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Abstract

Complex Event Processing deals with aggregating simple events, which are
defined as “occurrences of significance in a system” [20], to get semantically-
richer events usable by an end application. They have been studied earlier in
multiple disparate contexts, for example, in the Active Database community,
under ECA rules, that are used to build triggers for a variety of purposes.

A resurgence of interest in Complex Event Processing research has taken
place because of recent advances in sensing technologies like sensornets and
RFID. This technology generates events out of real-world inputs such as the
movement of people in a home or items in a supply chain. Our work focuses on
Complex Event Processing in the context of such real-world event sources, and
on two challenging dimensions that arise: streaming data and fuzzy or prob-
abilistic data. We present the notion of semantic windows, which go beyond
time-based or tuple-based windows proposed for streaming data processing.
Probabilistic Complex Event Processing (PCEP) allows applications to rea-
son about and respond to events in scenarios where simple events cannot be
monitored in a crisp fashion.

Ideas from this work have been implemented in the TelegraphCQ streaming
data processor, and used to drive the core functionality of an event-driven
library scenario in a recent system demonstration.

1 Introduction

An event is defined as an “occurrence of significance” [20] in a system. This may be
the insertion of a tuple into a table in a database, a connection request through a
network socket, or the displacement of an item in a store.

Multiple research initiatives have looked at event processing for different reasons.
The Active Database community focused on the use of events in “triggers” that take



an action based on a situation of interest [32]. For example, the insertion of a new
tuple into a table may be seen as an event of interest when a materialized view
based on table needs to be maintained accurately and automatically. At the same
time, the insertion of this new tuple should not violate the integrity constraints (say,
key-foreign key constraints) that are defined on the table. Finally, accurate query
optimization may require up-to-date statistics about the table in the catalogs, which
needs some work when the insertion takes place. All these practical scenarios require
a sense-and-respond functionality inside the database to react to important events,
and have been formalized as the extensively-studied ECA rules [31]. It is fair to say
that the notion of events in the ECA world has been limited to in-database events,
like insertion of tuples, beginning of transactions, and calls to an object’s method in
an OODBMS.

Recent interest in Complex Event Processing has been triggered by the increasing
complexity of real-world processes and distributed systems. For example, The CEP
initiative [20] from a group at Stanford tries to reason about the events in a complex
system by building the abstraction of a hierarchy of events. The goal is to help the
debugging and analysis of these otherwise complex systems.

Resurgence of Complex Event Processing research in the database community [27,
16] has taken place in the context of streaming data from real-world sources like
sensornets and RFID. The data from such sources can capture physical events, such
as the movement of people and objects in scenarios like a home or a supply chain.
This allows Complex Event Processing to detect high-level events, like shoplifting
and under-stocking, which are not available directly in low-level streams coming from
Sensor sources.

Our work is a fresh take on Complex Event Processing, as required under two new
dimensions added to data management - streaming data and fuzzy or probabilistic
data. As mentioned earlier, the need to handle streams comes up because of the
emergence of data sources like sensornets. We introduce the notion of semantic win-
dows over streams, that go beyond the current notion of time-based or tuple-based
windows. The need for Probabilistic Complex Fvent Processing comes up because of
the nature of the data that is reported by real-world sources. Such data is often dirty
and unreliable [14, 15]. Processing of complex events over such streams requires a
new model of (simple and complex) events that can accommodate their uncertain na-
ture. Further, the need for probabilistic processing also comes up when simple events
are reported at different levels of semantic detail. For example, in a smart home,
simple motion sensors may detect the movement of persons, while more sophisticated
video-based vision techniques may report events in terms of specific persons.

The contributions of our work can be listed as follows.

1. A comprehensive survey of Complex Event Processing work in multiple contexts,



including Active Databases.

2. Design, implementation, and evaluation of a system for Complex Event Pro-
cessing over streaming data.

3. An architecture for Probabilistic Complex Event Processing (PCEP).

This report is organized as follows. Section 2 surveys past work in the closely
related areas of Active Databases and CEP. Section 3 presents new work on event
processing over streaming data, including the concept of semantic windows. This
work has been done in the context of the HiFi project at Berkeley [11, 9], and imple-
mented as extensions to the TelegraphCQ [7] streaming data processor. The resulting
system was used as the core processing engine in a recent demonstration at SIGMOD
2005 [27]. Section 4 goes into Probabilistic Complex Event Processing. Section 5 looks
at some other previous work that is related to Complex Event Processing, but not
directly applicable - query processing for sequence data. Finally, Section 6 concludes
the report and presents directions for future work.

2 Previous Work on Event Processing

Many research initiatives in the past have looked at aggregating simple events into
more complex and semantically higher-level events. The work from the Active Database
community has focused on in-database events, and triggers built on them. The more
recent CEP initiative has approached the problem as a means of understanding and
debugging complex distributed systems, like enterprise systems. We survey both in
this section.

2.1 Complex Events in Active Databases

Unlike passive databases, which store, manage and process data, active databases
support applications that want to automatically respond to certain events and changes
inside the database. These in-database events may range from simple events like
insertion of a tuple into a relation or committing of a transaction, to more complex
events that are specified over event histories [13] using a complex event algebra.

In our survey, we first present some basic terminology, followed by two represen-
tative pieces of work that have proposed composite event processing algebras. These
are COMPOSE [13], and SNOOP [6]. This is followed by an overview of the work pre-
sented by Zimmer and Unland [32], which is a framework for complex event processing
algebras.



2.1.1 Basic Terminology

Primitive Event: A primitive event is the smallest, atomic occurrence in a system
that may require a response. By atomic, we mean that either the event happens
completely or it does not happen at all.

Event Type and Event Instance: Similar to the schema of a relation, an event
type gives the metadata for events that belong to the same class. This includes the
attributes of these events. An event instance is a single occurrence of an event of a
particular type. This instance instantiates the attributes of the event type.

Complex Event Type: A complex event type is the result of applying operators
from an algebra to the simple (or recursively, complex) event types.

Event History: An event history is a partially ordered set of event instances, where
the order reflects their occurrences in time.

While this set of definitions suffices for the discussion in this paper, a more elab-
orate list for the active database work can be found in [32]. Note that, although the
timestamp for simple events is reported by the underlying system, complex events
also need to be given timestamps, to obtain the closure property for operators.

Most previous work attaches a point timestamp to every event (including complex
events). Under such an approach, complex events are usually given the timestamp of
their terminating component event. This approach can lead to unexpected behavior.
For example, suppose we are looking for a complex event that is defined as “F; fol-
lowed by E»” (as we will see later, sequencing is a fundamental operation on events).
Using the point timestamp approach, the complex event will be detected positively
as long as the last component event in E; occurred before the last component event
in Ey. However, if F5 has multiple component events, it may be possible that the
first component event in Ey occurred before some component events in F;. Hence,
E; did not occur fully before E,. This may not be the semantics that the applica-
tion intended. This problem has been recently addressed by having interval-based
timestamps for complex events [3]. However, the active database work surveyed in
this report, and also our work on Complex Event Processing over streams, is based
on point timestamps for complex events.

2.1.2 The COMPOSE Algebra

The COMPOSE composite event processing language comes from the Ode system [13].
The event history is assumed to be a finite set of event occurrences. An event occur-



rence is a tuple of the form (primitive event, event identifier). Event identifiers are
used to define a total ordering on event occurrences (a timestamp is one example of
an event identifier). In a history, no two events can have the same identifier.

An event expression F is a mapping from one history to another. When an event
expression is applied to a history h, we get a history which contains the events in h
at which the event specified by E takes place. E[h] denotes the application of E to
the history h. By definition, E[h] C h. Event expressions are formed by using the
null expression NULL, any primitive event a, and the operators described below.

1.
2.

E[null] = null, VE, where null is the empty history.
NULLI[h| = null

. alh] is the maximal subset of h composed of event occurrences of the form

(a, eid).

. (E A F)[h] = E[h] N F[h.

This captures the “simultaneous” occurrences of E and F (having the same
event identifier). Note that although two simple events cannot have the same
identifier, two complex events may (under point semantics).

(mE)[h] = (h = E[h]).

This captures those simple event instances which are not of type E. Note
however, that this expression is not equivalent to looking for “absence of E”
but rather looking for “an event occurrence that is not E”.

. relative(E, F')[h] are the event occurrences in h at which F is satisfied assuming

that the history started immediately following some event occurrence in h at
which E takes place. Formally, if Ei[h] is the i'" event occurrence in E[h] and
h; is obtained from h by deleting all event occurrences whose eids are less than
or equal to the eid of E'[h], then:

relative(E, F)[h] = UEM F[n,]

. relative™ (E)[h] = U2, relative’ (E)[h]

where,
relative!(E) = E ; and
relative’(E) = relative(relative’ ™' (E), )

This operator can be interpreted as trying to find a pattern of unlimited length
over an event history.



The authors claim that this event expression language has the same expressive
power as regular expressions. Other useful operators can be expressed using these
basic operators. For example, sequencing and repetition operators:

e prior(E, F)[h| = (relative(E, any) A\ F)[h]

which captures occurrences of F' following those of E.

o sequence(E, F)[h] = (relative(E, —relative(any, any)) A F)[h]

which captures occurrences of F' immediately following some occurrence of E
in the event history.

A complete list of the additional operators, and algorithms for constructing a
finite state automaton for detecting events expressed in this language, can be found
in [13)].

2.1.3 The SNOOP Algebra

The SNOOP [6] composite event language consists of conjunction (A), disjunction
(V), sequence (;), negation, and some other operators described below. An event
expression FE is regarded as a function from the underlying time domain onto boolean
values. For a given point in time ¢, E computes to true, if an event of type E occurred
at t. Otherwise, it evaluates to false. —F denotes the negation function of F, and
expresses the non-occurrence of E at a given point in time.

The event operators are as follows:

This captures those points in time, where at least one of E; and E5 occurs.

2. (B AE)(t) = (3t)(Ey(t) A Bao(t)) V (Ea(t1) A Er(£)) Aty < 1)

This captures those points in time where an instance of E; occurs, Fy having
occurred earlier (or at the same instant in time), or vice versa. Note the dif-
ference between SNOOP’s A operator and the A operator from COMPOSE.
The latter looks for instants in time where E; and Fy occur together, while the
current operator looks for those instants where both E; and FE, have already
(just) occurred.

3. ANY (m, By, Es, ..., En)(t) = (3t1)(3t2)... 1) (Bi(t)) AE; (t2)Ac. AEg (it A

Ep(t) A (tl S tg... S tm—l S t) A (1 S i,j,...,k’,p S n) A (Z 7&] 7& 7é k #p)),
with m <n

This operator looks for the occurrence of ezactly m out of n events in time.
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- (B E2)(t) = ((3t1)(Er(ta) A Ea(t) Aty < t)

This sequencing operator looks for the occurrence of E; followed in time by the
occurrence of Es.

L A(Ey Bo, E5)(t) = (3t) (Vi) (Er(t) A Ex(t) A (B S O A (0 <t < t) —
~Es(t2))

This operator captures all occurrences of E5 that happen between an occurrence
of E; and an occurrence of F3. In the real world, this operator may be used, for
example, to capture the occurrence of every write operation between the start
of a transaction and the end of the transaction.

L AN(E By, Bs)(t) = ((3t) (Er(t) A Es(t) Aty < t)

Although this operator looks similar to the sequencing operator described above,
the idea here is to accumulate all occurrences of Ey between occurrences of
E; and FE3 and detects the complex event when Fj is finally seen (unlike the
A(FE4, Ey, E3) operator described above, which detects the complex event on
each individual occurrence of Es). Note that the above formal expression rep-
resents only those points in time when the complex event is detected. It does
not explicitly say anything about the accumulation of E5 events. In the real
world, this behavior may be required to collect all the data items touched by a
transaction, only when the transaction has ended.

. P(El, [T], Eg)(t) = (Htl)(vtg)(El(tl)/\(tl <ty < t) — _\Eg(tg)/\(t = tl—l—ZXT))

This periodic event operator detects the complex event periodically, after every
interval T', starting from an occurrence of event F, and ending the process when
an instance of Fj is seen. In the real world, this may be used, for example, to
perform periodic defragmentation inside the database server’s memory manager,
between the starting of the server, and its shutting down.

. PHEL [T, B2)(t) = (3t)(Ey(t) A Es() A (8 +T < t)

This operator detects the complex event, if Fy is seen at least time T after F;
is seen.

(SE»)(Bv Es)(t) = (30)(V6)(Br(t) A —=Es() A Es(t) A (< to < £) —
~(Esx(t2) V Es(t2))))

This operator detects the complex event when the first occurrence of Fs is seen
after an occurrence of Fq, provided this interval has not already seen an F,
event. This behavior may be used by an application that wants to react to
read-only transactions - it needs to look for an end of transaction that follows
its beginning, with no write operation in between.
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While COMPOSE uses the equivalence between its algebra and regular expressions
to build a finite state automaton for event detection, processing in SNOOP is done
in a bottom-up fashion, using a tree of operators. As we will see in Section 3.3.1,
the complex event processing operator in TelegraphC(Q adopts a similar tree-based
strategy.

An interesting aspect of event processing that has been explored in the context
of SNOOP, is the use of parameter contexts. When a complex event takes place,
there may be multiple bindings available for it out of the component simpler events.
For example, if we are looking for the complex event a;b, the history a b b, may
detect the complex event once or twice, depending on what semantics are desired
by the application. Details of the different contexts (unrestricted, recent, chronicle,
continuous, and cumulative) explored in this work can be found in [6]. The following
discussion on a formal metamodel for event algebras touches on this aspect again.

2.1.4 A Metamodel for Event Algebras

The large number of proposals for complex event processing algebras in active databases
sometimes makes the area hard to understand. This issue has been raised by Zimmer
and Unland [32], who present a framework that is a metamodel for any event process-
ing algebra. The idea is to decompose a complex event processing algebra into three
independent dimensions:

1. Event type pattern: This aspect covers the structure of a complex event,
i.e., which component event types’ instances are required to detect the complex
event. There are multiple aspects to this dimension - type and order, repetition,
continuity and concurrency, and context condition.

The type and order aspect gives the identity of component event types, the order
in which they are required to occur for the complex event to be detected. The
following operators are available in the metamodel (all operators have arity n):

e sequence operator (;) for expressing ordering.

o simultaneous operator (==) for expressing the simultaneous occurrence of
events.

e conjunction operator (A) captures the order-insensitive occurrence of (all
of) multiple component events.

e disjunction operator (V) requires at least one of the specified events to
occur.

e negation operator (—) specifies the events that are not allowed to occur
in a given interval. Negation makes sense only in the context of an inter-
val, whose end points are formed by the first and last parameters of the



operator. The interior events are the ones whose non-occurrence is being
sought.

The repetition aspect captures the number of component event types that have
to occur, to detect the complex event. It can be specified by a delimiter that
is written against the event type. It can be an exact number or an (open or
closed) interval. An example usage is: ((2)F1, (3)E3), for two occurrences of Ey
followed by three occurrences of Ejs.

The continuity aspect indicates whether irrelevant events are allowed to take
place while the sequence of relevant events is being detected towards a complex
event. The concurrency aspect determines if the component events are allowed
to overlap in time.

The context condition aspect specifies restrictions on the context in which com-
ponent events take place. The term contexrt refers to the attributes of the
component events; for example, the transaction-id of the transaction that gen-
erated this event, user-id of the user behind the event, and the data item whose
modification caused the event. The metamodel presented by the authors has
three context types that can be addressed individually. The environmental con-
text allows the specification of the requirement that appropriate event instances
must be triggered by the same transaction (ta), process (proc), or user (user).
An example usage is: (same ta)(E1; Es), which is detected when the specified
sequence of events takes place, triggered by the same transaction. Similarly,
the data context concerns the actual data items which are involved in the events
specified. For example, (same data-id)(F1; Es) is detected when the specified
sequence of events (which are assumed to represent data operations) happen
over the same data item. Finally, the operation context tests for the events
coming as a result of the same operation.

2. Event instance selection: When a complex event is detected, a decision has
to be made regarding which instances of the component events will be bound
to this event. This aspect is captured by event instance selection.

The metamodel claims that this dimension is independent of event type pattern,
as the latter specifies when a complex event has to be detected, while event
instance selection specifies which instances of the component events are kept
for the execution of, say, the underlying ECA rule. To appreciate the need for
this dimension, let’s look at the following example. Suppose the event type
pattern specifies that we are looking for (Ey; Es). If we see an event history! of

the form [e], €3, el], we clearly need to detect the complex event when we see the

18; denotes the ith occurrence of the jth event type.
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simple event e;. However, when trying to bind E; and EF5 with component event
instances, we have the option of binding either el or e? to E,. Note that this
choice is arbitrary, and in general, depends on the application semantics. For
example, if E; denotes the event “person enters the home, through the door”
and Ey captures “alarm rings”, a security application may want to correlate the
alarm with the person who just entered the home. Hence, this application will
need only the second occurrence of Ej, i.e., €2, to be returned for further rule
processing. On the other hand, if F; is an RFID tag reading for a particular
object, and F5 is the event that refers to “some object being taken out of the
store”, then multiple occurrences of event E; may just be due to the fact that
RFID antennas continuously sense the tags close to them, and all the readings
but the first one are redundant. In this case, an application that wants to find
out which objects go out of a warehouse, will want only the first instance of Fj,
i.e., e1, to be considered for further processing.

The metamodel provides keywords like first, last and cumulative to select which
instances of component events will be selected for processing. These keywords
respectively select the first, last and all permissible instances of the component
event, from the underlying history. For example, given the complex event ex-
pression ; (first : By, last : (2)E,, E3), the event history [e]ese?eseseiel], would
result in the following selected instances: {ej, €3, e, et}. On the other hand, the
expression ; (last : B, first : (2)Fy, E3) will cause bindings to {e?, e, €3, el }.

. Event instance consumption: After a complex event has been detected
using specific component event instances, some (all) of the component events
may have to be deleted to ensure they do not trigger any additional instances
of the complex event. This aspect is covered by event instance consumption.

For example, when the event expression ; (last : Ey, first : Es) operates on the
history [el, €2, el €3], an instance of the complex event is detected when el is
seen. Given the specification of event instance selection, the complex event will
be bound with {e? el}. If this detection of the complex event does not cause
the deletion of these component events, then the occurrence of the simple event
instance e3 will trigger the detection of another instance of the complex event,
bound to {e? e3}. Depending on the application semantics, this reuse of the
component events may or may not be desired. For example, in a library scenario
(which we will revisit in Section 3.2), if E; represents a book’s barcode being
read at the library counter, and FE, represents a patron’s barcode being read
at the counter, then Fs; E; may be used to detect the checkout complex event,
which is interpreted as the patron checking out that specific book. In general,
a patron may check out several books at a time. Hence, when a history of the
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form [e, el, €?] is seen, this application does not want to delete el the first time a

checkout is detected (with el). If this happens, the book corresponding to e? will
not be checked out for the same patron. In other words, this application does
not permit the expiry of component events when complex events are detected.

The metamodel provides different consumption modes - the shared mode does
not delete any instance of the component events, while the ezclusive mode
deletes all instances of the component events (that have been used in a binding
once).

Based on this metamodel, the authors of [32] describe how several composite event
processing algebras, including COMPOSE and SNOOP, fit into this framework.

2.2 CEP: Causality and Hierarchy

The Complex Event Processing (CEP) technology [1] started as a research project at
Stanford, between 1993-2000. The roots can be found in the RAPIDE event-based
simulation language and simulation analysis toolset. RAPIDE allowed concepts such
as causality between events, and event pattern mappings, to be used to model multi-
layered system architectures that might involve both hardware and software layers.
CEP is being applied to multiple areas: Business activity monitoring, business process
management, network and systems security, application servers and middleware.

The concepts that came out of RAPIDE can be applied to any distributed message-
based system, from low-level network management to high-level enterprise intelligence
gathering. These also form the basic concepts of CEP:

1. Hierarchies of events

2. Causal event modeling

3. Event patterns and pattern matching
4. Event pattern maps

5. Event pattern constraints

We elaborate on the first two aspects next. Details of the RAPIDE language can
be found in [22].
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2.2.1 Hierarchy of Events

A general introduction to CEP has been presented in [21]. It argues for multilevel
viewing of events in a complex distributed system. For example, listening to the
message bus in a multi-component system may give us only low-level messages that
the components are passing between each other. However, for analyzing problems
in such a system the administrator may want to aggregate sets of low-level events
into the corresponding higher-level events (which signify what the components were
trying to do when passing the low-level messages).

CEP’s approach is to separate the system’s activities and operations into layers.
This is called an abstraction hierarchy. For example, in a fabrication line control
system, a two-level hierarchy may look like:

1. Layer 1: Middleware Communication. Activities here include sending/receiving
messages.

2. Layer 2: FabLine Workflow. Activities here include movement of lots, machine
status change, yield measurement etc.

In other words, layer 2 provides semantically higher information about the sys-
tem’s activities than layer 1. An application or analysis tool can now attach to any
level it wants, based on its requirements. The hierarchy in CEP is flexible and dy-
namic.

The CEP mechanism for generating a hierarchy is to use RAPIDE to filter events
at each level and then map event patterns at one level to complex events at the next
higher level.

2.2.2 Causality in Event Processing

Apart from aggregating sets of events, the relationships between events are also an
important aspect in CEP. There may be different kinds of relationships between events
in a system. For example, event A happened after (before) event B, or event A caused
event B to happen. Causality is fundamental because it helps analyze a complex
system. For example, an administrator would like to know what went wrong at a
lower layer of the abstraction hierarchy that caused improper behavior in a higher
layer. This is aided if the system can reason about what events in the lower layer
caused the abnormal events in the higher layer.

3 Complex Event Processing over Streaming Data

This section presents an overview and details of our system for complex event pro-
cessing over streaming data. Several data stream processing systems |7, 2, 4] have
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emerged over the last few years, and have been accompanied by a lot of research into
issues like query languages, (adaptive and shared) query processing, load manage-
ment, and archived stream management. The reason for these research initiatives is
the increasingly streaming nature of data in today’s world, in the form of network
traffic, receptor (sensor and RFID) streams, and XML news feeds. This trend has
triggered a paradigm shift in data processing, which was traditionally about queries
streaming (and getting answered) over disk-based data, to data streaming through
continuous standing queries (CQs). For example, the query “Is my host under a
TCP hijacking attack?”, which can be processed by detecting specific signatures in
the TCP traffic, needs to run continuously, with the TCP-layer traffic data flowing
through it.

This model of streaming data processing, unlike traditional querying, resembles
active database-like event processing in two ways:

1. Streams are analogous to (time-ordered) event histories.

2. Continuous queries are analogous to event expressions, that continuously mon-
itor the event history for matching patterns.

These similarities raise the following question: Shouldn’t the query language and
operators for stream processing be inspired by event processing in addition to tradi-
tional SQL-like querying?

Most of the current data stream processors use SQL, extended with windows
over streams, for expressing continuous queries. A window defines some portion
of an infinite stream, based on temporal proximity (“a 5 second or 6 tuples long
window”), over which some computation must take place. For example, we may
want to find the average price of Google stock over the last 1 hour of quotes. In
this example, the size of the window is 1 hour and the computation performed over
this window is the aggregation for average. Given the continuous nature of such
queries, a window has to continuously slide as it sees more data on the stream. This
sliding window paradigm for querying streams has dominated much of data stream
research. A concrete proposal for a streaming query language is CQL [5], which
gives stream processing functionality by providing stream-to-relation and relation-
to-stream operators, on top of the normal relation-to-relation operators. This effort
represents an attempt to solve the streaming query language problem by extending
the well-known SQL language.

We describe our system for Complex Event Processing over streams in three parts.
First, we look at query language extensions that allow the specification of active
database-like complex events on streams. This includes a discussion on semantic
windows, which go beyond time-based or tuple-based windows used in SQL-extensions
for streaming systems. Second, we describe how queries phrased using these language

13



extensions were used to drive the core functionality of an event-driven library scenario,
demonstrated recently at SIGMOD 2005 [27]. Finally, we describe some issues in the
implementation of these ideas in the context of the TelegraphCQ [7] data stream
processor built at Berkeley.

3.1 Complex Events over Streams: Semantic Windows

Computation and operators over streams differ from those over traditional relations
because of the fact that streams are continuous and infinite. This limits the operators
that can be applied to streams to only the set of non-blocking operators, which do
not wait for the end of input data to return a result. A recent result [18] shows
the equivalence of the computation that can be performed using only non-blocking
operators to the computation that is imposed by the set of monotonic queries, which
informally, is the set of queries that produce strictly more output as they see more
input data. Not all operations performed on traditional relations are non-blocking.
For example, the sorting operation falls into this category, and cannot produce any
output until it has seen all the input. Windows help to convert traditionally blocking
operators into non-blocking operators by specifying a portion of the infinite stream
over which the computation should be performed?3.

In current systems, windows are defined structurally, based on temporal proximity
of the data inside the window. For example, In CQL, the query:

SELECT AVG(price)
FROM Quotes [5 min]
WHERE name = ‘GO0G’

is interpreted as a time-varying relation. At any time, the content of the re-
lation (a single-column, single row), is defined by taking the average stock price
over the ‘Google’ tuples in the Quotes stream which have timestamps in the range
[T — 5min, T], where T is the current time.

In the latest version of TelegraphCQ), the query:

SELECT AVG(price)
FROM Quotes [RANGE BY ‘5 min’, SLIDE BY ‘1 min’]
WHERE name = ‘G00G’

2An alternative is to use punctuations, which capture application semantics [30].
3Note that the join operator is not inherently blocking. It can have a non-blocking implementa-
tion, like symmetric hash join.
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is interpreted as a stream of single-column tuples. One such tuple is reported on
the stream every 1 minute. If the tuple is computed at time 7', it consists of the
average of ‘Google’ stock tuples with timestamps in the range [T' — bmin, T)).

Both these examples show how windows are defined structurally. Expressing com-
plex events over streams requires more “windowing flexibility” than what is offered
by structural windows. For example, suppose an RFID-enabled library reports books
and patrons as they move around the library (shelves, counter, door). To detect
booklifting, which is defined as a book going out of the door without being preceded
by a checkout, the most natural way to express this query is using a window which
starts backwards in time whenever a book is seen going out of the door, and looks for
the presence or absence of the corresponding checkout. As another example, consider
a query that wants to find the average temperature in the home between the time a
person comes home and when he goes out. This query is looking at a window over
a temperature sensor stream that starts and ends based on “person” events. The
concept is illustrated in Figure 1. Figure (a) shows a structurally-defined window of
size t. Figures (b) and (c¢) show “semantic” windows which are triggered by event e
and span an interval ¢ over the stream in the future or the past w.r.t. e (in contrast,
the structurally-defined window in Figure (a) always has its recent edge on current
time). Figure (d) shows a window which extends in time based on two events e; and
es. As we will see shortly, our event operators are based on the semantic windows
depicted by Figures (b) and (c). Providing an operator that expresses the semantic
window in Figure (d) is a topic of future work. Note that the way a window is de-
fined (structurally or based on one or two events) is orthogonal to what computation
is done inside the window (average, max, etc.).

We call such windows semantic windows, as they are not defined based on a
number of tuples or a time interval but rather semantically, based on the occurrence
of some (simple or complex) events. Concurrent to our work, a group at University
of Texas at Arlington has worked on semantic windows [16]. Their motivation for
going beyond structural windows is the same as ours. However, their mechanism for
defining the start and end of a window is different from our event-based approach,
and involves writing an SQL query that tests some condition on the nezt tuple of the
stream.

We shall proceed with the following fundamental binary event operations. Our
choice is based on simplicity and usefulness. While generic n-ary operators are strictly
more powerful than our binary operators, we wanted to start with a more basic set of
operators that could still capture many real-world complex events, such as those in
our target library scenario described in Section 3.2.2. In the following, Fy and F, are
two event streams, while e; and ey represent individual event tuples on these streams.
These events occur when the corresponding tuple is seen on their stream.
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Figure 1: Windowing Options for Streaming Data.

e FOLLOWS(E}, FE,, t). This detects if an event instance e; is seen on stream
E5 in the time interval ¢ following an event e; being seen on stream FE;. This
defines a semantic window of length ¢ over stream FEjy, triggered by events on
stream F,. The timestamp of the resulting event, is that of es.

e NOTFOLLOWS(FE;, E,, t). This detects the absence of any event instance
on stream F, within a window of length ¢ triggered by events from stream F;
(following the corresponding E; events). The timestamp of the resulting event
is t plus that of e;.

e NOTPRECEDES(E,, Es, t). This detects the absence of any event instance
on stream FE, within a (backward) window of length ¢ triggered by events from
stream F;. The timestamp of the resulting event is that of e;.

e ANYONE(E;, FE5). This defines a “union” event, which triggers whenever an
event is seen on either stream F; or Fy. The timestamp of the resulting event
is that of the event which triggers it.

Note that the output of these operators is also a stream, which consists of tu-
ples that are generated whenever the operator detects its corresponding event. This
approach results in closure of these operators over streams, and hence they can be arbi-

trarily nested within each other. For example, NOTFOLLOWS(NOTPRECEDES(E},
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Es, t1), Ej3, to) can be interpreted by recursively applying the semantics of the oper-
ators defined above.

These operators constitute a non-redundant operator set for detecting complex
event correlations in our system. Additional operators can be defined using them.
For example, we found it useful to have the operator PRECEDES(FE;, Es, t), which
is defined as FOLLOWS(E,, Ei, t). Also, the operator BOTH(E;, Es, t) looks for
events on the two streams within time ¢ of each other, and is equivalent to the sliding
window join operator in current streaming systems. In terms of our algebra, it can
be written as ANYONE(FOLLOWS(E}, Es, t), FOLLOWS(FE,, Ei, t)). Note that
the NOTFOLLOWS and NOTPRECEDES operators cannot be expressed in terms
of each other.

3.2 CEP in a Real-World Scenario

In this section, we describe how we extended the TelegraphC(Q data stream pro-
cessor to execute complex event continuous queries, along with traditional SQL-like
continuous queries. This was achieved in two ways.

1. Extending the TelegraphCQ query language with an EVENT clause that ex-
presses event correlations sought between the streams specified in the FROM
clause. We also needed a CQL-like PARTITION BY clause, for parameteriza-
tion - correlating the attributes inside the events that constitute the complex
event being detected. The details are presented in this section.

2. Modifications to the query execution engine of TelegraphCQ). This consisted of
adding a new operator for event aggregation, that implements the Fjord [23]
interface. The internals of this operator involve a tree-based bottom-up event
detection mechanism, similar to SNOOP [6], a base event cache manager, and
a timeout service. We describe this in Section 3.3.

3.2.1 Query Language Extensions

After our query language extensions, any previously valid query is still supported by
TelegraphCQ. Such a query is of the form:

SELECT [attributes | (sliding-window) aggregates]+

FROM [stream-name [RANGE BY t; SLIDE BY t,] | relation-name]+
WHERE <selection and join predicates>

GROUP BY <grouping attributes>

HAVING <group selection predicates>
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We will not go further into the details of the query semantics for this class of
queries. After our extensions, an alternate form of the TelegraphCQ query looks like:

SELECT <attribute list>

FROM [stream-name alias]+

PARTITION BY <partitioning attributes>

EVENT <complex event expression over aliases>
WHERE <selection predicates>

A quick example of this kind of a query is the data cleaning query:

SELECT R1.x

FROM RFIDStream R1 R2

PARTITION BY tag_id

EVENT NOTPRECEDES(R1, R2, ‘1 sec’)

This query is a filter. It produces a stream of RFID tag readings, that have
not been preceded by another reading for the same tag, within the last one second.
Note that the PARTITION BY clause makes sure that two readings corresponding
to different tags do not “interact” with each other. The FROM clause has two
tuple variables, R; and R, that reference two distinct tuples from the same stream
RFIDStream. This is similar in spirit to sequence query languages, and we visit that
literature in Section 5. The NOTPRECEDES event operator looks for tuples that
bind to tuple variable R;, such that there exists no other tuple that can be bound to
Ry and was seen in the 1 second period before R was seen. We extensively used such
queries for cleaning RFID data in our live demonstration, given that RFID readers
continuously produce readings for tags in their vicinity, and most applications want
to be notified about a tag only the first time in appears in a certain location.

3.2.2 A Live Demonstration

We now discuss how our system was used as the core processing engine in a real-
world scenario. This scenario extensively used sensing technology (RFID, sensors)
as the source of event streams. With the rapid adoption of RFID and other sensing
technology, a new class of applications is emerging. These applications use receptor
technology at their lowest-level and then build complex functionality on top. An
example of such an application is an RFID-enabled supply chain, which monitors
items as they move (supplier, warehouse, retail store) using RFID technology and
also monitors warehouses with other sensing technology (temperature sensors). The
HiFi project at Berkeley [12] is exploring the infrastructural support for such systems,
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and our work is in the context of HiFi.

The extended TelegraphCQ) system was used as the core engine in a live demon-
stration at SIGMOD 2005. We mocked up a real-world library with the following
components:

1. Books on shelves. Each book was RFID-tagged, and also equipped with the
usual ISBN barcodes. The shelf was monitored using RFID antennas, for track-
ing books as they move in and out of the shelf.

2. Patron tags. Each patron of the library was given an RFID-tagged ID card.
They were also given the usual barcode-equipped ID cards.

3. The counter. The usual librarian counter was setup. This was equipped with a
barcode reader.

4. RFID-enabled door. The library door was equipped with RFID antennas. This
was used for tracking the movement of books and patrons in and out of the
library.

5. Motion sensors on doors. These simple sensors indicate the presence or absence
of motion in their (orientation-specific) vicinity. They were used in conjunction
with RFID antennas at the door, for directed motion sensing.

The high-level view of the demonstration setup is shown in Figure 2.

Complementary to our work, the work described in [15] makes up the Virtual
Device (VICE). The goal of the VICE is to abstract away all the details of the
underlying sensing technology from the system layers (and applications) above it,
like the Complex Event Processing engine. Although the VICE forms an important
part of the demonstration, it is not the topic of this report.

What is relevant to this discussion is that in this arrangement the VICE exports
an interface to the CEP engine that consists of the following streams:

Person(person_id, loc_id, timestamp)
Book(book_id, loc_id, timestamp)

The schema of these streams is self-explanatory. It captures the identity of entities
and the locations they are observed at inside the library (shelf, counter, door) at a
given time. All the CEP queries were written on top of this abstraction. Some more

streams were defined in the system:

Checkout (person_id, book_id, loc_id, timestamp)

19



Complex
Event
Processing

Event

Virtual Device Streams

& R .
y Receptors

=

Motion Detectors RFID Readers

Figure 2: Complex Event Processing over Receptor Streams.

This captures the checkout of a specific book by a specific person*

BookliftingAlert(book_id, loc_id, timestamp)

This captures an alert stream, which indicates a book being taken out of the li-
brary, from the location given by the loc_id, without being previously checked out.

ConfusionAlert(loc_id, personl_id, person2_id, book_id, timestamp)

This captures another alert stream, which indicates the failure of the CEP engine
to unambiguously checkout a book for a particular person. This happens when, for
example, two people walk out of the door within a small period of time, with one of
them carrying a book. In this case, it becomes very hard for an automated system
to disambiguate the checkout (uniquely identify the patron checking out the book).
Hence, we detect this as another complex event, and rely on a human to attend to it.

4Several details have been removed from this discussion. For example, in the actual demon-
stration, catalog lookups were made to transform IDs to meaningful names of books and patrons.
Several cleaning queries were also used, similar to the one in Section 3.2.1.
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OverlimitAlert(person_id, loc_id, timestamp)

Our final alert stream detects an otherwise valid checkout that is invalid because
of some pre-defined business rule. In our library, no patron should be allowed to
checkout more books than her limit.

Our demonstration team designed an extensive visualization scheme, and this was
used on top of these streams to give an insightful view to our live audience, into the
working of the library. We will not go into the details of our visualization.

We will now discuss some of the complex event queries that were used to feed data
into the above streams. The following query detects booklifting alerts:

SELECT B.x*

FROM Book B, Checkout C

PARTITION BY book_id

BOTH(NOTPRECEDES(B, C, ‘1 min’), NOTFOLLOWS(B, C, ‘2 sec’), ‘3 sec’)

Every time a book is seen going out of the door, this query looks at two semantic
windows on the checkout stream - one into the past, and the second into the future.
The first one checks for the absence of checkouts for this book at the counter, and the
second one looks for the absence of door checkouts in the immediate future (note that,
in our demo, a turbo-checkout scheme let the RFID-tagged user checkout a book by
just walking out of the library with the book). The PARTITION BY clause makes
sure that each book is tested for booklifting independently.

The confusion alert was detected by:

SELECT P1.loc_id, Pl.person_id, P2.person_id,
FROM Person P1 P2, Book B
PARTITION BY loc_id
EVENT ANYONE(
FOLLOWS(B, BOTH(P1, P2, ‘3 sec’), ‘3 sec’),
FOLLOWS (BOTH(P1, P2, ‘3 sec’), B, ‘3 sec’)
)

This detects the presence of two persons and a book in very close proximity in
time. The PARTITION BY clause makes sure that events at different locations are
not mixed up, to raise false alerts.
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3.3 Implementation Issues

In this section, we describe the systems details of our prototype. TelegraphCQ [8,
17] processes continuous queries (CQs) over streams in a shared fashion. Some key
systems features are:

e There is a single backend process that runs a query plan that is the result of
merging all the currently executing queries. The merging algorithms take care of
exploiting commonality between queries, so that redundant work is minimized
while processing.

e In addition, each client is attended by its own frontend process that takes care of
parsing, planning and optimization of queries specific to that client. Note that,
in a streaming environment, the frontend cannot perform much optimization,
as statistics about data is not available. Much of this work is pushed into the
backend, in the form of adaptive query processing [24].

e In addition to these key processes, a Wrapper Clearing House process takes
care of reading raw bytes from network connections that come from remote
data sources. It then converts this raw data into structured tuples, that are
sent to the backend for processing.

The different processes communicate with each other through shared memory
queues. Other details of the TelegraphCQ architecture are omitted from here. They
can be found in [8].

Our extensions to TelegraphCQ go into the frontend and the backend. The fron-
tend changes take care of parsing and planning complex event queries. An arbitrarily
complex event query is converted during the planning phase to a tree similar to the
one shown in Figure 3. The tree in this example corresponds to the booklifting query
discussed earlier. There is one node in the tree for every event operator in the query.
The structure of the tree is derived from the nested structure of the event operators
in the query. The PARTITION BY clause is compiled into a special data structure.
Partitioning is detailed in Section 3.3.3.

The extensions to the TelegraphCQ backend are in the form of a new Fjord-
based [23] operator for event aggregation. The Fjord model goes beyond the tradi-
tional iterator-based interfaces for database operators. It connects operators to each
other using smart queues, which allow both push and pull behavior within the query
plan. Next, we go into the details of some key features of this operator.

3.3.1 Bottom-up Event Propagation

The run-time event aggregation operator consists of the tree generated at compile
time, and several other data structures (Figure 4). Complex events are detected
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Figure 3: Frontend-compiled tree data structure for an event query.

using the tree in a bottom-up fashion, as was the case with SNOOP [6]. Every simple
(base) event tuple is “published” to the corresponding leaves of the tree. For example,
a tuple on the book event stream will be published to the leaf nodes marked with B in
the tree of Figure 3. Nodes in the event tree have SteM-like [26] data structures called
[ESteM (Intermediate Event SteM) for storing the intermediate events generated by
the subtree rooted at them. Not all nodes have to materialize their output events
in an IESteM. Whether or not a node materializes its output events depends on its
parent node type. This will be explained shortly.

Timeout Request Queue
E BN
e, = Baseevent

—=— = Intermediate event

= = In—-memory Pointer

o
€, IESteM

Base Event Cache

Figure 4: Run-time details of the event aggregation operator.
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The operation GenerateComplexFEvent(), when called on an event node inserts its
output events into its output IESteM. If an output event has been produced, the
node may call GenerateComplexEvent() on its parent recursively. This is how event
detection propagates bottom-up along the tree structure.

Different operators implement the GenerateComplexFEvent() interface differently:

e FOLLOWS(E}, Es, t): This operator is scheduled when an event is generated
by its right child. It looks for E; events in its left child’s IESteM that match the
E5 event triggering it. Note that this operator does not need to be scheduled
when its left child generates an output event but rather only when its right
child generates an output event. An event in the left child’s IESteM can be
expired after time ¢. The right child does not need to materialize its output in
an TESteM.

e NOTFOLLOWS(FE;, Es, t): This operator is scheduled in three cases. First,
if its left child generates an output event e;. In this case, it inserts a timeout
request for time t., + t, where ., represents the timestamp of the event e;.
Second, when the right child generates an output event es. In this case, the
operator expires the matching e;’s from the left IESteM. This expiry is optional,
and can be avoided if a lazy strategy is used. Third, by the timeout mechanism.
In this case, it looks for the presence of a matching e, event in the right child’s
[ESteM. If no such event is found, it puts the concerned e; into its output
IESteM. In either case, e; is expired from the left IESteM.

e NOTPRECEDES(E;, FEs, t): This operator is scheduled when its left child
produces an output event. It looks for the absence of a matching e, in the right
child’s TESteM. An event in the right child’s IESteM can be expired after time
t.

e ANYONE(E,, E,): This operator is scheduled whenever any of its children
generates an output event. It just inserts the triggering child event into its
output IESteM, if any.

Figure 4 shows the details of a run-time event aggregation operator. It consists of
the following three components:

1. The event tree. IESteMs are allocated wherever they are required (as discussed
above).

2. A base event cache. Base events refer to the tuples that enter the event ag-
gregation operator. They correspond to the leaf nodes of the event tree. We
describe this component in more detail in Section 3.3.2. It consists of a copy of
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every base event that enters this operator. Various operators in the event tree
maintain pointers to these base events in their IESteMs. This makes sure that
no base event is materialized more than once, as should be the case. A base
event is maintained as long as any [ESteM has an intermediate event pointing
to it.

3. A timeout queue. This queue is used by instances of the NOTFOLLOWS opera-
tor in the tree. Each request in the queue has a pointer to the intermediate event
which caused this request, and a time when the request will fire. As mentioned
above, timeouts can be requested only by intermediate events that go into a
NOTFOLLOWS operator’s left child IESteM. In our current implementation,
the timeout queue is served by the operator itself. However, a more general
design principle would be to make a centralized scheduler, like the Eddy [24],
serve the queue.

Operator IESteM for E, IESteM for E, | Scheduled On
FOLLOWS(E;, Es, t) window of t None E,
NOTPRECEDES(E;, Es, t) None window of t E,
NOTFOLLOWS(FE,, Es, t) | window of t, event-driven expiry None Ei, E,, Timeout
ANYONE(E,, E») None None Ei, E,

Figure 5: Memory Management for event operators. The events that cause the given
operator to be scheduled are shown in the rightmost column.

A summary of how each operator behaves, in terms of scheduling and IESteM
state for its children, is given in Figure 5.

3.3.2 Base Event Cache Management

Base events are combined as they move up the event tree (for example, an e; and
an e, event may get combined by a FOLLOWS(E}, Es, t) operator, before the result
is inserted into an IESteM). In general, any base event may be propagated up the
tree along different paths, and inserted in multiple IESteMs (for example, in our
booklifting query (Figure 3), a book event gets picked up by two leaf nodes, and goes
up to the root along two different paths).

As a space optimization, we do not materialize each copy of a base event inside
the operator independently. Rather, a single copy of the event is maintained in a
Base Fvent Cache and intermediate events consist of pointers to events in this cache.
We note that the same trick is played in traditional database systems, where as
(composite) tuples move across operators, they consist of pointers to the base tuples
in the buffer pool.
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3.3.3 Enforcing Partitioning: Necessary Pushdowns

If a PARTITION BY clause is present in the query, then only a subset of all complex
events produced by the event aggregation operator are actually needed. For example,
a one-level FOLLOWS(F;, Es, t) query should output a complex event of the form
ei1eo only if the simple events e; and ey have the same value for all the attributes in
the PARTITION BY clause.

One solution is to enforce partitioning at the top of the tree. In this case, a com-
plex event of the form ejes...e, is deleted if any two component events e; and e; do
not have the same value for every partitioning attribute. However, this approach
gives incorrect results, due to the presence of negative event operators, like NOT-
PRECEDES and NOTFOLLOWS, in the event tree. To see this, let’s look at the
event tree node corresponding to a NOTPRECEDES(E;, Es, t) operator. Suppose
this operator is scheduled due to the insertion of an event e; into its left child’s output
[ESteM. Suppose the right child’s IESteM currently has an event e, whose timestamp
is between t., —t and ¢.,. Then this e; will cause e; to get deleted immediately, and
not be inserted into our operator’s output IESteM. However, this should happen only
if e5 and e; belong to the same partition (have the same value for each partitioning
attribute). Thus, the top of the tree approach may lose some complex events that
should have been generated. This problem occurs because this operator has negative
semantics.

In our implementation, we make sure that partitioning is pushed down the event
tree, so that the above problem is avoided.

3.4 Experiments

In this section, we compare our system with the vanilla TelegraphC(Q relational
stream processing engine. TelegraphC(Q offers only traditional relational operators
over streams, like selections, projections, and (windowed) joins. However, our opera-
tors are targeted towards complex event queries, that involve sequencing and negation,
in addition to traditional operations.

We compare our system (TCQ*) to TelegraphCQ (TCQ) by designing experiments
that exploit the expressive power of the FOLLOWS operator. Note that NOTFOL-
LOWS and NOTPRECEDES cannot be expressed in TelegraphCQ), as no available
relational operator can capture their negative semantics®. The FOLLOWS opera-
tor is captured in the TelegraphCQ language using the join operation, followed by a
selection that imposes the sequencing requirement.

SOuter joins are currently not available in TelegraphCQ.
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Parameter Description Values
numEventTypes Number of distinct event types 20
numAttrs Number of attributes in every event 5
ds Domain size for event attributes 10, 50, 100, 500, 1000
sl Length of sequential pattern in the query 2,3
WS Window size for query 100-10,000

Figure 6: Data and Query Workload Parameters.

3.4.1 Data and Query Workload

Figure 6 illustrates the parameters involved in our workload generation . One base
event stream carries numEventTypes different event types, which differ in their type
field. In addition to this field and the usual timestamp, every event has numAttrs
fields, that are associated with different domain sizes. In our experiments, we set
numAttrs to 5. An event tuple on the base stream is chosen uniformly from each
of the numFEventType event types. Once the event type has been chosen, each field
in the event is chosen uniformly from an integer domain whose size is equal to the
chosen domain size.

The query workload is generated as follows. Every query consists of a sequence
of sl event types. For example, when sl = 2, the query is detecting occurrences of
E; events followed by E, events. Further, a (semantic) time window of ws events
is imposed, such that only the sequences that occur within such a time window are
extracted. The five attributes available in events are used, in turn, as the partitioning
attributes in the query. Before we discuss our specific experiments and results, we
describe how the TelegraphCQ system was configured for measurements.

3.4.2 Experimental Setup

As described earlier, the TelegraphCQ system is a multi-process server. A backend
process carries out all the continuous query processing, while other processes are
responsible for client and data source connections. In our experiments, we made sure
that all measurements capture only the query processing costs, inside the backend. To
achieve this, the TCQ code base was engineered to avoid unnecessary inter-process
communication, through shared-memory operations. The backend was interfaced
with a stub, that included:

e The random event generator, for feeding the base stream into the execution
engine.

6Yanlei Diao and Eugene Wu were extremely helpful in setting up the experiments.
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e Timing code, to measure the time taken for processing batches of tuples that
go into the executor.

For every experiment, multiple batches of tuples were streamed into the executor.
The experiment terminated when the time taken to process a batch had shown con-
vergence across several batches. The resulting time delay, along with the batch size,
was used to calculate the throughput of the system for the running query.

All experiments were run on a 2.8 GHz Pentium 4 machine, with 1 GB of RAM
and running Fedora Core 2 (based on Linux kernel 2.6.5). Processes were prevented
from hitting the swap device at any time.

3.4.3 Results and Analysis

Our first experiment shows the importance of sequencing-aware operators for Com-
plex Event Processing. Consider the following query, which detects occurrences of F,
followed by occurrences of Fs, inside an ws-tuple window:

WITH
El as (SELECT * FROM base WHERE type = 1)
E2 as (SELECT * FROM base WHERE type = 2)

(SELECT =*

FROM E1 a, E2 b
PARTITION BY a3

EVENT FOLLOWS(a, b, ‘ws’)
)

Note that attribute a3 is chosen as the partitioning attribute, and its domain size
is 100. The same query can be written in vanilla TCQ as:

WITH
E1 AS (SELECT * FROM base WHERE type = 1)
E2 AS (SELECT * FROM base WHERE type = 2)

(SELECT *

FROM E1[RANGE BY ‘ws’], E2[RANGE BY ‘ws’]

WHERE El1.a3 = E2.a3 AND El.tcqtime < E2.tcqtime
)

This query performs sequencing by first joining the two streams F; and FE, in a
sequence-agnostic fashion, and then applying a selection on top of the join result, to
enforce the sequencing requirement. On the other hand, the Complex Event Query
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given earlier is sequencing-aware, and does not have to perform the unnecessary join.
Specifically, the TCQ query will have to perform work (like probing a hashtable for
matching tuples) every time it sees an F; tuple or an Fs tuple. However, given that
the FOLLOWS operator is scheduled only when an FE5 event is seen (Figure 5), it
has to do only minimal work when an E; event occurs (such as inserting it into an
IESteM). This reasoning is verified by our experiment (Figure 7), which varies the
value of ws in the above queries, keeping all other parameters fixed. Note that as
ws increases, the wasted work performed by vanilla TCQ for E; tuples also increases.
This is manifested as an increasing difference between the throughput of TCQ and
TCQ*, in Figure 7.

Effect of Increasing Window Size
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Figure 7: Varying Window Size

The amount of wasted work done by the vanilla approach not only depends on
the size of the query window, but also on the domain size of the partitioning at-
tribute. This is because the latter decides the size of the join result. Given that a3
has a domain of size 100, a random Fs tuple will match a given F; tuple with prob-
ability 0.01. We study the effect of domain size in our next experiment. Attributes
al, a2, a3, a4, ab have domains of sizes 10, 50, 100, 500, 1000 respectively. Hence, going
from al to a5, as the partitioning attribute, represents decreasing work (decreasing
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Effect of Increasing Partitioning Domain Size
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Figure 8: Varying Partitioning Domain Size

result size). Our experiment, illustrated by Figure 8, confirms this. We vary the
domain size using these attributes, while the window size is kept constant at 10,000
tuples (the sequence length is still 2). As we go from right to left on the z-axis, TCQ
performs increasingly more work than TCQ*, and suffers in throughput.

Our final experiment varies the sequence length in the query. We set the window
size to 1000 tuples, and choose al as the partitioning attribute (domain size 10).
As Figure 9 shows, TCQ suffers much more than TCQ*, as the sequence length is
increased from 2 to 3. This is because a sequence of length 3 requires a 3-way join in
TCQ, which is even more work than the previous experiments. On the other hand,
TCQ* uses a sequence-aware tree data structure described earlier, and performs only
as much work as needed - an Fj3 event is used to probe the IESteM which consists
of composite F;FEy events (which have already occurred), while TCQ will possibly
produce intermediate tuples for all subsets of the 3-way join.

3.4.4 Summary

In summary, our experiments confirm that providing first-class support for sequence-
aware operators in stream processing engines is important for Complex Event Pro-
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Effect of Increasing Sequence Length
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Figure 9: Varying Sequence Length

cessing over streams. While it is possible to write an event query as a complicated
join, scalable solutions will require event operators next to traditional relational oper-
ators (Note however, that while our added language constructs allow easy expression
of event queries, it is possible to use our sequence-aware operator without the new
language features. For example, a smart query planner may detect the presence of
sequencing in a normal SQL query, and use our operator in place of the normal join
operator). Further, support for negation is more naturally provided” using event
operators, like our NOTFOLLOWS and NOTPRECEDES operators.

3.5 Limitations

While our initial experiments demonstrated the potential for significant performance
gains, we would like to point out the following limitations in our approach to complex
event processing over streams.

“Note that, although TCQ does not currently support outer joins, it is trivial to define and
implement windowed outer joins in a stream processor.
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1. Expressiveness: The binary nature of our event correlation operators repre-
sents only a first take. To express correlation among more than two events,
more generic forms of sequencing and negation are needed. For example, to de-
fine a semantic window of the form given in Figure 1(d), which has two events
specifying its ends, our binary operators fall short.

2. Orthogonality: Our extensions to streaming SQL are in the form of a new
EVENT clause. This makes complex event queries take a different form from
normal streaming queries. A cleaner alternative, which preserves the orthogo-
nality of the language constructs, is needed®.

3. Sharing: Our event aggregation operator currently does not perform sharing
across queries. In general, if two queries lead to event trees having common
subtrees, then work can be shared at run-time. However, some details, like
sharing operators with the same event arguments but different time windows,
need to be looked at carefully.

4 Probabilistic Complex Event Processing (PCEP)

Our discussion so far involved processing of complete or precise data streams. We
now move to Probabilistic Complex Event Processing, which is our work on process-
ing tmprecise or fuzzy data streams, such as those produced by current day sensing
technology.

//\ CEP — App

Base Events

(b) /\

Base Events

Figure 10: The Role of State in Event-driven Applications.

Figure 10 shows two ways of looking at a Complex Event Processing system.
Figure 10 (a) is the view to which all our discussion up to this point conforms. The

8To be more accurate, the lack of orthogonality in SQL has been long-known [10]. However, we
would still like to have better integration of complex events with SQL.
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CEP engine sits between the application and low-level streams, and detects complex
patterns over these streams. Once the required pattern is detected, the subscribing
application is informed about this, along with a set of bindings (to the component
events that make up the complex event), which the application uses. An example of
such an application is one that wants to detect a “three day period where Microsoft
stock price first goes up by 10% and then goes down by more than 10%” in a stock
quote stream.

However, this model fails for some applications. For example, consider a context-
aware ubiquitous application for the smart home which wants to display content in the
living room based on who the current occupants of the room are. Urgent home state
notifications, like a leaking water pipe, need to be reported whenever a senior member
of the household is present. Individual-specific reminders and calendar information
are other examples. This application senses-and-responds to the current living room
state, rather than to individual events like motion sensor firings. If the current living
room state consists of person A and B being present in the living room, the application
does not care about how this state was reached, i.e., it does not care about what sensor
firing events lead to this state. As another example, consider a warehouse scenario.
An application wants to take action whenever a shelf gets understocked. Depending
on how many items are remaining on the shelf, it places an order for more items
through the supply chain for delivery within a week, or the next day itself. This
application is also based on the current state of the warehouse, and not on events like
items coming in or going out of the garage door.

This paradigm is captured in Figure 10 (b), where the CEP engine feeds events
into a state abstraction. Applications then respond to state changes. Note that this
state abstraction is not equivalent to just high-level events but captures the current
configuration of the system, based on all the events seen in the past. In this section,
we work with this state-based Complex Event Processing model.

4.1 The Need for Probabilistic Complex Event Processing

Real-world applications also face another set of issues because of sensor data sources.
The data streams from sensor devices are often dirty and fuzzy [14, 15]. Events
based on these data streams are therefore probabilistic. For example, a sensor net
that monitors the temperature of a room and generates temperature readings with
some confidence (based on the number of sensors nodes and link failure rates) can
only detect a fire event, defined as “the temperature being above 70C with a 95%
confidence” with a probability tag. This probability will be a function of the event
specification and underlying data stream’s dirtiness. If events are probabilistic, the
state that results from these events is also, in general, probabilistic or fuzzy. This
calls for Probabilistic Complex Event Processing.
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No Semantic Hierarchy | Semantic Hierarchy
Crisp Data No Yes
Uncertain Data Yes Yes

Figure 11: The Need for Probabilistic Complex Event Processing.

Another interesting feature of real-world data sources is that they produce events
at “different semantic levels”. For example, a simple motion sensor can only detect
movement of “object”. On the other hand, RFID-based sensing can detect the pres-
ence of “specific persons” based on ID-based RFID tags. Vision techniques, using
machine learning over a camera’s video stream, can detect people inside a room,
however, they may give only a distribution for who the person is. In summary, not
all event or data sources work at the same semantic level. Hence, a Complex Event
Processing system needs to incorporate event streams at different semantic levels.
Note that events at any semantic level are fuzzy when seen from a higher semantic
level. For example, a “person enters home” event is probabilistic with respect to the
“person A enters home” level events. Hence, probabilistic reasoning is necessary even
when the data is crisp, if we are trying to make inferences at a higher semantic level.
This also calls for PCEP.

Figure 11 summarizes our arguments. PCEP is not needed if all event sources
report at the same semantic level, and simple events are reported in a crisp fashion.
This corresponds to the upper left corner of the table. All other cells in the table
argue for PCEP.

4.2 An Architecture for Probabilistic Complex Event Pro-
cessing

Now we present our preliminary work on an architecture for Complex Event Pro-
cessing that incorporates probabilistic events and state. Figure 12 illustrates our
architecture.

Base events are fed into the system from the bottom. These consist of low-level
sensor data streams. The other components are described as follows:

e Learning-based Event Refinement: This component refines base event
streams based on past information and Machine Learning techniques. For exam-
ple, if a “person enters home” event is seen in the base stream, this component
can make use of archived information and models, like which home occupant is
most likely to come home at this time (on this day), to create a distribution
for the identity of the person. We expect this component to play an important
role as event sources often give incomplete and fuzzy information.
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Figure 12: An Architecture for Probabilistic Complex Event Processing.

CEP Engine: This is the core complex event processing engine. It processes
multiple event streams to filter, correlate and aggregate them into semantically-
richer events. Events from this module go into either the state maintenance
module, or the above mentioned event refinement module, for refinement of
complex events.

Probabilistic State: This module is responsible for maintaining the “current
state of the system”. As mentioned earlier, state under fuzzy events is neces-
sarily fuzzy or probabilistic. This module decides a new state based on the old
state and new events seen. Some interesting examples are:

1. If the current state involves “only person A being in the living room” and
a new motion event is seen saying “some person has moved from the living
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room to the den”, then the module’s new state reflects “person A being in
the den”.

2. If the current state involves “either person A or person B being in the
bedroom, each with probability 0.5”, a high-certainty event that points to
“person A being in the bedroom” will lead to a new state with modified
probabilities (0.9 for person A, and 0.1 for person B being in the bedroom).
This is an example of how new events can reduce the uncertainty caused
by past events.

e Inference-based API to the Probabilistic State: Applications built on
top of this PCEP framework need some kind of API to access the current
(probabilistic) state. For example, if the state corresponds to a people-in-rooms
tracker for a smart home, then, an application may want to ask questions like:

1. What is the number of people in the home currently?
2. Who is in the bedroom currently?
3. Is Person A in the bedroom?

In general, the answers to these questions are probabilistic. For example, sup-
pose the home has two rooms - living room (LR) and bedroom (BR). Further,
suppose we have only two people in the household, person A and person B. Then,
let random variables X4 and Xpg capture the current state w.r.t. person A and
person B. These two variables take values out of the set {LR, BR, Outside}.
The current state is then given by the (discrete) joint probability mass function:

p(za,7B)

At any point in time, the probability that “person A is in the living room and
person B is outside the home” is given by p(LR, Outside). Along similar lines,
the answers to the above three questions are given by:

1. 0 x p(Outside, Outside)
+ 1 x(p(LR, Outside)+p(BR, Outside)+p(Outside, LR)+p(Outside, BR))
+ 2 x (p(LR,LR) + p(LR, BR) + p(BR, LR) 4+ p(BR, BR))
2. “Only person A” with probability p(BR, Outside) + p(BR, LR).
“Only person B” with probability p(Outside, BR) + p(LR, BR).
“Both A and B” with probability p(BR, BR).
“No one” with probability p(Outside, Outside)+p(Outside, LR)+p(LR, Outside)+
p(LR, LR).
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3. “Yes” with probability p(BR, Outside) + p(BR, LR) + p(BR, BR).
“No” with probability p(Outside, Outside)+p(Outside, LR)+p(Outside, BR)+
p(LR, Outside) + p(LR, LR) + p(LR, BR).

These answers are generated by the familiar operations of marginalization and
expectation calculation over the joint probability mass function. We expect such
operations to be a fundamental part of the API to the probabilistic state.

e Apps: These are the actual applications are are written on top of the CEP-
generated probabilistic state.

Based on this architecture, we built a small prototype for a smart home scenario.
The simple event streams reported the movement of people as they moved from one
room to another. The probabilistic state was maintained using a probabilistic state
machine, which is a state machine that uses a distribution over all its states for the
notion of current state. The application used was a ubiquitous computing application
that displays content on the living room display, based on the person(s) currently in
the living room.

5 Other Related Work

In this section, we overview related work that is relevant but not directly applicable
to the problem addressed in this paper. These are the proposals for query languages
(and operators) for sequence or time-series data [25, 29, 19, 28|.

5.1 Query Processing for Sequence Data

While SQL is the inter-galactic standard for querying relational data, the fact that
relations are “sets”, limits its applicability to other kinds of data. An important class
of data is sequence data, like time-series from scientific experiments and a sequence
of stock quotes from a stock exchange. As we will see below, using native SQL for
querying such data will result in two problems:

1. Expressing SQL queries for sequence data results in unintuitive queries, which
are hard to write, and understand.

2. An unintuitive query is hard to optimize, resulting in inefficient query process-
ing.
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For example, suppose we have a table with stock quotes, which stores prices (end
of trading day prices) of stocks, along with the timestamp, with the following schema:

Quotes(name varchar(10), price integer, date timestamp)

Note that this data is inherently sequential but the underlying data model (rela-
tional) is not aware of this. Suppose we want to find out all those stocks that went
up by at least 10% in one day, and then another 10% on the next day, then this can
be done in SQL as follows:

SELECT q3.*

FROM Quotes ql, Quotes g2, Quotes g3

WHERE ql.name = g2.name AND g2.name = g3.name
AND ql.date = g2.date - ‘1 DAY’

AND g2.date = g3.date - ‘1 DAY’

AND g2.price >= 1.1 * gl.price

AND q3.price >= 1.1 * g2.price

This query has to do a three-way join because the data model is not sequence-
aware. On surface, the query is hard to read and understand, as it is written unintu-
itively. The relational optimizer will also find it hard to optimize.

This has resulted in several proposals for query languages geared towards querying
sequence data. Given the similarity between sequence data and (sequence-aware)
event histories, we overview this interesting research space in this section.

5.1.1 SQL-TS

Simple Query Language for Time Series (SQL-TS) has been proposed in [28]. The
authors present SQL extensions that let users express such queries in a natural way,
and also study the optimization of sequence queries written in their language. In
SQL-TS, the above query will be phrased as:

SELECT Z.x

FROM Quotes

CLUSTER BY name

SEQUENCE BY date AS (X, Y, Z2)

WHERE Y.price >= 1.1 * X.price AND Z.price >= 1.1 * Y.price

The CLUSTER BY clause specifies that data items corresponding to each name
should be processed separately (a group by like functionality). The SEQUENCE BY
clause specifies which attribute determines the ordering of data for the current query.
The AS clause is used to specify a sequence of tuple variables from the specified table.

38



Note that (XY, Z) will be bound to three tuples that immediately follow each other.
SQL-TS also allows the expression of recurring patterns (patterns involving a variable
number of tuples) using the *x operator. For example, to find the maximal period of
time where the price of the stock fell more than 10%, one can use the query:

SELECT X.name, X.date, Z.date

FROM Quotes

CLUSTER BY name

SEQUENCE BY date AS (X, *Y, Z)

WHERE Y.price < Y.previous.price AND Z.previous.price <= 0.9 * X.price

Note that two additional fields are provided for every tuple, that allow addressing
the immediately previous and next tuples.

5.1.2 SRQL

Sorted Relational Query Language (SRQL) [25] treats sequences as sorted relations.
SRQL consists of extensions to SQL, and the work also presents an algebra over
sequences that extends relational algebra.

A simple sequence is a relation that is (logically, not physically) sorted based on
a set of attributes. A composite sequence is a relation that is first grouped on a set
of attributes, called grouping attributes and then (logically) sorted by another set of
attributes within each partition. An alternative way to look at this, is to consider a
sequence as a relation with a set of grouping and sequencing attributes (which may
be empty). Every tuple in a sequence has an implicit attribute, called the ordinal
number, which defines the sequence number of the tuple in the sequence (or within its
specific group). This number can also be queried. Note that multiple tuples (within
the same group) may have the same ordinal number, as they may have the same value
for all sequencing attributes.

At its core, the SRQL consists of the standard relational operators (o, II, x, U, —),
extended to work on sequences (by defining the grouping and sequencing attributes
for the output to be empty) and one new sequencing operator (V) that creates a
sequence. The sequencing operator takes as input a sequence or relation R and
(re)sequences it based on attribute sets g and s. That is, ¥, (R) is R grouped on
g and then sequenced on s. Some other sequence-aware operators are also presented
in [25] but they can be expressed using the operators mentioned above. An SRQL
query built on top of this algebra may look like:

SELECT S.price, SHIFTALL(S,-1).price
FROM Quotes GROUP BY name SEQUENCE BY date AS S
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WHERE S.price >= 1.1 * SHIFTALL(S,-1).price

This query returns all stocks which went up by 10% within one day. The SHIF-
TALL(t,n) keyword gives access to the tuple ¢’ that is at an offset of n with respect
to the ordinal number of tuple ¢, within the same partition. The join operation for
sequences can be seen in the query:

SELECT C.date, Q.name, (.price

FROM MarketCrash C, Quotes SEQUENCE BY date AS Q

WHERE Q.date <= C.date

AND (SHIFTALL(Q,1).date > C.date OR SHIFTALL(Q,1).date IS NULL)

which finds for every stock market crash, the last stock that was reported before
the crash. Finally, sliding window aggregation over sequences is demonstrated by the

query:

SELECT Q.name, Q.date, AVG(price) OVER -1 TO O
FROM Quotes GROUP BY name SEQUENCE BY date AS Q

This query finds, for each stock and each date, the average stock price over two
days (the previous day and current day). The OVER keyword in the SELECT clause
specifies the range of the sliding window (in this case, from offset -1 to the current
tuple).

5.1.3 AQuery

AQuery [19] supports order in data in a ground-up fashion. AQuery’s data model
consists of a collection of arrays, called arrables. A sorted relation is a special case
of an arrable where the arrays (columns) have scalar elements. This corresponds
to column-oriented semantics rather than row-oriented semantics. Well-known op-
erators, like projection and selection, have been extended to their order-preserving
variants. The FROM clause is extended to specify the ordering attributes, and the
SELECT clause allows order-aware operations, as demonstrated in this query:

SELECT P.name, last(10, Q.price)

FROM Portfolio P, Quotes Q ASSUMING ORDER date
WHERE P.name = Q.name

GROUP BY P.name
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This query gives the last 10 quotes for each stock in the person’s portfolio. Note
that the last() function pulls out the last 10 elements from the price array.

While work on sequence query processing extends the relational data model and
operators with support for time-series data, it does not focus on streaming data or
event processing. Hence, these efforts do not provide support for essential features
like negation.

6 Conclusions and Future Work

In this work, we have looked at the problem of Complex Event Processing, which
deals with aggregating simple events into more meaningful and semantically-richer
events. This problem has been looked at in the past, for example, in the context of
active databases. However, the challenges of streaming and uncertain data add new
dimensions to the problem. We presented an overview of past work in Complex Event
Processing. We also described our work in Complex Event Processing over streaming
data, which has been implemented in the TelegraphC(Q data stream processor and
used in a recent demonstration. An architecture for Probabilistic Complex Event
Processing (PCEP) was presented, to handle scenarios where either simple events are
not reported in a crisp fashion, or simple events are reported at different levels of a
semantic hierarchy.

Future work includes extending support for Complex Event Processing over stream-
ing data, by having more generic (n-ary) operators and better (orthogonal) language
constructs. For applications that want to execute multiple event queries simultane-
ously, sharing of work between different queries needs research. Our architecture for
Probabilistic Complex Event Processing is preliminary, and requires instantiation in
multiple scenarios, to be tested widely.
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