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Abstract. A model for discrete time stochastic hybrid systems is pro-
posed in this paper. With reference to the introduced class of systems,
a methodology for probabilistic reachability analysis is studied, which
can be useful for safety verification. This methodology is based on the
interpretation of the safety verification problem as an optimal control
problem for a certain controlled Markov process. In particular, this al-
lows to characterize through some optimal cost function the set of initial
conditions for the system such that its state can be maintained within a
given “safe” set with sufficiently high probability. The proposed method-
ology is applied to the problem of regulating the average temperature in
a room by a thermostat controlling a heater.

1 Introduction

Engineering systems like air traffic control systems or infrastructure networks,
and natural systems like biological networks exhibit complex behaviors which
can often be naturally described by hybrid dynamical models- systems with
interacting discrete and continuous dynamics. In many situations the system
dynamics are uncertain, and the evolution of discrete and continuous dynamics
as well as the interactions between them are of stochastic nature.

An important problem in hybrid systems theory is that of reachability analysis.
In general, a reachability analysis problem consists of evaluating whether the
system will eventually reach a pre-specified set within a certain time horizon,
starting from a given set of initial conditions. This problem often arises in con-
nection to the safety verification scenarios, where the system is declared to be
"safe” if its state does not enter some unsafe set. In a stochastic setting, the safety
verification problem can be formulated as that of estimating the probability that
the state of the system remains within the safe set for a given time horizon. If
the evolution of the state can be influenced by some control input, the problem
becomes verifying if it is possible to keep the state of the system within the safe
set with sufficiently high probability by selecting a suitable control input.



Reachability analysis for stochastic hybrid systems has been a recent focus of
research, e.g., in [1-4]. Most of the approaches address the problem of reachabil-
ity analysis for continuous time stochastic hybrid systems (CTSHS), wherein the
effect of control actions is not directly taken into account. The theory of CTSHS,
developed for instance in [5-8], is used in [1,2] to address the theoretical issues
regarding measurability and computability of the reach events. On the compu-
tational side, a stochastic approximation method is used in [3] to compute the
probability of entering into the unsafe set. More recently, in [4], certain functions
of the state of the system known as barrier certificates are used to compute an
upper bound on the probability that the state enters in the unsafe set. In the
discrete time framework, [9] computes the reach probability using randomized
algorithms.

This study adopts the discrete time setting in order to gain a deeper under-
standing of the theoretical and computational issues associated with the reacha-
bility analysis of stochastic hybrid systems. The present work extends the above
mentioned approaches by developing a methodology to compute the maximum
probability of remaining in a safe set for a certain time horizon for a discrete
time stochastic hybrid system (DTSHS) whose dynamics is affected by a control
input. The approach is based on formulating the reachability analysis problem
as an optimal control problem and computing the optimal cost function and
the corresponding optimal policy using dynamic programming. The maximum
probability of remaining in a safe set for a certain time horizon can then be
obtained. In addition, the optimal value function directly enables us to compute
the maximal safe set for a specified threshold probability, which is the set of all
initial conditions such that the probability of exiting from the safe set during a
certain time horizon is greater than or equal to the threshold probability.

The paper is organized as follows: Section 2 introduces a model for a DTSHS.
This model is inspired by the stochastic hybrid systems models previously in-
troduced in [6,7,5, 10,8, 11] in continuous time. An equivalent representation of
the DTSHS in the form of a controlled Markov process is derived. In Section 3,
the notion of stochastic reachability for an execution of a DTSHS is introduced.
The problem of determining probabilistic maximal safe sets for a DTSHS is for-
mulated as a stochastic reachability analysis problem, which can be solved by
dynamic programming. The representation of the DTSHS as a controlled Markov
process is useful in this respect. In Section 4 we apply the proposed methodology
to the problem of regulating the temperature of a room by a thermostat that
controls a heater. Concluding remarks are drawn in Section 5.

2 Discrete time stochastic hybrid system

In this section, we introduce a definition of discrete time stochastic hybrid system
(DTSHS). This definition is inspired by the continuous time stochastic hybrid
system (SHS) model described in [12].

The hybrid state of the DTSHS is characterized by a discrete and a continu-
ous component. The discrete state component takes values in a finite set Q. In



each mode g € Q, the continuous state component takes values in the Euclidean
space R™9), whose dimension is determined by the map n : @ — N. Thus the
hybrid state space is S := Ugeg{q} x R™9. Let B(S) be the o-field generated
by the subsets of S of the form U,{g} x A,, where A, is a Borel set in ®"(9). It
can be shown (see [13, page 58]) that (S, B(S)) is a Borel space.

The continuous state evolves according to a probabilistic law that depends on
the discrete state. A jump in the discrete state may occur during the continu-
ous state evolution, according to some probabilistic law. This will then cause a
modification of the probabilistic law governing the continuous state evolution.
A control input can affect both the continuous and discrete probabilistic evo-
lutions. After a jump in the discrete state has occurred, the continuous state
is subject to a probabilistic reset that is also influenced by some control input.
Following the reference continuous time SHS model in [12], we distinguish this
latter input from the former one. We call them reset input and transition input,
respectively.

Definition 1 (DTSHS). A discrete time stochastic hybrid systems (DTSHS)
is a collection H = (Q,n,U, T, T, Ty, R), where

- Q:={q1,92,---,qk}, for some k € N, represents the discrete state space;

- n: Q — N assigns to each discrete state value ¢ € Q the dimension of
the continuous state space ™9, The hybrid state space is then given by
S = Uzeo{g} x R™M9;

— U is a Borel space representing the transition control space;

— X is a Borel space representing the reset control space; ’

- T : BE®™))xSxU — [0, 1] is a Borel-measurable stochastic kernel on R
given § x U, which assigns to each s = (q,z) € S end u € U a probability
measure on the Borel space (R™(9), B(R™9))): T (dz|(q, x), u);

—Tq:Q%x8 xU — [0,1] is a discrete stochastic kernel on Q given S x U,
which assigns to each s € § and u € U, a probability distribution over Q:
T, (als, u);

-~ R:B®™)) x 8 x X x @ — [0,1] is a Borel-measurable stochastic kernel
on ™) given S x L x Q, that assigns to each s = (q,z) € S, 0 € %,
and ¢ € Q, a probability measure on the Borel space (R™9), B(R™9))):
R(dz|(g,2), 0, ). o

In order to define the semantic of a DTSHS, we need first to specify how the
system is initialized and how the reset and transition inputs are selected.

The system initialization can be specified through some probability measure
7 : B(S) — [0,1] on the Borel space (S,B(S)). When the initial state of the
system is s € S, then, the probability measure 7 is concentrated at {s}.

As for the choice of the reset and transition inputs, we need to specify which is
the rule to determine their values at every time step during the DTSHS evolution
(control policy). Here, we consider DTSHS evolving over a finite horizon [0, N]
(N < o).

If the values for the control inputs are determined based on the values taken
by inputs and state up to the current time step, then the policy is said to be a
feedback policy.



Definition 2 (Feedback policy). Let H = (Q,n,U, T, Tz, Ty, R) be a DTSHS.
A feedback policy p for H is a sequence p = (po, pa, ..., uNn—1) of universally
measurable maps p : Sx (SXxUXx Zf - UXx X, k=0,1,...,N - 1, where
S = Ugeo{g} x R™9). We denote the set of feedback policies as M. (]

Definition 3 (Execution). Consider ¢ DTSHS H = (Q,n,U, X, Tz, Ty, R).
A stochastic process {s(k) = (q(k),x(k)), k € [0,N]} with values in S =
Ugeo{g} x R™® is an ezecution of H associated with o policy p € M and
an initial distribution 7 if its sample paths are obtained according to the follow-
ing algorithm, where all the random eztractions involved are independent:

DTSHS algorithm:
exstract from S a value 8o = (go, Zo) for the random variable s(0) = (q(0), x(0))
according to w;
set k=0
while k < N do
set (uk, O'k) = uk(sk, Sk—1;Uke1yC0k=1y+. ),'
extract from Q a value gi41 for the random variable q(k + 1) according
to Ty(- |(gx, k), ur);
if g1 = gi, then
extract from R+ q yalue Tyyy for x(k+1) according to
T (- [(gk zx), ux)

else
extract from RM%+1) g value ziyy for x(k+1) according to
R(- [(gks k), ok, Gh+1)
set k41 = (Qh+1, Th1)
k—=k+1
end a

If the values for the control inputs are determined only based on the value
taken by the state at the current time step, i.e., (uk,0%) = pr(sk), then the
policy is said to be a Markov policy.

Definition 4 (Markov Policy). Consider a DTSHSH = (Q,n,U, 2, T, T,, R).
A Markov policy p for H is a sequence p = (o, 21, - - - , uN—1) of universally mea-
surable maps px : S - UX X, k=0,1,...,N — 1, where S = Ugeo{q} X Rnla),
We denote the set of Markov policies as My,.

Note that Markov policies are a subset of the feedback policies: M,, C M.

Remark 1. It is worth noticing that the map T, can model both the spontaneous
jumps that might occur during the continuous state evolution, and the forced
jumps that must occur when the continuous state exits some prescribed set.

As for spontaneous jumps, if at some hybrid state (g,z) € S a jump to the



discrete state ¢’ is allowed by the control input » € U/, then this is modeled by
T4(d'|(g,z),u) > 0. T, also encodes a possible delay in the actual occurrence
of a jump: if Ty(q'|(g,z),u) = 1, then the jump must occur, the smaller is
T,(q’l(g.z), u), the more likely is that the jump will be postponed to a later
time.

The invariant set Dom(q) of a discrete state ¢ € Q, namely the set of all the
admissible values for the continuous state within mode g, can be expressed in
terms of T, by forcing T,(q’|(g,z), %) to be zero irrespectively of the value of
the control input u in i, for all the continuous state values z € R™9) outside
Dom(g). Thus Dom(q) := R™9 \ {z € " : Ty(¢'|(g,z),u) =0,YuelU}. O

Define the stochastic kernel 7, : BR™?)) x S x U x £ x @ — [0,1] on R*()
given S x U x ¥ x Q, which assigns to each s = (g,z) € S, ugu,ae X and
¢’ € Q a probability measure on the Borel space (R™(9), B(R"9))) as follows:

Tz(dxll(q) x)iu’)? if q’ =g
R(dz'|(g,2),0,¢"), if ¢ #q.

In the DTSHS algorithm, 7, is used to extract a value for the continuous state
at time k 4+ 1 given the values taken by the hybrid state and the control inputs
at time k, and the value extracted for the discrete state at time k + 1.

Based on 7, we can define the Borel-measurable stochastic kernel T : B(S) x
SxUxX —[0,1] on S given S x Y x X, which assigns to each s = (¢,z) € S,
(u,0) €U x T a probability measure on the Borel space (S, B(S)) as follows:

Ty(ds' |s, (v, 0)) = 7z (dz’ |s, u, 0, ¢') Ty (q'|s, u), §))

8,8 =(¢,2') €S, (u,0) € Ux Z. Then, the DTSHS algorithm can be rewritten
in a more compact form as:

Tm(dz, l(q’ z)au’os q,) = {

extract from S a value sg for the random variable s(0) according to w;

set k=0

while k < N do
set (uk,0k) = pk(Sk, Ske1, Uk=1,0k=1,. - );
extract from S a value sgy1 for s(k + 1) according to Ty(- |sk, (uk, o));
k—ok+1

end u}

This shows that a DTSHS H = (Q, n,U, X, T;, T,, R) can be described as a con-
trolled Markov process with state space S = Uyeg{g} x ®*(9), control space A :=
U x X, and controlled transition probability function T : B(S) x S x A — [0,1]
defined in (1). This will be referred to in the following as “embedded controlled
Markov process” (see, e.g., [14] for an extensive treatment on controlled Markov
processes).
As a consequence of this representation of M, the execution {s(k) = (q(k), x(k)),

k € [0, N]} associated with 1 € M and = is a stochastic process defined on the



canonical sample space 2 = SV, endowed with its product topology B(£2), with
probability measure P# uniquely defined by the transition kernel T}, the policy
K € M, and the initial pobability measure 7 (see [15, Proposition 7.45]). When
w is concentrated at {s}, s € S, we shall write simply P¥.

From the embedded Markov process representation of a DTSHS it also follows
that the execution of a DTSHS associated with a Markov policy i and an initial
condition 7 is a Markov process.

Ezample 1 (The thermostat). Consider the problem of regulating the tempera-
ture of a room by a thermostat that can switch a heater on and off.

The state of the controlled system is naturally described as a hybrid state. The
discrete state component is represented by the heater being in either in the “on”
or in the “off” condition. The continuous state component is represented by the
average temperature of the room.

We next show how the controlled system can be described through a DTSHS
model H = (Q, n,U, Z, T, T,, R). We then formulate the temperature regulation
problem with reference to this model.

As for the state space of the DTSHS, the discrete component of the hybrid
state space is @ = {ON,OFF}, whereas n : Q@ — N defining the continuous
component of the hybrid state space is the constant map n(g) = 1,Vg€ @

We assume that the heater can be turned on or off, and that this is the only
available control on the system. We then define ' = @ and &/ = {0,1} with
the understanding that 1 means that a switching command is issued, 0 that no
switching command is issued.

As for the continuous state evolution, in the stochastic model proposed in
[16], the average temperature of the room evolves in the two different modes
according to the following stochastic differential equations (SDEs)

—&(x(t) — za)dt + dw(t), if the heater is off

2
—&(x(t) — za)dt + 5dt + Fdw(t), if the heater is on @

dx(t) = {

where a is the average heat loss rate; C is the average thermal capacity of
the room; z, is the ambient temperature; r is the rate of heat gain supplied
by the heater; w(t) is a standard Wiener process modeling the noise affecting
the temperature evolution. By applying the constant-step Euler-Maruyama dis-
cretization scheme [17] to the SDEs in (2), with time step A¢, we obtain the
stochastic difference equation

e+ 1) = x(k) — &(x(k) — zs)At + n(k), if the heater is off @)
x(k+1) = x(k) — & (x(k) — za)At + At +n(k) if the heater is on,
where, {n(k), k > 0} is a sequence of i.i.d. Gaussian random variables with zero
mean and variance 12 := Jz At.
Let N(-;m,02) denote the probability measure over R associated with a
Gaussian density function with mean m and variance o2. Then, the continuous



transition kernel T, implicitly defined in (3) can be expressed as follows:

e — & B

T.(-I(g,2),u) = {ﬁ,’( omglemman ), T
(nx— &z — 1a)At + AL V%), g=0N
Note that the evolution of temperature within each mode is uncontrolled and
so the continuous transition kernel T; does not depend on the value u of the
transition control input.

We assume that it takes some (random) time for the heater to actually switch
between its two operating conditions, after a switching command has been issued.
This is modeled by defining the discrete transition kernel T, as follows

Ty(q'|(g,7),0) = {1: 7=q

0, ¢#¢q
a, ¢' =OFF, ¢=ON
l_a, q'=q=0N

l_ﬂ) q’=q=0FF

Vz € R, where a € [0, 1] represents the probability of switching from the ON to
the OFF mode in one time-step. Similarly for 8 € [0,1).

We assume that the actual switching between the two operating conditions
of the heater takes a time step. During this time step the temperature keeps
evolving according to the dynamics characterizing the starting condition. This
is modeled by defining the reset kernel as follows

N(;z - &(z — z0) AL, 12), q = OFF

Nz — &z — za)At + 5 AL, 2), g=0N. ©)

R(' '(Q1 .'B), q,) = {

Let -, z+ € R, with 2~ < z*.
Consider the (stationary) Markov policy uy : S — U defined by

el(@,2)) = {1’ =0 z2 5 ore =0 2 <57

0, g=0N,z<ZTT orq=0FF,z>Z
that switches the heater on when the temperature drops below £~ and off when
the temperature goes beyond zt.

Suppose that initially the heater is off and the temperature is uniformly
distributed in the interval between Z~ and Z*, independently of the noise process
affecting its evolution. In Figure 1, we report some sample paths of the execution
of the DTSHS associated with this policy and initial condition. We plot only the
continuous state realizations.

The temperature is measured in Fahrenheit degrees (°F) and the time in
minutes (mén). The time horizon N is taken to be 600 min. The discretization



time step At is chosen to be 1 min. The parameters in equations (4) and (6) are
assigned the following values: £, = 10.5°F, a/C = 0.1 min~!, r/C = 10°F/min,
and v = 1°F. The switching probabilities @ and 8 in equation (5) are each
chosen to be equal to 0.8. Finally, Z~ and Z* are set equal to 70°F and 80°F,
respectively.

3 =

Temperature (in F)
-
o

3,

Fig. 1. Sample paths of the temperature for the execution corresponding to a Markov
policy starting with the heater off and temperature uniformly distributed on [70,80]°F.

Note that some of the sample paths exit the set {70,80])°F. This is due partly
to the delay in turning the heater on/off and partly to the noise entering the
system. If the objective is keeping the temperature within the set [70,80]°F,
more effective control policies can be found.

In the following section we consider the problem of determining those initial
conditions for the system such that it is possible to keep the temperature of the
room within prescribed limits over a certain time horizon [0, N], by appropriately
acting on the only available control input. Due to the stochastic nature of the
controlled system, we relax our requirement to that of keeping the temperature
within prescribed limits over [0, N] with sufficiently high probability. We shall
see how this problem can be formulated as a stochastic reachability analysis
problem. O

3 Stochastic reachability

In general terms, a reachability analysis problem consists in evaluating if a given
system will eventually reach some set during some time horizon, starting from
some initial condition or set of initial conditions. This problem arises, for in-
stance, in connection with those safety verification problems where the unsafe
conditions for the system can be characterized in terms of its state entering some
unsafe set: if the state of the system cannot enter the unsafe set, then the system
is declared to be “safe”.

If the evolution of the state of the system can be affected by some control
input, then the problem becomes evaluating if it is possible to maintain the state
of the system outside the unsafe set by selecting an appropriate control policy.
The answer to this question will obviously depend on the system initialization:



for some initial conditions (in particular if the system is initialized in the unsafe
set...), there is no chance of guaranteeing safety.

In a stochastic setting, the problem translates into that of verifying if it is
possible to maintain the state of the system outside the unsafe set with suf-
ficiently high probability, by choosing an appropriate control policy. Different
initial conditions are characterized by a different probability of entering the un-
safe set: if the system starts from an initial condition that corresponds to a
probability e of entering the unsafe set, then the system is “safe with probability
1-¢€".

One can then define sets of initial conditions corresponding to different safety
~ levels, that is sets of states such that the value for the probability of entering the
unsafe set starting from them is smaller or equal to a given value €. These sets are
called mazimal probabilistic safe sets. The attribute “maximal” underlines the
fact that they are obtained by computing for each state the minimal probability
of entering the unsafe set starting from that state: each single policy would
generate probabilistic safe sets that are subsets of the maximal probabilistic safe
sets.

With reference to the introduced stochastic hybrid model #, a reachability
analysis problem consists in determining the probability that the execution as-
sociated with some given policy ¢ € M and initial distribution 7 will enter a
Borel set A € B(S) during the time horizon [0, N]:

pi(A) := P¥(s(k) € A for some k € [0, N}). 7

Let Ic : S — {0,1} denote the indicator function of a set C C S: Ig(s) = 1, if
se€C,0,ifs¢gC.

Pi(A) can be expressed as ph(A) = PF(maxep,n)1a(s(k)) = 1). If the
probability 7 is concentrated at {s}, s € S, then this is the probability of entering
A starting from s, which we denote by p(A).

Suppose that A represents an unsafe set for H. Fix € € (0,1).

The probabilistic safe set that guarantees a safety level 1 — ¢, when the control
policy is 4 € M, is defined as

St(e) ={s€ S:pk(A) <¢}, (8)
whereas the maximal probabilistic safe set with safety level 1 — ¢ is
S*(e)={seSs: "%pg(A) <e}, 9)

from which it appears evident that S#(e) C S*(e), for each € € (0, 1).

In the rest of the section, we show that (i) the problem of computing p#(A) for
a Markov policy 4 € M,, can be solved by using a backward iterative procedure;
and (ii) the problem of computing $*(¢) can be reduced to an optimal control
problem. This, in turn, can be solved by dynamic programming, and admits as
solution an optimal control policy that is Markov. These results are obtained
based on the representation of p%(A) as a multiplicative cost function.



The probability pi(A) defined in (7) can be expressed as p2(A) = 1—p%(4),
where A denotes the complement of A in S and p#(4) := Pk(s(k) € Afor all k €
[0, N]). Observe now that

N . =
Ipdm={LﬁueAmmwemm

frrd 0, otherwise,

sk €8, k€[0,N].
Then, p4(A) = PA([Taco 14(s(K) = 1) = EX[[Ii, 14(s(k))]. From this ex-
pression it follows that

N
() = /S E# [ T] 14(s(k)1 5(0) = s](ds), (10)

k=0

where the conditional mean E,’:[]'[,’:':o 13(s(k))| s(0) = s] is well defined over the
support of the probability measure 7 representing the distribution of s(0).

3.1 Backward reachability computations

We next show how it is possible to compute p#(A) through a backward iterative
procedure for a Markov policy 7 € My,. The motivation is that, in view of the
embedded Markov process representation of a DTSHS, the only policies we need
to consider for the maximal safe set computation are in fact Markov policies.
Consider a Markov policy p = (uo, gt1,...,4N-1), wWith px : S - U x X,
k=0,1,...,N—1.
For each k € [0, N], define the map V¥ : § — [0, 1] as follows

N N-1
Vi (s) = 14(s) / IT 1a(s) TI Tedsnialsn, pn(sn))To(dsksrls, pis)),
SNk 1k h=k+1

(1)

Vs € S, where T, is the controlled transition function of the embedded Markov
process, and [go(...) =1.

If s belongs to the support of m, then, E#[ [T}%, 1 4(s(!))| s(k) = s is well-defined
and equal to the right-hand-side of (11), so that

N
V() = B[] 14601 s(k) = 5. (12)
=k

Hence, V}¥'(s) denotes the probability of keeping outside A during the (residual)
time horizon [k, N] starting from s at time k, under policy p applied from .
By (10) and (12), p#(A) can be expressed as

P(A) = /S Ve (s)r(ds).



If 7 is concentrated at {s}, p#(A) = V§‘(s). Since p#(A) = 1 — p#(A4), then the
probabilistic safe sets with safety level 1 — ¢, € € (0,1), defined in (8) can be
computed as

She)={seS:V(s)=>1—-¢}.

Following (18], we prove the following lemma.

Lemma 1. If p is a Markov policy, then the maps V¥ : S — [0,1], k =
0,1...,N, can be computed by the backward recursion:

Vi (s) =14(s) [Ty(als, uE(s)) /mm Vi1 (g, 2)) T (d2'|s, uZ (s))
+ 3Tl vi(e) IR ACEL I OR|

for all s = (g,z),8' = (¢, ') € S, where px(s) = (uf(s),0}(s)) € U x T, with
the initialization V}(s) = 14(s), s€ S.

Proof. From the definition of V} in equation (11), we immediately get that
Vi§(s)=14(s), s€S. Next, for k< N

N N-1
Vk“(3)=11(3)/;N_k II 1aGs) JI To(dsnealsn, en(sn))Tu(dsksals, pa(s))
1=k+1 h=k+1

N N-1
=14(s) /s 1A(Sk+l)( /s o z=];4[-2 1.&(31)h=112Ts(d3h+1|8h,#h(8h))

To(dsk+2Sk41, ME+1 (3k+1))) Ts(dsk+1s, uk(s))
=14 | Vi (orrt)Ta sl (s

Recalling the definition of T the thesis immediately follows. In}

3.2 Maximal probabilistic safe set computation

The calculation of the maximal probabilistic safe set $*(e) defined in (9) amounts
to finding the feedback policy u* € M that minimizes the probability that the
execution associated with it starting at s enters the unsafe set A, for all s € A4,
and grouping those states s which give a sufficiently high safety guarantee.

Definition 5 (Optimal policy). Consider a DTSHSH = (Q,n,U, X, 7:,_-, Tg, R).
Let A € B(S) be an unsafe set. A policy p* € M is optimal if p# (A) =
infuem ph(A), Vs € S\ A.

Remark 2. Note that for every s € A, the probability of entering the unsafe set
A starting from s is 1, irrespectively of the policy chosen: infuem pf(4) = 1,
Vs € A. Moreover, p} (A) = infuerm ph(A4) = 1 — sup,c pq P4 (A).



Let us define the cost-to-go at time k for any arbitrary policy u € M as

N
JE=E []'[ l_q(s‘)|so,...,sk] i

=k

Theorem 1. The solution u* € My, of the following recursion

Vn(s) = 15(s)
Vi(s) = szelg 15(s) L Vi1 (8k41)To(dsk41]s, @), for k € [0, N — 1]

has the form pi(s) = argsupye 4 14(3) [ Vity 1 (Sk41)Ts(dSk+1]s, @), and is such
that for any p € M and k € [0, N], Vi (sx) = JE a.s.

Proof. As previously assumed, we deal with a Borel space (S, B(S)) and with
Borel measurable stochastic kernels. The one-stage cost function 1 5(s) is Borel
measurable, non negative and bounded for all s € S. In particular, V§(s) =
14(s) is Borel measurable. For all k,0 < k < N — 1, it can be directly checked
that the mapping

V(6 = 14(6) | Vi (ort)T:susals, n(s), for k € 0,V — 1]

verifies the monotonicity assumption on its function Vi, (cf. [15], Sec. 6.1).
The cost function Vj*(s) belongs to the set of extended real-valued, universally
measurable functions on S(cf. [15], 7.46.1 and 7.30). Moreover, consider the

mapping
Vi'(s) = sup 11(3)/ Vk.+1(sk+l)Ta(d3k+1|31 a).
a€EA S

The functions V;’(s) are universally measurable and lower semianalytic. This
holds because the product of a lower semianalytic function by a positive, Borel
measurable function is lower semianalytic; furthermore, the integration of a lower
semianalytic function with respect to a stochastic kernel and its supremization
with respect to one of its arguments (in this specific instance, the control at
time k) is lower semianalytic (cf. [15], 7.30, 7.47 and 7.48). The preceding mea-
surability assumptions provide a solid ground for the ezact selection assumption
to hold ([15], Sec. 6.2): for all s € S, there exists an optimal markovian policy
u* € My, such that, forall 0< k<N -1

V& (s) = Vi (s) = sup V¥(s).
acA

In particular (cf. Prop. 6.1, [15]): V5'(s) = supge4 Vi'(s)- (]

Then the maximal probabilistic safe set S*(e) with safety level 1 — ¢ defined
in (9) can be determined as S*(e) = {s € S: Vy(s) > 1 —¢}.



4 The thermostat example

In this section we show the applicability of our methodology to the problem of
regulating the temperature of a room by a thermostat controlling a heater. The
DTSHS description of the system was given in Example 1 of Section 2. The sys-
tem parameters and time horizon are set equal to the values reported at the end
of Example 1. Three safe sets are considered: 4; = (70,80)°F, Az = (72,78)°F,
and Az = (74, 76)°F. The dynamic programming recursion described in Section
3.2 is used to compute the optimal policies and the maximal probabilistic safe
sets. The implementation is done in MATLAB. The temperature is discretized
into 100 equally spaced values within the safe set.

Figures 2 show the plots of 100 temperature sample paths resulting from

sampling the initial temperature from the uniform distribution over the safe
sets, and using the corresponding optimal policy. The initial operating mode is
chosen at random between the equiprobable ON and OFF values.
It can be observed from each of the plots that the optimal policy computed by the
dynamic programming recursion leads to an optimal behavior in the following
sense: regardless of the initial state, most of the temperature sample paths tend
toward the middle of the corresponding safe set. As for the A; and A, safe
sets, the temperature actually remain confined within the safe set in almost all
the sample paths, whereas this is not the case for Ajs. This is expected because
the set A3 is too small to enable the optimal policy to specify an action that
is effective enough to offset the drifts and the randomness in the execution in
order to maintain the temperature within the safe set.

The maximal probability of remaining in the safe set p{4;) for = uniform
over @ x A;, i = 1,2, 3, is computed. The value is 0.991 for A;, 0.978 for A3 and
0.802 for Aj.

The maximal probabilistic safe sets S#{e) corresponding to different values
for € are also calculated. A maximal safe set corresponding to € is a set of all
initial conditions for which the probability of remaining in the safe set for a
pre-specified time horizon is greater than or equal to 1 — e. Figure 3 gives the
maximal probabilistic safe sets for different 1 — e values for each of the three
considered cases when the heater is initially either on or off. As expected, the
maximal probabilistic safe sets get smaller as the 1 — € value for the safety
guarantee grows. In the third case, when the safe set is A3, there is no policy
that can guarantee a safety probability greater than equal to about 0.86.

pr : S — U at times k € {1,250, 500, 575, 580, 585, 590, 595, 599} for the three
cases are shown in the figure 4, as a function of the continuous state and discrete
state (the red crossed line refers to the OFF state, whereas the blue circled line
refers to the ON state).

The obtained result is quite intuitive. For example, at time k& = 599 and in
mode OFF, the optimal policy prescribes to stay in same mode for most of the
states except near the lower boundary of the safe set, in which case it prescribes
to change the mode to ON since there is possibility of entering into the unsafe
set. However, at earlier times (for instance, time k = 1) and in mode OFF, the
optimal policy prescribes to change the mode even for states that are distant
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Fig. 2. Sample paths of the temperature for the execution corresponding to the optimal
policy, when the safe set is: A) (top), A2 (middle), and A3 (bottom).



from the safe set boundary. Similar comments apply to mode ON. From the left
column of Figure 4 it can observed that the optimal policy is not stationary.
More precisely, it has a steady-state behavior for most of the times, except for
a transient behavior towards the end of the time horizon. By comparing the
columns of Figure 4, this transient period gets progressively smaller for A2 and
A Tt is interesting to note the behavior of the optimal policy corresponding to
the safe set A; at k = 580 and k = 575. For example, for k = 580, the optimal
policy for OFF mode fluctuates between actions 0 and 1 when the temperature
value is around 75°F. This is because the values taken by the optimal cost
function on the residual time horizon for the two control actions are almost
equal.

It should be noted that the results obtained refer to the case of switching
probabilities @ = 8 = 0.8. Different choices of switching probabilities may yield
qualitatively different optimal control policies.
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Fig. 3. Maximal probabilistic safe sets: heater initially off (top) and on (bottom).
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Fig. 4. Optimal control policy as a function of the temperature at different times during
the control time horizon. The darker (blue) circled line corresponds to the OFF mode
and the lighter (red) crossed lines correspond to the ON mode. The left, middle, and
right columns refer to the safe sets A; , A2, and Aj respectively.

5 Final remarks

In this paper we proposed a model for controlled discrete time stochastic hybrid
systems. With reference to such a model, we described the notion of stochas-
tic reachability, and discussed how the problem of safety verification can be
reinterpreted in terms of the introduced stochastic reachability notion. By an
appropriate reformulation of the safety verification problem for the stochastic
hybrid system.as that of determining a feedback policy that optimizes some mul-
tiplicative cost function for a certain controlled Markov process, we were able to
suggest a solution based on dynamic programming. Temperature regulation of a
room by a heater that can be repeatedly switched on and off was presented as a
simple example to illustrate the model capabilities and the reachability analysis
methodology.

Further work is needed to extend the current approach to the infinite horizon
and partial information cases. The more challenging problem of stochastic reach-
ability analysis for continuous time stochastic hybrid systems is an interesting
subject of future research.
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