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ABSTRACT

We evaluate the effectiveness of statistical gate sizing to min-
imize circuit power. We develop reliable posynomial models
for delay and power that are accurate to within 5-10% of
130nm library data. We formulate statistical sizing as a ge-
ometric program, accounting for randomness in gate delays.
For various ISCAS-85 circuits, statistical sizing at a 99.8%
target yield provides 25% power reduction compared to a
30 worst-case deterministic approach. However, this can be
replicated by deterministic sizing using a less conservative
corner. Statistical sizing, under assumptions of variational
independence, is still conservative and further power reduc-
tions can be achieved for the same timing target and yield.

1. INTRODUCTION

A standard technique for minimizing the power consumption
of digital circuits is to downsize logic gates within the circuit.
To first order, a smaller gate dissipates less power. However,
smaller gates also have a lower drive strength and hence
increase the overall delay. The objective is to size each gate
to minimize circuit power while meeting delay constraints.
The general optimization problem can be formulated as:

min  power
dp <T, VpeP
Sy, < 8 £ siy,, ViEG (1)

subject to

where, G is the set of gates in a combinational circuit, P
is the set of paths (from inputs to outputs) in the circuit,
si is the size variable of gate i € G, s;;, > 0 and s;,, > 0
are lower and upper bounds on the gate sizes, and T is the
specified timing target.

In this paper, we consider the problem of gate sizing in the
presence of variability in the circuit delay elements. As cir-
cuits scale to nanometer dimensions, the uncertainty in pro-
cess parameters and device phenomena also impact delay
and power. There can be variability due to manufacturing,
due to environmental factors such as Vdd and temperature,
and due to device fatigue phenomena such as electromigra-
tion and hot electron effects [1). The consequence of vari-
ability is that identically designed circuits exhibit a large
spread in delay and power metrics, which severely impacts
the parametric yield.

One conservative way to account for variability is to perform
deterministic sizing for power optimization at the worst-case
values for all random components. While this ensures high
yield, it pessimistically estimates power and performance.

The other option is to include the parametric variation in
gate delay as part of the sizing optimization problem. The
objective is to select gate sizes to minimize power for a target
yield . The timing constraint in the optimization problem
in Equation (1) is recast as a probabilistic constraint condi-
tioned on yield #: Pr(d, <T) >0, Vp€ P.

Mani and Orshansky [2] propose an efficient block-based
approach for statistical sizing. They derive linear models
for delay and power and allow variability in the delay co-
efficients. The statistical sizing problem is translated into
a Robust Linear Program, which is solved optimally as a
Second-Order Conic Program (SOCP). The authors report
up to 30% power savings compared to a worst-case deter-
ministic sizing approach. However, linear models for gate
delay are inaccurate. Single linear fits to the industrial li-
brary data we use in our experiments have relative errors on
average of between 19% and 30% (cf. Section 4).

A more accurate convex optimization approach is to use Ge-
ometric Programming (GP) with posynomial models. Fish-
burn and Dunlop (3] originally proposed posynomial models
for transistor sizing. Boyd, et. al [4] incorporate posynomial
delay and power models in a GP formulation for statistical
sizing. They argue for the applicability of geometric pro-
gramming for statistical analysis, but do not focus on results
of particular sizing problems for realistic gate libraries.

The Mani-Orshansky [2] block-based statistical sizing ap-
proach and the GP modeling due to Boyd [4] serve as a
combined starting point for our work. The objective is to
evaluate how gate sizing in a statistical setup benefits power
optimization compared to a worst-case deterministic sizing
formulation. The importance of accounting for variability in
delay and power models is clear. Sizing based on worst-case
deterministic models is conservative, and this motivated the
move to statistical formulations. In order to evaluate the ad-
vantages of statistical sizing, we ask the following questions:
(a) How are statistical methods different from a worst-case
deterministic sizing formulation? (b) How well does statis-
tical sizing reclaim the pessimism inherent in deterministic
worst-case approaches?

As a first step, we construct an accurate statistical sizing
formulation (Section 3) based on delay and power models
for a realistic 130nm library data (Sections 2). We verify
the power reductions from statistical sizing compared to de-
terministic worst-case sizing across various ISCAS-85 bench-
mark circuits (Section 4). Based on these experiments, we



interpret the differences between the statistical and deter-
ministic sizing approaches. In particular, we ask whether in-
corporating variance in the delay model is akin to determin-
istic sizing with an appropriately chosen worst case library
corner to achieve the desired yield (Section 5). We perform
Monte Carlo simulations to compare the yields between the
statistical and deterministic sizing approaches. We also an-
alyze how much pessimism is reduced in moving from worst-
case deterministic to statistical models (Section 6).

2. DELAY AND POWER MODELS

Gate sizing for combinational circuits minimizes total power
subject to constraints on the gate sizes and required timing
target (Equation 1). We assume that gates can be contin-
uously sized between the specified bounds. This is a rea-
sonable approximation for libraries with fine granularity of
gate sizes, or in a liquid cell methodology. In this section,
we describe the gate delay and power models used in our
problem formulation. Our models were fitted to a 130nm
standard cell library. In section 4 we discuss the accuracy
of our models, and compare our delay and power estimates
to results obtained from Synopsys Design Compiler.

2.1 Gate Delay Model

For the statistical sizing formulation in [2], the authors adopt
a linear model for gate delay. The delay of gate i is given
by:

di = ai—bsit+c Z: S (2)

JEFO()

where, s; is the size of gate i, FO is the set of gates that
fanout from i and the term Y jeFoqi) Si Specifies the fanout
load size driven by gate i € G. The parameters (ai,b:, ;)
are delay coefficients determined from size and delay values
that are obtained empirically by circuit simulation for each
gate in the library. We found that the linear delay model
in (2) was inaccurate for our library, with relative errors
between 19% and 30% (cf. Section 4).

A posynomial model for gate delay is a more accurate way
to capture the dependence of gate delay on the gate size and
load capacitance [5]. We use posynomial delay models and
formulate the optimization problem as a geometric program.
The delay of gate i is given by:

d =

s 4 b P00 3)

S

The parameters a; and b; are fit by minimizing the relative
least squares error between the posynomial models and the
library data. This model reflects two aspects of the depen-
dence between delay and size: (a) sizing up a gate increases
its drive strength and hence decreases its delay, and (b) a
larger sized gate presents a greater load capacitance to a
gate driving it, and hence increases the delay of the driving
gate.

One limitation in our gate delay model is that it does not
include input slew. For fitting purposes, we assume an in-
put slew of 0.07ns, which is appropriate for a circuit with a
relatively tight delay constraint. This assumption is verified
later by comparing delay and power for several benchmarks.

Gate delay is specified as a function of the internal size and

load capacitance. We incorporate a wire-load model to cap-
ture the effect of wire length on the delay. The wire load
is a multiple of the number of fan-outs and is an additive
component to the fanout load. The wire load for gate i can
be expressed as:

wi, +wi, |[FO(3)| (4)

where, coefficients (w;, , w;,) depend on the process technol-
ogy. We also specify separate delay coefficients for rise and
fall timing arcs on each input pin of a gate. An n-input
gate has 2n equations to describe its delay. For example,
the delay equation for the rise timing arc along input j of
gate 7 is the given by:

w =

(Xkerog) Sk) +ws
Si

&, = a4+t (5)
2.2 Gate Power Model

We use a linear model to describe power as a function of
size and fanout load. The total power dissipated by a digital
circuit is given by:

Ptotal = denamic + Heakuge (6)

Dynamic power consists of two components: switching power
and internal power. The switching power is written as:

> u)

P, = %%Vgo Z Pr(switch;) (’w;‘ +
i€G FEFO(i)

The switching power Py, is directly proportional to the total
switched capacitance, which corresponds to the sum of gate
sizes and wire loads in the circuit. The term Pr(switch;)
measures the activity of gate i, i.e. the fraction of the cycles
per second when the gate output rises or falls.

Internal power includes the power dissipation for (dis)charging
capacitances internal to the gate, and any short circuit (cross-
bar current) that occurs when there is a conducting path
from supply to ground. This is specified for each input pin
and rising/falling outputs. We model internal power as a
positive linear function of size and load:

Py, = ZPi';m + P.'{u,
i€G
:;“‘ = Z Pr(risej)(mfj + TL:; s+ l:; (w: + Z Sk))
JE€inputs(i) ke FO(i)
Ph, = S P fall,-)(m;fj +nf s+t (wi+ 3 sk))
JF€inputs(i) k€ FO(i)

The coefficients (mi;,ni;,li;) are obtained from a least squares
fit. To improve the accuracy of the fit, we compute a piece-
wise linear function for the rise/fall internal powers. An ac-
tivity probability Pr(rise;) and Pr(fall;) is associated with
each input pin j of gate 1.

The total dynamic power is then given by:

Piynamic = Pr(activity)(Pow + Pin:) (9)

The term Pr(activity) denotes the fraction of the second
for which the circuit is actively performing computation.
Circuit activity is the only source of dynamic power. The
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other source of power dissipation, when the inputs are held
constant, is due to static or leakage power. Leakage power
is given by:

Heakogc = z z

i€G je{o,1} linputs(i)]

Pr(state = j)(mi; + ni;s:) (10)

The leakage power is approximately proportional to gate size
and is a function of the input state of the gate. Similar to
internal power, we obtain coefficients (m;;,n;;) by fitting
leakage as a piece-wise linear function for each input state.
The probabilities of the leakage state and switching activ-
ity are obtained from SAIF (switching activity interchange
format) files generated by the Synopsys VCS simulator for
gate-level Verilog netlists, assuming independent random in-
puts with equal probabilities of being 0 or 1.

3. GATESIZING

We base our statistical sizing formulation on the approaches
presented by Mani [2] and Boyd [4]. First, we review the for-
mulation of the deterministic gate sizing problem for power
optimization. We cast it as a geometric program using the
delay and power models presented in Section 2. For simplic-
ity, we do not duplicate constraints for rise and fall timing
arcs on each gate input. This formulation is then extended
to incorporate variability in the delay model.

3.1 Deterministic Gate Sizing

Consider a combinational logic circuit C = (G, E,1,0),
where G is the set of gates, E is the set of nets (edges)
between gates, I is the set of inputs and O is the set of out-
puts. In the absence of variability, the power minimization
problem in (1) can be re-expressed as:

min Ptotal
subject to
Sig S Si .<_ SiLys Vi € G
. N Sa
4 = ot b ZIEFOWS o
i

di < ti—tj, VjEFI(E), VieG

ti < T, VieO

i = 0, Viel (11)

Variables d; denote the delay of gate ¢ € G under the posyn-
omial delay model. FI(i) and FO(i) refer to the fan-ins
and fan-outs of a gate 1, respectively. The variables ¢; de-
note the maximum signal arrival time at the output of a
gate. The arrival times at the circuit inputs I are 0. The
timing constraint ¢; < T is enforced on the arrival times at
the primary outputs. We assume output port loads of 3fF.
The optimization problem chooses gate sizes s; to minimize
power for the constraint that all circuit paths from input to
output are within the target period T. The objective and
inequality constraints are posynomials, hence this problem
can be solved as a GP.

The general sizing optimization problem in (1) enforces the
timing constraint on each circuit path. The updated ver-
sion of this problem in (11) translates timing constraints on
paths to timing constraints on gates, which makes the prob-
lem tractable for large circuits. These two problems have
the same feasible solution set and optimum objective value.
When the delay models are deterministic, the translation

from the path-based formulation to the gate-based formula-
tion is exact.

3.2 Statistical Gate Sizing

Statistical variability is introduced in the delay model by al-
lowing randomness in the delay parameters a; and b; at each
gate. We adhere to popular practice and model gate delay
randomness as a Gaussian random variable. The variables
a; and b; are Gaussian, with expected values &; and b;, and
standard deviation o,; and oy, .

The path-based sizing formulation in Equation (1) is easily
translated into a statistical problem. A path p € Pis a
collection of gates. Then, dp = Ziep d; is the delay along
path p € P. It is also a Gaussian variable with expected
value d, and standard deviation 04,. The path-based sizing
problem under uncertainty expresses the timing constraint
in Equation (1) as: Pr(d, <T) >, Vp€ P.

The parameter 7 corresponds to the timing yield of the cir-
cuit. The optimization problem selects gate sizes to meet
the timing target T with probability 7. Given d; is normally
distributed, the probabilistic constraint can be written as:

Pr(d, <T) 21
= Prob dp = PST-dp)Zn
Od, g4,
T-d, _
= 2> ¢ (n)
ddp
= dp+ 07 (n)oa, <T (12)

where, ¢ is the cumulative probability distribution function
(cdf) of the unit normal variable N(0,1) [6]. The term
¢~ 1(n) is the margin coefficient of yield. For a 99.8% yield,
¢~ 1(n) = 3. The probabilistic inequality constraints are
posynomials, hence the problem remains a GP.

However, the path-based formulation is intractable for large
circuits. The obvious solution is to convert probabilistic tim-
ing constraints on paths to probabilistic timing constraints
on gates, just as in the deterministic sizing formulation in
Equation (11). The probabilistic timing constraint on gate
i is given by: Pr(d; < t; — t;) > n, Vj € FI(3).

Unlike the deterministic case, the translation from the path-
based to the gate-based formulation is not exact. The gate
based formulation makes two implicit assumptions: (a) the
gate delay variables (d;) are independent, and (b) each gate
meets its required time with probability n (this n is the
target yield over all circuit paths in Equation (12)). The
assumption on gate delay independence may be bypassed
by describing gate delay as a function of global sources of
variation [1], rather than using (a:,b;) values that are local
to each gate. Regarding the second assumption, the choice
of n at each gate is ad hoc, and there is no clear procedure
to estimate target yield for each gate. The authors in (2, 4]
argue that choosing the yield at each gate to be the target
yield 7 of the circuit is a reasonable approximation. Based
on these approximations, and the simplification in (12), the
GP formulation for the statistical sizing problem to mini-



mize power can be expressed as:

min Piotal
subject to

Siy, < 8 < Siy,, VieG
(i.' = (L + ¢—l(7])0}1‘., VieG
Z:jeFO(i) S

d = a+b Vie G
8i
. .\ 85
oq, = \/03;3?'{'0'3‘»(@)2: VieG
ti > ti+di VjeFI@E), VieG
t: = 0, Viel
ti < T, VieO (13)

In the statistical sizing formulation above, the term ¢~ (n)aa,
is added to the mean value d; of each gate delay. The ad-
ditive margin is a function of the gate size, target yield and
local variance, and attempts to capture the randomness of
the delay parameters. Boyd, et al. call this the surrogate
delay model [4]. The statistical sizing problem essentially
performs deterministic sizing on this surrogate delay model.

The statistical gate sizing formulation in (13) incorporates
uncertainty in the circuit delay elements. We do not need to
explicitly model the variability in the dynamic and leakage
power components in this problem. Even in the presence of
variability in the coefficients of the power model, the objec-
tive for power minimization will be to minimize the sum of
the expected values of power over all gates. This is equiv-
alent to the objective of the sizing problem in (13), where
Piotai is minimized.

4. RESULTS

The objective of our study is to evaluate the benefits of
statistical sizing over deterministic sizing using worst-case
timing estimates. First, we briefly comment on the fidelity of
our models. Following that, we present power optimization
results obtained from statistical sizing for a few ISCAS-85
circuits.

4.1 Accuracy of Delay and Power Models

We performed our experiments using posynomial power and
delay models fitted to standard cell libraries characterised
for an STMicroelectronics 130nm HCMOS9D process. There
are five logic gates in our library: inverter, 2-input nand, 2-
input nor, 3-input nand, and 3-input nor. Each cell is avail-
able in high and low transistor threshold voltages, 0.23V
and 0.14V respectively, giving a total of 10 distinct sets of
data versus gate size that were fit. In our formulations, we
constrain the gate size to be in the interval bounded by the
minimum and maximum gates sizes specified in the library
for each gate.

We used MATLAB to obtain least square fits (minimizing
RMS error) for the delay and power coefficients at each gate
input and rise/fall timing arcs. Table 1 presents the relative
percentage errors of our estimates. The largest average error
for the posynomial fits is 7.4% across all gates (columns
10-11). Compared to this, the linear delay models used by
Mani and Orshansky (2] have average relative errors between

19% and 30% (columns 6-7). Even after gate delays are
fitted as a maximum of piece-wise linear functions (columns
8-9), the models are still not sufficiently accurate. Their
motivation behind using linear functions is to formulate the
sizing problem as an SOCP, which is arguably easier to solve
compared to a GP. However, gate delays are generally non-
linear functions of size, and fitting them as linear functions
substantially increases the error.

We conducted our experiments on five ISCAS-85 benchmark
circuits. To validate the accuracy of our models and solver
framework, we compared our delay and power estimates for
some circuit configurations (obtained for different size and
threshold voltage assignments for each gate) against static
timing and static power analysis results obtained from Syn-
opsys Design Compiler (Table 2). The solver results are
consistently within 5% of the reference values.

Table 2: Comparison of power and delay obtained
from our solver against static analysis results from
Synopsys Design Compiler (DC) for some circuit
configurations (DC reference value / solver’s esti-
mate).

Circuit | # Gates | Delay | Power | Leakage
(ps) | (W) | (uW)
cl7 10 92.7 19.9 1.1
90.6 21.4 1.1
c432 259 726.9 361.8 21.9
693.9 | 378.1 22.8
c499 644 700.7 772.9 39.5
692.6 | 810.0 40.9
c880 484 696.2 | 497.6 26.3
662.6 | 524.5 27.4
1908 635 995.3 717.4 47.6
951.8 747.3 50.1

4.2 Power Results from Statistical Sizing
First, we present results validating the power savings ob-
tained from statistical sizing for a 99.8% target yield. This
corresponds to setting ¢~ (7), the margin coefficient of yield,
to 3 in the GP in Equation (13). Following the approach
in [2], we assume the overall variation in gate delay at 3¢
to be around 25% of the mean value. However, it is not
clear how the delay coefficients a; and b; at each gate map
to physicial variability. Given the size range at each gate,
we find from experiments that it reasonable to assume a
standard deviation of 8% and 10% of the mean values for
a; and b;. We use the MUSE Generalized Geometric Pro-
gram solver [7] to solve the GP. We compare these results to
the minimum power obtained from worst-case deterministic
sizing. In the worst case setting, all the random variables
((a:,b:) in the gate delay models) are set to their 3o values.
Tmin is the minimum delay through the circuit obtained
from worst-case deterministic sizing (where the ob jective it
to minimize Tmin Without constraints on power). We use
Tomin as the timing target for the deterministic and statisti-
cal sizing problems.

Table 3 presents the power savings obtained from statisti-
cal sizing. The Tnin for each circuit is presented in column
2. Column 3 shows the total power after worst-case deter-
ministic sizing and statistical sizing for a timing target of
Tmin- Statistical sizing reduces power by about 25% on av-
erage. We also analyze the minimum power obtained by the
two approaches for relaxed timing targets greater than Tonin
(columns 4-7). As expected, the total power decreases as we



Table 1: Size bounds and relative percentage error of the delay and power models.

Cell Name Size Leakage Internal Linear Piece-wise Linear Posynomial
bounds (fF) | Power (%) | Power (%) | Delay Model (%) | Delay Model (%) | Delay Model (%)
Low | High Rise Fall Rise Fall Rise a
inv 1.0 37.7 8.66 11.99 28.07 29.94 18.86 20.39 6.55 6.35
nand2 2.0 26.0 5.73 6.38 21.69 22.81 15.27 18.41 7.09 2.94
nand3 3.1 42.2 4.84 5.43 21.26 20.27 19.30 13.44 7.44 4.19
nor2 2.2 33.7 4.24 4.62 20.49 22.86 12.05 12.97 4.47 6.56
nor3d 3.8 51.1 7.05 3.49 19.55 20.43 10.52 14.08 4.65 7.25
hvt inv 1.0 356.56 8.96 5.36 28.20 29.51 20.17 29.37 6.24 6.30
vt nand2 2.0 25.3 6.18 4.29 21.69 22.54 13.93 14.97 6.82 2.85
hvt nand3 3.0 40.9 4.72 2.83 20.78 19.06 13.81 14.62 7.28 4.43
hvt nor2 2.0 31.4 4.35 2.50 21.00 24.53 13.63 23.03 4.76 6.37
hvt nor3 3.5 48.1 6.26 2.91 20.08 19.89 13.32 15.30 4.28 7.15

increase the slack in the timing target. However, the power
reduction due to statistical sizing is less at larger delay tar-
gets. We observed that around a 1.5Tmin target a majority
of gates in the circuit are sized at their lower bounds, be-
yond which no further power minimization is possible due
to gate sizing.

Table 3: Minimum power obtained by deterministic
(c = 3) and statistical approaches (n = 99.8% tar-
get yield) for different timing targets (deterministic
sizing / statistical sizing).

Circuit | Tinin "Power (mW)
Temin 1.027Tmin 1.05Tmin 1.1 0in 1.2T min
cl7 0.106 | 0.024 0.020 0.017 0.013 0.010
0.018 0.016 0.014 0.011 0.009
c432 0.812 | 0.511 0.415 0.345 0.274 0.198
0.373 0.335 0.289 0.239 0.181
c499 0.787 | 1.097 0.928 0.783 0.628 0.458
0.801 0.729 0.641 0.5637 0.412
<880 0.777 | 0.521 0.451 0.394 0.334 0.264
0.423 0.391 0.352 0.306 0.249
c1908 1.111 | 0.925 0.790 0.666 0.540 0.404
0.696 0.634 0.559 0.473 0.370

Table 4: Comparison of execution times between
deterministic sizing (o = 3) and statistical sizing (n =
99.8% target yield) for the T, timing target.

Circuit | Deterministic Sizing | Statistical Sizing
cl? 4s 10 s
c432 5 m 25 m
c499 17m 1.5h
c880 14 m 1h
c1908 22 m 2.5 h

Though GP formulations provide good accuracy, one draw-
back is that run times are high for large problem instances.
Table 4 shows the execution times for the deterministic and
statistical sizing problems. We ran our experiments on an
Intel Pentium4 1.8 GHz machine. We observe that the de-
terministic sizing problems are significantly faster. Both
these instances are GP problems: the only difference is that
the statistical problem in Equation (13) has additional non-
linear terms due to the variance constraints.

5. YIELD TARGET FOR
DETERMINISTIC SIZING

Based on the formulations in [2, 4], we have so far accurately
verified the power reductions from statistical sizing over de-
terministic worst-case sizing. In this section, we evaluate
how statistical sizing is different from the deterministic ver-
sion. The formulation for statistical sizing in Equation (13)

implicitly assumes that the variations at each gate are inde-
pendent. This enables us to express the probabilistic timing
constraint for each gate by adding a surrogate delay margin
of ¢$~1(n)oa, to the mean delay. In the worst case deter-
ministic setting, all random variables (assuming Gaussian
distributions) are set to their 30 values. The statistical siz-
ing problem, for some yield coefficient ¢~!(7), essentially
solves the deterministic sizing problem on the surrogate de-
lay model. In this sense, the two problems are not very
different; statistical sizing, instead of worst-casing the in-
dividual (a, b;) random variables at each gate, worst-cases
the gate delay random variable.

We then ask whether the statistical version of the problem
can be approximated to deterministic sizing for a less conser-
vative process corner. In the deterministic problem, instead
of worst-casing all variations at 30, we would set all ran-
dom variables to a Ko value that gives a similar delay to
assuming the worst case 3¢ impact of a; and b;. We call K
an intermediate margin coefficient of yield for deterministic
sizing. The exact value of K would depend on the target
yield 17 and delay data for some library, and must be char-
acterized over a set of circuits.

For our library, we empirically compute the coefficient K at
which the minimum power from statistical sizing is equal to
the minimum power from deterministic sizing with all the
random variables set to the Ko values. The values of K
obtained for different timing targets for a 99.8% yield across
the five [ISCAS-85 circuits are tabulated in Table 5.

Table 5: Intermediate coefficient of yield (K) val-
ues at which deterministic sizing matches stochastic
delay and power estimates for a 99.8% yield.

Circuit Intermediate Coefficient on Yield (K)

I “Temin | 1.02dmin | 1.000min | 1.10min | 1.20min
cl7 2.34 2.33 2.30 2.27 2.23
c432 2.40 2.38 2.36 2.33 2.30
c499 2.23 2.22 2.21 2.20 2.20
c880 2.39 2.37 2.34 2.31 2.27
c1908 2.30 2.29 2.27 2.26 2.24

We observe that the K values are remarkably consistent
across circuits and multiple timing targets. Hence, we can
find a coefficient K for our library at which deterministic
sizing (after fixing all random variables to their Ko values)
closely tracks statistical sizing on the surrogate delay model.
For a specific value, K = 2.39, we compute minimum power
from deterministic sizing. These results for the ISCAS-85
circuits are shown in Table 6 . The optimal power numbers
closely match those computed using statistical sizing in Ta-



ble 3. This shows, at least in the case of our library, that
statistical sizing for some target yield can be replaced by de-
terministic sizing by choosing an appropriate intermediate
coefficient K. The advantage of this is that we can then use
the standard deterministic sizing approach, which has much
smaller runtimes compared to statistical sizing.

Table 6: Minimum power from deterministic sizing
at an intermediate coefficient of yield K = 2.39 (all
random variables are set to Ko).

Circuit Power (mW)

Tonin 1.027min 1.05Tmin | 1.10min 1.27min
cl7 0.018 0.016 0.014 0.012 0.009
c432 0.369 0.333 0.290 0.240 0.182
c499 0.836 0.758 0.663 0.552 0.419
c880 0.419 0.389 0.352 0.307 0.250
c1908 0.711 0.647 0.5670 0.481 0.374

6. YIELD EVALUATION

We discussed three approaches to sizing: (i) worst-case de-
terministic sizing at 3o values, (ii) statistical sizing for a
specified target yield, and (iii) deterministic sizing at an
intermediate coefficient of yield K. Worst-case determinis-
tic sizing is overly pessimistic in its timing estimates. The
objective in moving to statistical sizing is to reclaim some
of this pessimism by accounting for parametric variations.
Deterministic sizing at an intermediate yield coefficient also
achieves this by reducing the over-estimation of the random
variables.

To verify this reduction in pessimism, we perform Monte
Carlo simulations for gate sizings from the three approaches.
Figure 1 shows Monte Carlo results for the c432 benchmark
using gate sizes obtained for Tmin = 0.812ns. The left-
most curve corresponds to worst-case deterministic sizing.
Even though the circuit was optimized for power under the
constraint that circuit delay is less than T,,;,,, the worst-case
deterministic sizing gives a much tighter clock period. This
ensures a 100% yield, but at the expense of increased power
(from Table 3, power is 0.511mW).
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Figure 1: Delay distributions obtained from Monte
Carlo on the C432 circuit for the three sizing ap-
proaches (Trin = 0.812ns)

The move to statistical sizing aims to recover some pes-
simism of the deterministic model. The solid middle curve
is the Monte Carlo result on sizes obtained for a 99.8% yield.
The dotted curve overlapping this is the result from deter-
ministic sizing at K = 2.39. We verify that deterministic

sizing at K closely tracks the statistical sizing result. Also,
compared to the deterministic worst-case result, these dis-
tributions estimate delay less conservatively. This results in
a greater power reduction (from Tables 3 and 6, power is
= 0.37TmW).

Interestingly, these distributions also have a yield of 100%,
and not the expected 99.8% target. This means the circuit
delay is still conservatively estimated when statistical siz-
ing is performed. The surrogate delay model only accounts
for statistical variations at the gate level. The statistical
problem sets each gate delay independently to its 3¢ value
to target a 99.8% yield. But this does not account for the
variance in the delay of a path. Hence path delay is over-
estimated, leading to an overall pessimistic timing estimate.

This implies that further power reduction can be achieved
for the same timing target and yield. As an example, the
right-most curve in Figure 1 shows the delay distribution
from deterministic sizing at a lower K value (K = 1.5).
Even in this case, the yield is 100%, but the power reduces
to 0.28mW.

We observed that in the sizing results from the four ap-
proaches, further power reduction is possible at the Timin
timing target and 99.8% yield, since a majority of gates
are not at their minimum sizes. In the ideal case, statis-
tical sizing would select gate sizes to minimize power and
provide a timing distribution in which 99.8% of the paths
meet Trnin. However, the conservative nature of the timing
estimate, while ensuring 100% yields, limits the achievable
power reduction.

7. CONCLUSION

Statistical sizing for power minimization recovers some of
the pessimism inherent in deterministic worst-case approaches
and achieves a 25% improvement in power. However, the
gate-based approaches to statistical sizing still estimate de-
lay conservatively, which limits the achievable power reduc-
tion. These methods essentially reduce to deterministic siz-
ing for a less conservative process corner, given by the coef-
ficient of yield K, for a particular library and target yield.
In order to overcome the pessimism in these gate-based sta-
tistical sizing approaches, we must account for dependent
statistical variations along circuit paths to obtain further
power savings.
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