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Abstract

We present a method to calibrate perspective cameras from views of
a deforming textured object. We proceed by finding an orthographic
calibration, then enriching the camera model to include perspective effects
and distortion terms. In the process, we establish the utility of using
surface normals to calibrate cameras in the orthographic setting, with a
proof that a metric reconstruction can be achieved in two orthographic
views of two points combined with two normals. Our calibration object is
a sheet of textured cloth. We show that a calibration applies to a specific
region of space. Substantial improvements in reconstruction quality and
in reprojection error can be obtained by using calibration objects that
explore most of the relevant 3D volume. Using cloth as a calibration
object allows easy calibration of large 3D volumes more accurately than
typical planar calibration objects.

1 Overview

We present a new method of camera calibration targeting the reconstruction
of cloth in moving sequences. Our requirements differ from common structure
from motion estimation problems: we typically have a small number of cameras
surrounding a roughly convex textured object, each point is typically viewed
by three or fewer cameras, perspective effects are small but not negligible and
neighboring points may be reconstructed from different cameras. As a result,
small calibration errors result in large strains in the reconstructed cloth — a
visually displeasing and physically implausible artifact.

Our main claim is that using a ‘standard’ fixed planar calibration object (a
checkerboard in the bottom of the scene — see figure 9 in [14]) is not ideally
suited for this application. First, this fixed object places unnecessary restric-
tions on the locations of the cameras. Even worse, when all cameras can view
the same plane, this approach wastes resolution in the capture system. Second,
we demonstrate that calibration is specific to a volume of space. Self calibra-
tion methods (such as [10]) obtain good reconstructions because they use the
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same correspondences for both calibration and reconstruction. To achieve sim-
ilar results from a secondary calibration pattern, one would need to move the
calibration object through the volume before recording. However, it is difficult
to guarantee that the appropriate volume in 3D is covered effectively. We opt
for a more convenient technique: build the calibration into the deforming ob-
ject, which then effectively explores the space. We calibrate over time — using
the large numbers of correspondences to calibrate and thus guarantee that our
calibration pattern covers the relevant volume.

It is not intuitive that one could calibrate cameras with a deforming object.
In fact, as we show, the advantages of exploring the view volume are substantial.
Our reprojection errors are significantly lower (figure 7) and, in contrast to other
techniques, our reconstructions agree with physical cloth models. (figure 8)

Our calibration method differs from previous approaches. Observing that
perspective effects are small, we calibrate in two steps: first, we compute an or-
thographic camera calibration using the printed cloth pattern, then ‘enrich’ the
model to include perspective effects and distortion parameters. While general
orthographic calibration of point clouds requires 3 views of a sufficient number
of points to get a metric reconstruction, we prove in the appendix that using
points and normals, a metric reconstruction can be obtained from only two or-
thographic views if two corresponding points and normals are known. While an
orthographic view of any repeated pattern can provide normals [9], in this work
we consider the case where we know the frontal texture pattern a priori.

2 Previous Work

Camera calibration is well understood, with comprehensive reviews in two ex-
cellent books [2, 6]. Software that implements the most common techniques
is readily available on the Internet [1]. However, these tools have drawbacks
when used to capture dynamic cloth, which moves through large volumes while
showing minimal perspective effects. We begin with a review of the relevant
terminology.

Camera parameters are described as a set of extrinsic (configuration) and
intrinsic (focal length, camera center, etc.) variables. Camera calibration
(determining the camera parameters) can be broken into two categories: pho-
togrammetric calibration, where the geometry of the scene is known ahead
of time to high precision; and auto-calibration where the structure of the
scene is not known ahead of time and is simultaneously recovered from the 2D
views.

The standard method involves: identifying interest points; using appear-
ance, epipolar and three view constraints to build frame-frame correspon-
dences between these points; obtaining a projective reconstruction — which
yields geometry and cameras up to a 3D projective transformation — using one
of several current factorization methods; and then using appropriate assump-
tions to obtain an upgrade to a Euclidean reconstruction. The reconstruction
and cameras are then cleaned up with a bundle adjustment, which minimizes
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Figure 1: We use a piece of cloth with a color coded pattern as our ‘calibration
object’. Our pattern contains information at multiple scales: the larger triangles
have a color coded pattern that defines correspondence between views; the vertices
of the smaller triangles provide large numbers of point correspondences. We
extract this information in a coarse to fine search. Because we know the frontal
pattern of the cloth and because we assume that there are few folds smaller than
the scale of the smallest triangles, we can compute normals to each of the small
triangles. The accuracy of rotation estimation in figure 3 confirms the validity
of this assumption.

reprojection error as a function of reconstruction and camera parameters.
While we do not directly assume the geometry of the scene, our work fits

in with previous work in calibration assuming a calibration object. Early work
in this area used a planar object with vertices at known locations [17]. More
recently, improvements to the solution and readily available executables have
made planar calibration commonplace [1, 19]. In contrast to these approaches,
we make no assumptions about the scene geometry, but instead assume that
normals can be computed from our fixed pattern. Our cloth pattern is composed
of triangles at multiple scales and can be seen in figure 1.

Our application is cloth motion capture, which probably dates to [4], who
mark surfaces with a grid and track the deformation of elements of this grid
in the image. This work does not report a 3D reconstruction, because unlike
the planar case correspondence is difficult with a periodic pattern. Guskov,
Klibanov and Bryant give views of a 3D reconstruction, obtained by printing
square elements with internal patterns on the surface, estimating local homo-
graphies at each element, then linking these estimates into a surface reconstruc-
tion [5]. The homographies tend to be noisy because perspective effects are
weak or unobservable at the scale of an element, meaning that considerable
work must be done to get a set of consistent estimates. [11, 12] use a calibrated
stereo pair and SIFT feature matches to build a 3D model. [14] use a pseudo-
random pattern of colored circles on custom-made garments to reconstruct both
a parameterization and geometry. They use a checkerboard pattern painted on
the floor of the studio to calibrate the cameras — constraining the location and
motion of the cameras while consuming a large number of valuable pixels.
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Figure 2: (Left) Viewing a planar circle yields an ambiguous image of an ellipse
in the image plane. Two possible circles correspond to the ellipse in the image.
(Right) Notation for normal ambiguity in two views. There are two simple
orthographic views of the point P, with normal N; view directions are V1 and
V2. The text shows that S1 and S2 — ambiguous normals in their respective
views — have heads lying on the same epipolar plane and that an incorrect
match leads to a reconstruction of −N.

3 Normals and Orthography

Reconstruction from scaled orthographic views is now a standard algorithm
(originating in [15]; many important variants appear in [6]). If there are more
than two cameras, a metric reconstruction is available by enforcing scale and
angle properties of the camera basis. However, this approach ignores knowledge
of scene geometry (because we know what a triangle looks like, we can estimate
a surface normal). A metric reconstruction isn’t possible from two views in
simple orthographic cameras without calibration of camera extrinsics or some
known length or angle [8, 18]. Since the cloth moves fast and we may be stuck
with only two views, and to incorporate our normal information, we adopt a
method that exploits surface normals to obtain a metric reconstruction.

In a single scaled orthographic view, we know the normal of the plane on
which the pattern element lies up to a two-fold ambiguity (e.g. [3, 9]). This
ambiguity occurs because we can identify the cosine of the slant angle — usually
written as cos σ — but not its value from a single view. For example, a scaled-
orthographic view of a circle looks like an ellipse; we know the extent of the
slant (and so the length of the normal) but the circle could have been slanted
either forward or backward to yield this ellipse (figure 2). As a result, we know
the projected normal up to an ambiguity of π radians.

The most natural way to incorporate this information into existing multiple
view results is to think of the normal as an arrow of known length protruding
from the surface at the point in question. The base of the arrow is the point
in question, and projects as usual. The results above mean we know (up to a
two-fold ambiguity) to what point in the image the head of the vector projects
— in turn, having a normal from texture repetition is equivalent to having a
second point and having some metric information because we know the length of
the normal vector. For convenience, in what follows we refer to an isolated point
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as a point, and a point with the normal information described as a patch.

3.1 The 3D Ambiguity of Normals

Assume that we are dealing with a pair of simple orthographic cameras. Fur-
thermore, assume that the scale of the cameras is the same (we can obtain the
relative scale from the size estimates for triangles), and that the extrinsics are
calibrated. In a single view, the projected normal is known up to an ambiguity
of π radians. What ambiguity is there in 3D reconstruction of the normal?

Write the normal as N and the i’th view vector pointing toward the camera
(figure 2) as Vi. In the i’th view, there are two possible 3D normals, N and
Si (the ambiguous normal in the i’th view). Because the image ambiguity is π
radians, N, Vi and Si must be coplanar. Because the projected length of Si is
the same as the projected length of N, Vi ·N = Vi ·Si. This means that we have
Si = 2(N ·Vi)Vi −N The epipolar planes consist of every plane whose normal
is E = V1 × V2. The “heads” of S1 and S2 lie on the same epipolar plane,
because E ·S1 = E ·S2 = −E ·N. In the circumstances described, there are two
possible matches for the “head” of the normal. First, the correct matches are
available, resulting in a reconstruction of N; second, one can match the image
of the “head” of S1 with the image of the “head” of S2. The second case results
in a reconstruction of −N (figure 2); this is easily dealt with, because visibility
constraints mean that −N ·Vi < 0 for both i.

All this yields Lemma: A metric reconstruction from two simple ortho-
graphic views is available from two patch correspondences. There is a maximum
of sixteen ambiguous cases, yielding no more than four camera reconstructions.
Proof: (see appendix) There is an obvious corollary: A fundamental matrix
is available from two patch correspondences, up to at worst a four-fold ambiguity.

3.2 Obtaining a Euclidean Camera Solution

To obtain a camera solution from two views, we perform a rough search over
rotation matrices, then use gradient descent to refine the solution. Our cost
function for this is based on the combination of two penalties: the reprojection
cost of the points (in pixels) and the alignment cost of the normals (in degrees).
Using xj

i as the observed point i in view j, x̂j
i as the reprojected points, Nj

i

as the respective normals and R as the rotation matrix between the two views,
our costs can be computed as follows:

cnormals =
∑

i(1−N1
i · RN2

i ) cj

pts =
∑

i ‖x
j
i − x̂j

i‖2

cpts = c1
pts + c2

pts + const · cnormals

To obtain the reprojected reconstructed points x̂j
i from the observations and

rotation matrix, we first move the center of gravity of the observed points to
the origin. Then, we create an orthographic camera matrix K as [iT , jT , rT

1 , rT
2 ],

where i, j are in the coordinate axis directions as usual and rT
1 and rT

2 are the first
two rows of the camera rotation matrix R. Finally, we compute the reprojected
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Figure 3: Perspective effects of cloth are typically small. As a result, we can
ignore them at first, obtain an orthographic reconstruction, then solve for a re-
construction from a perspective model. In these frames, we start with pairwise
orthographic calibrations computed over a sequence of frames. Following the
technique described in section 3.2, we minimize a combined objective that in-
cludes reprojection error and agreement in the rotated normals. To compute
the agreement of the normals, we use the relative rotation matrix between two
cameras to rotate normals from one viewpoint to another and report the angular
alignment of the normals to verify the quality of the reconstruction. Averaging
over 20 frames of a dynamic sequence viewed by three cameras, we have errors
of 3.10 pixels and 1.48 degrees between the first view and the second and 2.96
pixels and 1.20 degrees between the second view and the third. While reprojec-
tion error is fair, the rotation error is very small. Because perspective effects
are small on the scale of a triangle, the computed normals are very accurate.

reconstructed points x̂j
i , by using the pseudo-inverse of K to reconstruct and K

to reproject. A grid search over rotation matrices R provides an estimate of
the camera matrix and gradient descent refines the parametric camera model.
Rotation estimates from this approach

Because normals are estimated from texture elements which effectively dis-
play no perspective effects individually (they are too small), our method yields
a rotation estimate for perspective cameras from the locally valid assumption of
scaled orthography. This remarkable fact is borne out by the excellent consis-
tency of our normal estimates and our rotation estimates. In particular, apply-
ing our rotation to normal estimates between views yields alignment within two
degrees. (Figure 3) The accuracy of this alignment also indicates that normals
estimates themselves are accurate, even in images with significant wrinkles.

4 Perspective from Bundle Adjustment

At this point, we have a structure estimate and an estimate of camera extrin-
sics and scale assuming scaled orthography. Our cameras may not, in fact, be
scaled orthographic cameras, and some lateral views of cloth display mild per-
spective effects (Figure 3). This results in potentially large reprojection errors
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and poor reconstructions. We use the orthographic camera solutions as an ini-
tialization for a fuller perspective model. We then run bundle adjustment: a
large minimization over the camera parameters (both intrinsic and extrinsic)
and the reconstructed points. We refrain from a complete discussion of bundle
adjustment here, and refer readers to [16] for more details.

4.1 An Orthographic Camera in a Perspective Model

To use the orthographic camera calibration as an initialization for the per-
spective model, we represent the orthographic camera in the richer perspective
model.

Our camera model is based directly on the model adopted by [1], and is
very similar to the models used in [19, 7]. While our model includes distortions
due to lens artifacts, for cleanliness we drop these terms below. To distinguish
between the orthographic and perspective equations, we adopt the subscript
π for perspective and o for orthographic. Using (u, v) as coordinates in 2D,
(M = [X, Y, Z]) as coordinates in 3D, (R, t) as rotation and scale, (u0, v0) as
the principal point, (α, β) as perspective scale factors and s as the orthographic
scale factor, we write the projection along a single camera axis as:

uo = s(ro
1M + tox) uπ = α

rπ
1 M+tπ

x

rπ
3 M+tπ

z
+ uπ

0

We note that the equations appear in a fairly similar form. By making the
assignment α = tπz s, in the limit of large tz the perspective model becomes
orthographic:

lim
tπ
z→inf

uπ = s(rπ
1M + tπx)

(
lim

tπ
z→inf

tπz
rπ
3M + tπz

)
+ uπ

0 = s(rπ
1M + tπx) + uπ

0

Since the orthographic camera is the limit of the perspective camera, simple
substitution allows us to use our orthographic calibration as an initialization for
the perspective camera. We start by assigning the rotation matrices to be the
same (Rπ = Ro). An ambiguity exists in computing tπx and uπ

0 from tox. We
assume that uπ

0 should lie near the center of the camera, and use the following
equations to complete the transition from orthographic to perspective:

tπz → inf α = tπz s uπ
0 = image width

2 tπx = tox −
uπ
0
s

β = tπz s vπ
0 = image height

2 tπy = toy −
vπ
0
s

4.2 Substitution in Practice

The only complication in this procedure is the initialization of the parameter tz.
As suggested in the previous section, we should initialize this to almost infinite
value. However, in practice, we simply choose a value significantly larger than
scene geometry suggests. Second, as outlined in the appendix, an orthographic
view has an ambiguity in depth that does not occur in the perspective case.
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Figure 4: We demonstrate the ability to obtain a metric reconstruction from two
orthographic views of a textured scene. We paste a triangle pattern on a box,
forming two sections at a roughly 90 degree angle. Using both points and nor-
mals, we reconstruct the point locations by computing an orthographic camera
calibration. Our calibration error is on average 2.41 pixels and 1.74 degrees.
(photos taken with a consumer camera at maximum zoom to approximate or-
thography) To evaluate the results, we fit two planes to the two point sets and
compute the angle between the planes to be 90.67 degrees (we estimate 90 de-
grees from world geometry). When fitting the plane the MSE distance from the
points to the plane is 2.57 pixels or 1.69 mm. The physical paper isn’t completely
flat — deviations of 2mm appear physically plausible.

From an orthographic given camera, a flip in the z coordinate of the other
camera matrices will produce a depth flipped reconstruction. However, in the
perspective case, an erroneous flip in depth would cause nearby objects to appear
smaller. To account for this, we search over the two cases for each camera
matrix.

5 Experiments

We implemented the calibration framework established in this paper and printed
several pieces of cloth and paper with our triangle pattern. Through experiments
with real world data, we establish the following points:

A metric upgrade of a textured surface is available from two ortho-
graphic views. We establish this by photographing a scene of known geometry
(two planes that form a right angle) and measure the angle from the recon-
structed geometry to be within one degree. (Figure 4) Our rotation estimates
are very accurate — implying that normal estimates are highly reliable.

Our calibration code for perspective scenes is comparable to exist-
ing methods in standard configurations. We show this by calibrating with
a planar calibration object and calibration software available online. (Figure 5)
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calib data (cam model) evaluation data reproj error
triangles (orthographic) triangle pattern 0.995 pixels
triangles (perspective) triangle pattern 0.318 pixels
triangles (perspective) checkerboard 3.270 pixels

checkerboard (perspective) checkerboard 0.172 pixels
checkerboard (perspective) triangle pattern 1.220 pixels

Figure 5: We compare our calibration pattern with standard software available
in [1]. Our method does not perform as well, probably because it does not as-
sume fixed geometry — limiting its accuracy in this confined case. Note that
both methods generalize poorly, implying that calibration should be performed in
the same region as reconstruction. As shown in figure 7, when calibrating larger
regions of space, this problem becomes even more pronounced. Our calibration
method starts by using texture cues to obtain a metric reconstruction for ortho-
graphic cameras, then ‘enriches’ the model to include perspective effects using
bundle adjustment.

5.1 Calibration of 3D volumes

Finally, we establish our main point: calibration is specific to 3D volumes
and calibration in the same volume is superior. Empirically, we observe
that calibration objects are better when they occupy the same 3D volume as
the measured structure. To obtain better reconstructions, one needs to use a
calibration object that is large and centrally located. However, in moving se-
quences, such calibration objects wastes resolution — occupying valuable pixels
that could be used to estimate instead.

Using cloth as a calibration object in the same volume is substantially better
than using a traditional calibration object. To gauge the effectiveness of our
method we calibrate on one portion of the sequence, and compute errors on
another portion of the sequence. However, in practice, calibration should be
performed using the entire sequence.

In Figure 6, we give example images from a sequence of moving cloth and
in Figure 7, we show that reprojection errors are significantly worse when using
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Figure 6: Above is a selection of images taken from a single camera — the cloth
moves significantly during different parts of the sequence. A planar calibration
pattern (checkerboard) allows us to compare calibration methods (checkerboard
calibration performed using code from [1]). We calibrate over time using several
frames in order to cover the space well. Figure 7 shows calibration results for
this sequence.

the planar calibration object in one portion of the scene. Even worse, such
calibration objects require that every camera is able to see the planar object.
This restriction can be limiting in the case of large numbers of cameras and
awkward geometries.

Reprojection errors are not just a problem in theory, but also in practice.
As figure 8 demonstrates, the reconstruction offered by our method is consis-
tent with physical models of cloth. Cloth geometry reconstructed from poor
calibration can be heavily strained — meaning that the distance between points
is not accurately recovered. In graphics applications, strain is considered so
distracting that some simulation methods explicitly contain a strain reduction
step [13].

Appendix: Metric Upgrade Proof

A metric reconstruction isn’t possible from two views in simple orthographic
cameras without calibration of camera extrinsics or some known length or an-
gle [8, 18]. The reconstruction ambiguity is instructive to study further. Write
D for a view by point data matrix and P for a 3xpoint geometry matrix; there
must be a minimum of four points. Define a canonical two-camera matrix
to be a matrix of the form

C =


1 0 0
0 1 0

e11 e12 e13

e21 e22 e23


and e1, e2 are arbitrary orthonormal 3 vectors. We move the origin to the
center of gravity, absorb scale into the points, and place the first camera in
canonical position to obtain D = CP where C is a canonical two-camera matrix.
If L is a matrix such that C′ = CL is also a canonical two-camera matrix, the
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calib data (cam model) evaluation data reproj error
cloth: frames 1-10 (ortho) cloth: frames 1-10 2.06 pixels
cloth: frames 1-10 (persp) cloth: frames 1-10 0.35 pixels

cloth: frames 1-10 (persp) cloth: frames 11-50 0.68 pixels
cloth: frames 1-10 (persp) checkerboard 2.15 pixels

checkerboard (persp) checkerboard 0.30 pixels
checkerboard (persp) cloth: frames 11-50 2.62 pixels

Figure 7: Both calibration objects (the cloth and the checkerboard) give good
calibration results on the data used to calibrate and both methods generalize
poorly to data in physically different locations. However, the calibration using
the cloth gives significantly better results on cloth data from another part of the
sequence. On unseen data, calibration from the cloth produces average errors
of 0.68 pixels, while calibration from the checkerboard produces average errors
of 2.62 pixels. This is because the cloth moves through the same 3D volume in
one portion of the sequence, allowing a better reconstruction in the remaining
portion of the sequence. The checkerboard calibration pattern has the additional
disadvantage that it must be viewed by all cameras and often occupies valuable
camera pixels.

reconstructions P and L(−1)P are both available. Note that L is a matrix of
the form [[1, 0, 0]; [0, 1, 0]; [a, b, c]]. A one parameter family of such L exists, and
they are not Euclidean transformations. Now assume that we are working with
patches.

Lemma: A metric reconstruction from two simple orthographic views is
available from two patch correspondences. There is a maximum of sixteen am-
biguous cases, yielding no more than four camera reconstructions.

Proof: We must first deal with scale, as the two cameras may have pixels
of different sizes. Scale commutes with reconstruction, meaning that a camera
with small pixels produces a larger frontal view of the texture elements. The
ratio of camera scales is then found by scaling a frontal view of an element in
the first camera to be the same size as a frontal view of an element in the second
camera. Note that correspondences between element instances are not necessary
to do this. Each patch consists of a point and a projected normal vector. Write
the j’th point as Pj and the i’th view of the j’th point as pi

j . Write the j’th
normal as Nj and i’th view of the j’th projected normal vector as ni

j . What
we have referred to as the “head” of the i’th view of the j’th projected normal
vector is then pi

j + ni
j ; it is easier here to work with the vector directly. First,

a metric reconstruction is available because the normal vectors are unit vectors
in 3D; we can obtain the metric reconstruction by choosing the element of the
one parameter family L that makes the first normal a unit vector. Ambiguity
is more interesting. Our ambiguity in the projected normal vector is a sign
ambiguity, yielding a total of sixteen ambiguous cases (two per view per patch).
However, these ambiguities have an important internal structure. Write D(kl)
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Calibrated with Cloth Calibrated with Checkerboard

   Strain
Histogram

+10%-10%

  Strain 
Histogram

-10% +10%

Figure 8: We demonstrate the power of our calibration method by computing
reconstructions that are consistent with the physics of cloth. On the left, a
close-up view of a reconstruction using the triangle pattern in other frames to
calibrate. On the right, a similar view reconstructed using the checkerboard as
a calibration object. (original photos of this sequence in figure 3) Errors in the
checkerboard reconstruction are two-fold: First, the relative scaling of the axes
is less accurate. Second, small errors in calibration produce strain — or stretch
and compression of the edges connecting neighboring vertices. Notice substantial
errors on the right in the white regions surrounding each triangle. Below,
histograms of the strains over the whole surface highlight the importance of good
calibration. Values that deviate significantly from zero (rest length) correspond
physically to large forces on the cloth. [13] notes that strains for textile materials
are typically less than 10%. (Technical note: strain is ∆L

L , where L is the rest
length. To compute rest lengths, we estimate a scale factor between the model
and the reconstruction. For checkerboard calibration, our estimates are dubious
because we choose a scale estimate that minimizes strain. When the strains are
consistent, this task is easy, but when they are inconsistent, the task becomes
harder. No matter what method we use, the checkerboard calibration produces
large strains)

for [
p1

1 p1
2 n1

1 n1
2

p2
1 p2

2 (−1)kn2
1 (−1)ln2

2

]
and I(ij) for diag(1, 1,−1i,−1j). We then have that the ambiguous cases are
D(kl)I(ij) for (i, j, k, l) ∈ [0, 1]4. Now if D(kl) = C(kl)P(kl), then D(kl)I(ij) =
C(kl)P(kl)I(ij). This means that there are only four cases for the camera matrix.
Furthermore, our ambiguities do not interfere with metric reconstruction. Note
that

P00I(kl) =
[
P1P2(−1)kN1(−1)lN2

]
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so that for any of four cases D00I(ij) we will obtain the correct camera by
insisting that the third column of P is a unit vector. Furthermore, in these four
cases the fourth column will be a unit vector, too. We do not expect this to be
the case for the other twelve cases in general — though specific geometries may
make it possible — so that the correct camera is generally easily identified. 2
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