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Abstract

Semantic Foundation of the Tagged Signal Model

by

Xiaojun Liu

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

The tagged signal model provides a denotational framework to study properties of vari-

ous models of computation. It is a generalization of the Signals and Systems approach

to system modeling and specification. Having different models of computation or aspects

of them specified in the tagged signal model framework provides the following opportuni-

ties. First, one can compare certain properties of the models of computation, such as their

notion of synchrony. Such comparisons highlight both the differences and the commonal-

ities among the models of computation. Second, one can define formal relations among

signals and process behaviors from different models of computation. These relations have

important applications in the specification and design of heterogeneous embedded systems.

Third, it facilitates the cross-fertilization of results and proof techniques among models of

computation. This opportunity is exploited extensively in this dissertation.

The main goal of this dissertation is to establish a semantic foundation for the tagged

signal model. Both order-theoretic and metric-theoretic concepts and approaches are used.

The fundamental concepts of the tagged signal model—signals, processes, and networks of

processes—are formally defined. From few assumptions on the tag sets of signals, it is shown

that the set of all signals with the same partially ordered tag set and the same value set is
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a complete partial order. This leads to a direct generalization of Kahn process networks to

tagged process networks.

Building on this result, the order-theoretic approach is further applied to study timed

process networks, in which all signals share the same totally ordered tag set. The order

structure of timed signals provides new characterizations of the common notion of causal-

ity and the discreteness of timed signals. Combining the causality and the discreteness

conditions is proved to guarantee the non-Zenoness of timed process networks.

The metric structure of tagged signals is studied from the very specific—the Cantor

metric and its properties. A generalized ultrametric on tagged signals is proposed, which

provides a framework for defining more specialized metrics, such as the extension of the

Cantor metric to super-dense time.

The tagged signal model provides not only a framework for studying the denotational

semantics of models of computation, but also useful constructs for studying implementations

or simulations of tagged processes. This is demonstrated by deriving certain properties

of two discrete event simulation strategies from the behavioral specifications of discrete

event processes. A formulation of tagged processes as labeled transition systems provides

yet another framework for comparing different implementation or simulation strategies for

tagged processes. This formulation lays the foundation to future research in polymorphic

implementations of tagged processes.

Professor Edward A. Lee
Dissertation Committee Chair
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Chapter 1

Introduction

This dissertation aims to create a semantic foundation for the tagged signal model [44],

and to explore the design of computational frameworks that are built on such a foundation.

The research is part of the Ptolemy project [17, 46], which studies the modeling, simulation,

and design of concurrent, real-time embedded systems.

Many embedded systems are heterogeneous [7, 18, 28, 54]. They may consist of me-

chanical, hydraulic, optical, and electronic subsystems. An electronic subsystem may have

both analog and digital components and embedded application software running on possibly

more than one microprocessor. The specification and design of heterogeneous embedded

systems call for the use of various models of computation in concert [46, 59]. The tagged

signal model is a meta model that serves to

• compare and contrast certain properties of the various models of computation, such

as their notion of synchrony;

• relate, or define the interface among, heterogeneously composed multiple models of

computation.

The tagged signal model also provides the foundation for a computational view of signals

and systems [47].
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actuator plant sensor

controller
cu

u y

cy

Figure 1.1. Generic block diagram of a feedback control loop.

1.1 Signals and Systems

Signals and Systems is a cornerstone of electrical engineering curricula [11, 64]. Signals

carry information among systems that transform or relate signals. Figure 1.1 is a generic

block diagram of a feedback control loop. Each block in itself is a system that transforms

its input signal to its output signal. For example, the sensor may be a thermometer that

converts the signal y, ambient temperature varying over time, to an electric voltage signal

yc. Taken as a whole, the control loop is a system that relates the signals u, y, yc, and uc

by the simultaneous equations

y = plant(u),

yc = sensor(y),

uc = controller(yc),

u = actuator(uc),

where plant, sensor, controller, and actuator are functions on signals.

Many physical laws can be modeled as systems like the above. For example, in Newton’s

Second Law of Motion,

F (t) = m a(t),

where m is the mass of an object, F (t) is the force applied to the object at time t, and a(t)

is the acceleration of the object at time t. As a system, the law relates signals F and a,

both of which are functions of time.

An important component of Signals and Systems theory is the mathematical structure

on sets of signals. For example, if a set of signals is a vector space V with basis B, then
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any signal in the set is a unique linear combination of the basis signals. Further if V has a

norm ‖ · ‖, then a notion of approximation can be derived. For any signals x, y, z ∈ V, y is

a better approximation to x than z if and only if

‖x − y‖ < ‖x − z‖.

The majority of this dissertation explores the structures on tagged signals that come from

order theory [12, 24] and domain theory [2, 32, 72].

1.2 A Computational Perspective

As low cost and high performance microprocessors become widely available, embedded

computational systems are now ubiquitous in the living environment. For example, pro-

grammable logic controllers are widely adopted in industrial automation. One characteristic

of embedded computational systems is their continuous interaction with the physical envi-

ronment [9]. These systems react to a (conceptually infinite) stream of inputs and generate

a (conceptually infinite) stream of outputs.

The need for better understanding and programming paradigms for such systems is

recognized in Structure and Interpretation of Computer Programs [1], a very influential

introductory computer science textbook. Section 3.5 in [1] is on programming with streams,

and includes exercises that use streams to simulate RC circuits and to solve differential

equations. The computational view is also embraced by Lee and Varaiya in their recent

introductory textbook on signals and systems [48].

A theoretical foundation of streams and stream programs is provided by domain theory

[2]. Dana Scott pioneered the research in domain theory in search of semantic foundations

for programming languages. From his Turing Award lecture [71], the domain of infinite
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〈true, false, true,⊥, . . . 〉

∨

〈true, false,⊥,⊥, . . . 〉

∨

〈true,⊥,⊥,⊥, . . . 〉

∨

〈⊥,⊥,⊥,⊥, . . . 〉

Figure 1.2. The information order of the sequences in equation 1.1.

sequences of Boolean values has elements

〈⊥,⊥,⊥,⊥, . . . 〉,

〈true,⊥,⊥,⊥, . . . 〉,

〈true, false,⊥,⊥, . . . 〉,

〈true, false, true,⊥, . . . 〉.

(1.1)

Here the symbol ⊥ represents undefined. The mathematical structure of the domain is

based on a partial order, called the information order, on the sequences. The information

order of the sequences in equation 1.1 is illustrated in figure 1.2. The same mathematical

concepts and tools are used by Kahn to define the denotational semantics of an elegant

model of parallel computation [40].

1.3 The Tagged Signal Model

The tagged signal model [44] provides a framework to formally describe systems of

physical processes, computational processes, and their composition. It also provides a meta

model to compare and relate the various models of computation that are developed to study

these systems.

Specifying a particular model of computation in the tagged signal model framework

starts from defining the tag set for signals. As will be formally presented in chapter 2, a

4



P Q

0c
1c

2c

Figure 1.3. A Kahn process network example.

signal is a partial function from its tag set to some set of values. The tag set gives structure

to the signal. Answering questions like

What mathematical structure does the tag set have?

Do all signals share the same tag set?

can reveal or formalize many properties of the model of computation.

Consider the Kahn process network (KPN) model of computation [40]. Figure 1.3

illustrates a KPN with two processes P and Q, and three communication channels c0, c1,

and c2. Every communication channel connects one producer process to one consumer

process. For example, for channel c1, process P is the producer, and Q is the consumer.

For channel c0, the producer (not shown in the figure) is external to the network, and the

consumer is process P . The channels are first-in, first-out (FIFO), and have conceptually

infinite capacity.

The communication between the producer and consumer processes of a channel is asyn-

chronous. The producer sends a sequence of data, in units called tokens, to the channel.

The tokens become available to the consumer after an unpredictable but finite amount of

time [40]. To formally specify this asynchrony using the tagged signal model, two signals are

associated with every communication channel1. As illustrated in figure 1.4, on the producer

end, the signal s maps each send action taken by the producer to the token sent. The tag

set of signal s, {tsk | k ∈ N}, is the totally ordered set of send actions. On the consumer end,

the signal r maps each receive action taken by the consumer to the token received. The

tag set of signal r, {trk | k ∈ N}, is the totally ordered set of receive actions. These two tag

1This is different from how KPNs are specified in [44]. This alternative aims to make the asynchrony in
the communication more explicit.
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P Qs r

Figure 1.4. The signals associated with a communication channel.

st0
st1

st2
st3

s
kt

s
kt 1+

rt0
rt1

rt2
rt3

r
kt

r
kt 1+

Figure 1.5. The ordering constraints on an asynchronous communication channel.

sets are disjoint. The asynchronous communication over the channel implies the ordering

constraints in figure 1.5. Figure 1.6 illustrates the communication ordering constraints in

the KPN from figure 1.3.

Every process in a KPN executes a sequential program. Figure 1.7 shows two pseudocode

programs. Both programs run in an infinite loop. In each iteration, the process P receives

one token each from input signals z and u, and sends their sum to the output signal v.

The receive action on an input signal will not complete until a token becomes available

from the signal, whereas the send action on an output signal can always complete without

waiting, because the communication channels have infinite capacity.

Every process in a KPN imposes a total order on the tags of its input and output signals.

For the processes in figure 1.7, the orders are shown in figure 1.8.

For the KPN in figure 1.3, the complete ordering constraints on the signal tags are the

composition of those shown in figures 1.6 and 1.8. The combined constraints have directed

loops, such as

tz0 → tu0 → tv0 → tx0 → ty0 → tz0.

Such a dependency loop implies that the processes P and Q will run into a deadlock, each

waiting for a token from the other in order to proceed.

The KPN model of computation imposes few ordering constraints on signals, as illus-
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Figure 1.6. Communication ordering constraints in a KPN.
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Figure 1.7. Sequential programs of Kahn processes.
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Figure 1.8. The total orders imposed on tags by the Kahn processes from figure 1.7.
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Figure 1.9. Processes from figure 1.7 rewritten as SDF processes.

trated by figure 1.6. Properties such as the absence of deadlock cannot be decided without

analyzing the behavior or program of the processes. There are many specializations of the

KPN model of computation, such as synchronous dataflow (SDF) [42], that impose stronger

ordering constraints on signals. An SDF process executes a sequence of firings. In each

firing, the process consumes a fixed number of tokens from its input signals and produces a

fixed number of tokens in its output signals. Figure 1.9 shows the processes P and Q from

figure 1.7 rewritten as SDF processes. Both processes P and Q consume one token from

each input and produce one token in each output per firing. These constraints on token

consumption and production imply essentially the same tag ordering constraints as those

shown in figure 1.8. For the SDF model of computation, it is possible to check statically

whether a network of processes will deadlock.
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The motivation of these examples is to show the use of the tagged signal model to

elicit the properties of a model of computation—what is the structure of signals, what are

the constraints among signals, and so on. These properties determine the mathematical

structures on sets of signals. Studying such structures is the theme of this dissertation.

1.4 Overview of the Dissertation

Chapter 2 presents the fundamental concepts of the tagged signal model—signals, pro-

cesses, and networks of processes. The order structure of signal sets is explored, and is used

to characterize the processes that are relations or functions among signal sets. The order

structure leads to a generalization of Kahn process networks to tagged process networks.

Chapter 3 explores the implications of assuming that all signals in a network of processes

have the same totally ordered tag set. Such tag sets make it possible to formally define the

common notion of causality—the output of a process cannot change before its input changes.

Conditions that guarantee the causality of a process network are proposed. The second half

of chapter 3 studies a further assumption—the discreteness of timed signals—that originates

from the need to enumerate the events in a timed process network in computer simulations.

To illustrate the definitions and proof techniques, a number of common processes on timed

signals are formally defined, and some proofs of their properties are given.

Chapter 4 studies the metric structure of tagged signals. The Cantor metric and its

properties are reviewed. The metric-theoretic and order-theoretic notions of convergence

and finite approximation are compared. Through analyzing an extension of the Cantor

metric to the super-dense time, a generalized ultrametric on tagged signals is proposed.

Chapter 5 compares two discrete event simulation strategies. A framework for such

comparisons is proposed. Two issues in discrete event simulation—handling dependency

loops and advancing simulation time—are formally analyzed. Examples of using the formal

results in previous chapters to prove properties of the simulation strategies are presented.

The concluding chapter summarizes the main results and contributions of this disserta-
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tion. Some future work directions are discussed, with the hope that this dissertation may

serve as a solid foundation.
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Chapter 2

Tagged Process Networks

This chapter presents the fundamental concepts in the tagged signal model—signals,

processes, and networks of processes—and studies their properties.

2.1 Signals

The definition of a signal and the mathematical structure of signal sets build on the

theory of partially ordered sets. Relevant mathematical definitions and results will be

included before they are first used.

2.1.1 Partially Ordered Sets and Lattices

Definition 2.1 (Partial Order). Let P be a set. A binary relation ≤ on P is a partial

order if for all x, y, z ∈ P ,

x ≤ x, (reflexivity)

x ≤ y and y ≤ x imply x = y, (antisymmetry)

x ≤ y and y ≤ z imply x ≤ z. (transitivity)

(2.1)

A set P with a partial order ≤ on P is a partially ordered set (poset).

Notation. To explicitly specify the partial order ≤ on a poset P , use (P,≤).

11



Definition 2.2. Let S be a subset of a poset P . An element x ∈ P is a lower bound of

S if x ≤ s for all s ∈ S. x is the greatest lower bound of S if x is a lower bound of S

and y ≤ x for all lower bound y of S. Upper bound and least upper bound are defined

dually.

Notation.
∧

S denotes the greatest lower bound of S if it exists, and
∨

S the least upper

bound. x ∧ y and x ∨ y are alternative notations of
∧{x, y} and

∨{x, y}, respectively.

Definition 2.3 (Lattice). Let (P,≤) be a non-empty poset.

• If x ∧ y and x ∨ y exist for all x, y ∈ P , (P,≤) is a lattice.

• If
∧

S and
∨

S exist for all subset S of P , (P,≤) is a complete lattice.

• If
∧

S exists for all non-empty subset S of P , (P,≤) is a complete lower semilattice.

Definition 2.4 (Down-Set). Let P be a poset. A subset S of P is a down-set if for all

x ∈ S and y ∈ P , y ≤ x implies y ∈ S.

Lemma 2.5. Let D(P ) be the family of all down-sets of a poset P .

(a) D(P ) is closed under arbitrary union and intersection.

(b) D(P ) with the set inclusion order is a poset (D(P ),⊆).

(c) (D(P ),⊆) is a complete lattice.

(d) Let D ⊆ D(P ),
∨

D =
⋃

S∈D

S,
∧

D =
⋂

S∈D

S.

2.1.2 Signals

In the tagged signal model, a signal represents the flow of information between physical

or computational processes.

Notation. Let X and Y be two sets and f : X ⇀ Y a partial function from X to Y .

12



• For a set B ⊆ Y , f−1(B) denotes the preimage of B under f ,

f−1(B) = {x ∈ X | f(x) ∈ B}.

• dom(f) denotes f−1(Y ), the subset of X on which the partial function f is defined.

Definition 2.6 (Signal). Let T be a poset of tags, and V a non-empty set of values. A

signal s : T ⇁ V is a partial function from T to V such that dom(s) is a down-set of T .

S(T, V ) denotes the set of all signals with tag set T and value set V .

Definition 2.7 (Event). Let s ∈ S(T, V ). An element (t, v) ∈ T × V is an event of s if

t ∈ dom(s) and v = s(t).

Notation. Let e = (te, ve) be an event of a signal s ∈ S(T, V ).

• tag(e) denote the tag of e, tag(e) = te.

• val(e) denote the value of e, val(e) = ve.

• events(s) denote the set of events of s, events(s) = {(t, v) | t ∈ dom(s) and v = s(t)}.

The partial order on the tag set T of a signal s ∈ S(T, V ) specifies the ordering of events.

The event ordering may derive from the timing of events, as in discrete event systems—

the tag of an event is its time stamp. Another example is the activation ordering in the

actor model [35]. This ordering captures the causal relation between events. Requiring that

dom(s) be a down-set implies that if s has an event e, it has events at all tags t ≤ tag(e).

If a signal is defined at tag t, then it is defined at all tags that “come before” t.

Remark 2.8. The signal definition 2.6 is different from that in [44], in which Lee and

Sangiovanni-Vincentelli first proposed the tagged signal model. In [44], a signal is a set of

events, or equivalently, a subset of T × V . The tag set T is not required to be a poset.

When a signal is a functional signal or proper signal (section II.A of [44]), and T is a poset,

it is not required that the subset of T on which the signal is defined is a down-set of T .

Any such signal can be matched to a signal by definition 2.6 as follows.
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• An arbitrary tag set T can be treated as a poset (T, =), so no generality is lost by

requiring T to be a poset in definition 2.6.

• A signal, when defined as a subset of T × V , can have more than one event with the

same tag. This is useful in modeling nondeterministic computation. Let P(V ) denote

the power set of V . Given r ⊆ T × V , a corresponding s ∈ S((T, =),P(V )) can be

obtained by letting

dom(s) = {t ∈ T | ∃v ∈ V, (t, v) ∈ r},

s(t) = {v ∈ V | (t, v) ∈ r}, ∀t ∈ dom(s).

(2.2)

Again no generality is lost by requiring signals to be functional in definition 2.6.

• When the tag set T is a poset, a functional signal in [44] may be defined on a subset

of T that is not a down-set. In such cases, the construction given by equation 2.2 is

still valid—with the caveat that T assumes the discrete order in the construction.

Example (Tag Sets and Signals). Here are some applications of definition 2.6 to concepts

from mathematics, computer science, and electrical engineering.

• Partial functions. Let (X ⇀ Y ) denote the set of all partial functions from X to Y .

X can be treated as a poset (X, =). This partial order is called the discrete order on

X. With this order, every subset of X is a down-set, so D(X) is the same as P(X).

Every partial function f ∈ (X ⇀ Y ) is a signal f ∈ S(X, Y ), so S(X, Y ) is the same

as (X ⇀ Y ).

• Streams. A stream is a finite or infinite sequence of values. The tag set of a stream

s is {tsk | k ∈ N} with the ordering tsi ≤ tsj for all i, j ∈ N such that i ≤ j. Figure 2.1

illustrates a stream s and its tag set.

The events of a stream are totally ordered. Figure 2.2 shows the tag set of a signal a

consisting of two asynchronous streams r and s. Two tags from different streams are

not comparable. The tag set does not have a least element, so the question “What is

the first event of a?” has no answer.
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Figure 2.1. A stream s and its tag set. dom(s) = {ts0, ts1, ts2, ts3}, a down-set of {tsk | k ∈ N}.
This is a Hasse diagram with a small variation. Here tsi ≤ tsj if and only if there is a
left-to-right path from tsi to tsj , instead of bottom-up as Hasse diagrams are usually drawn.
Circles represent tags, and dots represent events.

st0
st1

st2
st3

s
kt

s
kt 1+

rt0
rt1

rt2
rt3

r
kt

r
kt 1+

Figure 2.2. The tag set of a signal a consisting of two asynchronous streams r and s.

• Discrete time signals. Consider a signal generated by sampling an audio input with

interval h ∈ R. The tag set for such a discrete time signal is {kh | k ∈ N}. This tag set

is order-isomorphic to that of a stream, but the values of the tags are relevant when

such signals are processed.

2.2 The Prefix Order of Signals

Definition 2.9 (Prefix Order). Let s1, s2 ∈ S(T, V ). s1 is a prefix of s2, denoted by

s1 ¹ s2, if and only if

dom(s1) ⊆ dom(s2),

s1(t) = s2(t), ∀t ∈ dom(s1).

The prefix order on signals is a natural generalization of the prefix order on strings or

sequences, and the extension order on partial functions [75].

Example (Prefix Order).

• Partial functions. Let f1, f2 ∈ (X ⇀ Y ). Considered as signals, f1 ¹ f2 if and only
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Figure 2.3. The prefix order on partial functions as signals.
f1, f2, f3 ∈ ({a, b, c} ⇀ {p, q, r}). f1 6¹ f2, f1 ¹ f3, and f2 6¹ f3.

if f2 is defined and equal to f1 everywhere f1 is defined. The prefix order on partial

functions coincides with the extension order. Figure 2.3 illustrates the prefix order on

partial functions.

• Streams. For two streams s1 and s2, s1 ¹ s2 if s2 equals s1 or s2 can be obtained by

appending more values to the sequence of values of s1. The prefix order on streams is

similar to that on strings, which can also be defined as signals. Let Char denote the

character set. The set of strings, finite and infinite, is the set of signals S(N, Char).

(A common notation for such a set is Char∗∗, [24].) Figure 2.4 illustrates the prefix

order on signals consisting of two asynchronous streams r and s.

The following lemma characterizes the prefix order in terms of the events of signals, and

can be proved easily from definition 2.9.

Lemma 2.10. For any signals s1, s2 ∈ S(T, V ),

s1 ¹ s2 ⇐⇒ events(s1) ⊆ events(s2).

2.3 The Order Structure of Signals

The prefix order is a partial order on signals. This section develops the mathematical

structure of signal sets as ordered sets.
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Figure 2.4. The prefix order on signals consisting of two asynchronous streams r and s.
a1 6¹ a2, a1 ¹ a3, and a2 ¹ a3.

Lemma 2.11 (Poset of Signals). For any poset of tags T and set of values V , the set of

signals S(T, V ) with the prefix order ¹ is a poset.

The proof of this lemma is straightforward by verifying that the relation ¹ is reflexive,

antisymmetric, and transitive.

Remark 2.12. The poset S(T, V ) has a least element s⊥ : ∅ → V . s⊥ has no events and

is called the empty signal. If a signal is defined for all tags in T , it is a maximal element

of S(T, V ), and is called a total signal. Let St(T, V ) denote the set of all total signals in

S(T, V ).

Complete posets (CPOs) are an important class of posets used extensively in studying

the denotational semantics of programming languages. CPOs are also used in defining the

denotational semantics of Kahn process networks in [40]. A generalization of that work will

be presented later in this chapter.

Definition 2.13 (Directed Set). Let P be a poset. A subset S of P is directed if for all

x, y ∈ S, there exists z ∈ S such that x ≤ z and y ≤ z, or equivalently z is an upper bound

of {x, y}.

If a set of signals is directed, then for any tag t, all of the signals in the set that are

17



defined at that tag agree on the value. If two signals r and s have an upper bound u,

then {r, s, u} is a directed set. For all t ∈ dom(r) ∩ dom(s), both r(t) and s(t) equal u(t).

There is no conflict when both r and s are defined. These observations are formalized in

the following lemma.

Lemma 2.14. Let S ⊆ S(T, V ) be a directed subset of signals, and s ∈ S. For all

t ∈ dom(s) and r ∈ S such that t ∈ dom(r), r(t) equals s(t).

Definition 2.15 (CPO). A poset P is a CPO if P has a least element ⊥, and every

directed subset D of P has a least upper bound.

Lemma 2.16 (CPO of Signals). For any poset of tags T and set of values V , the poset

of signals (S(T, V ),¹) is a CPO.

Proof. S(T, V ) has the least element s⊥.

Let S be any directed subset of S(T, V ). For all s ∈ S, dom(s) is a down-set of T . By

lemma 2.5, their union

D =
⋃

s∈S

dom(s) (2.3)

is a down-set of T . Define a signal r ∈ S(T, V ) such that dom(r) is D. For each t ∈ D,

there exists st ∈ S such that t ∈ dom(st). Let

r(t) = st(t).

By lemma 2.14, r is well defined.

By its definition, it is clear that r is an upper bound of S. Let u be any upper bound

of S,

∀s ∈ S, s ¹ u =⇒ ∀s ∈ S, dom(s) ⊆ dom(u),

=⇒
⋃

s∈S

dom(s) ⊆ dom(u),

=⇒ dom(r) ⊆ dom(u),

∀t ∈ dom(r),
r(t) = st(t),

st ¹ u ⇒ st(t) = u(t),
=⇒ r(t) = u(t).
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r is a prefix of u. r is the least upper bound of S.

Any directed subset S of S(T, V ) has a least upper bound, S(T, V ) is a CPO.

Lemma 2.17. For any poset of tags T and set of values V , the poset of signals (S(T, V ),¹)

is a complete lower semilattice.

Proof. By definition, if all non-empty subsets of a poset have a greatest lower bound, then

it is a complete lower semilattice.

Let S be any non-empty subset of S(T, V ). Let

E = {t ∈
⋂

s∈S

dom(s) | ∀r, s ∈ S, r(t) = s(t)} ,

and

D =
⋃

A∈D(T ) and A⊆E

A . (2.4)

D is a subset of E, and by lemma 2.5, D is a down-set of T . Take any signal r0 ∈ S and

define a signal g such that

dom(g) = D,

g(t) = r0(t), ∀t ∈ D.

For all s ∈ S, dom(g) is a subset of dom(s), and

g(t) = r0(t) = s(t), ∀t ∈ dom(g),

so g ¹ s. g is a lower bound of S.

For any lower bound l of S,

∀s ∈ S, l ¹ s =⇒ ∀s ∈ S, ∀t ∈ dom(l), s(t) = l(t),

=⇒ dom(l) ⊆ E.

By equation 2.4 and dom(l) ∈ D(T ), dom(l) ⊆ dom(g). For all t ∈ dom(l),

l(t) = r0(t) = g(t),

so l ¹ g. g is the greatest lower bound of S.
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The partial order ¹ can be extended to signal tuples,

∀(s1, . . . , sn), (r1, . . . , rn) ∈ S(T1, V1) × · · · × S(Tn, Vn)

(s1, . . . , sn) ¹ (r1, . . . , rn) ⇐⇒ si ¹ ri, i = 1, . . . , n.

Lemma 2.18 (Signal Tuples). For any tag sets Ti, i = 1, . . . , n and value sets Vi, i =

1, . . . , n, the set of signal tuples S(T1, V1) × · · · × S(Tn, Vn) with the prefix order ¹ is a

poset, a CPO, and a complete lower semilattice.

Notation. For a signal tuple s = (s1, . . . , sn) and an index tuple I = (i1, . . . , ik),

s|I = (si1 , . . . , sik).

For example, (s1, s2, s3)|(3,1) = (s3, s1). For a set S of signal tuples,

S|I = {s|I | s ∈ S}.

2.4 Signal Segments

For two different signals r, s ∈ S(T, V ) such that r ¹ s, s can be obtained by appending

their difference to r.

Definition 2.19 (Signal Difference). The difference, s \ r, of two signals r, s ∈ S(T, V )

is a partial function from T to V , with

dom(s \ r) = dom(s) \ dom(r) ,

(s \ r)(t) = s(t), ∀t ∈ dom(s \ r).

There is an alternative way to define the difference between signals. It is based on

generalizing the concept of an interval on the real line to arbitrary posets.

Definition 2.20 (Interval of a Poset). Let P be a poset and I ⊆ P . I is an interval of

P if for all a, b ∈ I and c ∈ P , a < c and c < b imply c ∈ I.

Let I(P ) be the family of all intervals of poset P . Every down-set D ∈ D(P ) is an

interval of P . Down-sets are also called initial segments in the literature [34].
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Notation. For any subset A of a poset P , the down-closure of A is

↓A = {x ∈ P | ∃a ∈ A, x ≤ a}. (2.5)

↓A is a down-set of P .

Lemma 2.21. Let P be a poset and I ∈ I(P ). The set difference ↓ I \ I is a down-set of

P .

Proof. Take any x ∈↓I \ I and y ∈ P such that y ≤ x. x ∈↓I and ↓I is a down-set imply

y ∈↓I. If y /∈↓I \ I, then y ∈ I. x ∈↓I so there exists z ∈ I such that x ≤ z. Both y and

z are in I, and y ≤ x, x ≤ z. But x ∈↓I \ I implies that x /∈ I, which contradicts that I is

an interval. It must be that y ∈↓I \ I.

Lemma 2.22. For any poset P ,

I(P ) = {E \ D |D, E ∈ D(P ), D ⊆ E}.

That is, every interval of P is expressible as the difference between two down-sets.

Proof. Take any I ∈ I(P ). ↓I ∈ D(P ), and by lemma 2.21, ↓I \ I ∈ D(P ).

∀I ∈ I(P ), I =↓I \ (↓I \ I) =⇒ I(P ) ⊆ {E \ D |D, E ∈ D(P ), D ⊆ E}.

Take any D, E ∈ D(P ) such that D ⊆ E. For any a, b ∈ E \ D and c ∈ P such that

a ≤ c and c ≤ b, if c /∈ E \ D, then

c ≤ b, b ∈ E, E ∈ D(P ) =⇒ c ∈ E,

c ∈ E, c /∈ E \ D =⇒ c ∈ D,

a ≤ c, c ∈ D, D ∈ D(P ) =⇒ a ∈ D.

But a ∈ E \ D, a contradiction. It must be that c ∈ E \ D, so E \ D ∈ I(P ).

Definition 2.23 (Signal Segment). Let T be a poset of tags and V a set of values. A

signal segment g is a partial function from T to V such that dom(g) ∈ I(T ).

21



)0,( 0
st )1,( 1

st )2,( 2
st )3,( 3

st

)0,( 0
rt )1,( 1

rt )1,( 2
rt )2,( 3

rt

)4,( 4
st )5,( 5

st

)3,( 4
rt )5,( 5

rt

1g

2g

3g

4g

Figure 2.5. Segments of a signal consisting of two asynchronous streams r and s.

Let G(T, V ) denote the set of all signal segments with tag set T and value set V . Every

signal s ∈ S(T, V ) is a signal segment, S(T, V ) ⊆ G(T, V ). An event of a segment is defined

the same way as an event of a signal. Figure 2.5 illustrates some segments of a signal

consisting of two asynchronous streams.

By the definitions of signal difference and segment, and lemma 2.22, it is easy to establish

their equivalence,

G(T, V ) = {s \ r | r, s ∈ S(T, V )}. (2.6)

That is, every segment in G(T, V ) can be obtained as the difference between two signals

from S(T, V ).

Definition 2.24 (Append). For a segment g ∈ G(T, V ) and a signal s ∈ S(T, V ), if

dom(g) ∩ dom(s) = ∅ and dom(g) ∪ dom(s) ∈ D(T ), then a new signal, denoted by s ¿ g,

can be obtained by appending g to s, such that

dom(s ¿ g) = dom(s) ∪ dom(g),

(s ¿ g)(t) =















s(t) if t ∈ dom(s),

g(t) if t ∈ dom(g).

In figure 2.5, segment g1 is also a signal. g1 ¿ g2 and (g1 ¿ g2) ¿ g3 are signals, but

(g1 ¿ g2) ¿ g4 is undefined.

Given a set of signals {si, i = 0, . . . , n} such that si−1 ¹ si for all i ∈ {1, . . . , n}, it is

easy to verify that

sn = s0 ¿ (s1 \ s0) ¿ (s2 \ s1) ¿ · · · ¿ (sn \ sn−1). (2.7)
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¿ is left associative when interpreting the above equation.

For a signal s ∈ S(T, V ), let F(s) be the set of all segments that can be appended to s

(the “futures” of s),

F(s) = {s′ \ s | s′ ∈ S(T, V ), s ¹ s′}. (2.8)

Notation. For a partial function f : A ⇀ B and C ⊆ A, the restriction of f to C, f ↓C ,

is a partial function from C to B such that

dom(f ↓C) = C ∩ dom(f),

(f ↓C)(c) = f(c), ∀c ∈ dom(f ↓C).

For a set of partial functions F ⊆ (A ⇀ B),

F ↓C = {f ↓C | f ∈ F}.

Lemma 2.25. For any signal s ∈ S(T, V ),

F(s)↓T\dom(s) = S(T \ dom(s), V ). (2.9)

That is, the futures of a signal, when restricted to the future tags, are the signals having

the future tags as the tag set.

Proof. Every segment g ∈ F(s) has as domain an interval I ∈ I(T ) such that I∩dom(s) = ∅

and I ∪ dom(s) ∈ D(T ). For all x ∈ I and y ∈ T \ dom(s) such that y ≤ x,

x ∈ I ∪ dom(s) and I ∪ dom(s) ∈ D(T ) =⇒ y ∈ I ∪ dom(s),

y ∈ I ∪ dom(s) and y ∈ T \ dom(s) =⇒ y ∈ I.

I is a down-set of T \ dom(s), so g↓T\dom(s) ∈ S(T \ dom(s), V ).

Any signal r ∈ S(T \ dom(s), V ) has as domain a down-set D of T \ dom(s). Clearly

D ∩ dom(s) = ∅. For any x ∈ D ∪ dom(s) and y ∈ T such that y ≤ x, if x ∈ dom(s), a

down-set of T , y ∈ dom(s). If x ∈ D but y /∈ dom(s), D ∈ D(T \ dom(s)) implies y ∈ D.

D ∪ dom(s) is a down-set of T , so r ∈ F(s)↓T\dom(s).
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i

Figure 2.6. An ideal resistor and its electrical signals. R is the resistance. p and n are the
voltage signals at its two terminals, and i is the current flow through the resistor.

2.5 Processes

The process definition in the tagged signal model [44] is applicable to both physical

and computational processes. Physical laws specify the behavior of physical processes by

relating physical quantities measured over time and space. Figure 2.6 shows an ideal resistor

with resistance R and its electrical signals. Let [t1, t2] be a time interval over which the

signals are defined. With [t1, t2] as the tag set and R as the value set1, p, n, and i are

elements of St([t1, t2], R). By the Ohm’s Law, the signals satisfy the following equation:

p(t) − n(t) = R i(t), ∀t ∈ [t1, t2]. (2.10)

This law specifies a process by the following definition, which derives from both [44] and

[10].

Definition 2.26 (Process). A process P is a tuple (n, S, B) where

• n is the arity of the process. It is the number of signals related by the process.

• S = S(T1, V1)× · · · × S(Tn, Vn) is the signature of the process. Ti is the tag set of the

ith signal, and Vi is its value set.

• B ⊆ S(T1, V1) × · · · × S(Tn, Vn) is the behavior set of the process.

For a process P with behavior set B and arity n, if a tuple of n signals (s1, . . . , sn) is

an element of B, then (s1, . . . , sn) is a behavior of P . The above definition can be easily

adapted to consider only total signals when specifying the signature and behavior set of a

process, as illustrated by the following example.

1
R, the real numbers, and N, the natural numbers including 0, are used as value sets in examples.

Properties of value sets, such as data types and physical units, are not considered, as the focus here is on
the mathematical structure of signals derived from their tag sets.
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Example. For the ideal resistor in figure 2.6, a process R that captures its behavior is

(3, S, B) where

• The process relates 3 signals. Its arity is 3. Let the indexes 1, 2, and 3 correspond to

p, n, and i respectively.

• Let I denote the interval [t1, t2]. The signals have the same tag set I and value set R,

S = St(I, R) × St(I, R) × St(I, R).

• The behavior set B contains all signal tuples (p, n, i) that satisfy equation 2.10,

B = {(p, n, i) ∈ St(I, R) × St(I, R) × St(I, R) | p(t) − n(t) = R i(t), ∀t ∈ I}.

Because the behavior set B is defined by equation 2.10, if any two signals in (p, n, i) are

known, the third can be derived from them. This approach to specify process behavior is

used in non-causal modeling [30].

Example. Figure 2.7 illustrates a dataflow process [43] that multiplies the corresponding

values in the two input streams a and b to produce the output stream m. Let ? denote the

multiplication of streams, defined as

m = a ? b ⇐⇒











tmk ∈ dom(m) ⇔ tak ∈ dom(a) and tbk ∈ dom(b),

m(tmk ) = a(tak)b(t
b
k).

(2.11)

By definition 2.26, this dataflow process M is the tuple (3, S, B) where

• The process has arity 3. The indexes 1, 2, and 3 correspond to a, b, and m respectively.

Signal names may be used in place of indexes for better presentation.

• S = S({tak}, N) × S({tbk}, N) × S({tmk }, N).

• B = {(a, b, m) |m = a ? b}.

The output stream is a function of the input streams, but given two streams a and m, a

stream b that satisfies a ? b = m may not exist or may not be unique.

25



)0,( 0
at )1,( 1

at )2,( 2
at )3,( 3

at )4,( 4
at )5,( 5

at

)0,( 0
bt )1,( 1

bt )0,( 2
bt )2,( 3

bt

)0,( 0
mt )1,( 1

mt )0,( 2
mt )6,( 3

mt

a

b

m

Figure 2.7. A dataflow process that multiplies the corresponding values in the two input
streams a and b to produce the output stream m.

Definition 2.27 (Functional Process). A process P , (n, S, B), is functional with respect

to a partition I = (i1, . . . , ik) and O = (o1, . . . , on−k) of its related signals if for every r ∈ S|I ,

there exists exactly one behavior s ∈ B such that

s|I = r.

The process R illustrated in figure 2.6 is functional with respect to the partitions I =

(p, n) and O = (i), I = (i, n) and O = (p), and I = (p, i) and O = (n). The process M

in figure 2.7 is functional with respect to the partition I = (a, b) and O = (m), but not

functional, for example, with respect to I = (a, m) and O = (b).

Notation. For a process P , (n, S, B), and a signal tuple (s1, . . . , sn),

P (s1, . . . , sn) ⇐⇒ (s1, . . . , sn) ∈ B.

If P is functional with respect to index tuples I and O, then for signal tuples r ∈ S|I and

s ∈ S|O,

s = P (r) ⇐⇒ ∃p ∈ B such that r = p|I , s = p|O .

Figure 2.8 illustrates the graphical representation of processes.
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Figure 2.8. Graphical representation of processes. The process R on the left relates signals
p, n, and i, R(p, n, i). The process M on the right is functional with respect to I = (a, b)
and O = (m), m = M(a, b).

2.6 Monotonicity, Maximality, and Continuity

For a process P = (n, S, B) that is functional with respect to index tuples I and O, S|I
is the set of its input signal tuples, and S|O the set of its output signal tuples. By lemma

2.18, both S|I and S|O, with the prefix order ¹, are posets.

Definition 2.28 (Monotonicity). A functional process P is monotonic if, as a function

from S|I to S|O, it is order-preserving,

∀r, s ∈ S|I , r ¹ s =⇒ P (r) ¹ P (s).

Recall that a signal s ∈ S(T, V ) is total if dom(s) = T . A signal tuple is total if all of

its components are total.

Definition 2.29 (Maximality). A functional process P is maximal if

∀s ∈ S|I , P (s) =
∧

{P (r) | r ∈ S|I , r is total, and s ¹ r}. (2.12)

By lemma 2.18, S|O is a complete lower semilattice, so the right-hand-side of equation

2.12 is well defined. The behavior of a maximal process is determined by its mapping on

total input signals. Such a process maps each input signal to the largest, in the prefix order,

output signal that will not be “refuted” by any future input.

Lemma 2.30. Every maximal process is monotonic.
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Proof. Let P be a maximal process. For all s, s′ ∈ S|I , let

R = {r ∈ S|I | r is total and s ¹ r},

R′ = {r′ ∈ S|I | r′ is total and s′ ¹ r′}.

s ¹ s′ =⇒ R ⊇ R′,

=⇒ {P (r) | r ∈ R} ⊇ {P (r′) | r′ ∈ R′},

=⇒
∧

{P (r) | r ∈ R} ¹
∧

{P (r′) | r′ ∈ R′},

=⇒ P (s) ¹ P (s′).

P is monotonic.

For a functional process P and a subset A of S|I , let

P (A) = {P (s) | s ∈ A}.

Definition 2.31 (Scott Continuity). A functional process P is (Scott) continuous if for

any directed set D ⊆ S|I , P (D), a subset of S|O, is a directed set, and

P (
∨

D) =
∨

P (D).

Lemma 2.32. Every continuous process is monotonic.

Proof. For any two signals r, s ∈ S|I such that r ¹ s, the set {r, s} is a directed set. P is

continuous,
∨

{P (r), P (s)} = P (
∨

{r, s}) = P (s),

so P (r) ¹ P (s). P is monotonic.

2.7 Networks of Processes

Complex relations or functions on signals can be defined by creating networks of pro-

cesses. Figure 2.9 shows a RC low pass filter circuit. The network of processes in figure

2.10 is a specification of the circuit using the tagged signal model. The processes are:
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Figure 2.9. A RC low pass filter circuit.

• R = (3, SR, BR). R relates signals p1 and n1, the voltages at the two terminals of the

resistor, and i1, the current flow through the resistor,

(p1, n1, i1) ∈ BR ⇐⇒ p1 − n1 = R i1,

where R is the resistance.

• C = (3, SC , BC). C relates signals p2 and n2, the voltages at the two terminals of the

capacitor, and i2, the current flow through the capacitor,

(p2, n2, i2) ∈ BC ⇐⇒ i2 = C
d

dt
(p2 − n2) ,

where C is the capacitance.

• N = (4, SN , BN ). This process corresponds to the circuit node that connects the

resistor and the capacitor. It relates the signals n1, p2, i1, and i2,

(n1, p2, i1, i2) ∈ BN ⇐⇒ n1 = p2 and i1 − i2 = 0.

• G = (2, SG, BG). This process corresponds to the ground node in the circuit. It

relates the signals n2 and i2,

(n2, i2) ∈ BG ⇐⇒ n2 = 0.

Definition 2.33 (Network of Processes). A network of processes with n signals and m

processes is a tuple

(n, S, {Pk, k = 1, . . . , m}, {Ik, k = 1, . . . , m}),
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Figure 2.10. The RC circuit from figure 2.9 as a network of processes.

where

S = S(T1, V1) × · · · × S(Tn, Vn)

is the signature of the network, and for each k ∈ {1, . . . , m}, S|Ik
equals SPk

, the signature

of Pk.

For the network in figure 2.10, if the signals are ordered as (p1, n1, i1, p2, n2, i2), then

the network is

(6, S, {R, C, N, G}, {(1, 2, 3), (4, 5, 6), (2, 4, 3, 6), (5, 6)}) .

Each Ik is called an incidence tuple.

By definition 2.33, a network of processes is trivially a process N = (n, S, B) where

s ∈ B ⇐⇒ ∀k = 1, . . . , m, s|Ik
∈ BPk

.

Although N satisfies the definition of a process, whether its set of behaviors meets the goal

of creating the network depends on the properties of the processes in the network and the

network structure. The composition of processes in general will not be discussed further.

The focus will be on the composition of functional processes. From here on, all processes

are assumed to be functional unless explicitly stated otherwise.
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Figure 2.11. Two networks of functional processes.

Figure 2.11 illustrates networks of functional processes. The network in figure 2.11(a)

has 4 signals that satisfy the equations

m = M(a, b),

s = A(m).

Take signals a and b, which are not the output of any process in the network, as input to

the network. The network is a functional process N such that

N(a, b) = (m, s) where m = M(a, b), s = A(M(a, b)).

The network in figure 2.11(b) has 3 signals that satisfy the equations

m = M(s, b),

s = A(m).

(2.13)

Take b as the input of the network. The solution to the above equations may have the

following properties.

• For some b ∈ S(Tb, Vb), the equations have no solution. The network is not a functional

process.

• For all b ∈ S(Tb, Vb), the equations have a unique solution. The network is a functional

process that maps each b to the corresponding solution.

• For all b ∈ S(Tb, Vb), the equations have a solution, and for some or all b, more than

one solution. Declaring that the network is not a functional process is one alternative.
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The other alternative is to develop criteria to choose a solution when there is more than

one. The network is a functional process that maps each b to the chosen solution. The

latter alternative is employed in the next section to develop tagged process networks.

Definition 2.34 (Network of Functional Processes). A network of functional processes

is a network of processes in which all processes are functional, and no signal is the output

of more than one process.

2.8 Tagged Process Networks

Kahn process networks [40] are an elegant model of parallel computation. Each signal

in a KPN is a stream as illustrated in figure 2.1. Each process is a continuous function

(definition 2.31) from its input signals to output signals. Take the network in figure 2.11(b)

as an example KPN. For any input b, the signals m and s satisfy the equations 2.13, which

can be rewritten as

(m, s) = Fb(m, s), (2.14)

where

Fb : S(Tm, Vm) × S(Ts, Vs) → S(Tm, Vm) × S(Ts, Vs),

Fb(m, s) = (M(s, b), A(m)).

A solution to equation 2.14 is called a fixed point of Fb. Because M and A are continuous,

Fb is continuous. By Theorem 2.1.19 in [2], Fb has a least fixed point, so equation 2.14

always has at least one solution. Furthermore when it has more than one solution, there

exists a solution that is a prefix of all others. Let fix(Fb) be the least fixed point of Fb.

For every input b, fix(Fb) is chosen as the output of the network. The KPN is a functional

process N such that

N(b) = fix(Fb).

This approach can be naturally generalized to tagged process networks (TPNs).
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Definition 2.35 (Tagged Process Network). A tagged process network is a network of

functional processes in which all processes are continuous functions from their input signals

to output signals.

The following lemma will be used in establishing the properties of TPNs.

Lemma 2.36. Let D, E be CPOs, and f : D × E → E a continuous function.

(a) For all x ∈ D, fx : y 7→ f(x, y) is a continuous function from E to E.

(b) The function g : x 7→ fix(fx) from D to E is a continuous function.

Proof.

Part (a). See Lemma 8.10 in [77].

Part (b). Let [E → E] be the set of all continuous functions from E to E. With the

partial order

p ≤ q ⇐⇒ ∀y ∈ E, p(y) ≤ q(y),

[E → E] is a CPO. For any directed set A ⊆ D, {fx |x ∈ A} is a directed set, and

∨

{fx |x ∈ A} = f∨

A ,

so the function h : x 7→ fx from D to [E → E] is continuous. By Theorem 2.1.19 in [2], the

function fix: [E → E] → E is continuous. The composition of two continuous functions is

continuous, g = fix ◦h is continuous.

For a TPN N with signature S and processes {Pk, k = 1, . . . , m}, let IN be the index

tuple of signals that are not the output of any process, and ON the index tuple of the other

signals. Define a function FN : S|IN
× S|ON

→ S|ON
as follows.

Let function g : S|IN
× S|ON

→ S be defined by

g(a, b) = s where s|IN
= a, s|ON

= b .
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Let function h : S → S be defined by

h(s) = r where

r|IN
= s|IN

,

r|Ok
= Pk(s|Ik

), k = 1, . . . , m.

Ik is the incidence tuple of the input signals of process Pk, and Ok the incidence tuple of

its output signals.

The function FN is

FN (a, b) = h(g(a, b))|ON
.

Because all processes in the network are continuous functions, FN is a continuous function.

Take the network from figure 2.11(b) as an example,

IN = {b},

ON = {m, s},

g(b, (m, s)) = (b, m, s),

h(b, m, s) = (b, M(s, b), A(m)),

FN (b, (m, s)) = (M(s, b), A(m)).

Theorem 2.37 (Tagged Process Network). A TPN N is a functional process with

respect to the partition IN and ON of its signals,

∀a ∈ S|IN
, N(a) = fix(FN (a, ·)), (2.15)

where FN (a, ·) : b 7→ FN (a, b). N is a continuous function from S|IN
to S|ON

.

The proof is straightforward using lemma 2.36. This general theorem is applicable to

any model of computation that can be defined as a tagged signal model.
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Chapter 3

Discrete Event Process Networks

This chapter focuses on a subclass of tagged process networks (TPNs), in which all

signals share a common tag set. The tag set is totally ordered, and is a model of global

time in a network of processes.

3.1 Timed Signals

Any non-empty interval of real numbers may be used as the tag set of timed signals. The

non-negative real numbers R0 = [0,∞) will be used in most examples as a representative.

All value sets of timed signals contain a special element, ε, that represents the absence of a

normal value. For any normal value set V , let

Vε = V ∪ {ε}.

Definition 3.1 (Timed Signal). Let T ∈ I(R) be an interval of real numbers, and V a

non-empty set of values. A timed signal is a tagged signal with tag set T and value set Vε.

A timed signal s is present at time t ∈ dom(s) if s(t) 6= ε, and otherwise absent at t.

Example (Timed Signals). Following are some timed signals from S(R0, Nε).
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• A constant signal const1 with value 1 at all times,

dom(const1) = R0,

const1(t) = 1, ∀t ∈ dom(const1).

(3.1)

This signal is illustrated in figure 3.1(a). A timed signal s that is present at all times

in dom(s) is a continuous-time signal.

• A clock signal clock1 that is present only at times t ∈ N,

dom(clock1) = R0,

clock1(t) =















1 if t ∈ N,

ε if t /∈ N.

(3.2)

This signal is illustrated in figure 3.1(b).

• A signal zeno that is present at an infinite number of times before time 1,

dom(zeno) = R0,

zeno(t) =















1 if t ∈ {1 − 1
2k | k ∈ N},

ε otherwise.

(3.3)

This signal is illustrated in figure 3.1(c).

• A signal dzeno (short for discrete Zeno, see section 3.5),

dom(dzeno) = [0, 1),

dzeno(t) =















1 if t ∈ {1 − 1
2k | k ∈ N},

ε otherwise.

(3.4)

This signal is illustrated in figure 3.1(d). All previous examples are total signals, but

this one is not a total signal.

Notation (Timed Signals). A timed signal s ∈ S(T, Vε) can be represented by a tuple

(T, dom(s), E) where

E = {(t, s(t)) | t ∈ dom(s), s(t) 6= ε}.
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Figure 3.1. Examples of timed signals: (a) const1, (b) clock1, (c) zeno, (d) dzeno.
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An element of E is a present event in signal s. If E is a finite set, signal s is called a

finite signal.

With this notation, the signals in figure 3.1 are

const1 = (R0, R0, {(t, 1) | t ∈ R0}),

clock1 = (R0, R0, {(k, 1) | k ∈ N}),

zeno = (R0, R0, {(1 − 1

2k
, 1) | k ∈ N}),

dzeno = (R0, [0, 1), {(1 − 1

2k
, 1) | k ∈ N}).

This notation helps to distinguish between the empty signal s⊥ and the absent signal sε,

s⊥ = (T, ∅, ∅),

sε = (T, T, ∅).

The empty signal has no event, whereas the absent signal has “absent event” at all times.

Corollary 3.2 (Timed Signals). Let T ∈ I(R) be an interval of real numbers, and V a

non-empty set of values. The set of timed signals S(T, Vε) with the prefix order ¹ is both

a CPO and a complete lower semilattice.

This corollary is a special case of lemmas 2.16 and 2.17.

Restriction. For a tagged signal s ∈ S(T, V ) and a down-set D ∈ D(T ), the restriction of

s to D, s↓D, is also a tagged signal, such that

dom(s↓D) = dom(s) ∩ D,

(s↓D)(t) = s(t), ∀t ∈ dom(s↓D).

(3.5)

For example, dzeno = zeno ↓[0,1).

For a set of signals S ⊆ S(T, V ), let

S ↓D = {s↓D | s ∈ S}.

For any tag t ∈ T , let

s↓t = s↓↓{t} .

Recall that ↓{t} is the set of all tags that “come before” t.
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Lemma 3.3 (Restriction). The following holds for any tag set T and value set V .

• Given any signal s ∈ S(T, V ) and down-sets D1, D2 ∈ D(T ) such that D1 ⊆ D2,

s↓D1
¹ s↓D2

. (3.6)

• Given any signals s1, s2 ∈ S(T, V ) such that s1 ¹ s2, and down-set D ∈ D(T ),

s1 ↓D ¹ s2 ↓D . (3.7)

This lemma is very useful in proving the prefix relation between signals.

Totally ordered tag sets have the following properties.

Lemma 3.4. Let T be a totally ordered set. D(T ) is totally ordered by set inclusion.

Proof. For any two down-sets D1, D2 ∈ D(T ), either D1 ⊆ D2 or D2 ⊆ D1. Otherwise

there exist t1 such that t1 ∈ D1, t1 /∈ D2, and t2 such that t2 ∈ D2, t2 /∈ D1. T is totally

ordered, either t1 ≤ t2 or t2 ≤ t1. If t1 ≤ t2,

t1 ≤ t2, t2 ∈ D2 =⇒ t1 ∈ D2 .

This contradicts t1 /∈ D2. Similarly t2 ≤ t1 leads to a contradiction.

Proposition 3.5. If the tag set T is a totally ordered set, any directed set D ⊆ S(T, V ) is

totally ordered.

Proof. For any two signals s1, s2 ∈ D, by lemma 3.4, either dom(s1) ⊆ dom(s2) or

dom(s2) ⊆ dom(s1). D is a directed set, there exists u ∈ D such that s1 ¹ u and s2 ¹ u.

s1 ¹ u =⇒ s1 = u↓dom(s1),

s2 ¹ u =⇒ s2 = u↓dom(s2) .

Together with equation 3.6, dom(s1) ⊆ dom(s2) implies s1 ¹ s2, and dom(s2) ⊆ dom(s1)

implies s2 ¹ s1. Any two signals in D are comparable, D is totally ordered.
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3.2 Timed Processes

A timed process is a function from timed signals to timed signals. All input and output

signals of a timed process have the same tag set. Several representative timed processes

are presented in this section, with discussions on their properties, such as continuity and

maximality. Some proofs of these properties are included, in order to illustrate how such

proofs can be structured.

The Add Process. Suppose that addition +: V × V → V is defined on a value set V .

Let +ε : Vε × Vε → Vε be defined by

+ε b ∈ V b = ε

a ∈ V a + b a

a = ε b ε

(3.8)

The Add process adds two timed signals s1, s2 ∈ S(T, Vε) by

Add(s1, s2) = s where

dom(s) = dom(s1) ∩ dom(s2),

s(t) = s1(t) +ε s2(t).

(3.9)

Proposition 3.6. The process Add : S(T, Vε) × S(T, Vε) → S(T, Vε) defined by equation

3.9 is continuous.

Proof. First, Add is monotonic. For any (s1, s2), (r1, r2) ∈ S(T, Vε) × S(T, Vε) such that

(s1, s2) ¹ (r1, r2),

let s = Add(s1, s2), r = Add(r1, r2).

s1 ¹ r1, dom(s) ⊆ dom(s1) =⇒ s1 ↓dom(s)= r1 ↓dom(s) ,

s2 ¹ r2, dom(s) ⊆ dom(s2) =⇒ s2 ↓dom(s)= r2 ↓dom(s) ,

=⇒ s = r↓dom(s) ,

=⇒ s ¹ r .
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Because Add is monotonic, for any directed set D ⊆ S(T, Vε) × S(T, Vε), Add(D) is a

directed set, and
∨

Add(D) ¹ Add(
∨

D) . (3.10)

Let (u1, u2) =
∨

D, u = Add(u1, u2), and u′ =
∨

Add(D). For any t ∈ dom(u),

t ∈ dom(u1) =⇒ ∃(p1, p2) ∈ D, t ∈ dom(p1),

t ∈ dom(u2) =⇒ ∃(q1, q2) ∈ D, t ∈ dom(q2).

Because D is a directed set, (p1, p2) and (q1, q2) have an upper bound (w1, w2) in D. Let

w = Add(w1, w2).

t ∈ dom(w1), t ∈ dom(w2) =⇒ t ∈ dom(w) ,

(w1, w2) ¹ (u1, u2) =⇒ w ¹ u ,

=⇒ w↓t = u↓t .

w ∈ Add(D) =⇒ w ¹ u′,

=⇒ w↓t = u′ ↓t .

∀t ∈ dom(u), u↓t = u′ ↓t =⇒ u ¹ u′.

That is

Add(
∨

D) ¹
∨

Add(D) .

With equation 3.10,

Add(
∨

D) =
∨

Add(D) .

Add is continuous.

Proposition 3.7. If for every v ∈ V , there exist v1, v2 ∈ V such that

v1 + v 6= v, v + v2 6= v,

then Add is maximal.
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Proof. For any (s1, s2) ∈ S(T, Vε) × S(T, Vε), let

s = Add(s1, s2),

Q = {(q1, q2) ∈ S(T, Vε) × S(T, Vε) | (s1, s2) ¹ (q1, q2), (q1, q2) is total},

q =
∧

Add(Q).

Because Add is monotonic,

∀(q1, q2) ∈ Q, s ¹ Add(q1, q2) =⇒ s ¹ q .

Let (r1, r2) ∈ Q be the signal such that

r1(t) =















s1(t) if t ∈ dom(s1),

ε otherwise,

r2(t) =















s2(t) if t ∈ dom(s2),

ε otherwise.

They are extensions of s1 and s2 to total signals by appending the “all absent” future. For

any t0 /∈ dom(s), either t0 /∈ dom(s1) or t0 /∈ dom(s2). Let v0 be an arbitrary element of V .

If t0 /∈ dom(s1), define a total signal r′1 by

r′1(t) =































r1(t) t 6= t0,

v0 t = t0, r2(t0) = ε,

v1 t = t0, r2(t0) = v, v1 + v 6= v.

Add(r1, r2) and Add(r′1, r2) are different at t0,

Add(r1, r2)(t0) =















ε r2(t0) = ε,

v r2(t0) = v,

Add(r′1, r2)(t0) =















v0 r2(t0) = ε,

v1 + v r2(t0) = v.

Both (r1, r2) and (r′1, r2) are in the set Q,

q ¹ Add(r1, r2), q ¹ Add(r′1, r2) =⇒ t0 /∈ dom(q) .
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s Delay1(s)

clock1 (R0, R0, {(k, 1) | k ∈ N, k > 0})

dzeno (R0, [0, 2), {(2 − 1
2k , 1) | k ∈ N})

(R0, ∅, ∅) (R0, [0, 1), ∅)

(R, ∅, ∅) (R, ∅, ∅)

Figure 3.2. Some behaviors of the Delayd process, with delay d = 1.

Similarly t0 /∈ dom(s2) implies t0 /∈ dom(q). Now that dom(q) ⊆ dom(s) and s ¹ q, s = q.

Add is maximal.

The Delay Process. Let d be any positive real number. The Delayd process shifts every

event in its input signal by d into the future.

Delayd : S(T, Vε) → S(T, Vε),

Delayd(s) = r where

dom(r) = {t ∈ T | t − d ∈ dom(s) or t − d /∈ T},

r(t) =















s(t − d) t − d ∈ dom(s),

ε otherwise.

(3.11)

The Delayd process is both continuous and maximal. Some examples of its behavior

are shown in figure 3.2.

The Merge Process. The Merge process combines the present events in its input signals

into its output signal, giving precedence to its first input when both input signals are present

at the same time.

Merge : S(T, Vε) × S(T, Vε) → S(T, Vε),

Merge(s1, s2) = s where

dom(s) = dom(s1) ∩ dom(s2),

s(t) =















s1(t) s1(t) 6= ε,

s2(t) otherwise.

(3.12)
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The processes Add and Delayd are both continuous and maximal. This is not the case for

the Merge process, which is continuous but not maximal. Proving the continuity of Merge is

similar to that for Add . That Merge is not maximal is illustrated by the following behavior,

u1 = (R0, [0, 1], {(1, 1)}),

u2 = (R0, [0, 1), ∅),

Merge(u1, u2) = u2.

(3.13)

Let MaxMerge be the maximal version of the Merge process, then

MaxMerge(u1, u2) = u1.

The definition of the MaxMerge process is

MaxMerge : S(T, Vε) × S(T, Vε) → S(T, Vε),

MaxMerge(s1, s2) = s where

dom(s) = {t ∈ dom(s1) | ∀p ∈ ↓{t}\dom(s2), s1(p) 6= ε},

s(t) =















s1(t) s1(t) 6= ε,

s2(t) otherwise.

(3.14)

Intuitively, if the input signal s1 is continuously present over a time interval right beyond

dom(s2), then those present events are in the output of MaxMerge. To show that MaxMerge

is not continuous, take u1 and u2 as defined in equation 3.13, and let

rk = (R0, [0, 1 − 1

2k
), ∅), k ∈ N,

D = {(u1, rk), k ∈ N}.

D is a directed set, and

MaxMerge(u1, rk) = rk,
∨

MaxMerge(D) = u2.

∨

D = (u1, u2), MaxMerge(
∨

D) = u1.

∨

MaxMerge(D) 6= MaxMerge(
∨

D) .

Figure 3.3 illustrates the timed processes discussed in this section.
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Add

Delayd

Merge
1 1

Figure 3.3. Examples of timed processes.

Merge
1

Delay1

x

y z

Figure 3.4. A timed process network.

3.3 Timed Process Networks

Definition 3.8 (Timed Process Network). A timed process network is a tagged process

network in which all signals are timed signals and have the same tag set T ∈ I(R), an interval

of real numbers.

Consider the timed process network in figure 3.4. By theorem 2.37, for any input signal

x, the output (y, z) of the network is the least fixed point of

F : (y, z) 7→ (Merge(z, x),Delay1(y)) . (3.15)

By Theorem 2.1.19 in [2],

fix(F ) =
∨

n∈N

Fn(s⊥, s⊥) , (3.16)

where F 0 is the identity function, and Fn+1 = F ◦ Fn.

Let x be the zeno signal from figure 3.1(c). The first 4 values in the sequence
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F0(s⊥, s⊥)

F1(s⊥, s⊥)

F2(s⊥, s⊥)

F3(s⊥, s⊥)

Figure 3.5. Steps in computing the least fixed point of F in equation 3.15.

{Fn(s⊥, s⊥), n ∈ N} are illustrated in figure 3.5. By induction on n,

F 2n(s⊥, s⊥) = ((R0, [0, n), {(l − 1

2k
, 1) | l = 1, . . . , n, k ∈ N}),

(R0, [0, n), {(l − 1

2k
, 1) | l = 2, . . . , n, k ∈ N})) .

(3.17)

Combine equations 3.16 and 3.17,

fix(F ) = ((R0, R0, {(l −
1

2k
, 1) | l ∈ N, l > 0, k ∈ N}),

(R0, R0, {(l −
1

2k
, 1) | l ∈ N, l > 1, k ∈ N})),

(3.18)

which is illustrated in figure 3.6.

Equation 3.16 provides an iterative scheme to compute the least fixed point of F . By

this scheme and equation 3.17, for any t > 0, fix(F ) ↓[0,t] can be determined after a finite

number of iterations (applications of F ). It is important to note that in this example, the

input signal zeno is present at an infinite number of times in the finite time interval [0, 1].

Equation 3.16 makes it possible to compute the behavior of the network beyond the “Zeno

point” in time.
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y

z

Figure 3.6. The least fixed point of F in equation 3.15.

If the tag set of the signals is R0, then the network in figure 3.4 has the following

property,

x is a total signal =⇒ y and z are total signals.

To show this, let

Di = dom(i), i = x, y, z.

Using abstract interpretation [23], the processes become relations on the domains of the

signals,

Dy = Dz ∩ Dx,

Dz = [0, 1) ∪ {t + 1 | t ∈ Dy}.
(3.19)

x is a total signal =⇒ Dx = R0,

=⇒ Dy = Dz,

=⇒ Dz = [0, 1) ∪ {t + 1 | t ∈ Dz}.

The only subset of R0 that satisfies the last equation is R0, so both y and z are total signals.

Not all timed process networks have this property. The network in figure 3.7 is obtained

from that in figure 3.4 by replacing the Delay1 process with the LookAhead1 process, defined
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1

Look
Ahead1

x

y z

Figure 3.7. A timed process network with a LookAhead1 process.

by the following equation.

LookAheada : S(T, Vε) → S(T, Vε),

LookAheada(s) = r where

dom(r) = {t ∈ T | t + a ∈ dom(s)},

r(t) = s(t + a),

(3.20)

for all a > 0. LookAheada is continuous. For any input signal x, (s⊥, s⊥) is the least fixed

point of

F : (y, z) 7→ (Merge(z, x),LookAhead1(y)) . (3.21)

The output of the network is nowhere defined. The next section presents conditions on the

processes and network structure such that if all input signals are defined at least on ↓ {t}

for some t ∈ T , then all output signals are defined at least on ↓{t}.

3.4 Causality

Causality is the relationship between causes and effects. If a timed process models a

physical or computational process, the time of an effect cannot be earlier than the time of

the corresponding cause.

Definition 3.9 (Causality). A timed process P with n input signals and m output signals

is causal if it is monotonic, and for all signal tuples (s1, . . . , sn) and (r1, . . . , rm),

(r1, . . . , rm) = P (s1, . . . , sn) =⇒
n
⋂

i=1

dom(si) ⊆
m
⋂

j=1

dom(rj) . (3.22)
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Add
1

x

y

Figure 3.8. A timed process network that is not causal.

A timed process P is causal guarantees that for any two signal tuples (s1, . . . , sn) and

(s′1, . . . , s
′
n), and time t such that

t ∈
⋂

s∈S

dom(s), where S = {s1, . . . , sn, s′1, . . . , s
′
n},

(s1, . . . , sn)↓t = (s′1, . . . , s
′
n)↓t =⇒ P (s1, . . . , sn)↓t = P (s′1, . . . , s

′
n)↓t .

Among the timed process examples discussed so far, Add , Delayd, Merge, and MaxMerge

are causal, whereas LookAheada is not causal.

Neither causality nor continuity implies the other. The MaxMerge process is causal but

not continuous. The LookAheada process is continuous but not causal.

A dependency loop of length k in a network of processes is a list of k signals si, i =

1, . . . , k and a list of k processes Pi, i = 1, . . . , k such that si is an input signal of Pi, i =

1, . . . , k, si+1 an output signal of Pi, i = 1, . . . , k − 1, and s1 an output signal of Pk. For

example, the timed process network in figure 3.4 has a dependency loop of length 2—the

list of signals is z, y and the list of processes is Merge, Delay1.

If all processes in a timed process network are causal, and there is no dependency loop

in the network, such as the network in figure 2.11(a), then the network is a causal process.

This may not be the case when there is a dependency loop in the network, as illustrated by

the network in figure 3.8. For any input signal x, the output of the network y is the empty

signal s⊥.

For any network of causal processes, a sufficient condition that the network defines a

causal process is that in every dependency loop, there exists a process that introduces a
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fixed delay, such as the Delay1 process in figure 3.4. Such processes are special cases of

strictly causal processes.

Definition 3.10 (Strict Causality). A timed process P with n input signals and m

output signals is strictly causal if it is monotonic, and for all signal tuples (s1, . . . , sn) and

(r1, . . . , rm),

(r1, . . . , rm) = P (s1, . . . , sn) =⇒

⋂n
i=1 dom(si) ⊂

⋂m
j=1 dom(rj),

or

rj , j = 1, . . . , m are total signals.

(3.23)

Example. Several strictly causal processes with one input and one output are presented

to illustrate the definition. To determine whether such a process P is strictly causal, a

good first test is to check whether P (s⊥) is the empty signal. If P is strictly causal, then

P (s⊥) 6= s⊥. P must “come up with something from nothing.”

• If the tag set of the signals is R0, the Delayd process is strictly causal. The same

holds for any tag set T ∈ I(R) that is not a down-set of R.

If the tag set T is a down-set of R, such as (−∞, 0] or R, then the Delayd process is

not strictly causal. For such tag sets,

Delayd(s⊥) = s⊥ .

• Let R0 be the tag set. Define a function f : R0 → R0 by

f(t) = t + e−t .

f is injective. This example process E delays the input at t by e−t,

E(s) = r where

dom(r) = [0, 1) ∪ {f(t) | t ∈ dom(s)},

r(t) =















s(f−1(t)) if t ≥ 1,

ε if t ∈ [0, 1).
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E is strictly causal. The delay introduced by E does not have a positive lower bound

over R0, although there is one over any finite sub-interval of R0. E is also continuous

and maximal.

• This example process F delays the input at t by 2 − 2(t − btc),

F (s) = r where

dom(r) =















































[0, 1] if dom(s) = ∅,

[0, dte] if dom(s) = [0, t),

[0, bt + 1c] if dom(s) = [0, t],

R0 if dom(s) = R0,

r(t) =































s(2btc − t) if t > 1 and t /∈ N,

s(t − 2) if t > 1 and t ∈ N,

ε if t ∈ [0, 1].

(3.24)

For an input event e = (t, v), F produces the corresponding output event

e′ = (2btc + 2 − t, v) .

The time translation performed by F , that is the mapping

t 7→ 2btc + 2 − t ,

is shown in figure 3.9. F is strictly causal and continuous. For any δ ∈ (0, 1), F delays

the input at 1 − δ by 2δ. The delay introduced by F does not have a positive lower

bound over the finite interval [0, 1].

Theorem 3.11 (Causal Timed Process Network). If all processes in a timed process

network are causal, and in every dependency loop in the network there is at least one strictly

causal process, then the network is a causal process.

Proof. Let N be such a network with n signals and m processes P1, . . . , Pm. Without

loss of generality, assume that the first k signals are the input of the network. All timed
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Figure 3.9. The time translation performed by process F in equation 3.24.

process networks are tagged process networks, so by theorem 2.37, N is continuous and

thus monotonic.

Suppose that N is not causal. There exist input signals s1, . . . , sk and the corresponding

output signals sk+1, . . . , sn such that

k
⋂

i=1

dom(si) 6⊆
n
⋂

j=k+1

dom(sj) .

Let D =
⋂k

i=1 dom(si). Recall lemma 3.4, the down-sets of a totally ordered set are totally

ordered by set inclusion. Take j0 ∈ {k + 1, . . . , n} such that dom(sj0) is the smallest set

among dom(sj), j = k+1, . . . , n. dom(sj0) is a strict subset of D. Let Pl0 be the process that

has sj0 as output, and sj1 be an input of Pl0 with the smallest domain among all inputs of

Pl0 . Because Pl0 is causal, dom(sj1) ⊆ dom(sj0). By the picking of j0, dom(sj0) ⊆ dom(sj1),

so dom(sj1) = dom(sj0). sj1 cannot be an input of the network. Let Pl1 be the process that

has sj1 as output, and continue tracing back to an input sj2 of Pl1 , and so on,

sj0

Pl0←−−−−− sj1

Pl1←−−−−− sj2

Pl2←−−−−− · · · .

There are n signals in the network, so there exist p, q ∈ {0, . . . , n} such that p < q and
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jp = jq. The signals sjr , r = p, . . . , q−1 and processes Plr , r = p, . . . , q−1 form a dependency

loop. There is a strictly causal process among these processes. The smallest domain of its

input signals equals the domain of an output. This contradicts the strict causality of the

process.

3.5 Discrete Event Signals

An important subclass of timed systems are discrete event (DE) systems [20, 29]. The

study of DE process networks parallels that of general timed process networks, starting

from the definition of DE signals and their properties.

Definition 3.12 (Discrete Event Signal). A timed signal s ∈ S(T, Vε) is a discrete event

signal if there exists a directed set D ⊆ S(T, Vε) of finite timed signals such that

s =
∨

D .

Let Sd(T, Vε) denote the set of all DE signals with tag set T ∈ I(R) and value set Vε.

Among the signals in figure 3.1, clock1 and dzeno are DE signals, but not const1 and zeno.

Both the empty signal s⊥ and the absent signal sε are DE signals.

There are several equivalent definitions of DE signals, as established by the following

three lemmas.

Lemma 3.13. A timed signal s is a DE signal if and only if for all t ∈ dom(s), s ↓t is a

finite signal.

Proof. Let s be a DE signal and D a directed set of finite signals such that s =
∨

D. For

all t ∈ dom(s), there exists r ∈ D such that t ∈ dom(r).

r ¹ s =⇒ s↓t = r↓t .

r is a finite signal implies r↓t is a finite signal, so is s↓t.

For any timed signal s, let

Ds = {s↓t | t ∈ dom(s)} ∪ {s⊥} .
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Ds is a directed set and s =
∨

Ds. If for all t ∈ dom(s), s ↓t is finite, then s is a DE

signal.

The above equivalent definition of DE signals will be used most often in proving prop-

erties of DE signals and processes.

Lemma 3.14. A timed signal s ∈ S(T, Vε) is a DE signal if and only if

s−1(V ) 6= ∅ =⇒ min(s−1(V )) exists, (3.25)

and for all t ∈ dom(s), there exists δ > 0 such that

s−1(V ) ∩ (t − δ, t + δ) (3.26)

is a finite set1.

Proof. Let s be a DE signal. If s−1(V ) is not empty, take any t0 ∈ s−1(V ). s↓t0 is a finite

signal, so s−1(V )∩ ↓{t0} is a finite set. Let tmin be the minimum element of this set, then

min(s−1(V )) = tmin .

For all t ∈ dom(s), if max(dom(s)) exists and t = max(dom(s)), then s equals s↓t and is a

finite signal. s−1(V ) ∩ (t − δ, t + δ) is a finite set for any δ > 0. If max(dom(s)) does not

exist or t < max(dom(s)), take any t′ ∈ dom(s) such that t < t′. Let δ = t′ − t. s ↓t′ is a

finite signal, so s−1(V ) ∩ (t − δ, t + δ) is a finite set.

For the “if” part of the proof, if s−1(V ) is the empty set, then s is a DE signal. If

s−1(V ) is not empty, let

tmin = min(s−1(V )) .

For all t ∈ dom(s), if t ≤ tmin, then s−1(V )∩ ↓{t} is either empty or contains only tmin, s↓t

is a finite signal. If t > tmin, suppose that s↓t is not a finite signal, then s−1(V )∩ [tmin, t] is

an infinite set. [tmin, t] is a compact subset of R, there exists t∗ ∈ [tmin, t] that is a cluster

point of s−1(V ) ∩ [tmin, t]. For any δ > 0, s−1(V ) ∩ (t∗ − δ, t∗ + δ) is an infinite set, a

contradiction. For all t ∈ dom(s), s↓t is a finite signal, so s is a DE signal.

1This definition is due to Eleftherios D. Matsikoudis.
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Lemma 3.15. A timed signal s ∈ S(T, Vε) is a DE signal if and only if s−1(V ) is order-

isomorphic to a down-set of N, and if s−1(V ) is an infinite set, then

dom(s) =
⋃

t∈s−1(V )

↓{t} . (3.27)

This definition is used in [45]. If s−1(V ) is order-isomorphic to a down-set of N, then

the present events of s can be enumerated in the order of their time. If s is present at an

infinite number of times, then equation 3.27 guarantees that for any t ∈ dom(s), s is present

at a time later than t.

Remark 3.16. The previous lemmas provide alternative characterizations of DE signals.

Definition 3.12 states that DE signals can be approximated by “simple” elements of S(T, Vε),

the finite signals. Lemma 3.13 is very useful in proving properties of DE signals. Lemma

3.14 best explains the discreteness of DE signals—for any DE signal s, s−1(V ) is a discrete

subset of dom(s). By lemma 3.15, the present events in a DE signal can be treated as a

sequence with increasing time tags.

The following lemma summarizes the properties of Sd(T, Vε).

Lemma 3.17. For any tag set T ∈ I(R) and value set Vε,

(a) Sd(T, Vε) is a down-set of S(T, Vε).

(b) Sd(T, Vε) with the prefix order is a CPO.

(c) Sd(T, Vε) is a complete lower semilattice.

Proof. Part (a) is straightforward, as any prefix of a DE signal is also a DE signal.

Part (b). Let D be a directed set of DE signals from Sd(T, Vε). As a subset of S(T, Vε),

D is also a directed set. By corollary 3.2, there exists u ∈ S(T, Vε) such that u =
∨

D in

the CPO S(T, Vε). For all t ∈ dom(u), there exists s ∈ D such that t ∈ dom(s).

s ¹ u, t ∈ dom(s) =⇒ u↓t = s↓t .
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s↓t is a finite signal, so is u↓t. u is a DE signal, so D has a least upper bound in Sd(T, Vε).

Sd(T, Vε) is a CPO.

Part (c). The proof follows directly from corollary 3.2 and part (a) of this lemma.

Definition 3.18 (Non-Zeno Signal). A DE signal s ∈ Sd(T, Vε) is non-Zeno if either s

is a finite signal, or s is a total signal, dom(s) = T .

Between the two DE signals in figure 3.1, clock1 is the only non-Zeno signal. dzeno

is a Zeno signal—it is present at an infinite number of times in a strict subset of its tag

set. If the signal is computed by enumerating its present events ordered by time, then any

t ∈ T \ dom(dzeno) cannot be covered in any finite number of computational steps. Note

the role of the tag set T in definition 3.18. The signal

([0, 1), [0, 1), {(1 − 1

2k
, 1) | k ∈ N})

is present at the same set of times as dzeno, but is a non-Zeno signal because its tag set T

is [0, 1) and it is a total signal.

Lemma 3.19. For any tag set T ∈ I(R) and value set Vε, the set of all non-Zeno signals

Snz(T, Vε) is a down-set of Sd(T, Vε).

The proof is straightforward as any prefix of a non-Zeno signal is also a non-Zeno signal.

3.6 Discrete Event Processes

A discrete event process is a function from DE signals to DE signals. All input and

output signals of a DE process have the same tag set. Among the processes discussed in

sections 3.2 and 3.3, Add , Delayd, Merge, and LookAheada are DE processes. MaxMerge is

not a DE process, as it has the following behavior,

s1 = (R0, [0, 1], {(1, 1)}) ,

s2 = dzeno,

MaxMerge(s1, s2) = (R0, [0, 1], {(1 − 1

2k
, 1) | k ∈ N} ∪ {(1, 1)}) .
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s sd

const1 (R0, [0, 0], {(0, 1)})

clock1 clock1

zeno dzeno

Figure 3.10. Examples of DE prefixes. sd is derived from s by equation 3.28.

MaxMerge(s1, s2) is not a DE signal.

It is possible to derive a DE process from any timed process. For any timed signal

s ∈ S(T, Vε), let its DE prefix be defined by

sd =
∨

{r ∈ Sd(T, Vε) | r ¹ s} . (3.28)

By lemma 3.17(b), sd is a DE signal. Some examples of DE prefixes are shown in figure

3.10.

Lemma 3.20. The DE prefix function ρ : S(T, Vε) → Sd(T, Vε), which maps s ∈ S(T, Vε)

to sd given by equation 3.28, is a continuous function.

Proof. For all s, s′ ∈ S(T, Vε),

s ¹ s′ =⇒ {r ∈ Sd(T, Vε) | r ¹ s} ⊆ {r ∈ Sd(T, Vε) | r ¹ s′},

=⇒ sd ¹ s′d .

The function ρ is monotonic.

Let D ⊆ S(T, Vε) be a directed set of timed signals, and u =
∨

D. ρ is monotonic

implies that ρ(D) is a directed set of DE signals and
∨

ρ(D) ¹ ρ(u). Continuity requires

also ρ(u) ¹ ∨

ρ(D).

Let p = ρ(u) and q =
∨

ρ(D). For all t ∈ dom(p), p ↓t is a finite signal. t ∈ dom(p)

implies t ∈ dom(u), so there exists r ∈ D such that t ∈ dom(r).

r↓t = u↓t = p↓t .
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r↓t is a finite signal, so

p↓t = r↓t ¹ ρ(r) ¹ q.

For all t ∈ dom(p), p↓t is a prefix of q.

p =
∨

{p↓t | t ∈ dom(p)},

so p is a prefix of q.

Given any timed process P : S(T, Vε) → S(T, Vε), the derived DE process is

Pd : Sd(T, Vε) → Sd(T, Vε),

Pd(s) = ρ(P (s)) .

(3.29)

It is straightforward to generalize the above definition to multiple-input, multiple-output

processes. Because ρ is continuous, Pd is continuous if P is continuous. Because ρ is not

causal, derivation 3.29 does not preserve causality.

Definition 3.21 (Non-Zeno Process). A DE process P : Sd(T, Vε) → Sd(T, Vε) is a

non-Zeno process if for any non-Zeno signal s ∈ Sd(T, Vε), P (s) is a non-Zeno signal.

Such processes are called simple processes in [21].

Theorem 3.22. A causal DE process is non-Zeno.

Proof. Let P : Sd(T, Vε) → Sd(T, Vε) be a causal DE process. Let s ∈ Sd(T, Vε) be any

non-Zeno signal. If s is a total signal, P is causal implies P (s) is a total DE signal. P (s) is

non-Zeno.

If s is not a total signal, then s is finite. Let s′ ∈ Sd(T, Vε) be a total signal such that

s′(t) =















s(t) if t ∈ dom(s),

ε otherwise.

s′ is a total non-Zeno signal, and s ¹ s′. P (s′) is a non-Zeno signal. P is causal, so it is

monotonic by definition. P (s) ¹ P (s′), so P (s) is non-Zeno.
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3.7 Discrete Event Process Networks

In a discrete event process network, all signals are DE signals, and all processes

are DE processes. The network in figure 3.11 is the same as the timed process network in

figure 3.4 but considered as a DE process network. The figure shows the behavior of the

network when the input signal x equals dzeno.

Because the set Sd(T, Vε) of DE signals with the prefix order is a CPO, if all processes

in a DE process network are continuous, the same development of tagged process networks

in section 2.8 can be applied directly to DE process networks.

Theorem 3.23 (Discrete Event Process Network). If all processes in a DE process

network are continuous, then the network, as a functional process that maps input signals

to the least solution of the network equations, is continuous.

Theorem 3.24 (Causal DE Process Network). If all processes in a DE process network

are causal and continuous, and in every dependency loop in the network there is at least

one strictly causal process, then the network is causal and continuous.

Proof. By theorem 3.23, the network is continuous. Proving that the network is causal is

the same as proving theorem 3.11 on the causality of timed process networks.

Corollary 3.25. A DE process network that satisfies the assumptions of theorem 3.24 is

non-Zeno.

This corollary follows directly from theorems 3.24 and 3.22.

What distinguishes the above results from previous work [78, 79] on timed process net-

works is the observation that “being absent” is significant for timed signals. The conditions

on signals and processes are also weaker here—in [79], two present events in a signal must be

separated by a minimum time interval, and processes are required to introduce a minimum

time delay.
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Figure 3.11. A DE process network and its behavior when the input x equals dzeno.
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3.8 Generalizations and Specializations

3.8.1 Super-Dense Time

So far intervals of R have been used as the tag sets of timed signals. This choice is due

to the familiarity of R as a model of time. Except lemma 3.14, all definitions and results in

the previous sections can be straightforwardly generalized to let any totally ordered set T be

the tag set. The super-dense model of time [56] is a prime example of such generalizations.

Definition 3.26 (Super-Dense Time). The super-dense time (SDT) S is the set R0 ×N

with the total order

(r1, n1) ≤ (r2, n2) ⇐⇒ r1 < r2, or r1 = r2 and n1 ≤ n2 . (3.30)

SDT can be similarly defined as I × N, where I ∈ I(R) is any interval of real numbers.

SDT has been used in studying the semantics of hybrid systems [41, 50, 55]. A subset of S,

N×N, is used as the model of time in the hardware description languages CONLAN [65],

Verilog [82], and VHDL [62]. S is in a sense “strictly richer” than R0 as a model of time,

as the following lemma shows.

Lemma 3.27. There is no order-embedding of S in R0.

Given an event e in a signal s ∈ S(S, Vε) such that tag(e) equals (r, n), call r the time

of the event, and n the step of the event. With super-dense time, a signal can have multiple

events at the same time but different steps. This provides a convenient way to specify

processes that can take a sequence of actions at a given time.

Consider the Merge process defined in equation 3.12. It has the following behavior,

s1 = (R0, R0, {(0, 1)}),

s2 = (R0, R0, {(0, 2)}),

Merge(s1, s2) = (R0, R0, {(0, 1)}).

(3.31)

The input signals s1 and s2 are both present at t = 0. The event in s2 is discarded. If both

events are to be kept in the output, some alternatives are
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n 0 1 2 3 4 5 6

s1(0, n) ε v1 ε v2 v3

s2(0, n) ε u1 u2 ε u3

s(0, n) ε v1 u1 u2 v2 v3 u3

Figure 3.12. A behavior of the Merge process with super-dense time, where s =
Merge(s1, s2).

• Change the output value set from Vε to [V ]ε, where [V ] is the set of lists of values in

V . This approach adds structure to signals in their value sets.

• Delay the event from s2 in the output by some amount of time. But how much? There

is no universal answer.

• Use the super-dense time, and delay the event from s2 by one step in the output.

With super-dense time, the behavior in equation 3.31 becomes

s1 = (S, S, {((0, 0), 1)}),

s2 = (S, S, {((0, 0), 2)}),

Merge(s1, s2) = (S, S, {((0, 0), 1), ((0, 1), 2)}).

(3.32)

A further example is shown in figure 3.12.

Defined as follows, this version of the Merge process on SDT signals is causal and

continuous, but not maximal.

For any signal s ∈ S(S, Vε), r ∈ R0, and k1, k2 ∈ N, let

p(s, r, k1, k2) = |s−1(V ) ∩ {(r, n) | k1 ≤ n < k2}| . (3.33)

p(s, r, k1, k2) is the number of present events in s at time r and between steps k1 and k2−1.

Given two signals s1, s2 ∈ S(S, Vε), let

D = dom(s1) ∩ dom(s2) .
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n 0 1 2 3 4 5 6

s(0, n) ε v1 v2 ε ε v3 ε

s′(d, n) v1 v2 v3

Figure 3.13. A behavior of the Delayd process with super-dense time, where s′ = Delayd(s).

The Merge process only outputs events in s1, s2 with tag in D,

Merge(s1, s2) = Merge(s1 ↓D, s2 ↓D) .

For all (r, n) ∈ D, any input event at (r, n) is placed in the output at time r and step m or

m + 1, where m is computed by

m = max({k + p(s1, r, k, n) + p(s2, r, k, n) | 0 ≤ k < n} ∪ {n}) .

Let s = Merge(s1, s2), then

m = n, s1(r, n) = s2(r, n) = ε =⇒ s(r, m) = ε,

s1(r, n) = u, s2(r, n) = ε =⇒ s(r, m) = u,

s1(r, n) = ε, s2(r, n) = v =⇒ s(r, m) = v,

s1(r, n) = u, s2(r, n) = v =⇒ s(r, m) = u, s(r, m + 1) = v.

The Delayd process on SDT signals has the behavior shown in figure 3.13. The equation

that defines this Delayd process is

s′(r, n) =































ε r < d,

s(r − d, k) p(s, r − d, 0, k + 1) = n + 1, s(r − d, k) 6= ε,

ε {r − d}×N ⊆ dom(s), ∀k ∈ N, p(s, r − d, 0, k + 1) ≤ n.

(3.34)

This process is strictly causal and maximal, but not continuous.

Figure 3.14 shows a process network with super-dense time. The input signal x is a

ramp signal, present at (k, 0) with value k, for all k ∈ N. The behavior of the network is
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Figure 3.14. A process network with super-dense time.
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Figure 3.15. A behavior of the process network with super-dense time.

illustrated in figure 3.15. Let Ei be the set of present events in signal i, i = x, y, z, then

dom(x) = dom(y) = dom(z) = S,

Ex = {((k, 0), k) | k ∈ N},

Ey = {((k, l), k − l) | k ∈ N, l ∈ N, 0 ≤ l ≤ k},

Ez = {((k, l), k − l − 1) | k ∈ N, l ∈ N, 0 ≤ l < k}.

3.8.2 Discrete Time Signals, Processes, and Networks

An important subclass of discrete event systems are the discrete time (DT) systems

that are used extensively in signal processing [63].

A discrete time signal with sampling period h > 0 and offset d ≥ 0 is a DE signal

s ∈ Sd(R0, Vε) such that

s−1(V ) = dom(s) ∩ {kh + d | k ∈ N}.
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All DT signals are non-Zeno.

Lemma 3.28. For all h > 0 and d ≥ 0, the set of all DT signals with sampling period h

and offset d, with the prefix order, is both a CPO and a complete lower semilattice.

A discrete time process maps input DT signals to output DT signals. The signals

may have different sampling periods and offsets. A discrete time process network

consists of DT signals and DT processes. Theorem 3.24 on DE process networks can be

adapted directly to DT process networks.

Theorem 3.29 (Causal DT Process Network). If all processes in a DT process network

are causal and continuous, and in every dependency loop in the network there is at least

one strictly causal process, then the network is causal and continuous.
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Chapter 4

The Metric Structure of Signals

The last two chapters build on domain theory [2], developed for the denotational se-

mantics of programming languages [70, 73, 77]. An alternative approach to denotational

semantics is based on metric spaces [3, 6, 25, 67]. This chapter studies various metrics on

tagged signals and the application of fixed point theorems to define the behavior of process

networks.

4.1 Mathematical Preliminaries

Definition 4.1 (Metric Space). A metric space (X, d) is a set X with a metric function

d : X × X → R0 such that for all x, y, z ∈ X,

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x),

d(x, z) ≤ d(x, y) + d(y, z).

(4.1)

If the metric function d also satisfies

d(x, z) ≤ max(d(x, y), d(y, z)), (4.2)

for all x, y, z ∈ X, (X, d) is an ultrametric space.

The value d(x, y) quantifies how close x is an approximation of y, and is called the
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distance between x and y. An element x ∈ X is the limit of a sequence {xk | k ∈ N} if for

all ε > 0, there exists n ∈ N such that for all k ≥ n, d(xk, x) < ε. The sequence is said to

converge to x, denoted by xk → x. A sequence {xk | k ∈ N} is Cauchy if for all ε > 0, there

exists n ∈ N such that for all k, l ≥ n, d(xk, xl) < ε. A metric space (X, d) is complete if

every Cauchy sequence converges to some x ∈ X.

Let Bδ(x) be the set {y ∈ X | d(y, x) < δ}. The collection of such sets {Bδ(x) |x ∈

X, δ ∈ R+} is a basis of a topology on X. This topology is called the metric topology

induced by d.

A function f : (X, d) → (X ′, d′) is continuous if xk → x implies f(xk) → f(x). It is

non-expanding if for all x, y ∈ X,

d′(f(x), f(y)) ≤ d(x, y). (4.3)

f is a contraction if there exists δ ∈ (0, 1) such that for all x, y ∈ X,

d′(f(x), f(y)) ≤ δ d(x, y). (4.4)

From the theory of metric spaces, the key result used in programming language seman-

tics is the Banach fixed point theorem [33].

Theorem 4.2 (Banach Fixed Point Theorem). Let (X, d) be a complete metric space.

If f : (X, d) → (X, d) is a contraction, then

• f has a unique fixed point in X, denoted by fix(f);

• for all x ∈ X, fk(x) → fix(f).

4.2 Cantor Metric

The Cantor metric can be defined on streams or sequences [19]. The same metric is

called the Baire-distance in [26]. The focus here is on the Cantor metric of timed signals

[45, 53, 69].
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The Cantor-distance function dcantor on timed signals with tag set T = R0 is defined as

dcantor : S(T, Vε) × S(T, Vε) → R0,

dcantor(s1, s2) = 2− sup{t∈T | s1↓t=s2↓t}.

(4.5)

It is understood that 2− sup ∅ = 1, and 2− sup R0 = 0. Using the timed signals in figure 3.1,

some examples are

dcantor(const1, clock1) = 2− sup{0} = 1 ,

dcantor(clock1, zeno) = 2− sup[0, 1
2
) =

1√
2

,

dcantor(zeno, dzeno) = 2− sup[0,1) =
1

2
.

Lemma 4.3 (Cantor Metric). (S(R0, Vε), dcantor) is a complete (ultra)metric space.

Let Mc denote the metric space (S(R0, Vε), dcantor). As an example of a converging

sequence in Mc, let

sk = Delayk
1(clock1), k ∈ N,

sk → sε .

(4.6)

It is straightforward to extend the Cantor metric to tuples of signals. Let

dn
cantor((r1, . . . , rn), (s1, . . . , sn)) = max{dcantor(ri, si) | 1 ≤ i ≤ n} . (4.7)

The set of all n-tuples of signals with dn
cantor is a complete (ultra)metric space, and

(r1k, . . . , rnk) → (s1, . . . , sn) ⇐⇒ rik → si, 1 ≤ i ≤ n. (4.8)

4.2.1 Convergence in (S(R0, Vε),¹) and (S(R0, Vε), dcantor)

Let S = {sk | k ∈ N} be a sequence of signals from S(R0, Vε) such that sk ¹ sk+1 for all

k ∈ N. Such a sequence is called monotonic. S is a directed set of the CPO (S(R0, Vε),¹),

so there exists s ∈ S(R0, Vε) such that s =
∨

S. For all k ∈ N,

sk ¹ sk+1 ¹ s =⇒ dcantor(sk+1, s) ≤ dcantor(sk, s), (4.9)
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but the sequence may not converge to s in Mc. For example, let

tk = 1 − 1

2k
,

sk = dzeno ↓tk ,

dzeno =
∨

{sk | k ∈ N}.

But for all k ∈ N,

dcantor(sk, dzeno) >
1

2
,

so the sequence {sk | k ∈ N} does not converge to dzeno in Mc.

Lemma 4.4. Let S = {sk | k ∈ N} be a monotonic sequence from S(R0, Vε) and s =
∨

S.

If dom(s) = R0, then sk → s in Mc.

Proof. For any ε > 0, let

t = max(1 + log2

1

ε
, 0).

s =
∨

S implies

dom(s) =
⋃

k∈N

dom(sk) .

t ∈ dom(s), so there exists n ∈ N such that t ∈ dom(sn). For all k ≥ n,

t ∈ dom(sk),

sk ↓t = s↓t ,

dcantor(sk, s) ≤ 2−t < ε .

sk → s in Mc.

A converging sequence in Mc may not be monotonic, such as the sequence defined by

equation 4.6. If a sequence is both converging and monotonic, then the limit equals the

least upper bound.

Lemma 4.5. If the sequence S = {sk | k ∈ N} is both converging and monotonic, then

sk → ∨

S.
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Proof. Let s =
∨

S. If dom(s) = R0, use lemma 4.4. Otherwise take any t ∈ R0 \ dom(s),

and let ε = 2−t. S is converging, so it is a Cauchy sequence. There exists n ∈ N such that

for all k, l ≥ n,

dcantor(sk, sl) < ε =⇒ sk ↓t = sl ↓t ,

dom(s) ⊆ [0, t], sk ¹ s, sl ¹ s =⇒ dom(sk) ⊆ [0, t], dom(sl) ⊆ [0, t],

=⇒ sk = sl .

The sequence S becomes constant after sn. sn is the limit and is equal to s.

Every signal p ∈ S(R0, Vε) that is not total is an isolated point in Mc, or equivalently,

{p} is an open set in Mc. Take any t ∈ R0 \ dom(p), and let ε = 2−t. The set

{s ∈ Mc | dcantor(s, p) < ε}

is an open set in Mc, and is equal to the singleton set {p}.

The following lemma shows that removing isolated points from a complete metric space

does not affect its completeness.

Lemma 4.6. Let M be a complete metric space, and I ⊂ M the set of isolated points in

M . M \ I is a complete metric space.

Proof. For all x ∈ I, {x} is an open set in M , so

I =
⋃

x∈I

{x}

is an open set in M . M \ I is a closed subset of the complete metric space M , so it is also

a complete metric space.

Corollary 4.7. The set of all total timed signals St(R0, Vε) with the Cantor metric is a

complete (ultra)metric space.
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4.2.2 Approximation by Finite Signals

In section 3.5, the “limits” of finite timed signals in (S(T, V ),¹), where T is an interval

of R, are defined as DE signals. The set of DE signals is a sub-CPO of (S(T, V ),¹). What

follows are parallel results in the metric space Mc.

Lemma 4.8. For any s ∈ S(R0, Vε), if there exists a sequence of finite signals {sk | k ∈ N}

from S(R0, Vε) such that sk → s, then s is a non-Zeno signal.

Proof. If s is not a total signal, sk → s implies that there exists n ∈ N such that for all

k ≥ n, sk = s. s is a finite signal, so it is non-Zeno.

If s is a total signal, for any t > 0, there exists m ∈ N such that

dcantor(sm, s) < 2−t.

This implies s↓t= sk ↓t, so s↓t is a finite signal. By lemma 3.13, s is a total DE signal, so

it is non-Zeno.

Lemma 4.9. The set of all non-Zeno signals Snz(R0, Vε) with the Cantor metric is a com-

plete (ultra)metric space.

Proof. Let {sk | k ∈ N} be a Cauchy sequence from Snz(R0, Vε). By lemma 4.3, the sequence

converges to a signal s ∈ S(R0, Vε). Proving s is non-Zeno is similar to proving lemma

4.8.

Corollary 4.10. The set of all total DE signals, denoted by Std(R0, Vε), with the Cantor

metric is a complete (ultra)metric space.

4.3 Causality

The Cantor metric on timed signals quantifies the extent to which two signals are equal.

If a timed process P : S(R0, Vε) → S(R0, V
′
ε ) is causal by definition 3.9, then for all signals
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s1, s2 ∈ S(R0, Vε) and t ∈ R0,

s1 ↓t = s2 ↓t =⇒ P (s1)↓t = P (s2)↓t . (4.10)

This leads directly to the following lemma.

Lemma 4.11. If a timed process P : S(R0, Vε) → S(R0, V
′
ε ) is causal, then for all signals

s1, s2 ∈ S(R0, Vε),

dcantor(P (s1), P (s2)) ≤ dcantor(s1, s2).

P is non-expanding.

The converse of the above lemma is used in [45, 69] to define the causality of DE

processes. Because S(R0, Vε) includes non-total and continuous time signals, the converse

is not true for general timed signals and timed processes, as illustrated by the following

example. Define signals u1, u2 ∈ S(R0, Rε) as

u1(t) = 0, ∀t ∈ R0,

u2(t) =















0 if t ∈ [0, 1],

1 if t > 1,

(4.11)

and a process R : S(R0, Rε) → S(R0, Rε) as

R(s)(t) =















limr→t+ s(r) if the right limit exists,

0 otherwise.

(4.12)

The process R is non-expanding. R(u1) = u1, and

R(u2)(t) =















0 if t ∈ [0, 1),

1 if t ≥ 1.

(4.13)

The signals u1 and u2 are equal over [0, 1], but R(u1) and R(u2) are equal only over [0, 1).

R is not causal.

If only total DE signals are considered, the converse of lemma 4.11 is true and can be

used to define the causality of DE processes [45, 69]. For two signals s1, s2 ∈ Std(R0, Vε)
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such that s1 6= s2 and dcantor(s1, s2) = 2−r, by lemma 3.14, it can be shown that s1

and s2 are equal over [0, r) and s1(r) 6= s2(r). If a process P is non-expanding, then

dcantor(P (s1), P (s2)) ≤ 2−r, and P (s1) and P (s2) are also equal over [0, r).

Lemma 4.12. If a process P : Std(R0, Vε) → Std(R0, V
′
ε ) is non-expanding, then it is

causal—for all signals s1, s2 ∈ Std(R0, Vε) and t ∈ R0,

s1 ↓t = s2 ↓t =⇒ P (s1)↓t = P (s2)↓t .

If a process P : St(R0, Vε) → St(R0, V
′
ε ) is a contraction by a factor δ = 2−τ , given two

signals s1, s2 ∈ St(R0, Vε) such that dcantor(s1, s2) = 2−r,

dcantor(P (s1), P (s2)) ≤ 2−(r+τ).

That is, s1 and s2 are equal over [0, r) implies P (s1) and P (s2) are equal over [0, r + τ). P

reacts to its input at r with a minimum delay τ .

To illustrate how the Banach fixed point theorem is used to define the behavior of a

network of processes, consider the network in figure 4.1. For any input signal x, the signals

y and z satisfy the equations

y = Add(z, x),

z = Delay1(y).

Eliminate z from the equations,

y = Add(Delay1(y), x).

For any given signal x, the function

Fx(y) = Add(Delay1(y), x) (4.14)

is a contraction by the factor 1
2 . Take Nε as the value set of signals x, y, and z. By the

Banach fixed point theorem, for all x ∈ S(R0, Nε), Fx has a unique fixed point fix(Fx) in

S(R0, Nε), which, with z = Delay1(fix(Fx)), is the behavior of the network given input x.
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Figure 4.1. A timed process network example.
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Figure 4.2. Elements from a converging sequence of signals.
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The Banach fixed point theorem also states that for all s ∈ S(R0, Nε),

F k
x (s) → fix(Fx).

For example, let x = clock1, s0 = sε, and sk = F k
x (s0). It can be shown by induction that

dcantor(sk, fix(Fx)) ≤ 2−k,

so sk equals fix(Fx) over [0, k). The first four elements from the sequence {sk | k ∈ N} are

shown in figure 4.2, and

fix(Fx) = (R0, R0, {(k, k+1) | k ∈ N}).

4.4 Cantor Metric on Alternative Tag Sets

For timed signals, most properties of their order structure studied in chapter 3 do not

depend on the choice of totally ordered set as the tag set. This is not the case for the

Cantor metric.

Consider the case when the tag set is a finite interval of R, for example [0, 1). By the

definition of Cantor metric in equation 4.5, for all signals s1, s2 ∈ S([0, 1), Vε) such that

s1 6= s2,

dcantor(s1, s2) >
1

2
.

The metric topology induced by dcantor on S([0, 1), Vε) is the discrete topology. The Cantor

metric does not provide any useful structure on S([0, 1), Vε).

Another interesting case is to take R as the tag set. The Cantor-distance between two

signals in S(R, Vε) may be infinity, for example, let

sclk = (R, R, {(k, 1) | k ∈ Z}),

salt = (R, R, {(2k, 1), (2k+1, 0) | k ∈ Z}).
(4.15)

The signals are illustrated in figure 4.3. The set

{t ∈ R | sclk ↓t= salt ↓t}
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sclk

-2 0 2

salt

Figure 4.3. Timed signals with tag set R.

is empty. With R as the tag set, it is understood that 2− sup ∅ = ∞.

(S(R, Vε), dcantor) is an extended metric space [4]. Let relation R on S(R, Vε) be defined

by

(s1, s2) ∈ R ⇐⇒ dcantor(s1, s2) < ∞. (4.16)

It is straightforward to show that R is an equivalence relation. For all signal s ∈ S(R, Vε),

let

Es = {s′ ∈ S(R, Vε) | dcantor(s
′, s) < ∞}

be the equivalence class containing s. (Es, dcantor) is a complete (ultra)metric space.

If a process P : S(R, Vε) → S(R, V ′
ε ) is causal, then for all s ∈ S(R, Vε),

P (Es) ⊆ EP (s) . (4.17)

If P is a contraction such that P (Es) ⊆ Es, then the Banach fixed point theorem is appli-

cable and P has a unique fixed point in Es. For example,

• the unique fixed point of Delay1 in Esε is sε, and in Esclk
is sclk,

• Delay1(Esalt
) 6⊆ Esalt

, so the Banach fixed point theorem is not applicable,

• Delay2(Esalt
) ⊆ Esalt

, and the unique fixed point of Delay2 in Esalt
is salt.

An equivalent definition of relation R in equation 4.16 is

(s1, s2) ∈ R ⇐⇒ s1 ∧ s2 6= s⊥ , (4.18)

that is s1 and s2 have a non-empty common prefix—going back in time, s1 and s2 are

eventually the same. To borrow an analogy from cosmology, the equivalence classes of R
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partition S(R, Vε) into parallel universes, and all signals in an equivalence class originate

from the same “Big Bang.”

4.5 Generalized Ultrametrics on Signals

For all signals s1, s2 ∈ S(R0, Vε), the Cantor metric in essence maps dom(s1 ∧ s2), a

down-set of R0, to an element of R0, such that

dom(s1 ∧ s2) ⊇ dom(s′1 ∧ s′2) =⇒ dcantor(s1, s2) ≤ dcantor(s
′
1, s

′
2), (4.19)

for all s′1, s
′
2 ∈ S(R0, Vε). The converse is not true, which is the reason why a non-expanding

process is not necessarily causal. Because there is no order-embedding of the totally ordered

set (D(R0),⊇) in R0, it is impossible to define a metric d on S(R0, Vε) such that

dom(s1 ∧ s2) ⊇ dom(s′1 ∧ s′2) ⇐⇒ d(s1, s2) ≤ d(s′1, s
′
2). (4.20)

A generalized ultrametric [67] may satisfy this equivalence.

Definition 4.13 (Generalized Ultrametric). Let X be a set and Γ be a poset with

a minimum element 0. A function d : X × X → Γ is a generalized ultrametric if for all

x, y, z ∈ X and γ ∈ Γ,

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x),

d(x, y) ≤ γ and d(y, z) ≤ γ imply d(x, z) ≤ γ.

(4.21)

A generalized ultrametric on S(S, Vε) is developed in [21]. S is the super-dense time

from definition 3.26. The down-sets of S are, for all r ∈ R0 and n ∈ N,

[0, r) × N,

↓{(r, n)},

[0, r] × N, and

S.

(4.22)
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Note that [0, 0) × N is the empty set. Let Γgumsdt be R0×R0 with the lexicographical

order. Γgumsdt is a totally ordered set with (0, 0) as the minimum element. The generalized

ultrametric dgumsdt on S(S, Vε) is defined as

dgumsdt : S(S, Vε) × S(S, Vε) → Γgumsdt,

dgumsdt(s1, s2) =















































( 1
2r , 1) if s1 6= s2 and dom(s1 ∧ s2) = [0, r) × N,

( 1
2r , 1

2n+1 ) if s1 6= s2 and dom(s1 ∧ s2) = ↓{(r, n)},

( 1
2r , 0) if s1 6= s2 and dom(s1 ∧ s2) = [0, r] × N,

(0, 0) if s1 = s2.

(4.23)

Refer to [21] for the application of this generalized ultrametric to the semantics of discrete

event systems. Here a generalization of dgumsdt to all tagged signals will be presented.

The function dgumsdt can be decomposed into two functions, one mapping a pair of

signals to a down-set of S,

dds : S(S, Vε) × S(S, Vε) → D(S),

dds(s1, s2) =















dom(s1 ∧ s2) if s1 6= s2,

S if s1 = s2.

(4.24)

and the other an order-embedding of D(S) in Γgumsdt,

fem : D(S) → Γgumsdt,

fem(D) =















































( 1
2r , 1) if D = [0, r) × N,

( 1
2r , 1

2n+1 ) if D = ↓{(r, n)},

( 1
2r , 0) if D = [0, r] × N,

(0, 0) if D = S.

(4.25)

dgumsdt is the composition of dds and fem,

dgumsdt = fem ◦ dds . (4.26)

By applying the Cantor metric on both the time and the step axes, the order-embedding

fem makes the generalized ultrametric dgumsdt on super-densely timed signals an intuitive
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extension of the Cantor metric on timed signals defined by equation 4.5. Once the intuition

is established, dds can be taken by itself as a generalized ultrametric on super-densely timed

signals. Its definition in equation 4.24 can be generalized to arbitrary tagged signals.

For any tag set T , let the set of generalized ultrametric distances, ΓT , be the poset

ΓT = (D(T ),⊇). (4.27)

For any two down-sets D, D′ of T , D is below D′ in ΓT if and only if D ⊇ D′. T is the

minimum element of ΓT and ∅, the empty set, is the maximum element. By lemma 2.5, the

poset (D(T ),⊆) is a complete lattice. ΓT is the same as (D(T ),⊆) with the order reversed,

so ΓT is also a complete lattice.

The function dds in equation 4.24 uses the largest down-set on which two signals are

equal as their distance. Its generalization to arbitrary tagged signals is straightforward. For

any tag set T and value set V ,

dds : S(T, V ) × S(T, V ) → ΓT ,

dds(s1, s2) =















dom(s1 ∧ s2) if s1 6= s2,

T if s1 = s2.

(4.28)

Lemma 4.14 (Generalized Ultrametric on Tagged Signals). For any tag set T and

value set V , dds defined by equation 4.28 is a generalized ultrametric on S(T, V ).

Proof. Note that T is the minimum element of ΓT . For any s1, s2 ∈ S(T, V ),

s1 6= s2 =⇒ dom(s1 ∧ s2) ⊂ T,

=⇒ dds(s1, s2) ⊂ T,

s1 = s2 =⇒ dds(s1, s2) = T,

so dds(s1, s2) = T if and only if s1 equals s2.

dds(s1, s2) equals dds(s2, s1) is obvious.

For all s1, s2, s3 ∈ S(T, V ) and D ∈ D(T ), given dds(s1, s2) ⊇ D and dds(s2, s3) ⊇ D, if
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s1 = s2 or s2 = s3, then trivially dds(s1, s3) ⊇ D. Otherwise,

dds(s1, s2) ⊇ D, s1 6= s2 =⇒ dom(s1 ∧ s2) ⊇ D,

=⇒ dom(s1) ⊇ D, dom(s2) ⊇ D, s1 ↓D= s2 ↓D,

dds(s2, s3) ⊇ D, s2 6= s3 =⇒ dom(s2) ⊇ D, dom(s3) ⊇ D, s2 ↓D= s3 ↓D,

=⇒ dom(s1) ⊇ D, dom(s3) ⊇ D, s1 ↓D= s3 ↓D,

=⇒ dom(s1 ∧ s3) ⊇ D,

=⇒ dds(s1, s3) ⊇ D.

By definition 4.13, dds is a generalized ultrametric on S(T, V ).

This lemma shows that for any tag set T and value set V , (S(T, V ), dds, ΓT ) is a gen-

eralized ultrametric space. The rest of this section presents the notion of completeness and

fixed point theorems on generalized ultrametric spaces [67], and their applications to the

tagged signal model.

Consider a generalized ultrametric space (X, d, Γ). For any γ ∈ Γ \ {0} and a ∈ X, the

set

Bγ(a) = {x ∈ X | d(x, a) ≤ γ} (4.29)

is called the ball with center a and radius γ. If the generalized ultrametric space is

(S(T, V ), dds, ΓT ) for some tag set T and value set V , then for any signal s ∈ S(T, V )

and D ∈ D(T ),

• if dom(s) ⊇ D, that is dom(s) is below D in the poset ΓT , dds(s
′, s) ⊇ D holds for all

s′ ∈ S(T, V ) such that dom(s′) ⊇ D and s′ ↓D= s↓D, and

• if dom(s) 6⊇ D, the only solution to the inequality dds(x, s) ⊇ D is s itself,

so

BD(s) =















{s′ ∈ S(T, V ) | s↓D ¹ s′} if dom(s) ⊇ D,

{s} if dom(s) 6⊇ D.

(4.30)

This equation shows that all signals in S(T, V ) that are not total are in a sense isolated.
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The balls in a generalized ultrametric space are “super-symmetric,” as implied by the

following lemma.

Lemma 4.15. Let (X, d, Γ) be a generalized ultrametric space, x, y ∈ X, and α, β ∈ Γ,

such that 0 < α ≤ β and x ∈ Bβ(y), then

Bα(x) ⊆ Bβ(y).

Proof. For any z ∈ X,

z ∈ Bα(x) =⇒ d(z, x) ≤ α ≤ β,

x ∈ Bβ(y) =⇒ d(x, y) ≤ β,

d(z, x) ≤ β and d(x, y) ≤ β =⇒ d(z, y) ≤ β,

=⇒ z ∈ Bβ(y).

Bα(x) is a subset of Bβ(y).

Consider the special case where α = β. This lemma implies that every point in a ball

can be taken as its center.

Definition 4.16 (Spherical Completeness). A generalized ultrametric space (X, d, Γ)

is spherically complete if every chain of balls (ordered by inclusion) has a non-empty inter-

section.

Theorem 4.17. For any tag set T and value set V , the generalized ultrametric space

(S(T, V ), dds, ΓT ) is spherically complete.

Proof. Let J be any totally ordered index set, {BDj
(sj) | j ∈ J, sj ∈ S(T, V ), Dj ∈ D(T )}

be a chain of balls in (S(T, V ), dds, ΓT ), such that for any j, k ∈ J ,

j ≤ k =⇒ BDj
(sj) ⊇ BDk

(sk).

There are two cases to the proof.
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• There exists i ∈ J such that BDi
(si) = {si}.

For all j ∈ J such that i ≤ j, BDj
(sj) = {si}. The chain of balls has the non-empty

intersection {si}.

• For all j ∈ J , BDj
(sj) ⊃ {sj}.

By equation 4.30, for all j ∈ J ,

BDj
(sj) = {s ∈ S(T, V ) | sj ↓Dj

¹ s}. (4.31)

sj ↓Dj
is the minimum element of BDj

(sj) in the prefix order. For all j, k ∈ J such

that j ≤ k,

BDj
(sj) ⊇ BDk

(sk) =⇒ sj ↓Dj
¹ sk ↓Dk

.

The set of signals

{sj ↓Dj
| j ∈ J}

is a chain in the poset (S(T, V ),¹). By lemma 2.16, this chain of signals has a least

upper bound, here denoted by s′, in S(T, V ). By equation 4.31, s′ ∈ BDj
(sj) for all

j ∈ J . The chain of balls {BDj
(sj) | j ∈ J} has a non-empty intersection that includes

s′.

Recall that St(T, V ) is the set of all total signals with tag set T and value set V .

Corollary 4.18. The generalized ultrametric space (St(T, V ), dds, ΓT ) is spherically com-

plete.

Proof. Based on the proof of theorem 4.17, the only change is at the end of the second

case. If the least upper bound s′ is not a total signal, then arbitrarily extend it to a total

signal.

Example. Let the tag set T be R0, the non-negative real numbers, and the value set V be

any non-empty set. Consider the generalized ultrametric space U = (S, dds, ΓR0
) where the

signal set S is, respectively,
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• S(R0, Vε), the timed signals. The corresponding generalized ultrametric space is spher-

ically complete by theorem 4.17.

• St(R0, Vε), the total timed signals. The corresponding generalized ultrametric space

is spherically complete by corollary 4.18.

• Sd(R0, Vε), the discrete event signals. The corresponding generalized ultrametric space

is spherically complete. The proof is the same as that of theorem 4.17 except relying

on lemma 3.17 instead of lemma 2.16.

• Std(R0, Vε), the total discrete event signals. The corresponding generalized ultrametric

space is not spherically complete. For illustration, take Z as the value set. Using the

notation for timed signals from section 3.1 in the following equation, for j = 1, 2, . . . ,

let

sj = {R0, R0, {(1 − 1

k
, 1) | 1 ≤ k ≤ j},

Dj = [0, 1 − 1

j
].

(4.32)

For all i, j ∈ N such that 1 ≤ i ≤ j,

BDi
(si) ⊇ BDj

(sj).

Any signal in the intersection of the chain of balls

{BDj
(sj) | j = 1, 2, . . . }

must have the signal

{R0, [0, 1), {(1 − 1

k
, 1) | k = 1, 2, . . . }

as a prefix, and cannot be a total discrete event signal. The intersection of this chain

of balls is empty in the generalized ultrametric space (Std(R0, Zε), dds, ΓR0
).

Definition 4.19 (Strict Contraction). Let (X, d, Γ) be a generalized ultrametric space.

A function f : X → X is strictly contracting if for all x, y ∈ X such that x 6= y,

d(f(x), f(y)) < d(x, y).
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When the generalized ultrametric space is (S(T, V ), dds, ΓT ) for some tag set T and value

set V , a function f : S(T, V ) → S(T, V ) is strictly contracting if for all signals r, s ∈ S(T, V )

such that r 6= s, either f(r) = f(s), or

dom(f(r) ∧ f(s)) ⊃ dom(r ∧ s).

Note that if the tag set T is totally ordered, then

f is strictly causal by definition 3.10 =⇒ f is strictly contracting,

but not vice versa.

There are several variations of fixed point theorems on generalized ultrametric spaces

[67, 68]. The following version is from section 5.2 of [67].

Theorem 4.20. Let (X, d, Γ) be a spherically complete generalized ultrametric space. If a

function f : X → X is strictly contracting, then f has a unique fixed point.

Refer to [67] for the proof of this theorem. The proof relies on Zorn’s lemma, so it is not

constructive. Combining this theorem with theorem 4.17 results in the following theorem.

Theorem 4.21. For any tag set T and value set V , and a function f : S(T, V ) → S(T, V )

such that for all signals x, y ∈ S(T, V ), x 6= y,

dds(f(x), f(y)) < dds(x, y),

there is a unique signal s ∈ S(T, V ) such that f(s) = s.

By corollary 4.18, the same claim holds when only total signals are considered.

Theorem 4.22. For any tag set T and value set V , and a function f : St(T, V ) → St(T, V )

such that for all total signals x, y ∈ St(T, V ), x 6= y,

dds(f(x), f(y)) < dds(x, y),

there is a unique total signal s ∈ St(T, V ) such that f(s) = s.
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The above theorems can be further specialized, for example, to consider only discrete

event signals. In [60], Naundorf first proved the same result as theorem 4.22. The approach

here, by developing a generalized ultrametric on tagged signals, makes it possible to apply

more research results in generalized ultrametric spaces, for example from [36], to tagged

signals.
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Chapter 5

Simulation Strategies for Discrete

Event Systems

Processes map potentially infinite input signals to potentially infinite output signals.

To implement or simulate process behavior in computers, it is necessary to decompose the

mapping into incremental steps, such that each step can be completed by executing a finite

number of computer instructions. The following quote comes from Brooks [16].

Much more often, strategic breakthrough will come from redoing the represen-

tation of the data or tables. This is where the heart of a program lies. Show

me your flowcharts and conceal your tables, and I shall continue to be mysti-

fied. Show me your tables, and I won’t usually need your flowcharts; they’ll be

obvious.

Substitute “data or tables” by signals and “flowcharts” by simulation algorithms, and the

result is the key to this chapter.

5.1 Processes as Labeled Transition Systems

A labeled transition system (LTS) [61] is a tuple (Σ, L, δ, σ0) where
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Σ is a set of states,

L is a set of labels,

δ is a transition relation, δ ⊆ Σ × L × Σ,

σ0 is the initial state, σ0 ∈ Σ.

The following notation is used for a transition (σ, l, σ′) ∈ δ,

σ
l−→ σ′.

A trace of length n in the LTS consists of a sequence of n states σ1, . . . , σn and a sequence

of n labels l1, . . . , ln such that

σ0
l1−−→ σ1

l2−−→ σ2 → · · · → σn−1
ln−−→ σn.

Given a monotonic, single-input, single-output process P : S(T1, V1) → S(T2, V2), con-

struct an LTS LP as follows.

• The set of states: S(T1, V1).

• The set of labels: G(T1, V1)×G(T2, V2). Each label is a pair of an input signal segment

and an output signal segment.

• For any two signals s, s′ ∈ S(T1, V1), an input signal segment g ∈ G(T1, V1), and an

output signal segment h ∈ G(T2, V2), (s, (g, h), s′) is a transition in LP if and only if

s ¹ s′,

g = s′ \ s,

h = P (s′) \ P (s).

• The initial state is the empty signal s⊥ ∈ S(T1, V1).

It is fairly straightforward to generalize the above construction to multiple-input, multiple-

output processes. Each state is a tuple of input signals. Each label is a pair of tuples, one

of input signal segments, and the other of output signal segments.

Intuitively, a trace in LP ,

s⊥
(g1, h1)−−−−−−→ s1

(g2, h2)−−−−−−→ s2 → · · · → sn−1
(gn, hn)−−−−−−→ sn, (5.1)
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represents a decomposition of the mapping sn 7→ P (sn) into n incremental steps. The input

signal sn is broken into n segments g1, . . . , gn, such that

sn = s⊥ ¿ g1 ¿ · · · ¿ gn.

The kth incremental step consumes the input signal segment gk, and produces the output

signal segment hk. The final output P (sn) is

P (sn) = P (s⊥) ¿ h1 ¿ · · · ¿ hn.

The initial output signal P (s⊥) will be empty if the process P is strict [76].

Consider an SDF process Scramble shown at the top of figure 5.1. In each firing,

the process consumes two integer tokens from input d, and one boolean token from input

c. If the value of the boolean token is true, then the two data tokens are sent to the

output in the reverse order as they are read, otherwise they are sent without reversing the

order. Figure 5.1 also shows an example of how the input and output signals of Scramble

are segmented. Because of the token consumption and production constraints on SDF

processes, the segmentation of their input and output signals is fixed.

The discrete event model of computation, on the other hand, offers much flexibility in

how signals can be segmented and consumed by DE processes. Given an input signal s of

a DE process P , different segmentations of s determine different traces in LP . Various DE

simulation strategies can be compared by how they plot the traces in LP . With this per-

spective, the rest of the chapter focuses on two such strategies, synchronous DE simulation

and asynchronous, process-network-based DE simulation.

Remark 5.1. Recall that the futures of a signal s ∈ S(T, V ), F(s), are the segments in

G(T, V ) that can be appended to s (page 23). For a monotonic process P : S(T, V ) →

S(T ′, V ′), at any state s ∈ S(T, V ) of the LTS LP , P can be reduced to a function

Ps : F(s) → F(P (s)),

Ps(g) = P (s ¿ g) \ P (s), ∀g ∈ F(s).

(5.2)

All the transitions from s in LP are of the form

s
(g, Ps(g))−−−−−−−→ s ¿ g, ∀g ∈ F(s).
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Figure 5.1. The Scramble process and segmentation of its input and output signals.

Remark 5.2. The two DE simulation strategies discussed in the rest of this chapter are of

the conservative variety. For every process P in a simulation, such strategies only take tran-

sitions in LP that are part of the correct simulation result. For some simulation problems,

such as solving ordinary differential equations, intermediate transitions may be required to

find fixed point solutions [52, 66]. This is illustrated in figure 5.2 at state s1. The transitions

from s1 to s2 and from s1 to s3 are intermediate steps in a fixed point iteration. The tran-

sitions from s4 to s5 and from s5 to s6 illustrate speculative simulation. The Time Warp

[38, 39] simulation strategy is characterized by taking such speculative steps and back-

tracking when, for example, an input event invalidates the input signal segments h5 and h6

in figure 5.2. The speculation can improve simulation performance when backtracking is

infrequent.
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Figure 5.2. Fixed point iteration and backtracking.

Add
1

Delay1

x

y z

Figure 5.3. A DE process network example.

5.2 Synchronous DE Simulation

Consider the DE process network in figure 5.3. This network is the same as the timed

process network in figure 4.1, except that the processes are restricted to DE processes and

the signals to DE signals. The Add process is a causal, continuous DE process, and the

Delay1 process is a strictly causal, continuous DE process. By theorem 3.24, this network,

when considered as a function from the input signal x to the tuple of signals (y, z), is a

causal and continuous process. If the input signal x is the total signal clock1 from figure

3.1, both output signals y and z are total signals. Figure 5.4 illustrates these signals over

the time interval [0, 4).

When the synchronous DE simulation strategy is used to compute the signals y and z,

given clock1 as the input, the resulting segmentations of these signals over the same time

interval are shown in figure 5.5. This strategy is called synchronous because the segments

of all signals are aligned on time, and all processes are simulated in lockstep.
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Figure 5.4. A behavior of the DE process network in figure 5.3.
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( )1,0[ ]0,0 ( )2,1[ ]1,1 ( )3,2[ ]2,2 [ ]3,3 ( )4,3

ε

Figure 5.5. Segmentations of the signals in figure 5.3 produced by the synchronous DE
simulation strategy. The signal z is absent at time t = 0, represented by the symbol ε as
the first segment of z.
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Given a DE process network that satisfies the conditions of theorem 3.24 and its input

signals, the synchronous DE simulation of the network takes two kinds of steps that are

interleaved.

• Solve. At a time t where at least one signal is present, a solve step computes the

values of all signals at time t. Some signals may be absent. The solve steps produce

segments over a single point in time.

• Advance. Determine the open interval (t, t′) over which all signals are absent, but

at least one signal is present at t′. Advance the simulation to t′. The advance steps

produce segments over an open interval of time.

For an example of the solve step, consider the DE process network in figure 5.3 at time

t = 1. With the input signal x equal to clock1, the signal values x(1), y(1), and z(1) satisfy

the following equations,

x(1) = 1,

y(1) = z(1) +ε x(1),

z(1) = y(0).

These equations can be solved by simple substitution. Although the network has a depen-

dency loop, there is no circular dependency among the signal values at any time t. This

is because the Delay1 process is strictly causal and its output at t does not depend on its

input at t, as shown by the following proposition.

Proposition 5.3. Let T be a totally ordered tag set and P : S(T, V ) → S(T, V ′) a strictly

causal process. For any t ∈ T and signals s1, s2 ∈ S(T, V ),

s1(t
′) = s2(t

′), ∀t′ < t =⇒ P (s1)(t) = P (s2)(t). (5.3)

Proof. Let D = {t′ | t′ < t}, and signal r = s1 ↓D. Note that if

s1(t
′) = s2(t

′), ∀t′ < t,

92



then D ⊆ dom(s1), and D ⊆ dom(s2). By the definition of strict causality on page 50,

D = dom(r) ⊂ dom(P (r)).

dom(P (r)) is a down-set of T , so t ∈ dom(P (r)). P is monotonic, so

r ¹ s1 =⇒ P (r) ¹ P (s1),

and P (s1)(t) equals P (r)(t). Similarly P (s2)(t) equals P (r)(t).

5.2.1 Reactive and Proactive DE Processes

Continue with the above example. After the solve step at time 1, the advance step

needs to determine the time t′ > 1 such that the signals x, y, and z are absent over the

time interval (1, t′), and at least one of them is present at t′. The input signal x is known

to be absent over (1, 2) and present at 2, so t′ ≤ 2. The signal y is now known over the time

interval [0, 1]. By the definition of the Delay1 process (page 43), z is known over the time

interval [0, 2], and is absent over (1, 2) and present at 2. The Add process has the property

that at any time, its output signal is present only if at least one of the input signals is

present. Taken together these imply t′ = 2.

Definition 5.4 (Reactive and Proactive DE Processes). Let I ∈ I(R) be an interval

of real numbers, V and V ′ two non-empty sets of values, and P : Sd(I, Vε) → Sd(I, V ′
ε ) a

DE process. P is reactive if for every s ∈ Sd(I, Vε),

{t ∈ I |P (s)(t) 6= ε} ⊆ {t ∈ I | s(t) 6= ε}. (5.4)

P is proactive if it is not reactive.

The above definition can be straightforwardly generalized to multiple-input, multiple-

output processes. Examples of reactive DE processes are Add and Merge. Delayd and

LookAheada are proactive DE processes.

In the advance step, a synchronous DE simulation needs to consider only the proactive

DE processes in the network to determine the time of the next solve step—the reactive
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Figure 5.6. Next event time of the Delay1 process with the given input.

processes cannot “spontaneously” produce events. Consider a proactive DE process P , and

an input DE signal s that is known up to some time t0 ∈ T , that is,

dom(s) = {t ∈ T | t ≤ t0},

where T is the tag set of s. Note that s must be a finite signal. The next event time

η(P, s) is defined as follows. Let s′ be the total signal that extends s by the “empty future,”

s′(t) =















s(t) if t ≤ t0,

ε if t > t0.

(5.5)

s′ is a finite DE signal. Let

E = {t ∈ T | t > t0, P (s′)(t) 6= ε}, (5.6)

the set of times at which P (s′) is present after t0. Because P (s′) is a DE signal, E has a

minimum element if it is not empty. The next event time η(P, s) is

η(P, s) =















min E if E 6= ∅,

∞ if E = ∅.
(5.7)

Figure 5.6 illustrates the above definition with the Delay1 process.

Consider a DE process network with m input signals sl, l = 1, . . . , m. Let Pk, k =

1, . . . , n, be the n proactive processes in the network. Let rk denote the input signal (tuple)

of Pk. After a solve step at time t0 during a synchronous DE simulation of the process

network, the advance step that follows can determine the time t′ of the next solve step as

the minimum among

η(Pk, rk ↓t0), k = 1, . . . , n,
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the next event time of the proactive processes given their input up to t0, and the future

times at which at least one input signal to the network is present—the elements of the set

⋃

1≤l≤m

{t | t > t0, sl(t) 6= ε}.

Equation 5.7 defines the next event time η(P, s) from the behaviors of process P . Follow-

ing are some examples of this definition in DE simulation tools and specification formalisms.

• The Synopsys VSS VHDL simulator [51, 74] provides a cliGetNextEventTime() func-

tion in its C-language interface. The function returns the time of the next simulation

event.

• In the DEVS (Discrete Event Specification) formalism [80], atomic components pro-

vide a time advance function.

• In Ptolemy II [13, 14, 15], synchronous DE simulation is implemented by a set of Java

classes in the package ptolemy.domains.de.kernel. The major class in this package

is called DEDirector. An instance of this class, a DE director, controls the simulation

of a DE process network. The processes are implemented by actors.

The DEDirector class provides the following methods to handle next event time.

– fireAt(Time time, Actor actor)

An actor that implements a proactive DE process uses this method to inform

the DE director of its next event time.

– getModelNextIterationTime()

A DE system model in Ptolemy II can be structured hierarchically. This method

aggregates the next event time of the proactive DE processes in a sub-network

by taking their minimum.

5.3 Asynchronous DE Simulation

In an asynchronous DE simulation of a DE process network, each DE process is simu-

lated by a corresponding computational process (or thread). The computational processes
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x [0,0] x (0,1] x (1,2] x (2,3]

y [0,0] y (0,1) y [1,1] y (1,2) y [2,2] y (2,3) y [3,3]

z [0,1) z [1,1] z (1,2) z [2,2] z (2,3) z [3,3]

Figure 5.7. The signal segmentations produced by an asynchronous DE simulation. The
dotted arrows represent the order in which the segments of one signal are produced and
consumed. The solid arrows represent the dependency of an output signal segment on an
input signal segment.

execute in parallel, and communicate asynchronously by messages that represent DE sig-

nal segments. This simulation strategy was originally proposed to parallelize or distribute

large-scale simulation tasks [5, 22, 31].

Consider the DE process network in figure 5.3, with the input signal x equal to the

clock1 signal. Figure 5.7 shows an example of the signal segmentations produced by an

asynchronous DE simulation of the network. Only the signal segments within the time

interval [0, 3] are included in the figure.

The segments of signal x are provided as external stimuli to the simulation. Each

segment of x has exactly one present event at the end. The process Delay1 is non-strict,

Delay1(s⊥) = (R0, [0, 1), ∅),

so the first segment of its output signal z,

z ↓[0,1) = Delay1(s⊥),

does not depend on any input signal segment.

Given a DE process P , the program of the computational process that simulates P can

be derived from the LTS LP defined in section 5.1. Such a pseudocode program is shown

in figure 5.8. Figure 5.9 shows some initial steps in executing this pseudocode program
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Let state s = s⊥.

If P is non-strict, produce the output segment P (s⊥).

Loop:

Consume an input segment g.

Determine the transition s
(g, h)−−−−→ s′ in LP .

If h is not empty, produce the output segment h.

Let state s = s′.

Figure 5.8. Pseudocode program to simulate a DE process P .

input segment state next state output segment

g s s′ h

s⊥ z ↓[0,1)

y↓[0,0] s⊥ y↓[0,0] z ↓[1,1]

y↓(0,1) y↓[0,0] y↓[0,1) z ↓(1,2)

y↓[1,1] y↓[0,1) y↓[0,1] z ↓[2,2]

y↓(1,2) y↓[0,1] y↓[0,2) z ↓(2,3)

Figure 5.9. Steps in simulating the Delay1 process. The second row corresponds to produc-
ing the initial output segment Delay1(s⊥).

for the Delay1 process. If the process P has multiple input signals, a segment from one

of the input signals is consumed in each iteration of the program. A tuple with all empty

segments except the one just consumed is formed to determine the transition in LP . Figure

5.10 shows some initial steps in the simulation of the Add process.

If a DE process network satisfies the assumptions of theorem 3.24, and every process in

the network is simulated according to the program in figure 5.8, and every output segment

produced is eventually consumed by the receiving process, then theorem 3.24 guarantees

that the asynchronous DE simulation of the process network will not deadlock. Because

the assumptions of theorem 3.24 are weaker than previous approaches, such as [58], the
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input segment state next state output segment

g s s′ h

z ↓[0,1) (s⊥, s⊥) (z ↓[0,1), s⊥)

x↓[0,0] (z ↓[0,1), s⊥) (z ↓[0,1), x↓[0,0]) y↓[0,0]

x↓(0,1] (z ↓[0,1), x↓[0,0]) (z ↓[0,1), x↓[0,1]) y↓(0,1)

z ↓[1,1] (z ↓[0,1), x↓[0,1]) (z ↓[0,1], x↓[0,1]) y↓[1,1]

z ↓(1,2) (z ↓[0,1], x↓[0,1]) (z ↓[0,2), x↓[0,1])

x↓(1,2] (z ↓[0,2), x↓[0,1]) (z ↓[0,2), x↓[0,2]) y↓(1,2)

z ↓[2,2] (z ↓[0,2), x↓[0,2]) (z ↓[0,2], x↓[0,2]) y↓[2,2]

Figure 5.10. Steps in simulating the Add process.

asynchronous DE simulation strategy is made applicable to a larger set of DE process

networks.
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Chapter 6

Conclusion

This dissertation studies the semantic foundation of the tagged signal model. The

approach originates from a simple observation—the derivation of the Kahn process network

semantics is valid as long as:

• the set of all signals that can be communicated through a channel between two pro-

cesses is a complete partial order;

• the processes are Scott continuous functions from their input signals to output signals.

This started the research to establish the mathematical structure of tagged signals, and the

rest is summarized in the following section.

6.1 Summary of Results

The fundamental concepts of the tagged signal model—signals, processes, and networks

of processes—are formally defined in chapter 2. The order structure of signals is established.

The key results are that for any partially ordered set of tags T and any set of values V ,

the set of signals S(T, V ) is both a complete lower semilattice (lemma 2.17) and a complete

partial order (lemma 2.16). The latter result leads to a direct generalization of Kahn process

networks to tagged process networks (theorem 2.37). Few assumptions are made on the tags
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of signals when developing the results in chapter 2. This makes the results applicable to

any model of computation specified in the tagged signal model framework.

Chapter 3 focuses on a subclass of tagged process networks in which all signals share

the same totally ordered tag set. The common notion of causality is formally defined, and

conditions are developed that guarantee the causality of timed process networks (theorem

3.11). The discreteness of timed signals is defined as being approximable by finite timed

signals. Several characterizations of discrete event signals are compared and are shown

to be equivalent. For any totally ordered tag set T and value set V , the set of discrete

event signals Sd(T, Vε) is a sub-CPO of the set of timed signals S(T, Vε) (lemma 3.17). The

combination of the causality and the discreteness assumptions is proved to guarantee the

non-Zenoness of timed process networks (theorem 3.24).

Chapter 4 explores the metric structure of tagged signals. Properties of the Cantor

metric and its extensions to alternative tag sets and super-dense time are analyzed. The

relations between the metric-theoretic and order-theoretic notions of convergence and finite

approximation are determined. The main contribution of this chapter is the proposed gen-

eralized ultrametric on tagged signals (lemma 4.14). The generalized ultrametric provides

a foundation for defining more specialized metrics on tagged signals. It also paves the way

to apply the many research results in generalized ultrametric spaces to the tagged signal

model.

Chapter 5 presents a formulation of tagged processes as labeled transition systems. This

formulation provides a framework for comparing different implementation or simulation

strategies for tagged processes. Two discrete event simulation strategies are studied using

this framework. For synchronous discrete event simulation, the handling of dependency

loops and the advancing of simulation time are derived from the behaviors of discrete event

processes. For asynchronous discrete event simulation, results from chapter 3 are used to

show that the simulation computes the correct network behavior in the limit.
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6.2 Future Work

Mathematical structure of tagged signals. Several developments in this dissertation

follow a similar trajectory. The first step is to study the properties of a mathematical

structure of (sets of) signals; the second step is to use this structure to characterize the

processes that are functions on signal sets, such as continuity and causality; and the third

step is to determine conditions under which the characterizations are compositional. The

main structures studied in this dissertation are complete partial orders and generalized

ultrametric spaces. Many more sophisticated structures have been developed in the order

theory [24] in mathematics and domain theory [2] in computer science. Future research in

this direction may start with answering questions like under what conditions on the tag set

T and value set V the set of signals S(T, V ) is a continuous domain or an algebraic domain?

What are the compact elements in S(T, V )?

Space-time. In many physical processes, the physical quantities involved are functions of

both space and time, such as electric and magnetic fields. The tag set of these field signals

is R
3×R, where the first component is the 3-dimensional space and the second component

is time. A partial order on this tag set can be defined by

(~x1, t1) ≤ (~x2, t2) ⇐⇒ ‖~x1 − ~x2‖
c

≤ t2 − t1, (6.1)

where c is the speed of light. By this order, (~x1, t1) is below (~x2, t2) if and only if (~x2, t2)

is on or inside the future light cone of (~x1, t1). The spatial component of the tag set

may be replaced by an abstract set L of locations, for example, to represent the nodes

in a communication network. With such tag sets, the tagged signal model can be used

to study computational processes over space and time. The specification, simulation, and

implementation of sensor network applications [8, 81] may benefit from such studies.

Polymorphic implementation. Given a monotonic tagged process P : S(T1, V1) →

S(T2, V2) and an input signal s ∈ S(T1, V1), the labeled transition system LP defined in

section 5.1 represents the decompositions of the mapping s 7→ P (s) into incremental steps

as traces in LP from the initial state s⊥ to s. The labels in LP are pairs of an input signal

segment and an output signal segment. A program I that implements the process P must
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have these segments mapped into data structures that are manipulated by the program.

The program I can be specified as an LTS LI as follows.

• ΣI is the set of program states. Elements of ΣI are denoted by p, with subscripts as

needed.

• A×B is the set of labels, where A is the set of values of the input data type, and B

is the set of values of the output data type.

• Given two program states p1, p2 ∈ ΣI , an input value a ∈ A, and an output value

b ∈ B, (p1, (a, b), p2) is a transition in LI if and only if when I is in state p1 and is

invoked with the input value a, it produces the output value b and changes its program

state to p2.

• The initial state is an element p0 ∈ ΣI .

The following pair of maps establish the relation between LP and LI .

Mi : G(T1, V1) ⇀ A (6.2)

maps (a subset of) input signal segments to the input values of program I. Note that Mi

is a partial function, so it may place constraints on the segmentation of input signals.

Mo : S(T2, V2)×B ⇀ G(T2, V2) (6.3)

maps the output values of program I to output signal segments, depending on the past

output of the process. For any s′ ∈ S(T2, V2) and b ∈ B, if Mo(s
′, b) is defined, then

Mo(s
′, b) ∈ F(s′). It is important to emphasize that the maps Mi and Mo do not depend on

the behaviors of the process P or program I, but only on the signals S(T2, V2), the segments

G(T1, V1) and G(T2, V2), and the data types A and B.

Given LP , LI , and the maps Mi and Mo, the program I implements the process P if

and only if for every trace

s⊥
(g1, h1)−−−−−−→ s1

(g2, h2)−−−−−−→ s2 → · · · → sn−1
(gn, hn)−−−−−−→ sn (6.4)

102



in LP such that Mi(gk) is defined for k = 1, . . . , n, the following

p0
(Mi(g1), b1)−−−−−−−−→ p1

(Mi(g2), b2)−−−−−−−−→ p2 → · · · → pn−1
(Mi(gn), bn)−−−−−−−−−→ pn (6.5)

is a trace in LI and

Mo(s
′
k−1, bk) = hk, k = 1, . . . , n, (6.6)

where

s′k = P (s⊥) ¿ h1 ¿ · · · ¿ hk, k = 1, . . . , n.

It is understood that s′0 = P (s⊥). This relation is analogous to the classical simulation

relation between labeled transition systems [57].

A program I may implement multiple processes defined in different models of compu-

tation as illustrated below.

LP

Mo←−−−

−−−→
Mi

LI

M ′

o−−−→

←−−−
M ′

i

LQ . (6.7)

By defining the maps Mi and Mo, and M ′
i and M ′

o appropriately, the input and output

signal segments associated with processes P and Q are mapped to the same data types

manipulated by program I. This approach to reuse is a major research topic of the Ptolemy

project [49], and is called domain polymorphism. It is the guiding principle in designing

the actor library in Ptolemy II. The above formulation is an initial proposal to formalize

the design practices. Further research may start from defining the maps Mi and Mo for the

various models of computation implemented in Ptolemy II, and studying the properties of

the implementation relation in equations 6.5 and 6.6. Programs can be written in the CAL

actor language [27, 37], which defines its actor model using labeled transition systems and

is well integrated into Ptolemy II.
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