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ABSTRACT

A lot of applications need dedicated datapaths to be
computed fast. While building the datapath is usually
simple, designing and debugging the associated control
logic can be a long process. The Mescal group is working
on a development environment which automatically
generates this logic. Traditionally, a register-transfer level
vertical instruction set is decoded into pipelined control
bits with forwarding and hazard detection logic. However,
for novel, low-power, parallel, deeply pipelined,
heterogeneous embedded processor architectures, such
an ISA may not be easy to formulate, presents serious
difficulties for compilation, and requires excessive
dynamic control logic for forwarding and hazards. An
alternate approach, which can be viewed as an extension
to the VLIW style of processors is to use a control scheme
that retains the full flexibility of the datapath. Thus, the
resulting processor accepts a trace of horizontal
microcode instructions that can be automatically
generated. This eliminates the need to create an ISA
(manually or otherwise), but requires a large number of
bits for each 'instruction' in the microcode trace.
Therefore, the microcode needs to be compressed after
the compilation and decompressed on the fly. A high
compression rate can be achieved using a trace cache to
exploit the redundancy in the microcode.

1. Introduction

The background to our work is the Tipi micro-
architecture design tool [1] being developed at the
University of California, Berkeley. Their goal is to provide
an architecture development system to specify, evaluate,
and explore fully-programmable (micro-) architectures
using a correct-by-construction method to ease the
definition of customized instruction sets.

Traditional design flows define the instruction set
architecture (ISA) first and then implement a
corresponding micro-architecture. In this situation, the
problem that arises is that the actual architecture must be
checked against the original ISA specification to see
whether it implements the ISA. In Tipi, The design flow in
Tipi encourages the designer to think of the data-path
micro-architecture first. He/she lays out the elements of
the data path without connecting control ports. For
unconnected control ports, operations are automatically
extracted which are supported by the data path. These
operations form the basis for more complex, multi-cycle
instructions that are composed of several primitive
operations. The construction of complex, multi-cycle
instructions is supported by defining temporal and spatial
constraints, i.e., automatically extracted operations from

the data path can be combined in parallel and in sequence
as long as resources for these operations do not conflict
with each other, which is checked by Tipi.

The Tipi framework extracts the operations and
produces a file with the horizontal microcode for each of
these operations. It thus generates a horizontal microcode
code-generator, which can take in an assembly file and
produce the microcode equivalent of it.

The main problem with this approach is that the
microcode produced is very large in size but is highly
redundant i.e. the entropy is very low. This leads to
problems of memory size and memory bandwidth
required to read these microcode sequences from the
memory. This leads to the idea of compressing the
microcode in order to reduce these requirements on the
memory.

It is of interest that the compressed stream need not
be visible to the architecture designer since the designer
will use the framework of the encoder-decoder pair which
acts as a layer to abstract the generated microcode. Thus
we are free to choose the encoding/decoding scheme.

The paper focuses on multimedia and signal
processing benchmarks which have kernels with long.
pieces of linear code with few branches. The scheme
proposed is not efficient on code that has a lot of
branches.

The rest of the paper is organized as follows: In
Section two, we present the encoding and decoding
scheme that we use. In Section three, we describe the
decoder architecture. In Section four, we describe the
encoder architecture. In Section five, we present the
results of our work. In Section six, we present our
conclusions.

2. Coding/decoding scheme

The scheme that we choose is limited by the
consideration that the decoder has to be implemented in
hardware in order to avoid being on the critical path of
processor execution. Thus software-based compression
schemes like gzip cannot be used. Dictionary based
compression schemes like Huffman exploit coding
redundancy in the microcode but do not give sufficient
performance to make storing microcode feasible.

We propose to use a L0 cache to exploit redundancy in
the microcode. The cache will contain microcode traces.
Since the horizontal microcode inherently controls a
number of pipeline registers, and a number of
multiplexers and register enables, it is reasonable to
expect that parts of the microcode will have good locality,
enabling us to obtain better compression for portions of
the microcode. Thus we support the existence of multiple



trace caches, each of which contains a portion of the
microcode.

The trace caches will be controlled by the decoder,
which is in our case a processor that is specialized in trace
cache operations. The motivation for this is described in
Section three. The operations on the trace cache are of
two main kinds: filling the trace cache with the microcode
and reading the contents of the trace caches in the right
order. The decoder has to be capable of performing these
two functions. The decoder performs these two functions
when it receives WRITE and SEQUENCE instructions
respectively. The encoder is then a compiler that
produces WRITE and SEQUENCE instructions. The
WRITE instruction directs the decoder to fill in a
particular trace cache line, and the SEQUENCE
instruction provides the order in which such written
values are to be read out.

The reading of the cache has to be done at the micro-
architecture speed in order to avoid being on the critical
path. This however implies that the decoder clock speed
has to be much higher than the micro-architecture speed
because it has to write the cache in addition to reading it.
In order to keep the decoder clock speed low, we use a
sequence manager for each cache. The sequence manager
is autonomous of the cache writing mechanism, and is in
.charge of reading the cache in the correct order to
regenerate the microcode trace.

Since each sequence has to be stored in a buffer that is
of finite size, we can only write a limited number of
microcode sequences before the reading begins. In order
to further pipeline the reads and writes, it is essential that
a mechanism be provided to continue storing the indices
for the next sequence while the current sequence is being
executed. If this is not done, the sequence buffer becomes
a resource shared between cache reads and writes,
eliminating the possibility of doing them in parallel. For
this reason, each sequence manager has two sequence
buffers which store the order in which the cache indices
are to be read. One of the buffers stores the sequence in
which the sequence manager is currently reading out
data. The other buffer stores the indices for the next
sequence. Whenever a sequence is complete, a START
instruction is issued to the decoder in order to start up
the sequence managers. At this point the new buffer is
copied into the current buffer and execution starts.

Another point of interest in our scheme is its need to
be applicable to various architectures. We require a
scheme that is flexible for this purpose. We thus has a
number of parameters like the number of caches and the
line size of each size, total cache size, the size of the data
bus, and other parameters that arise due to fact that the
decoder can do multiple issues on each cycle.

The next section describes the architecture of the
decoder and its implementation details.

3. Decoder

The decoder is a piece of hardware responsible for the
decoding of the compressed microcode located in the
program memory to a horizontal microcode that will be
used to drive the architecture.

3.1 A processor and its ISA

The decoding scheme presented earlier requires doing
various operations during the decoding: Writing a line of
microcode in the trace cache, preparing a sequence of
indexes that will be used to access the cache, output the
microcode and starting using a previously prepared
sequence. In addition, to control the execution of the code
we need a jump instruction. We decided to implement the
decoder as a processor specialized in these operations. It
executes a binary code stored in the memory and
complying with its ISA. The instructions in this ISA are
listed in Table 3.1.

The number of parameters of these instructions is
diverse; therefore their sizes are very different. Using a
fixed instruction format would force us to add
unnecessary zeros at the end of the shortest instructions,
which would lower the encoding scheme compression

Table 3.1

NOP No operation

WRITE C,1.D Write data D in cache D at index |

SEQUENCE C.S Prepare sequence S for cache C

START Start executing all the ready
sequences

JUMP A,O Fetch next instructions from address A
and offset O

SEQLENGTH SL | Use sequence length SL when
executing the next sequences

STOP Freeze the decoder on its actual state
COPY C,DI,S1,BC | Read data at index Sl in cache C; Flip
the bits BC; Write at index DI in same
cache.

performance. Obviously, using variable length
instructions would solve this issue, but with the cost of
additional complexity in the fetch unit. A rapid evaluation
of the gain in term of compression ratio shows us that the
compression performance is divided by up to 4 using
fixed-size instruction: using variable-length instructions
is unavoidable.

3.2 Implementation

In order to avoid introducing stalls in the main
architecture, the decoder must have finished preparing
the next sequence before the current is finished. In most
cases, this requires an IPC greater than one. The flow of
instructions that will enter the decoder has two properties
that will greatly help us to achieve this goal: there are no
dependencies between instructions and we do not often
execute branch instructions. With these assumptions, an
architecture composed of several independent
Fetch/Decode/Execute pipelines seems to be the most
efficient way to achieve a high IPC.

The architecture we have chosen is presented in
Figure 3.1

The decode unit of each pipeline has to be able to
communicate to all the caches the operations they have to
do. Thus, each pipeline has one bus on which the decode
units can put the data to be written and the index at
which it has to be written. It activates the cache that has
to write the data through an enable signal.



The selection of the cache line that has to be used to
generate the microcode at each cycle is done by a unit
independent from the processor and attached to each
cache: the sequence manager. When a sequence
instruction is executed, it receives a sequence of indexes
from the decode stage, and stores it to a temporary buffer.
When a start instruction is executed, the content of this
temporary buffer is copied to a working buffer, and the
sequence manager starts to output the cache lines
indicated in this sequence. The execution of the processor
and of the sequence manager is synchronized by the start
instructions: If a start is issued when the sequence
managers have not finished executing the previous
sequence, the processor stalls its fetch stage and waits
until the sequence is finished. If a sequence manger has
finished executing its previous sequence, but no start is
pending, then it stalls the main architecture, and waits for
a start to be issued.

Fetching an instruction on each cycle where the size is
only known a-posteriori presents a performance issue:
The size is actually calculated in the decode stage, or one
cycle after the instruction has been fetched. The fetcher
can not compute the address at which the next instruction
is located in memory until it knows this size. This
prevents the pipelines from fetching more than one
instruction every two cycles. Several methods have been
created to allow fast fetching of variable length
instructions in normal processors, as [5] or [6], but these
solutions are not really well suited in our case. As we do
not have any dependencies between instructions, a more
efficient method exists. The solution to this problem is
interleaving two instruction streams in the same pipeline.
On even cycles, the fetch unit takes instructions from
stream 1 located at address 1 in the memory, and on odd
cycles, it takes instructions from stream 2 located at
address 2 different from address 1. With this interleaved
scheme, an instruction is issued at every cycle. The task to
split the instruction stream in two different streams is
given to the encoder, which has to place the instructions
at the right positions in the memory.

The datapath from the memory has a fixed size. This
means that the fetch unit has to buffer the data coming
from the memory in order to select the right bits that
form a valid instruction. When a jump is decoded, its
address is forwarded to the fetch unit, which flushes its
buffer, changes its program counter to the new value, and
starts making request to the memory to refill its buffer.

An issue specific to the decoder forces the encoder to
care about the cycle at which an instruction is executed: If
the decoder executes two writes and a start in the same
cycle, one write can belong to the sequence located before
the start and the other can belong to the sequence located
after the start. This violates the correctness of the
decoding: the start will be executed too early and the first
write will be considered as a write in the second sequence.
A piece of hardware could be added to deal with this case,
but this would drastically increase the complexity of the
decoding. We preferred to transfer this complexity to the
encoder: it detects this special case and adds extra NOPs
between the first write and the start to be sure that they
will not be decoded in the same cycle.

Figure 3.1 : Decoder architecture

4. Encoder

The encoder is a compiler that generates instructions
for the decoder. The code generated by the encoder forms
the compressed microcode stream that is stored in
memory.

The encoder functions in two stages. The first stage
involves generation of a linear instruction sequence and
mapping the bits of the microcode that are “don’t care’s”
in such a way as to minimize the code size. The second
stage involves packing the linear instruction stream as per
the requirements of the decoder.

4.1 Generation of instructions

The encoder performs the first stage by keeping a
simulation of the trace caches. The encoder first performs
a preprocessing step by taking in the input assembly code
and the XML file giving the microcode representations of
each instruction and substitutes them to obtain the input
microcode. This microcode trace is then examined
linearly. A single line of microcode is first broken up as
per the length and number of trace caches. The number
and length of trace caches are part of the parameters of
the scheme that can be varied. After the microcode is split
up, each trace cache is checked for a cache hit. If there is a
cache miss, a WRITE instruction is generated. This
implies either that one of the lines of the trace cache has
to be empty, or that one of the lines has to be replaced.
While replacement is done, care has to be taken that none
of the trace cache lines involved in the current sequence
being executed by the sequence manager is being
overwritten. The WRITE instruction takes as operands
the line so chosen and the microcode value to be written.
In case of a cache hit, no WRITE instruction is generated.
In either case, the cache index in which the value is either
present or written into is added to a list which is issued to
the sequence manager in charge of the respective cache.
The list is passed to the manager in the form of a
SEQUENCE instruction to the decoder. The next line of
the microcode is then considered. As the number of bits
that a SEQUENCE instruction can occupy is limited by
the size of the sequence buffer, only a certain number of



indices can be added. Once this limit is crossed, the
encoder tells the sequence managers to start their
sequencing by issuing a START instruction, and the
sequences in the simulation are emptied.

4.2 Mapping of don’t cares

The original microcode has a lot of bits that are don’t
cares and which can be set to either one or zero. We
decide which bit to use depending on which mapping will
yield a cache hit. If none of the possible settings of the
don’t cares yields a cache hit, then we set all don’t cares to
zero before issuing the WRITE instruction. This is
motivated by the fact that most bits in the microcode are
zeros and we want the trace cache to also be similar, in
order to have a better hit rate.

4.3 Insertion of NOPS and packing of instructions

Once the linear code is generated, it has to be split
into a number of instruction streams. The motivation and
scheme for interleaving instruction streams is described
in Section three. Here we confine ourselves to how the
encoder generates these streams. The special case of a
START instruction being issued in the same cycle as a
WRITE instruction for the previous stream is handled by
padding the instruction stream with the requisite number
of NOP instructions in order to ensure that the START
instruction is always issued first.

After NOPs are inserted, the entire linear code is split
into blocks of size ISSUEWIDTH. Each block is further
subdivided into two interleaved streams. Alternate
instructions are issued to the interleaving streams until
all instructions in the block have been issued. Then the
next block is taken up and the process repeated. This
sequence of instructions generated is the packed
sequence. .

Since the decoder initially does not know at which
point in memory each of the streams start, the first few
instructions are JUMP instructions to the start of each
stream.

4.4 The COPY instruction

The WRITE sequences that are issued form the major
part of the total code size. An attempt made to reduce the
number of WRITE instructions was to introduce a form of
delta coding through a COPY instruction. The motivation
behind this was that in many cases, the new microcode
lines differed only slightly from an existing cache line
with only a few bits different. By using 2 COPY instruction
which only encoded the original index and the bits to be
flipped, it was hoped to reduce the total code size. In
order to optimize the use of such COPY instructions, such
instructions are issued only when the corresponding
WRITE instruction occupied more bits than the COPY
instruction. The decision whether to use COPY or WRITE
is made by the encoder. Since the encoder is meant to be
in software, it typically can do expensive operations.

5. Experimental results
5.1 Evaluation methodology

We built a simulation environment to evaluate our
scheme: The encoder has been implemented as a JAVA
application, and the decoder as a C++ cycle-accurate
simulation. Three test architectures have been used: RSA
is a hardware implementation of the RSA
coding/decoding algorithm, CC is a Convolution Coder
processor, and DLX is a processor compliant with the
DLX ISA. For the DLX example, we use five test
applications, that cover a wide range of multimedia
applications, all built out of C code, and taken from [2]:
des_branch is an implementation of the DES cryptology
algorithm, des_unrolled is the same implementation, but
with the main loop (which contains 8 iterations) unrolled.
Fft is an implementation of the FFT algorithm,
gsm_encode and gsm_decode are the two main kernels of
the voice codec for the GSM standard. Finally, Idct is an
implementation of the inverse discrete cosine transform,
used in the JPEG 2000 standard.

All these programs have been compiled to ASM using
GCC 2.7.2 cross compiled for PISA. The TIPI microcode
generator has been used to generate the microcode that
will be used by the encoder.

5.2 Optimization of the codec parameters

Before using our codec, any user has to decide the
parameters that will be used to generate the codec, such
as the size of the caches, their number, the number of
pipelines in the decoder, and the length of the sequence
used to index the cache. In the next paragraph, we will
study the variation of these parameters on the global
performance of the codec.

One could expect that increasing the cache size would
allow for a better compression rate by inereasing the hit
rate. This is true, but another effect has to be taken into
account: each time that this size crosses a power of two,
one extra bit is needed to write an index into the cache,
which drastically increases the size of the sequence
instruction. Figure 5.1 shows the result of the measure of
compression ratio when the cache size varies. We can see
the gaps at size=32 and size=64. For the DLX example,
increasing the cache size over 64 does not increases the
hit rate. The IDCT example has the worst compression
rate, fact that we will find again in the other measures.
This is mainly due to its small size (541 instructions),
which does not allow to take full advantage of the cache.

As shown by Figure 5.2, increasing the sequence
length has always a positive effect on the compression
ratio: By having longer sequences, the total number of
sequences in the packed file decreases. As each sequence
write is associated with a START, we decrease the number
of these instructions, and the bits associated with these
are not written in the packed file.

To avoid stalling the main architecture, the decoder
has to finish writing the data in the cache and the
sequence in the sequence manager before the start is
issued. For a short sequence length, this means that we
have to guarantee a high IPC. The Figure 5.3 shows the
result of a variation in the issue width (=IPC for us) on
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the number of stalls at the output for a sequence length of
7. An IPC of one is definitely too small for this sequence
length, and up to 7% of stalls are introduced. However,
above IPC=2, the decoder is fast enough to be able to
decode the whole stream without any stall. The remaining
1% of stall is due to the stalls introduced during the
initialization, when the decoder prepares the first
sequence.
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5.3 Comparison with other schemes

Figure 5.4 presents a comparison in terms of
compression ratio between our codec (MT-codec, for
Microcode Trace Coder Decoder), and other reference
schemes: Huffman is a standard dictionary based method
widely used to compress standard code. We use it to
compress the microcode and we measure the size of the
compressed file its produces. We have taken the source
code for this application from [4]. DLX is a classic
instruction decoder for a DLX architecture. The
compression ratio for DLX is defined as the ratio of the
size of the binary object file divided by the microcode size
acquired using the Simplescalar [3] simulator. We also
provide the compression ratio that gzip can achieve on
the microcode. We consider that to be the final boundary
that a compression scheme can reach (but gzip is not
implementable in hardware). MT-codec does better than
Huffman on any example. It is also nearly equivalent to
the DLX instruction decoder, although the DLX ISA has
been carefully designed to save room in memory,
compared to MT-codec, which is an automatically
generated coding scheme. MT-codec is not so far from the
gzip limit, and can even do better in the des_branch
example.
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Figure 5.4: Comparison with other schemes

Figure 5.5 presents the data rate generated by the
instructions on the memory bus during the execution of
the des_branch program. We used as a reference a DLX
processor simulation (simplescalar tool suite), having a
L1 instruction cache of size 64 lines of each 128 bits, for a
total of 8KB. The replacement policy is LRU. In average,
our scheme generates less traffic on the memory bus (7.2
bits/cycle) than the DLX processor, which generates a
traffic of 8.3 bits/cycle. The main core of des_branch is a
loop of relatively small size and can entirely fit in the
instruction cache of the DLX processor, which explains
that a big part of the execution does not generate any
traffic. In comparison, our scheme permanently needs
some SEQUENCE instructions, which keeps a residual
traffic on the bus. The peak traffic is much lower with our
scheme (20.7 bits/cycle versus 38.8 bits/cycle), which can
be explained by the fact that when the caches are totally
empty, or do not contain any interesting data, DLX has to



load the full instructions, whereas our decoder use delta-
coding (COPY instruction) to modify the non-valid
instructions that are in the cache.
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5.4 Efficiency of the scheme

To see how we could still improve our scheme, we
measured the contribution, in size, of each instruction in
the packed file. On average, SEQUENCE represents 66%
of the size, COPY 20%, and WRITE 12%. This shows that,
for the kind of scheme that we have chose (trace cache
operations), we are close to the optimum, which would be
a packed file composed uniquely of SEQUENCE, and
where the writing of data would not account for a big part
of the file size. These figures also show that the COPY
instruction is an efficient way to compress the WRITE
instruction, as COPY accounts for 34% of the number of
instructions, but only 20% of the size, while WRITE
accounts for 5% of the instructions, but 12% of the size.

6. Conclusions

In this paper, we presented a scheme which allows for
compression of microcode traces. In our scheme, the
encoded stream is a set of instructions for a processor
that operates on a set of trace caches and reads the values
out in the right order. We presented details of the decoder
and the encoder and compared the performance of our
scheme with respect to the hand-coded ISA of the DLX
processor, and to Huffman encoding of the original
microcode.

The results show clearly that our scheme is
competitive against the hand made encoding for the DLX.
On average it performs slightly better. Our scheme does
better in all cases than the Huffman encoding scheme,
which does not fully exploit the redundancy of don't cares
and does not do delta coding.

Our scheme also provides a way for the architecture
designer to explore various parameters and choose the
one best suited to the architecture.

Since in many cases the ISA encoding does not matter to
the architecture designer, and in fact hand-coding
involves significant effort and verification time, we
believe an automatically generated encoding will be of

great value. Our scheme provides an automatic way to
produce an ISA which is the encoded stream.

Future Work

Our scheme does not provide any efficient branch
mechanism. The JUMP mechanism is a slow mechanism
used to initialize the state of the processor and to jump
from one big linear block of code to another one. The
decoder architecture could be used to provide a really
efficient high granularity branch mechanism: on a
branch, the processor starts filling the caches with the
microcode needed for the two possible outcomes of the
branch. The sequence managers receive the feedback
information from the main architecture, and decide
which sequence they have to execute. This would allow a
fast branch with no extra cycle introduced by the
decoding.

The COPY instruction provides an efficient way to
compress the writes to the caches. After adding COPY, the
SEQUENCE instructions represent the biggest part of the
compressed file. Some similar instruction could be found
which would be a compressed form of the SEQUENCE
instruction.

For each architecture, the user still has to decide all
the parameters for the encoding/decoding scheme. We
provided in this paper results that can be used as a
guideline to choose these parameters, but a more efficient
way would be to generate automatically these parameters,
using an analysis of the topology of the main architecture.
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