Building Unreliable Systems out of Reliable
Components: The Real Time Story

Edward A. Lee

ST NEFLELEL]

.Il

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2005-5
http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-5.html

October 07, 2005




Copyright © 2005, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF award #CCR-0225610), the State of
California Micro Program, and the following companies: Agilent, DGIST,
General Motors, Hewlett Packard, Infineon, Microsoft, and Toyota.



Building Unreliable Systems out of Reliable Components:
The Real Time Story

Edward A. Lee
eal@eecs.berkeley.edu

Professor, Chair of the Electrical Engineering Division, and
Associate Chair of Electrical Engineering and Computer Sciences
University of California, Berkeley

Abstract of Invited Plenary Talk
Monterey Workshop

Laguna Beach, California
September 22, 2005

Despite considerable progress in software and hardware techniques, when embedded
computing systems absolutely must meet tight timing constraints, many of the advances
in computing become part of the problem rather than part of the solution. The underlying
technology for computation, synchronous digital logic, easily delivers precise timing
determinacy (although certain deep submicron techniques threaten even this foundation).
However, advances in computer architecture and software have made it difficult or
impossible to estimate or predict the execution time of software. Moreover, networking
techniques introduce variability and stochastic behavior, and operating systems rely on
best effort techniques. Worse, programming languages lack time in their semantics, so
timing requirements are only specified indirectly. I examine the following question: “if
precise timeliness in a networked embedded system is absolutely essential, what has to
change?” The answer, unfortunately, is “nearly everything.”

Twentieth century computer science has taught us that everything that can be computed
can be specified by a Turing machine. “Computation” is accomplished by a terminating
sequence of state transformations. A “Computable Function” is a map from a bit
sequence to a bit sequence. This core abstraction underlies the design of nearly all
computers, programming languages, and operating systems in use today. But
unfortunately, this core abstraction does not fit embedded software very well, and since it
says nothing about timeliness, technologies for computation need not be concerned with
timeliness.

This core abstraction fits reasonably well if embedded software is simply “software on
small computers.” In this view, embedded software differs from other software only in its
resource limitations (small memory, small data word sizes, and relatively slow clocks).
In this view, the “embedded software problem” is an optimization problem. Solutions
emphasize efficiency; engineers write software at a very low level (in assembly code or
(), avoid operating systems with a rich suite of services, and use specialized computer
architectures such as programmable DSPs and network processors that provide hardware
support for common operations. These solutions have defined the practice of embedded
software design and development for the last 25 years or so.



Of course, thanks to the semiconductor industry's ability to follow Moore's law, the
resource limitations of 25 years ago should have almost entirely evaporated today. Why
then has embedded software design and development changed so little? It may be that
extreme competitive pressure in products based on embedded software, such as consumer
electronics, rewards only the most efficient solutions. This argument is questionable,
however. There are many examples where functionality and reliability have proven more
important than efficiency. It is arguable that resource limitations are not the only defining
factor for embedded software, and may not even be the principal factor.

There are clues that embedded software differs from other software in more fundamental
ways. If we examine carefully why engineers write embedded software in assembly code
or C, we discover that efficiency is not the only concern, and may not even be the main
concern. The reasons may include, for example, the need to count cycles in a critical
inner loop, not to make it fast, but rather to make it predictable. No widely used
programming language integrates a way to specify timing requirements or constraints.
Instead, the abstractions they offer are about scalability (inheritance, dynamic binding,
polymorphism, memory management), and, if anything, further obscure timing (consider
the impact of garbage collection on timing). Counting cycles, of course, becomes
extremely difficult on modern processor architectures, where memory hierarchy (caches),
dynamic dispatch, and speculative execution make it nearly impossible to tell how long it
will take to execute a particular piece of code. Worse, execution time is context
dependent, which leads to unmanageable variability. Still worse, programming languages
are almost always Turing complete, and as a consequence, execution time is undecidable
in general. Embedded software designers must choose alternative processor architectures
such as programmable DSPs, and must use disciplined programming techniques (e.g.
avoiding recursion) to get predictable timing.

Another reason engineers stick to low-level programming is that embedded software
typically has to interact with hardware that is specialized to the application. In
conventional software, interaction with hardware is the domain of the operating system.
Device drivers are not typically part of an application program, and are not typically
created by application designers. But in the embedded software context, generic hardware
interfaces are rarer. The fact is that creating interfaces to hardware is not something that
higher level languages support. For example, although concurrency is not uncommon in
modern programming languages (consider threads in Java), no widely used programming
language includes in its semantics the notion of interrupts. Yet the concept is not difficult,
and it can be built into programming languages (consider for example nesC and TinyOS,
which are widely used for programming sensor networks).

It becomes apparent that the avoidance by embedded software engineers of so many
recent improvements in computation is not due to ignorance of those improvements. It is
due to a mismatch of the core abstractions and the technolo%ies built on those core
abstractions. In embedded software, time matters. In the 20" century abstractions of
computing, time is irrelevant. In embedded software, concurrency and interaction with
hardware are intrinsic, since embedded software engages the physical world in non-trivial
ways (more than keyboards and screens). The most influential 20" century computing
abstractions speak only weakly about concurrency, if at all. Even the core 20" century
notion of “computable” is at odds with the requirements of embedded software. In this



notion, useful computation terminates, but termination is undecidable. In embedded
software, termination is failure, and yet to get predictable timing, subcomputations must
decidably terminate.

Embedded systems are integrations of software and hardware where the software reacts
to sensor data and/or issues commands to actuators. The physical system is an integral
part of the design and the software must be conceptualized to operate in concert with that
physical system. Physical systems are intrinsically concurrent and temporal. Actions and
reactions happen simultaneously and over time, and the metric properties of time are an
essential part of the behavior of the system. Prevailing software methods abstract away
time, replacing it with ordering. In imperative languages such as C, C++, and Java, the
order of actions is defined by the program, but not their timing. This prevailing
imperative abstraction is overlaid with another, that of threads or processes, typically
provided by the operating system, but occasionally by the language (as in Java).

The lack of timing in the core abstraction is a flaw, from the perspective of embedded
software, and threads as a concurrency model are a poor match for embedded systems.
They are mainly focused on providing an illusion of parallelism in fundamentally
sequential models, and they work well only for modest levels of concurrency or for
highly decoupled systems that are sharing resources, where best-effort scheduling
policies are sufficient. Indeed, several recent innovative embedded software frameworks,
such as Simulink (from The MathWorks), nesC and TinyOS (from Berkeley), and
Lustre/SCADE (from Esterel Technologies) are concurrent programming languages with
no threads or processes in the programmer’s model.

Embedded software systems are generally held to a much higher reliability standard than
general purpose software. Often, failures in the software can be life threatening (e.g., in
avionics and military systems). The prevailing concurrency model in general purpose
software that is based on threads does not achieve adequate reliability. In this prevailing
model, interaction between threads is extremely difficult for humans to understand.
Although it is arguable that concurrent computation is inherently complex, threads make
it far more complex because between any two atomic operations (a concept that is rarely
well defined), any part of the state of the system can change. The basic techniques for
controlling this interaction use semaphores and mutual exclusion locks, methods that date
back to the 1960s. Many uses of these techniques lead to deadlock or livelock. In general-
purpose computing, this is inconvenient, and typically forces a restart of the program (or
even a reboot of the machine). However, in embedded software, such errors can be far
more than inconvenient. Even in general-purpose software systems, failures are often
caused by interactions with or between device drivers, which are built on these low-level
concurrency mechanisms. Moreover, software is often written without sufficient use of
these interlock mechanisms, resulting in race conditions that yield nondeterministic
program behavior. In practice, errors due to misuse (or no use) of semaphores and mutual
exclusion locks are extremely difficult to detect by testing. Code can be exercised for
years before a design flaw appears. Static analysis techniques can help (e.g. Sun
Microsystems’ LockLint), but these methods are often thwarted by conservative
approximations and/or false positives, and they are not widely used in practice.



It can be argued that the unreliability of multi-threaded programs is due at least in part to
inadequate software engineering processes. For example, better code reviews, better
specifications, better compliance testing, and better planning of the development process
can help solve the problems. It is certainly true that these techniques can help. However,
programs that use threads can be extremely difficult for programmers to understand. If a
program is incomprehensible, then no amount of process improvement will make it
reliable. Formal methods can help detect flaws in threaded programs, and in the process
can improve the understanding that a designer has of the behavior of a complex program.
But if the basic mechanisms fundamentally lead to programs that are difficult to
understand, then these improvements will fall short of delivering reliable software.
Incomprehensible software will always be unreliable software.

Prevailing industrial practice in embedded software relies on bench testing for
concurrency and timing properties. This has worked reasonably well, because programs
are small, and because the software gets encased in a box with no outside connectivity
that can alter the behavior of the software. However, applications today demand that
embedded systems be feature-rich and networked, so bench testing and encasing become
inadequate. In a networked environment, it becomes impossible to test the software under
all possible conditions, because the environment is not known. Moreover, general-
purpose networking techniques themselves make program behavior much more
unpredictable.

What would it take to achieve concurrent and networked embedded software that was
absolutely positively on time (say, to the precision and reliability of digital logic)?
Unfortunately, everything would have to change. The core abstractions of computing
need to be modified to embrace time. Computer architectures need to be changed to
deliver precisely timed behaviors. The hardware/software boundary needs to be
rethought. Networking techniques need to be changed to provide time concurrence.
Programming languages have to change to embrace time and concurrency in their core
semantics. Virtual machines have to change to rely less on just-in-time compilation.
Power management techniques need to change to rely less on voltage and clock speed
scaling, or to couple these with timing requirements. Operating systems have to change to
rely less on priorities to (indirectly) specify timing requirements. Memory management
techniques need to account for timing constraints. Complexity theory needs to morph into
schedulability analysis. Software engineering methods need to change to specify and
analyze the temporal dynamics of software. And the traditional boundary between the
operating system and the programming language needs to be rethought. What is needed is
nearly a reinvention of computer science.

Fortunately, there is quite a bit to draw on. To name a few examples, architecture
techniques such as software-managed caches (scratchpad memories) promise to deliver
much of the benefit of memory hierarchy without the timing unpredictability. Pipeline
interleaving and stream-oriented architectures offer deep pipelines with deterministic
execution times. FPGAs with processor cores provide alternative hardware/software
divisions. To date, however, all these hardware techniques largely lack programming
language and compiler support. On the software side, operating systems such as TinyOS
provide simple ways to create thin wrappers around hardware, and with nesC, alter the
OS/language boundary. Programming languages such as Lustre/SCADE provide



understandable and analyzable concurrency. Embedded software languages such as
Simulink provide time in their semantics. Bounded pause time garbage collectors provide
memory management with timing determinism. On the networking side, time-triggered
architectures provide deterministic medium access and improved fault tolerance. Network
time synchronization methods such as IEEE 1588 provide time concurrence at resolutions
(nanoseconds) far finer than any processor or software architectures can exploit today.

On the theory side, hybrid systems theory provides a semantics that is both physical and
computational. With so many promising starts, the time is ripe to pull these techniques
together and build the 21* Century (Embedded) Computer Science.



