation, and where comments
were placed (for example, after every variable declaration). I did not articulate a
formal hypothesis for this theory (indeed, this may be too simple an experiment
to produce scientific results about more detailed kinds of standards), but I hoped
to use my study as a way of gathering information in order to learn to what
extent this grander theory might be true, and to guide future studies.

3.1 Experiment Protocol

I recruited 12 participants by email solicitation of all graduate and undergrad-
uate students at in the Computer Science Department in UC Berkeley. I asked
that applicants be comfortable programming in the programming language C.
Participants were not told that the study was about commenting; the recruit-
ment message (see Appendix B.1) simply said that it was a study to “help
improve the state of the art of software engineering.” If asked about the study, I
gave the neutral answer that it was “to study the way programmers program.”

Participants were given the following scenario: they had been asked to make
a set of modifications to an Open Source C program for computing checksums,
adding some new printouts and a new kind of checksum which I invented for the

19

purpose of the study. Once they had made their modifications, participants were
supposed to make a patch (a file showing the line-by-line differences between
the original program and their modified version) for submission to the authors.
(The program, csum was in fact based on a real Open Source1 program called
sum.) The instructions which participants were told to follow can be found in
Appendix B.2.

Unbeknownst to the participants, I had divided them into two groups of
six using a random drawing. One group (hereafter called group C) received a
version of csum that was heavily commented; each function body and variable
declaration was commented, and there were several descriptive comments as
well. Group C’s code can be found in Appendix B.3.1. The other group (UC)
received code identical to group C, except that virtually all of the comments
had been removed. I left in two comments, a copyright notice and a comment
giving credit to the authors, in order to make the scenario of modifying an Open
Source program seem more real. Group UC’s code can be found in Appendix
B.3.2.

I used a program called Camtasia [Cam] to record the participants while
they worked. Camtasia essentially makes a video of whatever is on the screen.
Because Camtasia is a Windows program, and csum is a UNIX program, I
simulated a UNIX environment on a Windows 2000 computer using the UNIX-
like programming environment Cygwin [Cyg] and the text editor NT Emacs
[NT]. Every participant did the study on the same computer (my department-
issued laptop).

Once participants indicated to me that they had completed the task (in-
cluding making the patch), I gave them a short questionnaire to fill out (see
Appendix B.4), with questions mostly having to do with commenting.

I asked each participant to schedule at least 90 minutes to do the study; all
but one participant finished well within the the time scheduled. (In an attempt to
relieve the participants of time pressure, the instructions stated that participants
would have “as much time as [they] needed.”)

For each participant, I saved his or her entire home directory (which included
any scratch files that had been created), as well as the video, generated by
Camtasia, of that participant’s work.

One participant in Group C ran out of time, leaving the code in an unfinished
state (it turned out that although I asked that participants be “reasonably
comfortable using C,” he had in fact only used it twice before). Because his
situation is not easily comparable to other participants’, I omit him entirely
from my results.

To protect the anonymity of the subjects, I will refer to them by code rather
than name. Hereafter the subjects in group C (other than the one who ran out
of time) I refer to as are C1 through C5, and the subjects in group UC I refer
to as U1 through U6.

1The Free Software Foundation, which distributes sum, prefers the term “Free Software”

20

3.2 The Source Code: Counting Comments

The first thing I did to evaluate the results of my study was to run the final
source code through the comment counter to see if participants in group C
(thoroughly commented original code) did indeed comment their changes more
thoroughly. As in the first part of the study, I considered the copyright notice
and the comment telling who the authors were, as not part of the file.

The results were striking. Changes made by the participants in group C
were, in every case, much more thoroughly commented than by participants in
group UC. Table 3.1 shows the commenting rate of the original version, the new
version, and the commenting rate of the change.

participant commenting rate
original final change

C1 42.66 38.18 18.54

C2 42.66 35.55 18.18

C3 42.66 37.79 22.68

C4 42.66 41.28 35.12

C5 42.66 38.55 25.04

U1 0.00 3.08 7.51

U2 0.00 2.46 5.99

U3 0.00 0.00 0.00

U4 0.00 0.00 0.00

U5 0.00 0.00 0.00

U6 0.00 0.57 1.98

Table 3.1: Did participants who received more thoroughly commented code make
more thoroughly commented changes?

In fact, the results were almost suspiciously good. Running the results through
R gave a 91.34% correlation between the commenting rate of the original file,
and the commenting rate of the change, much higher than what I observed for
any programmer or any project; the largest correlation I recorded (for one of
the programmers working on allegrogl) for any programmer working on any
project was 34.09%; more typical were correlations in the 10s and 20s.

In fact, there was a significant problem with these results. I recommend
trying to figure out what the problem was as you learn more about the other
aspects of the experiment. However, if you don’t want to wait, you can learn
what the problem was, and how I fixed it, by skipping ahead to Section 3.7.

3.3 The Source Code: Solution Structure

Out of curiosity, I looked over the final source code produced by each participant
to see how they solved the task I had given them.

21

The instructions asked participants to add a new kind of checksum, called
PPAIRS, to the code, and to add two new printing options; one that prints the
checksum in hexadecimal, and one that keeps the program from printing the
size of the file(s) it performs a checksum on.

The original source code has two important functions, sysv sum file() and
bsd sum file(), which calculate SysV and BSD-style checksums, respectively.
Not surprisingly, all participants created another, analogous function to per-
form the PPAIRS checksum. In fact, they all gave it the exact same name:
ppairs sum file().

sysv sum file() and bsd sum file() contain a lot of similar code; both
open and close a file, and both are responsible for printing their own checksum.
(For whatever reason, the methods they use to read the file are different.) Several
of the programmers took this as an opportunity to perform refactorings.2 Seven
programmers in all refactored the code in some way. Of these, five (C2, C5,
U2, U3, and U6) created a separate function for printing (including printing the
checksum in hex) to replace the printing code in the checksum functions.

The other two programmers performed more radical transformations. U5
changed the signature of the checksum functions so that rather than just taking
a filename and returning an error code, they returned the size of the file and
the checksum as well (via pointers). An intermediate function would call the
appropriate checksum function and then print the results in the proper format.
U4 did the same thing only his intermediate function handled opening and
closing the files to be checksummed as well.

It is interesting to note that only 2 out 5 participants from group C per-
formed refactorings, whereas 5 out of 6 participants from group UC did the
same (though as a correlation, this has about a 17% chance of occurring by
chance, so it fails the test for statistical “significance”). More striking is the fact
that the two most intensive refactorings occurred in group UC. This is proba-
bly for good reason; changing the signature of the checksum functions, as U4
and U5 did, would involve changing a rather lengthy comment as well in the
commented version of the source code. Alternatively, U4 and U5 may have used
refactoring as a way of making the code easier to understand, to make up for
the lack of comments.

3.4 The Source Code: Style and Placement of
Comments

I also looked over participants’ source code to see to what extent they followed
existing commenting standards. I designed the original commented version of
the source code (see Appendix B.3.1) to follow three commenting standards:

• All function declarations are commented, above the function header.
2One programmer, C4, neglected to implement the new printing options at all; I include

his results in the study because he left his code in a finished state, and it worked in all other
respects.

22

• All variable declarations are commented.

• Only C-style comments are used.

What I hoped to see is that participants in group C would follow these
commenting standards in their final versions.

Only three members of group C followed the standard of commenting every
function declaration: C1, C3, and C4. These were the members of group C who
performed no refactorings, so they only had one new function to comment. C3,
in fact, simply copied the comment from bsd sum file(), neglecting even to
update it in its new location.

Only one of the members of group C (C4) created code where all variable
declarations are commented, though all members except C5 made some effort,
albeit an inconsistent one, to comment new variable declarations they created.
C3 actually said in his survey that he commented all variable declarations, but
neglected to comment two variables he added to main().

However, the results for what style of comment participants used were much
less ambiguous (see Table 3.2). As of the C99 standard [JTC99], both C-style
comments (/* ... */) and C++-style comments (// ...) can be used in C. All five
participants in group C produced code with C-style comments only, including
C4, who indicated in his questionnaire that he had only actually ever used C++.

Compare this to the results for group UC; of the 3 participants who added
any comments, two of them, U1 and U6, used C++-style comments exclusively.
U2 used C-style comments exclusively, but indicated in his questionnaire that
he always uses C-style comments in C because he is never sure if the compiler
implements the new standard.

participant style of comments used
/* C-style */ // C++-style

C1
√

C2
√

C3
√

C4
√

C5
√

U1
√

U2
√

U3

U4

U5

U6
√

Table 3.2: What style of comments did participants use?

In conclusion, the results for when participants commented function and
variable declarations were fairly disappointing, and in any case are not useful
to prove anything because I don’t have anything meaningful to compare them
against.

23

However, receiving thoroughly, consistently commented code does seem to
have had a measurable effect on the syntactic style of the comments people
chose. If we express the correlation between what group people were in, and
whether they chose to use C-style comments as a correlation, it is statistically
significant, even excluding the participants who added no comments at all!

3.5 The Questionnaire: Quantitative Questions

Next, I looked at participants’ completed questionnaires. Many of the questions
on the survey (see Appendix B.4) were quantitative in nature, so I hoped that
even if patterns in the questionnaire weren’t apparent at first glance, I might be
able to notice otherwise invisible patterns by analyzing them with R (as I did
in the first half of the study).

The Questionnaire had seven quantitative questions. Below, I give each of
these questions a code number so I can refer to them side-by-side in a table.

Four questions asked about the participants’ prior experience with C:

What is your programming experience in C? (fill in/check all that apply)

E1: Years of experience (give a number)

E2: Use C on a regular basis (yes/no)

E3: Have worked on a large project in C (yes/no)

E4: Have worked on a project with other programmers in C (yes/no)

One question uses a Likert-style scale to ask about readability.

LR: How easy did you find it to read and understand the original pro-
gram? (1 to 7, with 1 being “very easy”, and 7 being “very difficult”)

Two questions use a Likert-style scale to ask about how much the partici-
pants commented.

LC1: Do you think you wrote more or less comments (measured as a
percentage of lines of code written) than you usually do when you work
on software projects of comparable size? (1 to 7, with 1 being “much
more”, and 7 being “much less”)

LC2: Did you put more or less effort into writing comments than you
usually do when you work on software projects of comparable size? (1
to 7, with 1 being “much more”, and 7 being “much less”)

What I hoped to see was that participants in group C (thoroughly com-
mented code) would report putting commenting more often and putting more
effort into commenting, to a greater extent than participants in group UC.

24

This tended to be the case, but not strongly enough to be significant. R
reported a 38.16% correlation between which group participants were in, and
their response about how much effort they put into commenting; in a group this
small, a correlation this big has a nearly a 1 in 4 probability of occurring by
chance! (The correlation between group and how much more people commented
was even weaker.)

Disappointingly, the quantitative questions on the questionnaire gave me
virtually nothing in the way of interesting correlations. In fact, the only statis-
tically significant correlation was between participants’ response on LC1 (how
much they commented) and LC2 (how much effort they put into commenting),
which is not at all surprising.

Having comments to read, at least in this study, did not make the source
code significantly easier for participants to read and understand. The small size
of the program and the descriptive names may have made up for the lack of
comments in the code that group UC received; some participants remarked that
the code was too small to need comments (see section 3.6.1)

Both groups were fairly equal in terms of how often their participants used
C on a regular basis (E2) and as to whether their participants had worked
with other programmers in C (E4). All participants reported working on a large
project in C.

However, in terms of years of experience (E1) programmers in group UC
tended to be somewhat more experienced than those in group C. This may
provide an alternate explanation for why some programmers refactored and
some didn’t: the seven programmers who performed refactorings were the also
seven programmers with the most experience.

Table 3.3 contains the survey results in their entirety. Note that participant
C4 indicated that he had actually never programmed in C before, but had used
C++ for 2.5 years.

participant question
E1 E2 E3 E4 LR LC1 LC2

C1 6 N Y N 2 4 4

C2 9 Y Y Y 1 2 4

C3 6 Y Y Y 1 3 4

C4 2.5* N Y Y 6 6 6

C5 10 Y Y Y 2 7 7

U1 3 N Y N 2 4 7

U2 12 N Y Y 3 6 6

U4 8 N Y Y 3 7 7

U3 15 Y Y Y 2 4 4

U5 12 Y Y Y 1 7 7

U6 8 N Y N 1 4 5

Table 3.3: How did participants respond to quantitative survey questions?

Why wasn’t I able to get more meaningful results from the quantitative

25

parts of the questionnaire? Part of the problem is that asking programmers to
compare against what they “usually do” (in question LC1 and LC2); asking
programmers to include their habits in their response may add more variables
and thus more noise, which is bad for a sample size this small.

Also, the “years of experience” question yielded somewhat deceptive results.
Out of 11 participants, only 5 were using C regularly at the time of the study;
the other 6 had picked up C at some time in the past, and then stopped using
it. Better questions might have been “in what year did you first use C?” and
“in what year was the last time you used C for a large project?”. Alternatively,
participants could have been given a task in a more currently popular language,
such as Java.

3.6 The Questionnaire: Qualitative Results

Fortunately, the questionnaire also included short-answer questions, and the re-
sponses for these were much more interesting. After reading through the ques-
tionnaires, I noted that different participants tended to made the same types
of responses. In this section, I attempt to categorize participants’ response in
order to give better insight into what motivates programmers to comment.

3.6.1 Quantity of Comments

Questions LC1 (“Do you think you wrote more or less comments...”) and LC2
(“Did you put more or less effort into writing comments...”) were both followed by
a short-answer question asking participants to explain their reasons for doing
so (“If more or less, briefly explain why”).

LC1 and LC2 were very similar in nature, and participants tended to give
similar short-answer responses to both, so I treat them in the same section. In
fact, three participants (C4, U1, and U2) explicitly linked the two short-answer
questions with an arrow or a remark like “same as above”.

Six participants gave perceived commenting standards as a reason for how
much they commented, or how much effort they put into commenting. Here are
their responses:

“To conform with comments already there.” (C2)

“I tried to maintain a comment level that was roughly equivalent to
that of the surrounding code.” (C3)

“There were very few helpful comments. To stick with the spirit of the
code, I omitted comments as well.” (U1)

“I wrote less comments because I saw the rest of the code did not have
the many comments either.” (U2)

“There were no comments in the original, and I was trying to match its
style.” (U3)

26

“There were no comments in the original code, so I felt like this was a
no-comments kind of project.” (U4)

Three participants gave the inherent understandability of the code as a rea-
son that comments were unnecessary.

“Code speaks for itself. Variable & function names are clear.” (C5)

“Once I understood the code, I decided, ’Why bother?”’ (U2)

“This program was very simple, and I don’t think it (or most programs
of comparable size) need any comments.” (U3)

Two participants gave the similarity of their new code to the old code as a
reason not to comment. I am not entirely sure of their reasoning; they might
have been only thinking about explaining their changes to the maintainer of
csum, or perhaps they might have been trying to make an argument based on
commenting standards: anyone who can understand the original version can pre-
sumably understand the participants’ changes, so there is no reason to comment
any more than the original version is commented (even if it is not commented
at all). In any case, here are their responses:

“The code mostly followed the existing version.” (U5)

“Most of the new code was very similar (cut + paste) to existing code.”
(U6)

(Ironically, U5 made one of the more extensive changes to the code; see
Section 3.3)

Only one participant mentioned explicitly the fact that other programmers
might read her comments:

“Amount of comment depends on whether or not I expect other people
to be reading the code.” (C1)

Finally, three participants gave a reason relating to the perceived impor-
tance of the final product, all of them a reason not to comment. In some ways,
this shows a weakness in my study (and most studies of this type): although I
presented a scenario where their final product was important, participants knew
that in fact their code was never going to be used. Here are their responses:

“I didn’t think of this as production code.” (C4)

“I wanted to complete the program as quickly as possible.” (C5)

“I just focused on completing the task at hand. I know I’m not main-
taining this.” (U5)

27

The fact that so many participants mentioned following existing standards
as a reason to comment more or less strongly supports my hypothesis. In fact,
it suggests that following existing standards is the most important factor in de-
termining when people comment more often than usual. However, the perceived
inherent understandability of the code, the perceived importance of the task,
and an explicit desire to communicate with other programmers all appear to
play some role as well.

3.6.2 Style and Placement of Comments

The last two questions on the survey dealt with not the amount of commenting,
but the style and placement of comments:

Q3: Please list any patterns you tried to follow when commenting (for
example, placing a comment before every function, starting [functions
inside comments]3 with a “//”, etc.)

and

Q4: If [there are] any of the above patterns that you don’t normally
follow when you program in C, circle them, and explain briefly why you
chose to follow these patterns during this study.

In looking at the surveys, I wasn’t so much interested in what commenting
conventions people followed (which I had already seen from looking at the source
code), but what caused them to alter their preexisting commenting habits, and
why.

Seven out of eleven programmers (C1, C2, C3, C4, U1, U5, and U6) indicated
in some way through their responses that they changed the way they commented
for this study.

Q4 asks programmers to circle what they did differently; nobody actually
did this. Q3 asks programmers to name patterns that they followed; only two of
the programmers in group C (C2 and C3) named any patterns explicitly. (Group
UC, receiving uncommented code, had very little to work with; one respondent
(U1) talked about following ‘‘the pattern of not commenting at all”.) However,
though the participants weren’t in general very specific about explaining what
they did, they did give interesting reasons.

Five of the participants mentioned trying to follow existing commenting
standards in their responses:

“I copied the style of commenting that already exists in the code.” (C1)

“I placed a comment before the function I added (or copy-pasted,
rather). I commented every variable declaration, saying what it’s for.
I placed a comment before every major block, stating its purpose. I fol-
lowed all of the above comment styles to maintain consistency with the
existing code.” (C3)

3I had a couple of typos in the last two questions, see Appendix B.4 for the actual version.
Only one participant noticed.

28

“I have my own coding conventions that I use. Here I tried to follow
existing conventions.” (C4)

“I followed the pattern of not commenting at all.” (U1)

“I tried to make my code be consistent with the original file.” (U6)

Three of the participants gave reasons for where they placed comments based
on the understandability of the code:

“I only commented the checksum PPairs algorithm, since I thought that
would be the trickiest to understand.” (U2)

“Normally I carefully comment out function prologs. I only comment
details in functions when they are complicated and/or tricky and/or
big. In this case I added just one function I didn’t really have to explain
much.” (U5)

“Since this code was clear to me, I didn’t try to improve the code
documentation.” (U6)

One participant said that he put less effort into commenting because he was
maintaining (i.e. modifying) someone else’s code:

“Usually I’m not maintaining code, so I put more into comments.” (U6)

If other programmers have the same tendency, it may explain why I found
that the first version of a file (where the entire file is the “change”) tends to
have a higher rate of commenting than subsequent changes to the file.

One participant mentioned the strange development environment as a reason
for introducing extraneous comments:

“In this case I commented ’//Me’ just so I could know where I was
making changes. In a real situation, I would be better versed in the
source code & would be using CVS, so I wouldn’t need to do this.”
(U1)

Finally, one participant mentions cutting and pasting source code as a reason
for following that code’s commenting standards:

“Copied comment style when copied code.” (C4)

3.7 Videos, and the Copying Problem

I had a nagging suspicion that my quantitative results for the commenting
rate of people’s changes was too good to be true, (or at least, too good to
be meaningful). Eventually, I realized what the problem was.

29

A large part of the final code participants produced was ppairs sum file(),
the function that computes the PPAIRS checksum. In all cases, ppairs sum file()
performed a task analogous to the other two checksum functions, bsd sum file()
and sysv sum file(). What I wondered was, might participants have copied
and pasted one of the existing checksum functions to use as a model, and (in
the case where the original code was commented), copied the comments along
with it? diff, which I used to determine which characters were added, cannot
determine if the “added” characters were actually written by the programmer,
or merely copied from somewhere else.

To find out what programmers were doing, I looked at the screenshot videos
generated by Camtasia. It turns out that programmers did indeed make heavy
use of copying. Eight of the eleven participants (C3, C4, C5, U2, U3, U4, U5, U6)
copied one of the two original checksum functions wholesale to use as a starting
point for ppairs sum file(); those who received commented code copied the
function header comment (which is quite large) as well as all comments in the
checksum function.

Of the remaining three participants, C2 created the function header and
braces for ppairs sum file(), but copied its body (including comments) from
sysv sum file(). U1 essentially created a copy of sysv sum file() by copy-
ing pieces of both checksum functions at different times. Only C1 typed in
ppairs sum file() by hand but this is the exception that proves the rule; she
used bsd sum file(), as a model, retyping relevant code almost verbatim, but
interestingly, excluding the comments!

The problem here is not simply that programmers copied code; this is a com-
monly used technique in real programs as well; for example, a study by Antoniol
et al. estimates that the Linux kernel is 15–25% duplicated code [APMV00]. In
fact, the problem with with my experiment is not merely that programmers
copied code more often than they might in most software projects.4

The problem here is that the large degree of copying affected my method of
measurement in a large, but meaningless way. It is not particularly interesting
that programmers in group C “produced” comments by cutting and pasting
them, nor is this effect likely to happen in projects that involve less copying. If
I wanted my results to be useful, what I really needed was a way of measuring
how thoroughly commented programmers’ changes were, that was unlikely to
be affected by copying and pasting code.

Ideally, I would use a tool similar to diff that could also determine when
chunks of code were copied and pasted. Then I could modify the Comment
Counter to consider characters “added” only if they weren’t part of a copy-
paste. This way, I could meaningfully determine which characters had been
added by participants, and would have a way of measuring commenting that
would not be affected by copying and pasting. There are several tools that find
copies in source code, such as Copy-Paste Detector [CPD]. However, such tools

4The task in this study had a lot more to do with checksums than most software projects,
but most people would not argue that my results would only apply to software projects involv-
ing checksums, because the fact that the task was about checksums is unlikely to significantly
affect the amount of commenting that people produced.

30

are not directly analogous to diff; they are more aimed at finding copies within
a body of code (to suggest refactorings) rather than between versions.

What I realized is that I didn’t actually need to obtain such a tool, or
rewrite Comment Counter. I could achieve the same effect by simply undoing
the copying. I knew from the videos which of the two functions participants
had based their ppairs sum file() function on. If I could remove the func-
tion that participants had copied from, and move ppairs sum file() into its
place, then I could run the Comment Counter as normally. diff would now
only consider characters in ppairs sum file() “added” if they were added af-
ter the programmer had copied-and-pasted the original checksum function to
use as a template. Thus, if a participant copied, say sysv sum file(), com-
ments and all, the copied comments would not show up in my measurements
because diff would consider them made of the same characters that made up
sysv sum file() in the original version of the source code.

I performed this transformation by hand on the participants’ source code,
and re-ran the Comment Counter (manually checking diff’s output to ensure
it was behaving as expected). Table 3.4 contains the revised results, using the
new, meaningful definition of “change” (compare to Table 3.1). (The “final”
rate of commenting is still that of the file as participants left it, not the way it
was after my edits.)

participant commenting rate
original final change

C1 42.66 38.18 13.47

C2 42.66 35.55 9.16

C3 42.66 37.79 10.58

C4 42.66 41.28 15.13

C5 42.66 38.55 5.07

U1 0.00 3.08 3.06

U2 0.00 2.46 6.98

U3 0.00 0.00 0.00

U4 0.00 0.00 0.00

U5 0.00 0.00 0.00

U6 0.00 0.57 3.18

Table 3.4: Did participants who received more thoroughly commented code make
more thoroughly commented changes? (revised)

Even after removing the effect of copying and pasting, there is still an impres-
sively strong correlation (81.30%) between the commenting rate of the original
file, and the commenting rate of people’s changes. This correlation has an 0.23%
chance of occurring by chance. The fact that I observed a higher correlation than
in my statistical studies probably has to do with the controlled nature of my
experiment, and the extremes of commenting in the code that I gave to partic-
ipants (either no comments, or as many comments as are reasonably possible).

Some participants (C2 and U1) created an usually large amount of commented-

31

out source code that the Comment Counter misinterpreted as comments (i.e.
they wrote code, and then commented it out). Also, as U1 mentioned in her ques-
tionnaire, some participants (C2, C5, and U1) left comments that said nothing
about how the source code worked, but were simply there to mark where they
had made changes (such as /* new !! */). To get a less noisy picture of what
was going on, I removed all of these comments as well, and re-ran the Comment
Counter. See Table 3.5 for those results.

participant commenting rate
original final change

C1 42.66 38.18 13.47

C2 42.66 35.55 5.88

C3 42.66 37.79 10.58

C4 42.66 41.28 15.13

C5 42.66 38.55 1.87

U1 0.00 3.08 2.63

U2 0.00 2.46 6.98

U3 0.00 0.00 0.00

U4 0.00 0.00 0.00

U5 0.00 0.00 0.00

U6 0.00 0.57 3.18

Table 3.5: Did participants who received more thoroughly commented code make
more thoroughly commented changes? (descriptive comments only)

With these non-descriptive comments removed, the correlation between the
original rate of commenting and the commenting rate of the change drops to
68.95% (the noise actually favored my hypothesis), but is still well within the
bounds of statistical significance (a correlation this large has only a 1.89% prob-
ability of occurring by chance in a sample this large).

3.8 Conclusions

There is ample evidence in this study to show that programmers given more
thoroughly commented code produced more thoroughly commented changes as a
result. Both my quantitative measurements, and participants’ survey responses,
support my hypothesis.

3.8.1 Caveats: Representativeness

However, as with my statistical study, there is the question of representative-
ness. How much bearing does the effect I observed in this one study have on
programmers in general? Or to put it another way, is there something special
about my study that caused some people to comment more, that isn’t there in
most situations?

32

For a while, I was worried that the high degree of copying might seriously
impact the representativeness of this study (in which case it would at best apply
to situations in which comments were likely to be copied and pasted), but I was
able to isolate and remove this effect.

I don’t think the language used for this study has any more bearing on its
representativeness than the fact that it’s about checksums; commenting in C is
not much different from commenting in other languages. (Organized systems of
commenting such as Javadoc [Kra99] that are meant to be read by an automated
tool may have an effect, but this is an orthogonal issue; such tools, such as
Doxygen [Dox], exist for C as well.)

The code in this study was by necessity much smaller than most software
projects (though it was based on a real program), and simple to the point than
many of the participants indicated that they didn’t believe the code needed
comments. However, in some ways, the simplicity of the code only strengthens
my hypothesis; I was able to induce participants to comment even when it
was largely unnecessary. In theory, given a larger, more complex program that
required more comments to be understood, participants might simply comment
their changes at the necessary level, regardless of whether the original code was
throughly commented. However, in practice, programmers routinely produce
insufficiently commented code, so there is good reason to believe that thoroughly
commented code would induce programmers to comment more often on large,
complex projects, just as on small, simple ones.

In keeping with my statistical study, the scenario I gave to participants in
this study is that they were submitting a patch for an Open Source project.
While I doubt that participants only try to comply with existing standards in
Open Source projects, work environments are complex enough that there could
easily be other factors in proprietary projects that I have not considered, so it
would not be entirely proper to assert that the results of this study apply to
non-Open Source projects, without further investigation.

It is probably significant that in the scenario, participants were explicitly
asked to modify someone else’s source code, presumably for release to the outside
world. Though only one participant talked explicitly about other people reading
her comments, many participants spoke of attempting to comply with existing
standards; the scenario implies a certain degree of social pressure. It is unclear
from this study what effect, if any, the rate of commenting of a piece of source
code would have on programmers who modify it solely for their own use.

Finally, there are two caveats that apply to most studies of this kind. The first
is that I used students, not professional programmers. The common complaint
about using students is that they tend to be less skilled or experienced than
professionals. In this case, all but two of the participants whose results I used
had more than 5 years of C experience (albeit not always active), so this is
probably less of a problem for my study than for most. Another problem is that
students at the same university tend to have taken the same classes, and thus
may have acquired similar biases not representative of programmers in general.
However, in this case, nine of the eleven participants were graduate students,
and thus had actually received their basic programming training from a variety

33

of sources.
The other caveat about my study is that it’s a study. It is by nature, short,

simplified, and about doing something that participants know to be contrived.
For example, it is conceivable that when programmers work on a project for
a long time, they become more comfortable following their own commenting
tendencies, and feel less obligation to try to comply with commenting standards
they perceive in the code they modify. The opposite could be true as well;
programmers might become habitualized to the commenting standards in a
project, and follow them more strongly over time. If either of these are true,
there’s simply no way to determine this scientifically in a 90-minute study.

3.8.2 Making Use of My Results

To the extent that you believe my study applies to your situation, my results
suggest that it is indeed worthwhile to comment code before asking other people
to modify it if you want their changes to be thoroughly commented.

However, it is worth noting that although participants who received thor-
oughly commented code tended to comment more than other participants, they
commented at a much lower rate than the original code was commented (see
Table 3.5). Also, as in my statistical study, there was quite a bit of variance from
programmer to programmer; two of the participants who received thoroughly
commented code actually commented their changes at a lower rate than one
of the participants who received uncommented code. Thoroughly commenting
code is not a guarantee that other programmers will follow in your footsteps.
Aside from programmers’ own personal tendencies, the perceived importance of
their contribution can be a factor as well. And getting programmers to make
comments that they see as unnecessary may be a lost cause!

There also seems to be very little assurance that programmers will follow,
or even notice, your coding conventions. At least in this study, it seems to be
easier to get programmers to follow syntactic standards for commenting than
to get them to comment variable declarations, and even more difficult to get
them to comment what functions do (probably because this takes the most
work). However, to be fair, this was not a properly constructed study about
commenting style or placement; I discuss possible ways of constructing such a
study in Section 5.2.

34

Chapter 4

Related Work

4.1 Comments and Readability

In this paper, I have operated under the simplifying assumption that comments
are almost always desirable, in the sense that they make programs easier for
programmers to read and understand.1 In fact, the reality is a bit more subtle.
As Sheppard et al. found in one of the earliest empirical studies of commenting
and readability [SBC78]2, comments do not harm readability, but they are not
necessarily always helpful either. In many cases (as in my own empirical study,
see Section 3.5), source code is so simple and straightforward that comments
provide no additional benefit.

Exactly when comments are helpful depends largely on context. Woodfield
et al. [WDS81] conducted an empirical study dealing specifically with short
comments inserted just before a logical module in a program, and found that
they aided program comprehension. Tenny [Ten88] conducted an empirical study
of how comments and procedures affect program readability, and found that
comments were only helpful in the absence of procedures (ironically, Woodfield
et al. found that dividing the program in their study into procedures actually
made it less readable).

Descriptive names (for variables, procedures, classes, etc.) can also aid read-
ability, and in some cases can make up for a lack of comments. In fact, Detienne,
in her book on cognitive aspects of programming [Det02], lumps both comment-
ing and descriptive naming into “documentation” and treats them similarly.

4.2 Affecting Commenting Behavior

Two general facts are known about changes in programmers’ commenting be-
havior. First, the degree of expertise that programmers have will affect what

1Though if someone wanted to induce programmers to produce fewer comments, they could
conceivably use my findings to do that as well.

2Cited through Woodfield et al. [WDS81].

35

kinds of comments they create. Riecken et al. found that novices’ comments
tend to convey syntactic knowledge (how the programming language works),
while experts, considering such knowledge obvious, tend to focus on semantic
knowledge (how the program works) [RKBR91].

Second, expert programmers tend to make more high-level comments when
designing their own program than when modifying somebody else’s code; Rouet
et al. [RDDB95]3 found that when modifying someone else’s code, experts tend
to produce only comments that reflect reasoning at the textbase level (how
the program is structured, rather than what it does, or the rationale behind
structuring it that way). This difference may partially explain the difference in
rate of commenting that I found between the first version of a file and subsequent
versions (see Section 2.4).

4.3 Tools to Help Programmers Comment

As early as 1982, researchers attempted to help programmers to produce more
thoroughly commented code by designing tools which help them comment. Er-
ickson [Eri82] wrote a tool for FORTRAN that creates comments by interac-
tively querying the user about parts of the program. Roach et al. wrote a similar
tool for Prolog [RBT90]. Shum and Cook developed an entire language and pro-
gramming system, the Abstraction-Oriented Programming System (AOPS), in
order to encourage programmers to produce better-commented code [SC93]. In-
terestingly, students tended to produce lengthier comments (more characters
per comment) when using AOPS than when using a conventional programming
system, but produced about the same number of comments overall [SC95].

More recently, a number of investigations have been made into commenting
by voice. Chiueh et. al [CWL00] conducted a survey of programmers to help
them design their own voice commenting tool, Variorum, and found that pro-
grammers prefer speech as a medium of documentation over drawing and typing.
Voice commenting systems have a significant affect on the quantity and nature
of comments that programmers produce. Soudian and Fels [SF02], in a study
of their voice commenting tool, the Verbal Source Code Descriptor (VSCD),
found that users produced about twice as many comments as a control group
using a conventional editor; VSCD users also tended to produce a greater pro-
portion of variable definition and inline comments. Zhao [Zha04], in a study of
her own VoiceNotes system, did not perform a direct experimental comparison
with conventional commenting, but did find an important correlation between
the purpose of voice comments and the time when they are made, which is not
present in conventional commenting. Finally, Begel, who created a system called
Commenting by Voice, gives a good summary of the motivations behind voice
commenting, and the practical issues behind building a voice commenting tool
[Beg02].

3Cited through Detienne et al. [DRBDD96].

36

4.4 Mining Software Repositories

My study was not the first to investigate comments by running an automated
tool on existing software repositories. Stamelos et al. ran an automated code
quality tool on 100 Open Source projects, and found that, on the average, 31% of
the components in any given project needed to be more thoroughly commented
(according to the code quality tool) [SAOB02]. Matwin et al. used noun phrases
extracted from comments to build a model of a program’s problem domain in an
automated fashion. Etzkorn et al. used an ad-hoc technique meant to simulate
random sampling, to collect statistics on comments’ verb tense and content, and
then used that knowledge to modify a natural lanaguage parser so that it was
able to correctly parse comments [EBD99].

Finally, there are a very large number of studies that mine software reposi-
tories for purposes other than studying comments. At the time of writing, the
first International Workshop on Mining Software Repositories is scheduled to
be held later this month. The one software repository mining technique which
may be particularly useful for studying commenting is origin analysis, that is,
determining when a piece of code has been moved or copied into another file in
the same project. Godfrey et al. [GDKZ04] describe two case studies where they
used their tool Beagle to conduct origin analysis on the source code for GCC
and PostgreSQL.

37

Chapter 5

Future Work

There is still quite a lot of work to be done to understand scientifically pro-
grammers’ commenting habits, and the motivations behind commenting. In this
section, I explain how studies like my statistical study and my experiment could
be improved, and then more general ways that this field could be explored.

5.1 Improving on the Statistical Study

It would be very worthwhile to re-do my statistical study without the method-
ological flaws of the first one. Projects should be selected randomly from among
the projects on SourceForge rather than arbitrarily, and the correlations I ex-
pect to find should be chosen and defined in advance (including the way that
variables are defined; for instance, is “age” age in seconds or version number?).
It would also be instructive to study more than nine projects (though gathering
and processing such data could be time-consuming). It would also be helpful to
study some very large Open Source project (such as Mozilla), and some propri-
etary commercial projects.

My data collection methods could also be extended. So far, the Comment
Counter only collects data for the main branch or “trunk” of a project; per-
haps something interesting happens in the branch versions, especially before
a release. It might also be possible to integrate clone-detection software into
the Comment Counter in order to guess when code has been copied and pasted,
rather than originally conceived. One final thing that could be added is a heuris-
tic for determining when a comment is in fact commented-out code, making use
of Zemankova and Eastman’s finding that comments tend to be lexically more
similar to English than source code [ZE80].

But it would also be possible to collect more subjective kinds of data, if a
different method were used. Though in a limited sense it may be possible to
infer some things using simple heuristics (such as my “bug fix” heuristic), it is
in general difficult to do this in a totally automated fashion.

Instead, it would make more sense to follow the lead that Etzkorn et al.

38

[EBD99] took in their comment parsing study, and use random sampling: have
a program randomly select some comments from a code base, and then have
human beings categorize them as to their purpose and usefulness. This method
would be particularly useful to identify comments which have become out-of-
date and are no longer correct.

5.2 Improving on the Experiment

Though my experiment was quite successful in supporting its hypothesis, there
are several ways it could be improved if someone wanted to try to duplicate my
results.

The most serious problem with this study was the problem of participants
copying and pasting code. Though I was able to identify and counteract this
problem by closely studying how participants created their source code, it would
be better to avoid this problem entirely. It should be possible to construct a
scenario where all the work that programmers need to do is orthogonal to what
the code already does; for example, if the code is designed to perform a sort,
the task should focus on anything but sorting.

It could be helpful to try think of programming tasks more “worthy” of
commenting; many participants in my study indicated that they saw no need for
commenting, and more comments would probably produce more striking results
(or maybe not; maybe if comments are truly necessary, perceived commenting
standards would have less effect). However, using such comment-worthy tasks in
a study is tricky; code that requires explanation through comments is probably
also more difficult for participants to construct.

It would be worthwhile to give participants a scenario that does not involve
Open Source, in order to better show that the effect I observed does not apply
exclusively to Open Source programs. (My guess is that this would make no
difference, as long as the scenario indicates to participants that their work is
important.) It also might be helpful to use a language that participants are more
likely to be currently using (such as Java).

Though my study was able to incidentally turn up statistically significant
results about the style of comments that programmers chose (C- or C++-style
comments), it was not really set up to be a study about style. A study that gave
two groups of programmers identical code to modify, only one used all C-style
comments, and one used all C++-style comments, would probably turn up sim-
ilarly significant results (ideally, such a study should also have a control group,
that received code with no comments). It would also be best to conduct such a
task in a language where programmers are aware of both styles of comments,
and both are commonly used (again, such as Java).

39

5.3 Other Future Work

Though I was ultimately able to show that the commenting rate of code affects
how much people will comment modifications to that code, I was not able to
give a clear answer about how big this effect is. Ideally, one should be able
to look at the commenting tendencies in a given project, and the commenting
tendencies of a given programmer, and be able to predict, within some degree
of error, what that programmer will do (at least with respect to commenting)
upon joining that project. Statistical studies like the one I conducted would
be the basis of forming such a model, though it is possible that other sorts of
data about commenting (such as the purpose of comments) may turn out to be
important in predicting how people will comment.

It would be useful to consider commenting in conjunction with other doc-
umentation. For example, do programmers tend to comment a program more
thoroughly when it has other supporting documentation (such as manuals)?

Another piece in constructing a model about commenting is to learn more
about what programmers are thinking when they choose whether to make com-
ments. Though the short-answer responses on the questionnaire in my experi-
ment gave some insight into what programmers were thinking, both my statisti-
cal study and my experimental study were primarily about what programmers
did, not what they were thinking, or why they did it.

Finally, further investigations should be made into the relationship between
comments and refactoring. In my experiment, it appeared that programmers
were more likely to refactor uncommented code than heavily commented code.
Do comments indeed discourage refactoring, and if so, is it the mere mechanical
barrier of having to rewrite comments as well as code, or are programmers more
likely to re-arrange code that they perceive to be stylistically “deficient” in some
way?

40

Bibliography

[APMV00] G. Antoniol, M. Di Penta, E. Merlo, and U. Villano. Analyzing
cloning evolution in the linux kernel. Journal of Information and
Software Technology, 44(13):755–765, 2000.

[Beg02] Andrew Begel. Program commenting by voice.
http://www.cs.berkeley.edu/∼abegel/cs294-1/voice-
comments.pdf, 2002.

[Cam] Techsmith Camtasia. http://www.techsmith.com/.

[CPD] Copy-Paste Detector. http://pmd.sourceforge.net/cpd.html.

[CVS] Concurrent Versions System. http://www.cvshome.org/.

[CWL00] Tzi-Cker Chiueh, Wei Wu, and Lap-Chung Lam. Variorum: A
multimedia-based program documentation system. In IEEE Inter-
national Conference on Multimedia and Expo (I), pages 155–158,
2000.

[Cyg] Cygwin. http://www.cygwin.com.

[Det02] Franciose Detienne. Software Design – Cognitive Aspects. Springer,
2002.

[Dox] Doxygen. http://www.stack.nl/∼dimitri/doxygen/.

[DRBDD96] Francoise Detienne, Jean-Francois Rouet, Jean-Marie Burkhardt,
and Catherine Deleuze-Dordron. Reusing processes and document-
ing processes: toward an integrated framework. In Proceedings
of the Eight Conference on Cognitive Ergonomics, pages 139–144,
1996.

[EBD99] Letha H. Etzkorn, Lisa L. Bowen, and Carl G. Davis. An ap-
proach to program understanding by natural language understand-
ing. Nat. Lang. Eng., 5(3):219–236, 1999.

[Eri82] Timothy E. Erickson. An automated fortran documenter. In Pro-
ceedings of the 1st annual international conference on Systems doc-
umentation, pages 40–45. ACM Press, 1982.

41

[GDKZ04] Michael Godfrey, Xinyi Dong, Cory Kapser, and Lijie Zou. Four
interesting ways in which history can teach us about software. In
International Workshop on Mining Software Repositories, 2004.

[GNUa] GNU diffutils. ftp://ftp.gnu.org/pub/gnu/diffutils.

[GNUb] GNU diffutils manual. http://www.gnu.org/software/diffutils/manual/diff.html.

[JTC99] JTC1/SC22/WG14. International Standard 9899: Programming
languages — C. ISO/IEC, 1999.

[Kra99] Douglas Kramer. API documentation from source code comments:
A case study of javadoc. In Proceedings of the 7th Annual Inter-
national Conference of Computer Documentation (SIGDOC-99),
pages 147–153, N.Y., September 12–14 1999. ACM Press.

[Krs94] Ivan Krsul. Authorship analysis: Identifying the author of a pro-
gram. Technical Report Purdue Technical Report CSD-TR-94-030,
Purdue University, 1994.

[Mar02] David Marin. Collaboration and com-
menting behavior in the harmonia project.
http://www.cs.berkeley.edu/∼dmarin/papers/ccbhp.ps, 2002.

[NT] NT emacs. http://www.gnu.org/software/emacs/windows/ntemacs.html.

[R] The R project. http://www.r-project.org/.

[RBT90] David Roach, Hal Berghel, and John R. Talburt. An interactive
source commenter for prolog programs. In Proceedings of the con-
ference on SIGDOC ’90, pages 141–145. ACM Press, 1990.

[RDDB95] Jean-Francois Rouet, Catherine Deleuze-Dordron, and Andre Bis-
seret. Documentation skills in novice and expert programmers: an
empirical comparison. In Proceedings of the seventh workshop of
the Psychology of Programming Interest Group, January 1995.

[RKBR91] R. Douglas Riecken, Jurgen Koenemann-Belliveau, and Scott P.
Robertson. What do expert programmers communicate by means
of descriptive commenting? In Empirical Studies of Programmers:
Fourth Workshop, Papers, pages 177–195, 1991.

[SAOB02] I. Stamelos, L. Angelis, A. Oikonomu, and Georgios L. Bleris. Code
quality analysis in Open-Source software development. Informa-
tion Systems Journal, 12(1):43–60, 2002.

[SBC78] S. B. Sheppard, M. A. Borst, and B. Curtis. Predicting program-
mers’ ability to understand and modify software. In Symposium
Proceedings: Human Factors and Computer Science, pages 115–
135, June 1978.

42

[SC93] Stephen Shum and Curtis Cook. AOPS: an abstraction-oriented
programming system for literate programming. Software Engineer-
ing Journal, 8(3):113–120, May 1993.

[SC95] Stephen Shum and Curtis Cook. Using literate programming to
teach good programming practices. SIGCSEB: SIGCSE Bulletin
(ACM Special Interest Group on Computer Science Education),
26(1):66–70, May 1995.

[SF] Sourceforge.net. http://www.sf.net.

[SF02] S. Soudian and D. L. Fels. Verbal source code descriptor.
http://www.info.uqam.ca/∼lounis/wess2002papers/Soudian Fels.pdf,
2002.

[SQL] PostgreSQL. http://www.postgresql.org/.

[Ten88] T. Tenny. Program readability: Procedures versus comments.
IEEE Trans. Softw. Eng., 14(9):1271–1279, 1988.

[Van02] Michael L. Van De Vanter. The documentary structure of source
code. Information and Software Technology, 44(13):767–782, Oc-
tober 2002.

[WDS81] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. The effect
of modularization and comments on program comprehension. In
Proceedings of the 5th international conference on Software engi-
neering, pages 215–223. IEEE Press, 1981.

[WN02] Robert Warren and Omar M. Nafees. Understanding software evo-
lution through comment analysis, 2002.

[ZE80] Marie Zemankova and Caroline M. Eastman. Comparative lexical
analysis of fortran code, code comments and english text. In Pro-
ceedings of the 18th annual ACM Southeast regional conference,
pages 193–197. ACM Press, 1980.

[Zha04] Jinger Yu Zhao. Voicenotes: A discourse
analysis of programmer voice annotations.
http://www.people.fas.harvard.edu/∼jyzhao/Final.pdf, 2004.

43

Appendix A

The Comment Counter

In true UNIX fashion, the Comment Counter works by gluing together several
small utility programs to accomplish a larger task.

The Comment Counter examines each file in the repository. If the filename
has an extension that the Comment Counter recognizes as belonging to a source
code file (e.g. “.c”), the Comment Counter downloads the CVS log for that file
(by invoking the cvs command) to determine how many revisions were made,
when, and by whom.

Next, the Comment Counter checks out each version of the file (again by
invoking cvs).1 Files are checked out with the -kk option, so that cvs does not
create spurious changes by expanding CVS keywords inside files.

The Comment Counter then compares each version of the file (other than the
first) against its previous version with GNU diff [GNUa, GNUb], to determine
which characters were added (for this study, I did not use data about which
characters were removed). diff normally works line-by-line, but the Comment
Counter forces it to compare files character-by-character by feeding it each char-
acter on a separate line. I used the “-d” option to diff, which is somewhat slower,
but yields the most accurate results. The Comment Counter automatically con-
siders all characters in the first version of a file to be “added” (though I later
found this to be inappropriate; see Section 2.4).

For each version of the file, the Comment Counter chooses and runs one of
several lexers, built using flex, in order to determine which characters are in
comments. I ultimately built lexers to deal with C, C++, Java, Objective C,
ML, shell script, Tcl, Perl, Lisp, and SQL. Many of the lexers were by necessity
approximate; for instance, the Perl lexer assumes that anything starting with a
hash (#) and ending with a newline is a comment, even though there are special

1Each version on the main branch. CVS repositories can contain more than a linear se-
quence of versions; in some cases, programmers create a “branch” in the sequence of versions,
for example, in order to simultaneously work on a stable release, and to add new features to
a less stable version. For simplicity, I chose only to analyze the main branch. Besides making
the code of the Comment Counter simpler, it also allowed me to interpret version number as
an integer (for example, version 1.5 becomes simply 5), so that I could use it in correlations.

44

cases in Perl for which this is not true.
Finally, the Comment Counter combines this information to make a tally of

how many characters were in comments, how many characters were added, how
many added characters were in comments, and the total number of characters
in the file.2 The Comment Counter enters this information into a PostgreSQL
database [SQL], along with descriptive information about the change, such as
name of the file, which programmer made the change, CVS version number, and
the message that the programmer gave to the CVS repository when checking
the change into CVS.

After some early attempts at analyzing statistics collected with the Comment
Counter, I realized that I needed to make a special case for copyright notices.
Common in open source projects, copyright notices are a source code comment
which explains how the source code is licensed (under the GPL or a BSD-style
license, for instance). Typically, identical or nearly identical copyright notices
appear at the beginning of every source code file in an open source project.
Because they are simply copy-and-pasted, copyright notices do not represent
significant effort by programmers, nor, unlike most other comments, do they
explain how the code works.

Unfortunately, copyright notices are usually fairly large (about 300 charac-
ters), and often end up representing a significant portion of the characters in
comments for a given file (if not a significant portion of the total characters
in the file). To keep copyright notices from skewing my results, I modified the
Comment Counter to treat copyright comments as if they were not part of the
file at all, counting characters in a copyright comment neither as characters in
comments, nor towards the total character count for a file.3

2The Comment Counter can also, for each of these categories, collect information about
which characters were non-whitespace, and which were alphanumeric, to use in a more com-
plicated form of measuring how much programmers were commenting. In the end, the compli-
cated measurement turned out not to be significantly different than the “rate of commenting”
method I use in this paper.

3Copyright notices could usually be easily identified because they contained the string
“copyright”, though I could also instruct the Comment Counter to screen out particular
comments that were known to be part of a copyright notice.

45

Appendix B

Experimental Materials

B.1 Recruitment Message

Are you interested in participating in a study to help improve the
state of the art of software engineering? My name is David Marin; I’m
a grad student in Computer Science, and I’m going to be conducting a
study for the Harmonia group, the premiere software engineering
research group at UC Berkeley. The Harmonia group is part of the
Computer Science department, and is headed by Prof. Susan L. Graham.

The study will be conducted over the next month. It involves a short
programming task in C, so you should be reasonably comfortable with
this language (you need not be an expert). The study can be conducted
at a time and place that is convenient for you. I ask that you set
aside at least 90 minutes for this study, though it is possible that
you may finish early.

As a thank you, participants will receive a 14 oz. package of Trader
Joe’s Triple Ginger Snaps. To satisfy university rules, you must be
over 18 to participate.

For more information, including how to participate, contact David
Marin by email at XXX@XXX.XXX, or by phone at (XXX) XXX-XXXX.

46

B.2 Instructions

csum is a simple Open Source program that can print out two kinds of checksums for
one or more files. You are asked to add a third kind of checksum, the PPAIRS
checksum, and add some printout options. You are submitting a patch to the authors
in the hopes that your changes will be added to the main distribution.

To calculate the PPAIRS checksum of a file, interpret every byte as an (8-bit)
integer, and take the product of each byte with the byte following it. The PPAIRS
checksum is the sum of all the products, modulo 2^16. For the last byte in the file,
the "following" byte is the first byte in the file.

If called with the --ppairs option, your final program should print out on a
separate line, for each file it is passed, the PPAIRS checksum as a decimal number,
followed by the filename (i.e. like the default behavior, only with a different kind of
checksum).

Furthermore, if called with the -x or --hex options, the program will print out the
checksum as an 8-digit hexadecimal number, and if called with the --no-byte-
count option, it will not print out the file size. These options should work
regardless of which checksum algorithm is specified.

A Makefile is provided for your convenience; type make on the command line to
compile your program. You should not need to create or modify any files other than
csum.c. Makefile.ppairs contains a PPAIRS checksum of the Makefile. To make a
patch, type make patch on the command line.

If any part of the problem statement is unclear to you, please ask me.

You will have as much time as you need to complete this task.

47

B.3 Source Code

The source code I used in my experiment is based on a real Open Source pro-
gram called sum, which is part of the GNU coreutils package, available here:
ftp://ftp.gnu.org/pub/gnu/coreutils. Because the original version was li-
censed under the GNU General Public License (see http://www.gnu.org/licenses/gpl.html),
my modified versions may be distributed under this license as well.

B.3.1 Group C (commented)

/* csum -- checksum and count the blocks in a file

Copyright (C) 86, 89, 91, 1995-2001 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option)

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */

/* Similar to BSD sum or SysV sum -r,

except like SysV sum if -s option is given. */

/* Written by Kayvan Aghaiepour and David MacKenzie. */

#include <stdio.h>

#include <sys/types.h>

#include <getopt.h>

#include <errno.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

/* Dummy character values corresponding to

options, for use in getopt_long() */

/* --help */

#define GETOPT_HELP_CHAR -2

/* --version */

#define GETOPT_VERSION_CHAR -3

/* What error code to return */

#define EXIT_SUCCESS 0

#define EXIT_FAILURE 1

/* Check if two strings are equal */

#define STREQ(str1, str2) (strcmp(str1, str2) == 0)

48

/* A pointer type for a checksum function that

takes a filename (or "-" for standard input) */

typedef int (*sum_func_ptr) (const char *);

/* The official name of this program (e.g., no ‘g’ prefix). */

#define PROGRAM_NAME "csum"

/* The authors; printed out by usage() */

#define AUTHORS "Kayvan Aghaiepour and David MacKenzie"

/* The name this program was run with. (set in main()) */

char *program_name;

/* Nonzero if any of the files read were the standard input. */

static int have_read_stdin;

/* Struct to make getopt_long work

the fields are:

- option name

- how many args it takes

- how to return the argument (in this case,

just return a character from getopt_long())

- the character to return (this is why we need

the dummy character values, above) */

static struct option const longopts[] =

{

{"sysv", no_argument, NULL, ’s’},

{"help", no_argument , NULL, GETOPT_HELP_CHAR },

{"version", no_argument , NULL, GETOPT_VERSION_CHAR },

{NULL, 0, NULL, 0}

};

/* Print an error message for an error that happened

when trying to do something with the given file.

(The function gets the type of error from errno.)*/

static void

print_error (const char* file)

{

fprintf(stderr, "%s: %s\n", strerror(errno), file);

}

/* Utility function that works exactly like read(), except

that it can’t be interrupted by a system call.

Read LEN bytes at PTR from descriptor DESC, retrying if interrupted.

Return the actual number of bytes read, zero for EOF, or negative

for an error. */

ssize_t

safe_read (int desc, void *ptr, size_t len)

{

/* Return value, usually the number of characters read */

ssize_t n_chars;

if (len <= 0)

return len;

49

do

{

n_chars = read (desc, ptr, len);

}

while (n_chars < 0 && errno == EINTR);

return n_chars;

}

/* Print how to use the program, and exit.

If status is 0, the user used --help (so print out all the usage info)

If status is nonzero, the user gave the program a bad switch,

so just tell the user to use --help */

void

usage (int status)

{

if (status != 0)

{

/* Just tell the user to use --help */

fprintf (stderr, "Try ‘%s --help’ for more information.\n",

program_name);

}

else

{

/* Print out all the options */

printf ("\

Usage: %s [OPTION]... [FILE]...\n\

",

program_name);

fputs ("\

Print checksum and byte counts for each FILE.\n\

\n\

-r defeat -s, use BSD sum algorithm\n\

-s, --sysv use System V sum algorithm\n\

", stdout);

fputs (" --help display this help and exit\n", stdout);

fputs (" --version output version information and exit\n", stdout);

fputs ("\

\n\

With no FILE, or when FILE is -, read standard input.\n\

", stdout);

printf ("\nReport bugs to <%s>.\n", "bug-textutils@gnu.org");

}

/* If the user screwed up, report a failure, otherwise,

exit cleanly */

exit (status == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

/* Calculate and print the rotated checksum and the size in bytes

of file FILE, or of the standard input if FILE is "-".

print FILE to the left of the checksum and size.

The checksum may vary depending on sizeof(int).

50

Return 0 if successful, -1 if an error occurs. */

static int

bsd_sum_file (const char *file)

{

register FILE *fp; /* The file to read from */

register int checksum = 0; /* The checksum mod 2^16. */

register int total_bytes = 0; /* The number of bytes. */

register int ch; /* Each character read. */

/* Open the file, or use standard input */

if (STREQ (file, "-"))

{

fp = stdin;

have_read_stdin = 1;

}

else

{

fp = fopen (file, "r");

if (fp == NULL)

{

print_error (file);

return -1;

}

}

/* Process input character-by-character,

doing shifts to make the checksum more interesting */

while ((ch = getc (fp)) != EOF)

{

total_bytes++;

checksum = (checksum >> 1) + ((checksum & 1) << 15);

checksum += ch;

checksum &= 0xffff; /* Keep it within bounds. */

}

/* Report errors */

if (ferror (fp))

{

print_error (file);

if (!STREQ (file, "-"))

fclose (fp);

return -1;

}

/* Close the file (unless it’s stdin, so we can reuse it) */

if (!STREQ (file, "-") && fclose (fp) == EOF)

{

print_error (file);

return -1;

}

/* Print out the filename and checksum */

printf ("%s %d %d", file, checksum, total_bytes);

putchar (’\n’);

return 0;

}

51

/* Calculate and print the checksum and the size

of file FILE, or of the standard input if FILE is "-".

Print FILE to the left of the checksum and size.

Return 0 if successful, -1 if an error occurs. */

static int

sysv_sum_file (const char *file)

{

/* Uses safe_read() instead of getc(), so different fields from

bsd_sum_file, even though they’re basically both just walking

through the file. */

int fd; /* The file descriptor of a file to use */

unsigned char buf[8192]; /* A buffer to read chars into */

register int bytes_read; /* Number of bytes read into the buffer */

int total_bytes = 0; /* Number of bytes in the file */

int r; /* Temp variable for checksum algorithm */

int checksum; /* The checksum mod 2^16 */

/* The sum of all the input bytes, modulo (UINT_MAX + 1). */

register unsigned int s = 0;

/* Figure out which file to open. */

if (STREQ (file, "-"))

{

fd = 0;

have_read_stdin = 1;

}

else

{

fd = open (file, O_RDONLY);

if (fd == -1)

{

print_error (file);

return -1;

}

}

/* Read all the bytes in the file, adding each to the checksum */

while ((bytes_read = safe_read (fd, buf, sizeof buf)) > 0)

{

register int i;

for (i = 0; i < bytes_read; i++)

s += buf[i];

total_bytes += bytes_read;

}

/* Check for an error */

if (bytes_read < 0)

{

print_error (file);

if (!STREQ (file, "-"))

close (fd);

return -1;

}

52

/* Close the file (if it wasn’t STDIN) and

report any errors. */

if (!STREQ (file, "-") && close (fd) == -1)

{

print_error (file);

return -1;

}

/* Manipulate the checksum itself to make things more interesting. */

r = (s & 0xffff) + ((s & 0xffffffff) >> 16);

checksum = (r & 0xffff) + (r >> 16);

/* Print out the checksum. */

printf ("%s %d %d\n", file, checksum, total_bytes);

return 0;

}

/* Read in the options, and then calculate the checksum for each file

accordingly */

int

main (int argc, char **argv)

{

int errors = 0; /* Set this to 0 if there were errors */

int optc; /* Return value from getopt_long() */

int files_given; /* Number of files given. If this is zero, use stdin! */

/* The default checksum function */

sum_func_ptr sum_func = bsd_sum_file;

/* Set program name (used elsewhere) */

program_name = argv[0];

/* Set this if we’ve read from standard input,

so we can try closing it, and maybe find an error */

have_read_stdin = 0;

/* Read in options */

while ((optc = getopt_long (argc, argv, "rs", longopts, NULL)) != -1)

{

switch (optc)

{

case 0:

break;

case ’r’: /* For SysV compatibility. */

sum_func = bsd_sum_file;

break;

case ’s’:

sum_func = sysv_sum_file;

break;

case GETOPT_HELP_CHAR: usage(0); break;

case GETOPT_VERSION_CHAR: printf("sum (textutils) 2.1\n\

Written by Kayvan Aghaiepour and David MacKenzie.\n");

53

default:

usage (1);

}

}

/* Compute checksum for each file */

files_given = argc - optind;

if (files_given == 0)

{

if ((*sum_func) ("-") < 0)

errors = 1;

}

else

for (; optind < argc; optind++)

if ((*sum_func) (argv[optind]) < 0)

errors = 1;

/* Check if there is something wrong with stdin

by trying to close it (EOF means fclose() had an error) */

if (have_read_stdin && fclose (stdin) == EOF)

print_error ("-");

exit (errors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

B.3.2 Group UC (uncommented)

/* csum -- checksum and count the blocks in a file

Copyright (C) 86, 89, 91, 1995-2001 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option)

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */

/* Written by Kayvan Aghaiepour and David MacKenzie. */

#include <stdio.h>

#include <sys/types.h>

#include <getopt.h>

#include <errno.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

54

#define GETOPT_HELP_CHAR -2

#define GETOPT_VERSION_CHAR -3

#define EXIT_SUCCESS 0

#define EXIT_FAILURE 1

#define STREQ(str1, str2) (strcmp(str1, str2) == 0)

typedef int (*sum_func_ptr) (const char *);

#define PROGRAM_NAME "csum"

#define AUTHORS "Kayvan Aghaiepour and David MacKenzie"

char *program_name;

static int have_read_stdin;

static struct option const longopts[] =

{

{"sysv", no_argument, NULL, ’s’},

{"help", no_argument , NULL, GETOPT_HELP_CHAR },

{"version", no_argument , NULL, GETOPT_VERSION_CHAR },

{NULL, 0, NULL, 0}

};

static void

print_error (const char* file)

{

fprintf(stderr, "%s: %s\n", strerror(errno), file);

}

ssize_t

safe_read (int desc, void *ptr, size_t len)

{

ssize_t n_chars;

if (len <= 0)

return len;

do

{

n_chars = read (desc, ptr, len);

}

55

while (n_chars < 0 && errno == EINTR);

return n_chars;

}

void

usage (int status)

{

if (status != 0)

{

fprintf (stderr, "Try ‘%s --help’ for more information.\n",

program_name);

}

else

{

printf ("\

Usage: %s [OPTION]... [FILE]...\n\

",

program_name);

fputs ("\

Print checksum and byte counts for each FILE.\n\

\n\

-r defeat -s, use BSD sum algorithm\n\

-s, --sysv use System V sum algorithm\n\

", stdout);

fputs (" --help display this help and exit\n", stdout);

fputs (" --version output version information and exit\n", stdout);

fputs ("\

\n\

With no FILE, or when FILE is -, read standard input.\n\

", stdout);

printf ("\nReport bugs to <%s>.\n", "bug-textutils@gnu.org");

}

exit (status == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

static int

bsd_sum_file (const char *file)

{

register FILE *fp;

register int checksum = 0;

register int total_bytes = 0;

register int ch;

if (STREQ (file, "-"))

{

fp = stdin;

have_read_stdin = 1;

}

else

56

{

fp = fopen (file, "r");

if (fp == NULL)

{

print_error (file);

return -1;

}

}

while ((ch = getc (fp)) != EOF)

{

total_bytes++;

checksum = (checksum >> 1) + ((checksum & 1) << 15);

checksum += ch;

checksum &= 0xffff;

}

if (ferror (fp))

{

print_error (file);

if (!STREQ (file, "-"))

fclose (fp);

return -1;

}

if (!STREQ (file, "-") && fclose (fp) == EOF)

{

print_error (file);

return -1;

}

printf ("%s %d %d", file, checksum, total_bytes);

putchar (’\n’);

return 0;

}

static int

sysv_sum_file (const char *file)

{

int fd;

unsigned char buf[8192];

register int bytes_read;

int total_bytes = 0;

int r;

int checksum;

register unsigned int s = 0;

if (STREQ (file, "-"))

57

{

fd = 0;

have_read_stdin = 1;

}

else

{

fd = open (file, O_RDONLY);

if (fd == -1)

{

print_error (file);

return -1;

}

}

while ((bytes_read = safe_read (fd, buf, sizeof buf)) > 0)

{

register int i;

for (i = 0; i < bytes_read; i++)

s += buf[i];

total_bytes += bytes_read;

}

if (bytes_read < 0)

{

print_error (file);

if (!STREQ (file, "-"))

close (fd);

return -1;

}

if (!STREQ (file, "-") && close (fd) == -1)

{

print_error (file);

return -1;

}

r = (s & 0xffff) + ((s & 0xffffffff) >> 16);

checksum = (r & 0xffff) + (r >> 16);

printf ("%s %d %d\n", file, checksum, total_bytes);

return 0;

}

int

main (int argc, char **argv)

{

int errors = 0;

int optc;

int files_given;

58

sum_func_ptr sum_func = bsd_sum_file;

program_name = argv[0];

have_read_stdin = 0;

while ((optc = getopt_long (argc, argv, "rs", longopts, NULL)) != -1)

{

switch (optc)

{

case 0:

break;

case ’r’:

sum_func = bsd_sum_file;

break;

case ’s’:

sum_func = sysv_sum_file;

break;

case GETOPT_HELP_CHAR: usage(0); break;

case GETOPT_VERSION_CHAR: printf("sum (textutils) 2.1\n\

Written by Kayvan Aghaiepour and David MacKenzie.\n");

default:

usage (1);

}

}

files_given = argc - optind;

if (files_given == 0)

{

if ((*sum_func) ("-") < 0)

errors = 1;

}

else

for (; optind < argc; optind++)

if ((*sum_func) (argv[optind]) < 0)

errors = 1;

if (have_read_stdin && fclose (stdin) == EOF)

print_error ("-");

exit (errors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

59

B.4 Questionnaire

What is your programming experience in C? (fill in/check all that apply)

_______ years of experience ___ use C on a regular basis
___ have worked on a large project in C
___ have worked on a project with other programmers in C

How easy did you find it to read and understand the original program?
1 2 3 4 5 6 7

Very Easy Moderately
Easy

Somewhat
Easy

Normal Somewhat
Difficult

Moderately
Difficult

Very Difficult

Do you think you wrote more or less comments (measured as a percentage of lines of code written)
than you usually do when you work on software projects of comparable size?

1 2 3 4 5 6 7
Much More Moderately

More
Somewhat

More
About the

Same
Somewhat

Less
Moderately

Less
Much Less

If more or less, briefly explain why:

Did you put more or less effort into writing comments than you usually do when you work on
software projects of comparable size?

1 2 3 4 5 6 7
Much More Moderately

More
Somewhat

More
About the

Same
Somewhat

Less
Moderately

Less
Much Less

If more or less, briefly explain why:

Please list any patterns you tried to follow when commenting (for example, placing a comment before
every function, starting functions inside comments with a “//”, etc.):

If any of the above are patterns that you don't normally follow when you program in C, circle
them, and explain briefly below why you chose to follow these patterns during this study.

60

