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Abstract
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This thesis describes a method for ensuring partial determinism in concurrent

programs. The idea is presented in two settings: sequential processes communicating

via channels and shared references and functional programming with references.
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Chapter 1

Introduction

Deterministic programs are easier to debug and verify than non-deterministic pro-

grams, both for testing (or simulation) and for formal methods. However, most con-

current models of computation permit non-determinism from interleaving accesses

on shared resources. This thesis presents an approach to make concurrent programs

deterministic, at least partially. We demonstrate the idea in two settings:

• A set of sequential processes running concurrently at their own speeds and

communicating with each other via channels and shared references (Chapter 2).

• A functional programming language with references (Chapter 3).

Concurrency in functional languages occurs at the granularity of expressions, i.e.,

syntactically independent expressions can be evaluated in parallel. This model of

concurrency is often called data flow parallelism.

In both cases, the programming language itself actually permits non-determinism.

We formulate an algorithm (i.e., a static analysis) that checks whether an input

program is deterministic. This approach allows the language to remain in a simple

and familiar form while providing an option of provable determinism. We present
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Chapter 1. Introduction

the static analysis as a type system, which makes for an interesting comparison with

type-based concepts such as the capability calculus, monads, and linear types.

1.1 Utility of Concurrency and Determinism

Concurrency makes programs faster. For example, in the expression (a+ b)× (c+ d),

a+b and c+d can be computed in parallel, thus overlapping the time to compute one

addition with the other. However, concurrency is difficult to get right. For example,

the assignments x := 1 and x := 2 may not occur in parallel as x could be either 1 or

2 after the assignments.

Sometimes, ad hoc notions such as race freedom and atomicity are used to reason

about possibly mal-behaving concurrency. They can enforce, for example, that there

is no point in the program where x := 1 and x := 2 could both occur. In contrast,

determinism is an extensional property that can be stated purely in terms of pro-

gram semantics, that is, the program behaves semantically the same under the same

conditions. Neither race freedom nor atomicity implies determinism, nor vice versa.

Determinism is the norm in sequential programming which dominates current

software practice. We claim that most concurrent programs are also expected to

behave deterministically. This assumption appears to be reasonable not only for non-

interactive applications (i.e., “batch processes”) such as scientific computing, but

also for interactive applications such as web servers because one would expect a web

server, in some state, to behave deterministically given a series of user requests (which

could come from multiple users). At the least, non-determinism is not the reason for

choosing concurrency over sequentiality.

Non-deterministic programs are difficult to debug because one cannot just run

the program again to reproduce a bug. Determinism also helps formal methods. For

example, in model checking, determinism implies that there is no need to explore

2



Chapter 1. Introduction

more than one (abstract) program path because following any other paths would lead

to an equivalent result [GvdP00; BvdP02].

1.2 Utility of Non-Determinism

It seems rare for a real world application to require true non-determinism in the sense

that the program’s functionality specification requires the program to behave differ-

ently under the identical conditions. However, non-determinism sometimes appears

as an artifact of programming convenience. While this thesis provides a step toward

making provable deterministic concurrency practical, it may be difficult to completely

avoid non-determinism in reality. Our system actually checks for partial determinism

in which the programmer can control the degree of non-determinism.

3



Chapter 2

Deterministic Communicating

Processes

In current software practice, the dominant style of concurrency is to express pro-

grams as sets of communicating processes. Each process runs sequentially at its own

speed (i.e., asynchronously) and communicates with the other processes via shared re-

sources such as channels, locks, and basic reference cells. Many popular programming

models, including message passing programming and shared memory programming,

are derivatives of this general model. The model is popular partly because of its

resemblance to sequential programming. Usually, few syntactic changes are needed

to convert a sequential language to this concurrent model.

However, writing bug-free programs in this model is notoriously difficult due to

asynchronous accesses on shared resources, which introduce non-determinism. This

chapter presents a system that can automatically detect partial determinism in pro-

grams communicating via a mix of different kinds of communication resources: ren-

dezvous channels, output buffered channels, input buffered channels, and shared ref-

erence cells. Our system can detect more programs to be deterministic than previous

4



Chapter 2. Deterministic Communicating Processes

p ::= s1||s2|| . . . ||sn (program)
e ::= c (channel)
| x (local variable)
| n (integer constant)
| e1 op e2 (integer operation)

s ::= s1; s2 (sequence)
| if e then s1 else s2 (branch)
| while e do s (loop)
| skip (skip)
| x := e (assignment)
| !(e1, e2) (write channel)
| ?(e, x) (read channel)

Figure 2.1: The syntax of the small concurrent language.

approaches [Kah74; NS97; KPT99; Kön00; ET05]. Section 2.2.2 shows a few exam-

ples that can be checked by our system: producer consumer, token ring, and barrier

synchronization.

2.1 Preliminaries

We focus on the simple concurrent language shown in Figure 2.1. A program, p, is

a parallel composition of finitely many processes. A process, s, is a sequential state-

ment consisting of the usual imperative features as well as channel communication

operations. Here, !(e1, e2) means writing the value of e2 to the channel e1, and ?(e, x)

means storing the value read from the channel e to the variable x. The variables are

process-local, and so the only means of communication are channel reads and writes.

We use meta-variables x, y, z, etc. for variables and c, d, etc. for channels.

The language cannot dynamically create channels or spawn new processes, but

these restrictions are imposed only to keep the main presentation to the novel features

of the system. Section 2.3 shows how to handle dynamic channels and processes.

5



Chapter 2. Deterministic Communicating Processes

2.1.1 Channel Kinds

The literature on concurrency includes several forms of channels with distinct seman-

tics. We introduce these channel kinds and show how they affect determinism.

A channel is called rendezvous if the sender and the receiver must wait for each

other to communicate. Therefore, if c and d are rendezvous channels, then the fol-

lowing program is deterministic1 because (x, y) = (1, 2) when the process terminates:

!(c, 1); !(d, 2) || !(d, 3); ?(c, x) || ?(d, y); ?(d, y)

In contrast, buffered channels allow the sender to proceed without waiting for the

receiver. Therefore, the above program is non-deterministic if c is buffered because

!(c, 1) does not need to wait for the reader ?(c, x), and therefore (x, y) could be (1, 2)

or (1, 3).

We call a buffered channel output buffered if there is only one buffer for the

channel whereas we call a buffered channel input buffered if each process has its

own buffer (intuitively, output buffered channels are buffered at the sender side

whereas input buffered channels are buffered at the receiver side). Therefore,

!(c, 1); !(c, 2) || ?(c, x) || ?(c, y) is deterministic if c is input buffered but not if c

is output buffered or rendezvous. Input buffered channels are the basis of Kahn

process networks [Kah74].

We also consider a buffered channel whose buffer is overwritten by every write

but never modified by a read. Such a channel is equivalent to a reference cell. If

c is a reference cell, !(c, 1); !(c, 2) || ?(c, x) is not deterministic because !(c, 2) may

or may-not overwrite 1 in the buffer before ?(c, x) reads the buffer. The program is

1Here, we use the term informally. Determinism is formally defined in Section 2.1.2.
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Chapter 2. Deterministic Communicating Processes

deterministic if c is any other channel kind. On the other hand,

!(c, 1); !(c, 2); !(d, 3); ?(c, x) || ?(d, x); ?(c, y)

is deterministic if c is a reference cell and d is rendezvous because both reads of c

happen after !(c, 2) overwrites the buffer. But the program is not deterministic if c

is output buffered.

2.1.2 Operational Semantics

The operational semantics of the language is defined as a series of reductions from

states to states. A state is represented by the triple (B, S, p) where B is a buffer, S

is a store, and p is a program such that each concurrent process in p is indexed by a

process number, i.e., p ::= 1.s1||2.s2|| . . . ||n.sn. Indexes are used to connect a process

to its input buffer and its store.

A store is a mapping from process indexes to histories of assignments where a

history is a sequence of pairs (x, e), meaning e was assigned to x. We use meta-

variables h, h′, etc. for histories. Let :: be append. A lookup in a history is defined

as: (h :: (x, e))(x) = e and (h :: (y, e))(x) = h(x) if y 6= x. We use history instead of

memory for the purpose of defining determinism.

Expressions are evaluated entirely locally. The semantics of expressions are defined

as: (h, c) ⇓ c, (h, x) ⇓ h(x), (h, n) ⇓ n, and (h, e1 op e2) ⇓ e′1 op e′2 if (h, e1) ⇓ e′1 and

(h, e2) ⇓ e′2.

Figure 2.2 shows the reduction rules. Programs are equivalent up to re-ordering

of parallel processes, e.g., p1||p2 = p2||p1. If p is an empty program (i.e., p contains

0 processes), then p′||p = p′. Also, we let s = s; skip = skip; s. Note that

the rules only reduce the left-most processes, and so we rely on process re-ordering

to reduce other processes. The rules IF1, IF2, WHILE1, and WHILE2 do not

7



Chapter 2. Deterministic Communicating Processes

(S(i), e) ⇓ n n 6= 0

(B, S, i.(if e then s1 else s2); s||p)→ (B, S, i.s1; s||p)
IF1

(S(i), e) ⇓ 0

(B, S, i.(if e then s1 else s2); s||p)→ (B, S, i.s2; s||p)
IF2

(S(i), e) ⇓ n n 6= 0

(B, S, i.(while e do s1); s||p)→ (B, S, i.s1; (while e do s1); s||p)
WHILE1

(S(i), e) ⇓ 0

(B, S, i.(while e do s1); s||p)→ (B, S, i.s||p)
WHILE2

(S(i), e) ⇓ e′ S ′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.x := e; s||p)→ (B, S ′, i.s||p)
ASSIGN

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c
¬buffered(c) S ′ = S[j 7→ S(j) :: (x, e′2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p)→ (B, S ′, i.s1||j.s2||p)
UNBUF

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c) B′ = B.write(c, e′2)

(B, S, i.!(e1, e2); s||p)→ (B′, S, i.s||p)
BUF1

(S(i), e) ⇓ c buffered(c)
(B′, e′) = B.read(c, i) S ′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.?(e, x); s||p)→ (B′, S ′, i.s||p)
BUF2

Figure 2.2: The operational semantics of the small concurrent language.

involve channel communication and are self-explanatory. ASSIGN is also a process-

local reduction because variables are local. Here, S[i 7→ h] means {j 7→ S(j) | j 6=

i ∧ j ∈ dom(S)} ∪ {i 7→ h}. We use the same notation for other mappings.

UNBUF handles communication over rendezvous channels. The predicate

¬buffered(c) says c is unbuffered (and therefore rendezvous). Note that the writ-

ten value e′2 is immediately transmitted to the reader. BUF1 and BUF2 handle

communication over buffered channels, which include output buffered channels, in-

8



Chapter 2. Deterministic Communicating Processes

B.write(c, e) =


B[c 7→ enq(B(c), e)] if c is output buffered

B[c 7→ 〈enq(q1, e), . . . , enq(qn, e)〉]
where B(c) = 〈q1, . . . , qn〉

if c is input buffered

B[c 7→ e] if c is a reference cell

B.read(c, i) =



(B[c 7→ q′], e)

where B(c) = q and (q′, e) = deq(q)
if c is output buffered

(B[c 7→ 〈q1, . . . , q
′
i, . . . , qn〉], e)

where B(c) = 〈q1, . . . , qi, . . . , qn〉
(q′i, e) = deq(qi)

if c is input buffered

(B, B(c)) if c is a reference cell

Figure 2.3: Buffer operations.

put buffered channels, and reference cells. The predicate buffered(c) says that c is a

buffered channel. We write B.write(c, e′2) for the buffer B after e′2 is written to the

channel c, and B.read(c, i) for the pair (B′, e′) where e′ is the value process i read

from channel c and B′ is the buffer after the read.

Formally, a buffer B is a mapping from channels to buffer contents. If c is a

rendezvous channel, then B(c) = nil indicating that c is not buffered. If c is output

buffered, then B(c) = q where q is a FIFO queue of values. If c is input buffered,

then B(c) = 〈q1, q2, . . . , qn〉, i.e., a sequence of FIFO queues where each qi represents

the buffer content for process i. If c is a reference cell, then B(c) = e for some value

e. Let enq(q, e) be q after e is enqueued. Let deq(q) be the pair (q′, e) where q′ is

q after e is dequeued. Buffer writes and reads are defined as shown in Figure 2.3.

Buffer operations B.read(c, i) and B.write(c, e) are undefined if c is rendezvous.

We write P →∗ Q for 0 or more reduction steps from P to Q. We define partial

confluence and determinism.

Definition 2.1.1. Let Y be a set of channels. We say that P is partially confluent

9



Chapter 2. Deterministic Communicating Processes

with respect to Y if for any P →∗ P1 communicating only over channels in Y , and

for any P →∗ P2, there exists a state Q such that P2 →∗ Q communicating only over

channels in Y and P1 →∗ Q.

Definition 2.1.2. Let Y be a set of channels. We say that P is deterministic with

respect to Y if for each process index i, there exists a (possibly infinite) sequence hi

such that for any P →∗ (B, S, p) that communicates only over channels in Y , S(i) is

a prefix of hi.

Determinism implies that for any single process, interaction with the rest of the

program is deterministic. Determinism and partial confluence are related in the fol-

lowing way.

Lemma 2.1.3. If P is partially confluent with respect to Y then P is deterministic

with respect to Y .

The definitions are sufficient for programs interacting with the environment be-

cause an environment can be modeled as a process using integer operators with un-

known (but deterministic) semantics.

2.2 Calculus of Capabilities

We now present a system to ensure partial confluence. We cast our system as a

capability calculus [CWM99]. While capability calculi are typically presented as a

type system in the literature, we take a different approach and present the capability

calculus as a dynamic system. We then construct a type system to statically reason

about the dynamic capability calculus. This approach allows us to distinguish approx-

imations due to the type abstraction from approximations inherent in the capability

concept.

10



Chapter 2. Deterministic Communicating Processes

We informally describe the general idea. To simplify matters, we begin this initial

discussion with rendezvous channels and total confluence. Given a program, the goal

is to ensure that for each channel c, at most one process can write c and at most

one process can read c at any point in time. To this end, we introduce capabilities

r(c) and w(c) such that a process needs r(c) to read from c and w(c) to write to c.

Capabilities are distributed to the processes at the start of the program and are not

allowed be duplicated.

Recall the following confluent program from Section 2.1:

1.!(c, 1); !(d, 2) || 2.!(d, 3); ?(c, x) || 3.?(d, y); ?(d, y)

Note that for both c and d, at most one process can read and at most one process

can write at any point in time. However, because both process 1 and process 2 write

to d, they must somehow share w(d). A novel feature of our capability calculus is

the ability to pass capabilities between processes. The idea is to let capabilities be

passed when the two processes synchronize, i.e., when the processes communicate over

a channel. In our example, we let process 2 have w(d) at the start of the program.

Then, when process 1 and process 2 communicate over c, we pass w(d) from process

2 to process 1 so that process 1 can write to d.

An important observation is that capability passing works in this example be-

cause !(d, 3) is guaranteed to occur before the communication on c due to c being

rendezvous. If c is buffered (recall that the program is not confluent in this case),

then !(c, 1) may occur before !(d, 3). Therefore, process 1 cannot obtain w(d) from

process 2 when c is written because process 2 may still need w(d) to write on d. In

general, for a buffered channel, while the read is guaranteed to occur after the write,

there is no ordering dependency in the other direction, i.e., from the read to the write.

Therefore, capabilities can be passed from the writer to the reader but not vice versa,

11



Chapter 2. Deterministic Communicating Processes

whereas capabilities can be passed in both directions when communicating over a

rendezvous channel.

Special care is needed for reference cells. If c is a reference cell, the program

1.!(c, 1); !(c, 2)||2.?(c, x) is not deterministic although process 1 is the only writer

and process 2 is the only reader. We use fractional capabilities [Boy03; TA05] such

that a read capability is a fraction of the write capability. Capabilities can be split

into multiple fractions, which allows concurrent reads on the same reference cell, but

must be re-assembled to form the write capability. Fractional capabilities can be

passed between processes in the same way as other capabilities. Recall the following

confluent program from Section 2.1 where c is a reference cell and d is rendezvous:

1.!(c, 1); !(c, 2); !(d, 3); ?(c, x) || 2.?(d, x); ?(c, y)

Process 1 must start with the capability to write c. Because both processes read

from c after communicating over d, we split the capability for c such that one half

of the capability stays in process 1 and the other half is passed to process 2 via d.

As a result, both processes obtain the capability to read from c. In Chapter 3, we

show that fractional capabilities can be derived in a principled way from ordering

dependencies.

We now formally present our capability calculus. Let

Capabilities = {w(c), r(c) | c is rendezvous or output buffered}

∪{w(c) | c is input buffered} ∪ {w(c) | c is a reference cell}

A capability set C is a function from Capabilities to rational numbers in the

range [0, 1]. If c is rendezvous, output buffered, or input buffered, C(w(c)) = 1

(resp. C(r(c)) = 1) means that the capability to write (resp. read) c is in C. Read

capabilities are not needed for input buffered channels because each process has its

12



Chapter 2. Deterministic Communicating Processes

(S(i), e) ⇓ n n 6= 0

(X, B, S, i.C.(if e then s1 else s2); s||p)→ (X, B, S, i.C.s1; s||p)
IF1′

(S(i), e) ⇓ 0

(X, B, S, i.C.(if e then s1 else s2); s||p)→ (X, B, S, i.C.s2; s||p)
IF2′

(S(i), e) ⇓ n n 6= 0

(X, B, S, i.C.(while e do s1); s||p)
→ (X, B, S, i.C.s1; (while e do s1); s||p)

WHILE1′

(S(i), e) ⇓ 0

(X, B, S, i.C.(while e do s1); s||p)→ (X, B, S, i.C.s||p)
WHILE2′

(S(i), e) ⇓ e′ S ′ = S[i 7→ S(i) :: (x, e′)]

(X, B, S, i.C.x := e; s||p)→ (X, B, S ′, i.C.s||p)
ASSIGN′

Figure 2.4: The capability calculus: sequential reductions.

own buffer. For reference cells, C(w(c)) = 1 means that the capability to write is in

C, whereas C(w(c)) > 0 means that the capability to read is in C. To summarize,

we define the following predicates:

hasWcap(C, c)⇔ C(w(c)) = 1

hasRcap(C, c)⇔


C(r(c)) = 1 if c is rendezvous or output buffered

true if c is input buffered

C(w(c)) > 0 if c is reference cell

To denote capability merging and splitting, we define:

C1 + C2 = {cap 7→ C1(cap) + C2(cap) | cap ∈ Capabilities}

We define C1 − C2 = C3 if C1 = C3 + C2. (We avoid negative capabilities.)

13
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(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c
¬buffered(c) S ′ = S[j 7→ S(j) :: (x, e′2)]
` = (confch(c)⇒ (hasWcap(Ci, c) ∧ hasRcap(Cj, c)))

(X, B, S, i.Ci.!(e1, e2); s1||j.Cj?(e3, x); s2||p)
`→ (X, B, S ′, i.(Ci − C + C ′).s1||j.(Cj + C − C ′).s2||p)

UNBUF′

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c)
B′ = B.write(c, e′2) ` = (confch(c)⇒ hasWcap(C, c))

(X, B, S, i.C.!(e1, e2); s||p)
`→ (X[c 7→ X(c) + C ′], B′, S, i.(C − C ′).s||p)

BUF1′

(S(i), e) ⇓ c buffered(c) (B′, e′) = B.read(c, i)
S ′ = S[i 7→ S(i) :: (x, e′)] ` = (confch(c)⇒ ¬hasRcap(C, c))

(X, B, S, i.C.?(e, x); s||p)
`→ (X[c 7→ X(c)− C ′], B′, S ′, i.(C + C ′).s||p)

BUF2′

Figure 2.5: The capability calculus: communication reductions.

Figure 2.4 and Figure 2.5 show the reduction rules of the capability calculus. The

reduction rules (technically, labeled transition rules) are similar to those of operational

semantics with the following differences.

Each concurrent process is prefixed by a capability set C representing the current

capabilities held by the process. The rules in Figure 2.4 do not utilize capabilities (i.e.,

capabilities are only passed sequentially) and are self-explanatory. Figure 2.5 shows

how capabilities are utilized at communication points. UNBUF′ sends capabilities

C from the writer process to the reader process and sends capabilities C ′ from the

reader process to the writer process. UNBUF′ checks whether the right capabilities

are present by hasWcap(Ci, c)∧hasRcap(Cj, c). The label ` records whether the check

succeeds. Because we are interested in partial confluence with respect to some set

Y of channels, we only check the capabilities if c ∈ Y . To this end, the predicate

confch() parameterizes the system so that confch(c) iff c ∈ Y .

BUF1′ and BUF2′ handle buffered communication. Recall that the writer can

14
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pass capabilities to the reader. BUF1′ takes capabilities C ′ from the writer process

and stores them in X. BUF2′ takes capabilities C ′ from X and gives them to

the reader process. The mapping X from channels to capability sets maintains the

capabilities stored in each channel.

We now formally state when our capability calculus guarantees partial confluence.

Let erase((X, B, S, 1.C1.s1|| . . . ||n.Cn.sn)) = (B, S, 1.s1|| . . . ||n.sn), i.e., erase() erases

all capability information from the state. We use meta-variables P , Q, R, etc. for

states in the operational semantics and underlined meta-variables P , Q, R, etc. for

states in the capability calculus.

A well-formed state is a state in the capability calculus that does not carry dupli-

cated capabilities. More formally,

Definition 2.2.1. Let P = (X, B, S, 1.C1.s1|| . . . ||n.Cn.sn). Let C =
∑n

i=1 Ci +∑
c∈dom(X) X(c). We say P is well-formed if for all cap ∈ dom(C), C(cap) = 1.

We define capability-respecting states. Informally, P is capability respecting with

respect to a set of channels Y if for any sequence of reductions from erase(P ), there

exists a strategy to pass capabilities between the processes such that every com-

munication over the channels in Y occurs under the appropriate capabilities. More

formally,

Definition 2.2.2. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . Let M

be a set of states in the capability calculus. M is said to be capability-respecting with

respect to Y if for any P ∈M ,

• P is well-formed, and

• for any state Q such that erase(P ) → Q, there exists Q ∈ M such that,

erase(Q) = Q, P
`→ Q, and if ` is not empty then ` = true.

We now state the main claim of this section.

15
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Theorem 2.2.3. Let P be a state. Suppose there exists M such that M is capability-

respecting with respect to Y and there exists P ∈ M such that erase(P ) = P . Then

P is partially confluent with respect to Y .

2.2.1 Static Checking of Capabilities

Theorem 2.2.3 tells us that to ensure that P is partially confluent, it is sufficient

to find a capability-respecting set containing some P such that erase(P ) = P . 2

Ideally, we would like to use the largest capability-respecting set, but such a set is

not recursive (because it is reducible from the halting problem). Instead, we use a

type system to compute a safe approximation of the set.

We define four kinds of channel types, one for each channel kind.

τ ::= ch(ρ, τ, Ψ1, Ψ2) (rendezvous)

| ch(ρ, τ, Ψ) (output buffered)

| ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) (input buffered)

| ch(ρ, τ) (reference cell)

| int (integers)

Meta-variables ρ, ρ′, etc. are channel handles. Let Handles be the set of channel

handles. Let StaticCapabilities = {w(ρ), r(ρ) | ρ ∈ Handles}. Meta-variables Ψ,

Ψ′, etc. are mappings from StaticCapabilities to [0, 1]. We call such a mapping a

static capability set. The rendezvous channel type can be read as follows: the channel

communicates values of type τ , any writer of the channel sends capabilities Ψ1, and

any reader of the channel sends capabilities Ψ2. For an output buffered channel,

because readers cannot send capabilities, only one static capability set, Ψ, is present

in its type. For an input buffered channel, the sequence 〈Ψ1, . . . , Ψn〉 lists capabilities

2It is not a necessary condition, however. For example, !(c, 1)||!(c, 1)||?(c, x)||?(c, x) is confluent
but does not satisfy the condition.
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such that each process i gets Ψi from a read. Because a value stored in a reference

cell may be read arbitrarily many times, our type system cannot statically reason

about processes passing capabilities through reference cells, and so a reference cell

type does not carry any static capability set.

Additions and subtractions of static capabilities are analogous to those of (actual)

capabilities:

Ψ1 + Ψ2 = {cap 7→ Ψ1(cap) + Ψ2(cap) | cap ∈ StaticCapabilities}

Ψ1 −Ψ2 = Ψ3 if Ψ1 = Ψ3 + Ψ2

We say Ψ1 ≥ Ψ2 if there exists Ψ3 such that Ψ1 = Ψ2 + Ψ3.

For channel type τ , hdl(τ) is the handle of the channel, and valtype(τ) is the type

of the communicated value. That is, hdl(ch(ρ, . . .)) = ρ and valtype(ch(ρ, τ, . . .)) =

τ . Also, writeSend(τ) (resp. readSend(τ)) is the set of capabilities sent by a writer

(resp. reader) of the channel. More formally,

writeSend(ch(ρ, τ, Ψ1, Ψ2)) = Ψ1

writeSend(ch(ρ, τ, Ψ)) = Ψ

writeSend(ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)) =
∑n

i=1 Ψi

writeSend(ch(ρ, τ)) = 0

readSend(τ) =

Ψ2 if τ = ch(ρ, τ ′, Ψ1, Ψ2)

0 otherwise

(0 is the constant zero function λx.0.) Similarly, writeRecv(τ) (resp. readRecv(τ, i))
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is the set of capabilities received by the writer (resp. the reader process i):

writeRecv(τ) = readSend(τ)

readRecv(τ, i) =

Ψi if τ = ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)

writeSend(τ) otherwise

Note that the writer of the input buffered channel ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) must be able

to send the sum of all capabilities to be received by each process (i.e.,
∑n

i=1 Ψi),

whereas the reader receives only its own share (i.e., Ψi).

For channel type τ , hasWcap(Ψ, τ) and hasRcap(Ψ, τ) are the static analog of

hasWcap(C, c) and hasRcap(C, c). More formally,

hasWcap(Ψ, τ)⇔ Ψ(w(hdl(τ))) = 1

hasRcap(Ψ, τ)⇔


Ψ(r(hdl(τ))) = 1 if τ is rendezvous or output buffered

true if τ is input buffered

Ψ(w(hdl(τ))) > 0 if τ is reference cell

A type environment Γ is a mapping from channels and variables to types such that

for each channel c and d,

• the channel type kind of Γ(c) coincides with the channel kind of c, and

• if c 6= d then hdl(Γ(c)) 6= hdl(Γ(d)), i.e., each handle ρ uniquely identifies a

channel. (Section 2.3 discusses a way to relax this restriction.)

We sometimes write Γ[c] to mean hdl(Γ(c)).

Expressions are type-checked as follows:

Γ ` c : Γ(c) Γ ` x : Γ(x) Γ ` n : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 op e2 : int
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Γ, i, Ψ ` s1 : Ψ1 Γ, i, Ψ1 ` s2 : Ψ2

Γ, i, Ψ ` s1; s2 : Ψ2

SEQ

Γ ` e : int Γ, i, Ψ ` s1 : Ψ1 Γ, i, Ψ ` s2 : Ψ2 Ψ1 ≥ Ψ3 Ψ2 ≥ Ψ3

Γ, i, Ψ ` if e then s1 else s2 : Ψ3

IF

Γ ` e : int Γ, i, Ψ1 ` s : Ψ2 Ψ2 ≥ Ψ1 Ψ ≥ Ψ1

Γ, i, Ψ ` while e do s : Ψ2

WHILE

Γ, i, Ψ ` skip : Ψ
SKIP

Γ ` e : Γ(x)

Γ, i, Ψ ` x := e : Ψ
ASSIGN

Γ ` e1 : τ Γ ` e2 : valtype(τ) confch(τ, Γ)⇒ hasWcap(Ψ, τ)

Γ, i, Ψ ` !(e1, e2) : Ψ− writeSend(τ) + writeRecv(τ)
WRITE

Γ ` e : τ Γ(x) = valtype(τ) confch(τ, Γ)⇒ hasRcap(Ψ, τ)

Γ, i, Ψ ` ?(e, x) : Ψ− readSend(τ) + readRecv(τ, i)
READ

Figure 2.6: Type checking rules.

Figure 2.6 shows the type checking rules for statements. The judgments are of the

form Γ, i, Ψ ` s : Ψ′ where i is the index of the process that s appears in, Ψ the

capabilities before s, and Ψ′ the capabilities after s. SEQ, IF, WHILE, SKIP, and

ASSIGN are self-explanatory. WRITE handles channel writes and READ handles

channel reads. Here, confch(τ, Γ) is defined as:

confch(τ, Γ)⇔ ∃c.Γ[c] = hdl(τ) ∧ confch(c)

We write Γ ` B(c) if the buffer B(c) is well-typed, i.e., Γ ` e : valtype(Γ(c)) for

each value e stored in the buffer B(c). We write Γ ` h if the history h is well-typed,

i.e, Γ ` h(x) : Γ(x) for each x ∈ dom(h). We write Γ ` C : Ψ if Ψ represents C,

i.e., for each w(c) ∈ dom(C), Ψ(w(Γ[c])) = C(w(c)) and for each r(c) ∈ dom(C),

Ψ(r(Γ[c])) = C(r(c)).
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Let P = (B, X, S, 1.C1.s1|| . . . ||n.Cn.sn). An environment for P consists of a type

environment Γ for typing the channels, a type environment Γi for typing each process

i, the starting static capability Ψi for each process i, and the mapping W from handles

to static capabilities that represents X. We say P is well-typed under the environment

(Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn, W ), written (Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn, W ) ` P , if

• For each c, Γ ` B(c).

• For each i, Γi ⊇ Γ, Γi ` S(i), Γ ` Ci : Ψi, and Γi, i, Ψi ` si : Ψ′
i for some Ψ′

i.

• For each c, Γ ` X(c) : W (Γ[c]), i.e., W is a static representation of X.

• Let Ψtotal =
∑n

i=1 Ψi +
∑

ρ∈dom(W ) W (ρ). Then for each cap ∈ dom(Ψtotal),

Ψtotal(cap) = 1, i.e., there are no duplicated capabilities.

• For all output buffered channels c, W (Γ[c]) = |B(c)| × writeSend(Γ(c)). For all

input buffered channels c, W (Γ[c]) =
∑n

i=1 |B(c).i| × readRecv(Γ(c), i).

In the last condition, |B(c)| denotes the length of the queue B(c), and |B(c).i| denotes

the length of the queue for process i (for input buffered channels). The condition

ensures that there are enough capabilities in X for buffered reads. We now state the

main claim of this section.

Theorem 2.2.4. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . Let M =

{P | ∃Env .Env ` P}. Then M is capability-respecting with respect to Y .

Theorem 2.2.4 together with Theorem 2.2.3 implies that to check if P is confluent,

it suffices to find a well-typed P such that P = erase(P ). More formally,

Corollary 2.2.5. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . P is

partially-confluent and deterministic with respect to Y if there exists P and Env such

that P = erase(P ) and Env ` P .
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The problem of finding P and Env such that P = erase(P ) and Env ` P can

be reduced to a linear inequality constraint satisfaction problem. The reduction is

divided into two phases. In the first phase, we look for a valid type derivation but

ignoring static capabilities. More formally, we look for P ′ and Env′ such that P =

erase(P ′) and Env′ ` P ′ by assuming ∀Ψ, τ.hasWcap(Ψ, τ) = hasRcap(Ψ, τ) = true.

This is a simple type inference problem that can be solved, for example, by the

standard union-find approach. (Note that it suffices to let each Ψ = 0 and each

C = 0 .)

In the second phase, we use the channel handles computed in the first phase

to complete the typing. More formally, we look for P and Env such that P =

erase(P ), Env ` P , and ∀c.Γ[c] = Γ′[c] where Env = (Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn, W )

and Env’ = (Γ′, Γ′1, . . . , Γ
′
n, Ψ

′
1, . . . , Ψ

′
n, W

′). Because every hdl(τ) appearing in the

type derivation is known, the problem reduces to finding a satisfying assignments (for

Ψ’s) for the constraints of the form
∑

Ψ ≥
∑

Ψ′, Ψ(ρ) = 1, and Ψ(ρ) > 0. (The

latter two forms are induced by hasWcap(Ψ, τ) and hasRcap(Ψ, τ).) Let ρ1, . . . , ρn

be the channel handles appearing in Γ′. We represent each Ψ as a mapping from

ρ1, . . . , ρn to n fresh rational number variables q1, . . . qn such that Ψ(ρi) = qi. Then,

a capability constraint
∑

Ψ ≥
∑

Ψ′ can be represented by n rational inequality

constraints
∑

q1 ≥
∑

q′1, . . . ,
∑

qn ≥
∑

q′n. Similarly, Ψ(ρ) = 1 becomes a constraint

of the form q = 1 where Ψ(ρ) = q, and Ψ(ρ) > 0 becomes a constraint of the form

q > 0 where Ψ(ρ) = q. Because the range of a static capability is [0, 1], we also

assert 1 ≥ q ≥ 0 for each q. These rational inequality constraints can be generated

in time polynomial in the size of P , which can then be solved efficiently by a linear

programming algorithm.
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2.2.2 Examples

Producer Consumer: Let c be an output buffered channel. The program

1.while 1 do !(c, 1) || 2.while 1 do ?(c, x)

is a simple but common communication pattern of sender and receiver processes being

fixed for each channel; no capabilities need to be passed between processes. The type

system can prove confluence by assigning the starting capabilities 0 [w(ρ) 7→ 1] to

process 1 and 0 [r(ρ) 7→ 1] to process 2 where c : ch(ρ, int, 0 ).

Token Ring: Let c1, c2, c3 be rendezvous and d be output buffered. The program

below models a token ring where processes 1, 2, and 3 take turns writing to d:

1.while 1 do (?(c3, x); !(d, 1); !(c1, 0))

|| 2.while 1 do (?(c1, x); !(d, 2); !(c2, 0))

|| 3.!(c3, 0); while 1 do (?(c2, x); !(d, 3); !(c3, 0))

|| 4.while 1 do ?(d, y)

Recall that variables x and y are process local. The type system can prove con-

fluence by assigning the channel d the type ch(ρd, int, 0 ) and each ci the type

ch(ρci
, int, 0 [w(ρd) 7→ 1], 0 ), which says that a write to ci sends w(d) to the reader.

The starting capabilities are 0 [r(ρc3) 7→ 1, w(ρc1) 7→ 1] for process 1, 0 [r(ρc1) 7→

1, w(ρc2) 7→ 1] for process 2, 0 [r(ρc2) 7→ 1, w(ρc3) 7→ 1, w(ρd) 7→ 1] for process 3, and

0 [r(ρd) 7→ 1] for process 4.
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Barrier Synchronization: Let c1, c2, c3 be reference cells. Let d1, d2, d3, d′1, d′2, d′3

be input buffered channels. Consider the following program:

1.while 1 do (!(c1, e1); !(d1, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′1, 0);BR′)

|| 2.while 1 do (!(c2, e2); !(d2, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′2, 0);BR′)

|| 3.while 1 do (!(c3, e3); !(d3, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′3, 0);BR′)

Here, BR = ?(d1, x); ?(d2, x); ?(d3, x) and BR′ = ?(d′1, x); ?(d′2, x); ?(d′3, x). The

program is an example of barrier-style synchronization. Process 1 writes to c1, process

2 writes to c2, process 3 writes to c3, and then the three processes synchronize via

a barrier so that none of the processes can proceed until all are done with their

writes. Note that !(di, 0);BR models the barrier for each process i. After the barrier

synchronization, each process reads from all three reference cells before synchronizing

themselves via another barrier, this time modeled by !(d′i, 0);BR′, before the next

iteration of the loop.

The type system can prove confluence by assigning the following types (assume

e1, e2, and e3 are of type int): c1 : ch(ρc1, int), c2 : ch(ρc2, int), c3 : ch(ρc3, int), and

for each i ∈ {1, 2, 3},

di : ch(ρdi
, int, 〈0 [w(ρci

) 7→ 1
3
], 0 [w(ρci

) 7→ 1
3
], 0 [w(ρci

) 7→ 1
3
]〉)

d′i : ch(ρd′
i
, int, 〈0 [w(ρc1) 7→ 1

3
], 0 [w(ρc2) 7→ 1

3
], 0 [w(ρc3) 7→ 1

3
]〉)

The initial static capability set for each process i is 0 [w(ρci
) 7→ 1, w(ρdi

) 7→

1, w(ρd′
i
) 7→ 1]. Note that fractional capabilities are passed at barrier synchronization

points to enable reads and writes on c1, c2, and c3.

Type inference fails if the program is changed so that d1, d2, d3 are also used for

the second barrier (in place of d′1, d
′
2, d

′
3) because while the first write to di must send

the capability to read ci, the second write to di must send to each process j the
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capability to access cj, and there is no single type for di to express this behavior.

This demonstrates the flow-insensitivity limitation of our type system, i.e., a channel

must send and receive the same capabilities every time it is used.

However, if synchronization points are syntactically identifiable (as in this exam-

ple) then the program is easily modified so that flow-insensitivity becomes sufficient

by using distinct channels at each syntactic synchronization point.3 In our example,

the first barrier in each process matches the other, and the second barrier in each

process matches the other. Synchronizations that are not syntactically identifiable

are often considered as a sign of potential bugs [AG98]. Note that reference cells c1

and c2 are not used for synchronization and therefore need no syntactic restriction.

2.3 Extensions

We discuss extensions to our system that handle aliasing and dynamic creation of

channels and processes.

2.3.1 Regions

Aliasing becomes an issue when channels are used as values, e.g., as in a π calculus

program. For example, our type system does not allow two different channels c and d

to be passed to the same channel because two different channels cannot be given the

same handle. One way to resolve aliasing is to use regions so that each ρ represents a

set of channels. Then, we may give both c and d the same type ch(ρ, . . .) at the cost

of sharing w(ρ) (and r(ρ)) for all the channels in the region ρ.

3This can be done without changing the implementation. See named barriers in [AG98].
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2.3.2 Existential Abstraction and Linear Types

Another way to resolve aliasing is to existentially abstract capabilities as in ∃ρ.τ ⊗

Ψ. Any type containing a capability set must be handled linearly4 to prevent the

duplication of capabilities. The capabilities are recovered by opening the existential

package. Existential abstraction can encode linearly typed channels [NS97; KPT99]

(for rendezvous channels) as: ∃ρ.ch(ρ, τ, 0 , 0 ) ⊗ 0 [w(ρ) 7→ 1, r(ρ) 7→ 1]. Note that

the type encapsulates both a channel and the capability to access the channel. This

encoding allows transitions to and from linearly typed channels to the capabilities

world, e.g., it is possible to use once a linearly-typed channel multiple times. An

analogous approach has been applied to express updatable recursive data structures

in the capability calculus [WM00].

2.3.3 Dynamically Created Channels

Dynamically created channels can be handled in much the same way heap allocated

objects are handled in the capability calculus [CWM99] (we only show the rule for

the case where c is rendezvous):

ρ is not free in the conclusion
Γ ∪ {c 7→ ch(ρ, τ, Ψ1, Ψ2)}, i, Ψ + 0 [w(ρ) 7→ 1][r(ρ) 7→ 1] ` s : Ψ′

Γ, i, Ψ ` νc.s : Ψ′

Existential abstraction allows dynamically created channels to leave their lexical

scope. An alternative approach is to place the newly created channel in an existing

region. In this case, we can remove the hypothesis “ρ is not free in the conclusion”,

but we also must remove the capabilities 0 [w(ρ) 7→ 1][r(ρ) 7→ 1].

4Actually, a more relaxed sub-structural type system like the one in Chapter 3 is preferred for
handling fractional capabilities.
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2.3.4 Dynamically Spawned Processes

Dynamic spawning of processes can be typed as follows:

Γ, i, Ψ2 ` s : Ψ′

Γ, i, Ψ1 + Ψ2 ` spawn(s) : Ψ1

(For simplicity, we assume that the local store of the parent process is copied for the

spawned process. Details for handling input buffered channels are omitted.) Note

that the spawned process may take capabilities from the parent process.

2.4 Issues on Memory Model

The operational semantics uses the strict consistency memory model where every

operation on the buffer B is serialized. While we do not give a formal proof, it is easy

to see that our type system works even with weak consistency which is often argued

to be more efficient for distributed systems.

Weak consistency allows non-synchronizing operations to be unserialized. As dis-

cussed Section 2.2.2, the type system does not consider a reference cell access to be

a synchronization operation. Hence, as in the standard implementation of weak con-

sistency, reference writes and reads can be carried out locally such that changes are

broadcasted only at the next synchronization operation. In fact, the capability set

tells which writes must be broadcasted. Such information may prove useful to further

reduce the communication cost.

2.5 Proofs

Lemma 2.1.3 If P is partially confluent with respect to Y then P is deterministic

with respect to Y .
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Proof. Suppose P is partially confluent with respect to Y . Let i be a process index.

For contradiction, suppose that there exist reductions P →∗ (B1, S1, p1) and P →∗

(B2, S2, p2) both communicating only over channels in Y such that neither S1(i) nor

S2(i) is a prefix of the other. But since P is partially confluent, there exists Q such

that (B1, S1, p1) →∗ Q and (B2, S2, p2) →∗ Q. But by inspection of the reduction

rules, such a Q cannot exist.

Lemma 2.5.1 (Diamond Property). Let P be a state. Suppose there exists M such

that M is capability-respecting with respect to Y and there exists P ∈ M such that

erase(P ) = P . Suppose P → P1 communicating only over channels in Y and P → P2.

Then either P1 = P2 or there exists Q such that P2 → Q communicating only over

channels in Y and P1 → Q.

Proof. We prove the result by case analysis on P → P1. Note that because P ∈ M ,

there exist P1 and P2 such that

• erase(P1) = P1 and erase(P2) = P2, and

• P
`1→ P1 and P

`2→ P2 and neither `1 nor `2 is false.

The case where P → P1 is a sequential reduction (i.e., IF1, IF2, WHILE1,

WHILE2, or ASSIGN) is trivial. Suppose P → P1 is:

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c
¬buffered(c) S ′ = S[j 7→ S(j) :: (x, e′2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p)→ (B, S ′, i.s1||j.s2||p)

where P = (B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) and P1 = (B, S ′, i.s1||j.s2||p). By

assumption, c ∈ Y . If P → P2 does not communicate over c, then the result follows

trivially. So suppose P → P2 communicates over c. Let i′ and j′ be the process

indexes such that P
`2→ P2 is between the writer process i′ and the reader process
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j′. But because `1 = `2 = true, P being well-formed implies that i = i′ and j = j′.

Therefore, P1 = P2.

Suppose P → P1 is:

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c) B′ = B.write(c, e′2)

(B, S, i.!(e1, e2); s||p)→ (B′, S, i.s||p)

where P = (B, S, i.!(e1, e2); s||p) and P1 = (B′, S, i.s||p). Suppose c is output buffered

or input buffered. By the assumption, c ∈ Y . If P → P2 does not communicate over

c, then the result follows trivially. Also, if P → P2 is a read from c, then because

buffers are FIFO, the result follows trivially. So suppose P → P2 writes c. Let

i′ be the process indexes such that P
`2→ P2 is a write by process i′. But because

`1 = `2 = true, P being well-formed implies that i = i′. Therefore, P1 = P2.

The case where P → P1 reads an output buffered channel is similar. The case

where P → P1 reads an input buffered channel follows trivially from the fact that

input buffers are process local.

Suppose P → P1 is:

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c) B′ = B.write(c, e′2)

(B, S, i.!(e1, e2); s||p)→ (B′, S, i.s||p)

where P = (B, S, i.!(e1, e2); s||p) and P1 = (B′, S, i.s||p). Suppose c is a reference

cell. By assumption, c ∈ Y . If P → P2 does not communicate over c, then the result

follows trivially. So suppose P → P2 communicates over c (read or write). Let i′ be

the process indexes such that P
`2→ P2 is a write or a read by process i′. But because

`1 = `2 = true, P being well-formed implies that i = i′ (so P → P2 is in fact a write).

Therefore, P1 = P2.
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Suppose P → P1 is:

(S(i), e) ⇓ c buffered(c) (B′, e′) = B.read(c, i) S ′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.?(e, x); s||p)→ (B′, S ′, i.s||p)

where P = (B, S, i.?(e, x); s||p) and P1 = (B′, S ′, i.s||p). Suppose c is a reference cell.

By assumption, c ∈ Y . If P → P2 does not communicate over c, then the result

follows trivially. Also, if P → P2 is a read from c then because reading a reference

cell is non-destructive, the result follows trivially. So suppose P → P2 writes to c.

But because `1 = `2 = true, P being well-formed implies that P → P2 is, in fact, not

a write to c.

Theorem 2.2.3 Let P be a state. Suppose there exists M such that M is capability-

respecting with respect to Y and there exists P ∈ M such that erase(P ) = P . Then

P is partially confluent with respect to Y .

Proof. Note that for any P ∈ M , if erase(P ) →∗ Q then there exists Q ∈ M such

that erase(Q) = Q. Therefore, the proof is a standard inductive application of the

diamond property (Lemma 2.5.1).

Lemma 2.5.2. If Γ, i, Ψ1 ` s : Ψ2 and Ψ′
1 ≥ Ψ1, then Γ, i, Ψ′

1 ` s : Ψ′
2 for some

Ψ′
2 ≥ Ψ2

Proof. By structural induction on the type derivation.

Lemma 2.5.3. If Γ ` h, Γ ` e : τ , and (h, e) ⇓ e′, then Γ ` e′ : τ .

Proof. By structural induction on the type derivation.

Lemma 2.5.4. Γ, i, Ψ ` (s1; s2); s3 : Ψ′ iff Γ, i, Ψ ` s1; (s2; s3) : Ψ′.

Proof. By inspection of the type checking rules.
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Theorem 2.2.4 Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . Let M =

{P | ∃Env .Env ` P}. Then M is capability-respecting with respect to Y .

Proof. It suffices to show that if Env ` P , then

(1) P is well-formed, and

(2) for any state Q such that erase(P ) → Q, there exists Q and Env′ such that

Env′ ` Q, erase(Q) = Q, P
`→ Q, and if ` is not empty then ` = true.

Suppose Env ` P . From the second, the third, and the fourth conditions of Env ` P ,

it follows that P is well-formed. Thus it suffices to show that (2) holds.

Let Q be a state such that erase(P ) → Q. Let P = erase(P ). Let

(Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn, W ) = Env. We show that there exist Q, Ψ′
1, . . . , Ψ

′
n, and

W ′ such that (Γ, Γ1, . . . , Γn, Ψ
′
1, . . . , Ψ

′
n, W

′) ` Q, P
`→ Q, and if ` is not empty then

` = true. (So in fact, Env and Env′ share the same Γ, Γ1, . . . , Γn, indicating the

flow-insensitivity of our system.) We prove by case analysis on P → Q.

Throughout this proof, we implicitly use Lemma 2.5.4 to convert a type deriva-

tion for any sequential composition s1; s2; . . . ; sn to a derivation for s1; (s2; . . . ; sn).

Also, note that typability is invariant under process re-ordering and sequential skip

compositions (i.e., s = s; skip = skip; s).

Suppose P → Q is

(S(i), e) ⇓ n n 6= 0

(B, S, i.(if e then s1 else s2); s||p)→ (B, i.s1; s||p)

where P = (B, S, i.(if e then s1 else s2); s||p) and Q = (B, i.s1; s||p). Let

(X, B, S, i.Ci.((if e then s1 else s2); s||p′) = P . Let Q = (X, B, S, i.Ci.s1; s||p′).
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Note that erase(Q) = Q and P → Q. By assumption,

Γi ` e : int Γi, i, Ψi ` s1 : Ψi1 Γi, i, Ψi ` s2 : Ψi2 Ψi1 ≥ Ψi3 Ψi2 ≥ Ψi3

Γi, i, Ψi ` if e then s1 else s2 : Ψi3

Γi, i, Ψi ` if e then s1 else s2 : Ψi3 Γi, i, Ψi3 ` s : Ψi4

Γi, i, Ψi ` (if e then s1 else s2); s : Ψi4

Therefore, by Lemma 2.5.2, Γi, i, Ψi1 ` s : Ψi5 for some Ψi5. And so, Γi, i, Ψi `

s1; s : Ψi5. Let Ψ′
j = Ψj for each j ∈ {1 . . . n} and W ′ = W . Then it follows that

(Γ, Γ1, . . . , Γn, Ψ
′
1, . . . , Ψ

′
n, W

′) ` Q.

The cases where P → Q is IF2, WHILE1, or WHILE2 can be proven in a

similar manner.

Suppose P → Q is

(S(i), e) ⇓ e′ S ′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.x := e; s||p)→ (B, S ′, i.s||p)

where P = (B, S, i.x:=e; s||p) and Q = (B, S ′, i.s||p). Let (X, B, S, i.Ci.x:=e; s||p′) =

P . Let Q = (X, B, S ′, i.Ci.s||p′). Note that erase(Q) = Q and P → Q. By assump-

tion,
Γi ` e : Γi(x)

Γi, i, Ψi ` x := e : Ψi

Γi, i, Ψi ` x := e : Ψi Γi, i, Ψi ` s : Ψi1

Γi, i, Ψi ` x := e; s : Ψi1

From Γi ` S(i), Γi ` e : Γi(x), and Lemma 2.5.3, it follows that Γi ` S ′(i).

Let Ψ′
j = Ψj for each j ∈ {1, . . . , n} and W ′ = W . Then it follows that

(Γ, Γ1, . . . , Γn, Ψ
′
1, . . . , Ψ

′
n, W

′) ` Q.
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Suppose P → Q is

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c
¬buffered(c) S ′ = S[j 7→ S(j) :: (x, e′2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p)→ (B, S ′, i.s1||j.s2||p)

where P = (B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) and Q = (B, S ′, i.s1||j.s2||p). Let

(X, B, S, i.Ci.!(e1, e2); s1||j.Cj.?(e3, x); s2||p′)) = P

By assumption,

Γi ` e1 : τ Γi ` e2 : valtype(τ) confch(τ, Γi)⇒ hasWcap(Ψi, τ)

Γi, i, Ψi ` !(e1, e2) : Ψi1

Γi, i, Ψi ` !(e1, e2) : Ψi1 Γi, i, Ψi1 ` s : Ψi2

Γi, i, Ψi ` !(e1, e2); s : Ψi2

Γj ` e3 : τ ′ Γj(x) = valtype(τ ′) confch(τ ′, Γj)⇒ hasRcap(Ψj, τ
′)

Γj, j, Ψj ` ?(e3, x) : Ψj1

Γj, j, Ψj ` ?(e3, x) : Ψj1 Γj, j, Ψj1 ` s : Ψj2

Γj, j, Ψj ` ?(e3, x); s : Ψj2

where Ψi1 = Ψi − writeSend(τ) + writeRecv(τ) and Ψj1 = Ψj − readSend(τ ′) +

readRecv(τ ′, j). Lemma 2.5.3 implies that Γ(c) = τ = τ ′. Let C and C ′ be ca-

pability sets such that Γ ` C : writeSend(τ) and Γ ` C ′ : readSend(τ). Let

Q = (B, S ′, i.(Ci − C + C ′).s1||j.(Cj + C − C ′).s2||p). Note that erase(Q) = Q.

Let Ψ′
i = Ψi1, Ψ′

j = Ψj1, and Ψ′
k = Ψk for each k ∈ {1, . . . , n} \ {i, j}. Because

c must be rendezvous, Ψ′
i + Ψ′

j = Ψi + Ψj. Also, Γ ` (Ci − C + C ′) : Ψ′
i and

Γ ` (Cj + C −C ′) : Ψ′
j. Therefore it follows that (Γ, Γ1, . . . , Γn, Ψ

′
1, . . . , Ψ

′
n, W

′) ` Q.

Suppose confch(c) holds. Then confch(τ, Γi) and confch(τ ′, Γj). Therefore,
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hasWcap(Ψi, τ) and hasRcap(Ψj, τ
′). Therefore, hasWcap(Ci, c) and hasRcap(Cj, c).

Thus it follows that P
true→ Q. On the other hand, if ¬confch(c), then P

true→ Q trivially.

Suppose P → Q is

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c) B′ = B.write(c, e′2)

(B, S, i.!(e1, e2); s||p)→ (B′, S, i.s||p)

where P = (B, S, i.!(e1, e2); s||p) and Q = (B′, S, i.s||p). Let

(X, B, S, i.C.!(e1, e2); s||p) = P

By assumption,

Γi ` e1 : τ Γi ` e2 : valtype(τ) confch(τ, Γi)⇒ hasWcap(Ψi, τ)

Γi, i, Ψi ` !(e1, e2) : Ψi1

Γi, i, Ψi ` !(e1, e2) : Ψi1 Γi, i, Ψi1 ` s : Ψi2

Γi, i, Ψi ` !(e1, e2); s : Ψi2

where Ψi1 = Ψi−writeSend(τ) + writeRecv(τ), and Γi and Ψi are from the definition

of Γ ` P . Let C ′ be a capability set such that Γ ` C ′ : writeSend(τ). Let Q =

(X[c 7→ X(c) + C ′], B′, S, i.(C − C ′).s||p). Note that erase(Q) = Q. Let W ′ =

W [Γ[c] 7→ W (Γ[c])+writeSend(τ)]. Note that ∀d.Γ ` X[c 7→ X(c)+C ′](d) : W ′(Γ[d]).

Lemma 2.5.3 implies that Γ(c) = τ . Let Ψ′
i = Ψi1 and Ψ′

j = Ψj for each j ∈

{1, . . . , n} \ {i}. Because c is not rendezvous, writeRecv(τ) = 0 . Therefore, Ψi +∑
ρ∈dom(W ) W (ρ) = Ψ′

i +
∑

ρ∈dom(W ′) W ′(ρ). Also, Γ ` (Ci − C) : Ψ′
i. Also, for

each d output buffered, W ′(Γ[d]) = |B′(d)| × writeSend(Γ(d)), and for each d input

buffered, W ′(Γ[d]) =
∑n

j=1 |B′(d).j| × readRecv(Γ(d), j). Therefore it follows that

(Γ, Γ1, . . . , Γn, Ψ
′
1, . . . , Ψ

′
n, W

′) ` Q.

Suppose confch(c) holds. Then confch(τ, Γi), and so hasWcap(Ψi, τ). Therefore,
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hasWcap(C, c). Thus it follows that P
true→ Q. On the other hand, if ¬confch(c), then

P
true→ Q trivially.

Suppose P → Q is

(S(i), e) ⇓ c buffered(c) (B′, e′) = B.read(c, i) S ′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.?(e, x); s||p)→ (B′, S ′, i.s||p)

where P = (B, S, i.?(e, x); s||p) and Q = (B′, S ′, i.s||p). Let

(X, B, S, i.C.?(e, x); s||p) = P

By assumption,

Γi ` e : τ Γi(x) = valtype(τ) confch(τ, Γi)⇒ hasRcap(Ψi, τ)

Γi, i, Ψi ` ?(e, x) : Ψi1

Γi, i, Ψi ` ?(e, x) : Ψi1 Γi, i, Ψi1 ` s : Ψi2

Γi, i, Ψi ` ?(e, x); s : Ψi2

where Ψi1 = Ψi − readSend(τ) + readRecv(τ, i). Let C ′ be a capability set such

that Γ ` C ′ : readRecv(τ, i). Let Q = (X[c 7→ X(c) − C ′], B′, S ′, i.(C + C ′).s||p).

Note that erase(Q) = Q. Let W ′ = W [Γ[c] 7→ W (Γ[c]) − readRecv(τ, i)]. Note that

∀d.Γ ` X[c 7→ X(c) − C ′](d) : W ′(Γ[d]). Lemma 2.5.3 implies that Γ(c) = τ . Let

Ψ′
i = Ψi1 and Ψ′

j = Ψj for each j ∈ {1, . . . , n} \ {i}. Because c is not rendezvous,

readSend(τ) = 0 . Therefore, Ψi +
∑

ρ∈dom(W ) W (ρ) = Ψ′
i +

∑
ρ∈dom(W ′) W ′(ρ). Also,

for each d output buffered, W ′(Γ[d]) = |B′(d)| × writeSend(Γ(d)), and for each d

input buffered, W ′(Γ[d]) =
∑n

j=1 |B′(d).j| × readRecv(Γ(d), j). Therefore it follows

that (Γ, Γ1, . . . , Γn, Ψ
′
1, . . . , Ψ

′
n, W

′) ` Q.

Suppose confch(c) holds. Then confch(τ, Γi), and so hasRcap(Ψi, τ). Therefore,

hasRcap(C, c). Thus it follows that P
true→ Q. On the other hand, if ¬confch(c), then
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P
true→ Q trivially.
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Chapter 3

Deterministic Functional

Programming with References

The recent emergence of multicore chips (chip multiprocessors) has caused a resur-

gence of research interest in data flow parallelism [SMSO03; BVCG04]. Data flow

languages are the ideal language for programming data flow machines [DM75; AW77;

McG82; AN90; FC95; GDF+97]. Unlike the communicating processes model studied

in Chapter 2, pure data flow languages rely exclusively on joins for synchronization.

Two concurrently running expressions e1 and e2 are said to be joined at e if e depends

on the values of both e1 and e2 (e.g., e = e1 + e2). In short, data dependence governs

synchronization.

When expressions are purely functional, determinism follows from the standard

confluence property of functional languages. The problem arises when expressions

contain side effects, such as writes to references. For example, e1 + e2 is non-

deterministic if e1 = (writex 1; readx) and e2 = (writex 2; readx) where write e e′

writes e′ to the reference e and read e is the value stored in the reference e.

Ensuring determinism in this setting is equivalent to the problem of incorpo-
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e := x | i | λx.e | e e′ | let x = e in e′ | e⊗ e′ | πi(e)
| write e1 e2 e3 | read e e′ | ref e | join e e′ | •

Figure 3.1: The syntax of the language λwit .

rating writable references in purely functional languages. This problem has been

studied extensively and has a number of solutions [JW93; LS97; ORH93; Wad98;

GH90; AvGP93] with monads [Mog91; ORH93; JW93; LS97] being arguably the most

popular. However, these approaches completely sequentialize reference accesses and

therefore destroy useful parallelism. This chapter presents an approach that ensures

determinism (or more formally, confluence) without imposing strict sequentiality.

The underlying idea is similar to the capability calculus discussed in Chapter 2.

However, whereas these capabilities are an implicit concept, here we need something

to be explicitly presented as data because data dependence is the only means for

synchronization. To this end, we introduce the notion of witnesses for creating de-

pendences between reference accesses. We also take a deeper look at dependences

which allows us to make a completeness argument, i.e., the system is the best we can

do under certain assumptions.

The rest of the chapter is organized as follows. Section 3.1 formally introduces

witnesses. Section 3.2 defines a semantic condition called witness race freedom for

correct usage of witnesses and a proof of its sufficiency. Section 3.3 presents an

algorithm for checking witness race freedom. The algorithm is derived as a type

inference algorithm for a substructural type system.

3.1 Preliminaries

Figure 3.1 gives the syntax of λwit , a simple functional language with references

and witnesses. The syntax of λwit has the usual features of a functional language:
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integers i, function abstractions λx.e, function applications e e′, variable bindings

let x = e in e′, pairs e ⊗ e′, and projections πi(e) where i = 1 or i = 2. Bindings

let x = e in e′ can be recursive, i.e., x may appear in e. Three expression kinds

work with references: reference writes write e1 e2 e3, reference reads read e e′, and

reference creations ref e. A read read e e′ has a witness parameter e′ along with a

reference parameter e such that the reference e is not read until seeing the witness e′.

(Section 3.2 defines the formal meaning of “seeing the witness.”) Similarly, a write

write e1 e2 e3 writes the expression e2 to the reference e1 after seeing the witness e3.

After completion of the read, read e e′ returns a pair of the read value and a witness.

Similarly, write e1 e2 e3 returns a witness after the write.

Before describing the formal semantics of λwit , we describe novel properties of λwit

informally by examples.

Programs in λwit can use witnesses to order reference accesses. For example,

the following program returns 2 regardless of the evaluation order because the read

requires a witness of the write:

let x = (ref 1) in let w = (write x 2 •) in read x w

(The symbol • is used for dummy witnesses.) On the other hand, λwit does not guar-

antee correctness. For example, the following λwit program has no ordering between

the read and the write and hence may return 1 or 2 depending on the evaluation

order:

let x = (ref 1) in let w = (write x 2 •) in read x •

The expression kind joinee′ joins two witnesses by waiting until it sees the witness

e and the witness e′ and returning a witness. For example, the following program

returns the pair 1⊗ 1 regardless of the evaluation order because the write waits until
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E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗ E | πi(E)
| write E e e′ | write e E e′ | write e e′ E | read e E | read E e
| ref E | join E e | join e E

App (S, E[(λx.e) e′])⇒ (S, E[e[a/x]] ] {a 7→ e′})
Let (S, E[let x = e in e′])⇒ (S, E[e′[a/x]] ] {a 7→ e[a/x]})
Pair (S, E[πi(e1 ⊗ e2)])⇒ (S, E[ei])
Write (S, E[write ` e •])⇒ (S[`← a], E[•] ] {a 7→ e})
Read (S, E[read ` •])⇒ (S, E[S(`)⊗ •])
Ref (S, E[ref e])⇒ (S ] {` 7→ a}, E[`] ] {a 7→ e})
Join (S, E[join • •])⇒ (S, E[•])
Arrive (S, E[a] ] {a 7→ e})⇒ (S, E[e] ] {a 7→ e}) where e ∈ V
GC (S, D ]D′)⇒ (S, D) where � /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Figure 3.2: The semantics of λwit .

it sees witnesses of both reads:

let x = (ref 1) in

let y = (read x •) in let z = (read x •) in

let w = (write x 2 (join π2(y) π2(z))) in

π1(y)⊗ π1(z)

Note that the two reads may be evaluated in any order. In general, witnesses are

first class values and hence can be passed to and returned from a function, captured

in function closures, and even written to and read from a reference. Witnesses are

a simple feature that can be used to order reference accesses in a straightforward

manner.

In the rest of this section, we describe the semantics of λwit so that we can formally

define when a λwit program is confluent. Figure 3.2 shows the semantics of λwit defined

via reduction rules of the form (S, D)⇒ (S ′, D′) where S, S ′ are reference stores and

D, D′ are expression stores. A reference store is a function from a set of reference

locations ` to ports a, and an expression store is a function from a set of ports to

39



Chapter 3. Deterministic Functional Programming with References

expressions. Here, expressions include any expression from the source syntax extended

with reference locations and ports. Given a program e, evaluation of e starts from the

initial state (∅, {� 7→ e}) where the symbol � denotes the special root port. Ports are

used for evaluation sharing.1 The reduction rules are parametrized by the evaluation

contexts E. For an expression e, free(e) is the set of free variables, ports, and reference

locations of e. For an expression store D, free(D) = dom(D) ∪
⋃

e∈ran(D) free(e).

We briefly describe the reduction rules from top-to-bottom. The rule App cor-

responds to a function application. For functions F and F ′, F ] F ′ denotes F ∪ F ′

if dom(F ) ∩ dom(F ′) = ∅ and is undefined otherwise. App creates a fresh port

a and stores e′ at a. Let is similar. Pair projects the ith element of the pair.

Write creates a fresh port a, stores the expression e′ at the port a, and stores

the port a at the reference location `. We use S[` ← a] as a shorthand for

{`′ 7→ S(`′) | `′ ∈ dom(S) ∧ `′ 6= `} ∪ {` 7→ a}. We use the dummy witness symbol

• as the run-time representation of any witness because, operationally, a witness is

like a dataflow token in dataflow machines. Read reads from the reference location

` and, as noted above, returns the value paired with a witness. Ref creates a fresh

location ` and a fresh port a, initializes a to the expression e and ` to the port a.

Join takes two witnesses and returns one witness.

Arrive is somewhat non-standard. Here V is the set of “safe to duplicate” ex-

pressions. Partly for the sake of the static-checking algorithm to be presented later,

we fix V to values generated by the following grammar:

v := x | i | a | • | ` | v ⊗ v′ | λx.e

Arrive says that if e is safe to duplicate, then we can replace a by e; we say a safe

to duplicate expression has arrived at port a. In essence, while standard operational

1In the literature, top-level let-bound variables often double as variables and ports.
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semantics for functional languages [Plo75; Lau93] implicitly combine Arrive with

other rules, we separate Arrive for increased freedom in the evaluation order. Lastly,

GC garbage-collects unreachable (from the root port �) portions of the expression

store.

Here is an example of a λwit evaluation:

(∅, {� 7→ (λx.read x •) ref 1})

⇒ ({` 7→ a}, {� 7→ (λx.read x •) `, a 7→ 1}) Ref

⇒ ({` 7→ a}, {� 7→ read a′ •, a 7→ 1, a′ 7→ `}) App

⇒ ({` 7→ a}, {� 7→ read ` •, a 7→ 1, a′ 7→ `}) Arrive

⇒ ({` 7→ a}, {� 7→ a⊗ •, a 7→ 1, a′ 7→ `}) Read

⇒ ({` 7→ a}, {� 7→ 1⊗ •, a 7→ 1, a′ 7→ `}) Arrive

⇒ ({` 7→ a}, {� 7→ 1⊗ •}) GC

The semantics is non-deterministic and therefore also allows other reduction sequences

for the same program. For example, we may take an App step immediately instead

of first creating a new reference by a Ref step:

(∅, {� 7→ (λx.read x •) ref 1})⇒ (∅, {� 7→ read a •, a 7→ ref 1}) App

Before defining confluence, we point out several important properties of this se-

mantics. The evaluation contexts E do not extend to subexpressions of a λ abstrac-

tion, i.e., we do not reduce under λ. The evaluation contexts also do not extend to

subexpressions of an expression let x = e in e′, but e and e′ may become available

for evaluation via applications of the Let rule. As with call-by-value evaluation or

call-by-need evaluation, evaluation of an expression is shared. For example, in the

program (λx.x⊗ x) e, the expression e is evaluated at most once.

The semantics of λwit has strictly more freedom in evaluation order than both call-
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by-value and call-by-need. In particular, call-by-need evaluation can be obtained by

using the same reduction rules but restricting the evaluation contexts to the following

E := D ∪ {� 7→ E} | [ ] | E e | πi(E) | write E e e′ | write ` e E

| read E e | read ` E | join E e | join • E

Call-by-value evaluation can be obtained by adding the following contexts to the

evaluation contexts of the call-by-need evaluation

E := . . . | (λx.e) E | E ⊗ e | v ⊗ E | write ` E • | ref E |let x = E in e

in addition to restricting the rule App to the case e′ ∈ V , the rule Let to the case

e ∈ V , the rule Pair to the case e1, e2 ∈ V , the rule Write to the case e′ ∈ V , and

the rule Ref to the case e ∈ V .2 Note that both lazy writes and strict writes are

possible in λwit .

Having defined the semantics, we can formally define when a λwit program is

confluent. To this end, we define observational equivalence as the smallest reflexive

and transitive relation D ≈ D′ on expression stores satisfying:

• D ≈ D[a/a′] where a /∈ free(D)

• D ≈ D[`/`′] where ` /∈ free(D)

That is, expression stores are observationally equivalent if they are equivalent up to

consistent renaming of free ports and reference locations. Let ⇒∗ be a sequence of

zero or more ⇒.

Definition 3.1.1 (Confluence). A program state (S, D) is confluent if for any

two states (S1, D1) and (S2, D2) such that (S, D) ⇒∗ (S1, D1) and (S, D) ⇒∗

2Strictly speaking, the context let x = E in e is not in the semantics of λwit . But λwit can
simulate the behavior via a Let step and then reducing e[a/x] which is now in an evaluation context.
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(S2, D2), there exist two states (S ′1, D
′
1) and (S ′2, D

′
2) such that (S1, D1)⇒∗ (S ′1, D

′
1),

(S2, D2) ⇒∗ (S ′2, D
′
2), and D′

1 ≈ D′
2. A program e is confluent if its initial state

(∅, {� 7→ e}) is confluent.

Note that the definition does not require any relation between reference location

stores S ′1 and S ′2. So, for example, a program that writes but never reads would be

confluent. As shown before, λwit contains programs that are not confluent. Indeed,

the difference between call-by-need and call-by-value is enough to demonstrate non-

confluence:

(λx.read x •) (let x = (ref 1) in let y = (write x 2 •) in x)

The above program evaluates to the pair 1⊗• under call-by-need and to the pair 2⊗•

under call-by-value. No further reductions can make the two states observationally

equivalent. (Here we implicitly read back the top-level expression from the root port

instead of showing the actual expression stores for brevity.)

We have shown earlier that witnesses can aid in writing confluent programs by

directly ordering reference accesses. Witnesses are first class values and hence can be

treated like other expressions. For example, the program below captures a witness in

a function which itself returns a witness to ensure that reads and writes happen in a

correct order:

let x = ref 1 in

let w = write x 2 • in

let f = λy.read x w in

let z = (f 0)⊗ (f 0) in

let w = write x 3 join π2(π1(z)) π2(π2(z)) in z

Here, a witness of the first write is captured in the function f . Hence both reads from
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the two calls to f see a witness of the write. A witness of each read is returned by f ,

and the last write waits until it sees witnesses from both reads. Therefore, the result

of the program is (2⊗ •)⊗ (2⊗ •) regardless of the evaluation order. Note that the

two calls to f , and thus the reads in the calls, can occur in either order.

3.2 Witness Race Freedom

As discussed in Section 3.1, witnesses aid in writing confluent programs in the presence

of reference accesses but do not enforce confluence. In this section, we give a sufficient

condition for guaranteeing confluence.

Intuitively, our goal is to ensure that reads and writes happen in some race-free

order by partially ordering them via witnesses. We now make this intuition more

precise. First, we formally define what we mean by the phrase “reference access A

sees a witness of reference access B” that we have used informally up to this point.

A trace graph is a program trace with all information other than reads, writes, and

witnesses elided. There are three kinds of nodes in a trace graph: read nodes read(`),

write nodes write(`), and the join node join. Read and write nodes are parametrized

by a reference location `. There is a directed edge (A, B) from node A to node B if

B directly sees a witness of A. A trace graph (V,E) is constructed as the program
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evaluates a modified semantics:

Write (S, E[write ` e A])⇒ (S[`← a], E[B] ] {a 7→ e})

V:=V ∪ {B} where B is a new write(`) node

E:=E ∪ {(A, B)}

Read (S, E[read ` A])⇒ (S, E[S(`)⊗B])

V:=V ∪ {B} where B is a new read(`) node

E:=E ∪ {(A, B)}

Join (S, E[join A B])⇒ (S, E[C])

V:=V ∪ {C} where C is a new join node

E:=E ∪ {(A, C), (B, C)}

Note that we now use nodes as witnesses instead of •. The line below each reduction

rule shows the graph update action corresponding to that rule. The other rules

remain unmodified and hence have no graph update actions. An evaluation starts

with V = E = ∅ and performs the corresponding graph update when taking a Write

step, a Read step, or a Join step. A trace graph and the annotated semantics are

only needed to state the semantic condition for confluence and are not needed in the

actual execution of a λwit program.

We can now define what it means for a node A to see a witness of a node B, a

notion we have used informally until now.

Definition 3.2.1. Given a trace graph, we say that a node A sees a witness of a node

B if there is a path from B to A in the trace graph. We write B ; A.

The following is a trivial observation:

Theorem 3.2.2. If B ; A in a trace graph, then the reference access correspond-

ing to B must have happened before the reference access corresponding to A in the

evaluation that generated the trace graph.
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Clearly, any trace graph is acyclic.

Having defined trace graphs and the ; relation, we are now ready to state the

semantic condition for confluence. We note that a program could produce different

trace graphs depending on the choice of reductions, even when those trace graphs are

from terminating evaluations. Furthermore, it is not necessarily the case that such a

program is non-confluent. Therefore, instead of trying to argue about confluence by

comparing different trace graphs, we shall define a condition that can be checked by

observing each individual trace graph in isolation.

We write A : nodetype to mean a node A of type nodetype. If we have A : read(`)

and B : write(`), then we want either A ; B or B ; A to ensure that A always

happens before B or B always happens before A because otherwise we may get a

read-write race condition due to non-determinism. Also, for any A : read(`), if there

are two nodes B1, B2 : write(`) such that neither B1 ; B2 nor B2 ; B1 (so we do

not know which write occurs first) and A could happen after both B1 and B2, then

we want C : write(`) such that C ; A, B1 ; C and B2 ; C, because otherwise

the read at A might depend on whether the evaluation chose to do B1 first or B2

first, i.e., we have another kind of race-condition. Perhaps somewhat surprisingly,

satisfying these two conditions turns out to be sufficient to ensure confluence.

We now formalizes this discussion. For B : write(`), we use the shorthand B
!

; A

if for any C : write(`) such that C ; A, we have C ; B. It follows that for any

A : read(`), there exists at most one B : write(`) such that B
!

; A. The second

condition above is equivalent to requiring that for any A : read(`), either there is no

B : write(`) such that B ; A or there is a B : write(`) such that B
!

; A

Definition 3.2.3 (Witness Race Freedom). We say that a trace graph (V,E) is wit-

ness race free if for every location `,

• for every A : read(`) ∈ V and B : write(`) ∈ V, either A ; B or B ; A, and
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• for every A : read(`) ∈ V, either there is no B : write(`) ∈ V such that B ; A

or there is a B : write(`) ∈ V such that B
!

; A.

We say that a program e is witness race free if every trace graph of e is witness race

free.

Theorem 3.2.4. If e is witness race free then e is confluent.

The proof appears in Section 3.4.

While witness race freedom is a sufficient condition, it is not necessary. For

example, if for each reference location writes happen to never change the location’s

value, then the program is trivially confluent regardless of the order of reads and

writes. Another example is a program using implicit order of evaluation: e.g., in λwit ,

expressions are not reduced under λ so a function body is evaluated only after a call.

Hence a program that stores a function in a reference location, reads the reference

location to call the function, and then writes in the same reference location from the

body of the called function is confluent because the write always happens after the

read despite the write not seeing the witness of the read.

Nevertheless, witness race freedom is “almost complete” in a sense that if the only

way to order two reference accesses is to make one see a witness of the other, and if

we cannot assume anything about what expressions are written and how the contents

are used, then it is the weakest condition guaranteeing confluence. In particular, if

the trace graphs are the only information available about a program, then witness

race freedom becomes a necessary condition.

Because witness race freedom is an entirely semantic condition, the result in this

section can be extended to most other functional program transformations. However,

the static checking algorithm described in Section 3.3 is not as forgiving, which is

why we have restricted the set of program transformations to that of the semantics

of λwit . For example, the checking algorithm is unsound for call-by-name.
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Figure 3.3: Possible orderings between pairs of reads and writes in a witness race free
trace graph.

3.3 Types for Statically Checking Witness Race Free-

dom

While the concept of witnesses is straightforward, it may nevertheless be desirable

to have an automated way of checking whether an arbitrary λwit program is witness

race free. Witness race freedom may be checked directly by checking every program

trace, which is computationally infeasible. Instead, we exploit a special property of

witness-race-free trace graphs to design a sound algorithm that can verify a large

subset of witness-race-free λwit programs.

The key observation is that any witness-race-free trace graph contains for each

reference location ` a subgraph that we shall call a read-write pipeline with bottlenecks.

We shall design an algorithm that detects these subgraphs instead of directly checking

the witness race freedom condition. Consider a witness-race-free trace graph. Suppose

there are A1, A2 : write(`) and B1, B2 : read(`) such that A1 6= A2, A1
!

; B1 and

A2
!

; B2. Due to witness race freedom, it must be the case that B2 ; A1 or

A1 ; B2. If the former is the case, we have the relation as depicted in Figure 3.3

(a). Suppose that the latter is the case. Then, since A2
!

; B2, it must be the case

that A1 ; A2. Consider A2 and B1. Due to witness race freedom again, it must be

the case that either A2 ; B1 or B1 ; A2. But if A2 ; B1, then since A1
!

; B1, it

must be the case that A2 ; A1. But this is impossible since A2 ; A1 ; A2 forms a
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R1 W1 R2A1 W2 R3A2
Figure 3.4: A read-write pipeline with bottlenecks for a reference location `.

cycle. So it must be the case that B1 ; A2, and we have the relation as depicted in

Figure 3.3 (b).

Further reasoning along this line of thought reveals that for a witness-race-free

trace graph, for any reference location `, the nodes in the set X = {A : write(`) | ∃B :

read(`).A
!

; B} are totally ordered (with ; as the ordering relation) and that these

nodes partition all read(`) nodes and write(`) nodes in a way depicted in Figure 3.4

where X = {A1, . . . , An}. In the figure, each Ri and Wi is a collection of nodes. No Ri

contains a write(`) node and no Wi contains a read(`) nodes. Each Ai is one write(`)

node. An arrow from X to Y means that there is a path from each write(`) node or

read(`) node in X to each write(`) node or read(`) node in Y , except if a Wi contains

no such node, then there is a path from each read(`) ∈ Ri to Ai. Each Ri for i 6= 1

must contain at least one read(`). Arrows just imply the presence of paths, and hence

there can be more paths than the ones implied by the arrows, e.g., paths to/from

nodes that are not in the diagram, paths to and from nodes in the same collection,

and even paths relating the collections in the diagram such as one that goes directly

from Ri to Ai, bypassing Wi.

The graph in Figure 3.4 can be described formally as a subgraph of the trace

graph satisfying certain properties.
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Definition 3.3.1. Given a trace graph (V,E) and a reference location `, we call its

subgraph G` a read-write pipeline with bottlenecks if G` consists of collections of nodes

R1,R2, . . . ,Rn and W1,W2, . . . ,Wn with the following properties:

• {A | A : read(`) ∈ V} ⊆
⋃n

i=1 Ri,

• {A | A : write(`) ∈ V} ⊆
⋃n

i=1Wi,

• R1, . . . , Rn, W1, . . . , Wn, restricted to write(`) nodes and read(`) nodes are

pairwise disjoint,

• for each A : read(`) ∈ Ri and B : write(`) ∈ Wi, A ; B,

• for each Ri such that i 6= 1, there exists at least one A : read(`) ∈ Ri, and

• there exists A : write(`) ∈ Wi for all i 6= n such that for all B : read(`) ∈ Ri+1

and all C : write(`) ∈ Wi, A
!

; B and C ; A.

Here, each collection Ri and Wi corresponds to the collection of nodes marked by

the same name in Figure 3.4 but with each node Ai included in the collection Wi.

The “bottlenecks” are the Ai’s. Note that a trace graph (V,E) actually contains a

read-write pipeline with bottlenecks per each reference location ` as a subgraph G`

(but the subgraphs may not be disjoint because the paths may involve other locations

and share join nodes).

The following theorem formalizes our earlier informal discussion.

Theorem 3.3.2. A trace graph (V,E) is witness race free if and only if it has a

read-write pipeline with bottlenecks for every `.

Proof. If

Suppose (V,E) has a read-write pipeline with bottlenecks for every `. Let R1,R2, . . . ,Rn

and W1,W2, . . . ,Wn be the collection of the nodes making up the read-write pipeline
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Figure 3.5: The three cases for partitioning read nodes with respect to Aw
i nodes.

with bottlenecks for `. Let A : read(`), B : write(`) ∈ V. Then A ∈ Ri and

B ∈ Wj for some i, j. If i ≤ j, then A ; B. Otherwise, i > j and B ; A.

Let A : read(`), B : write(`) ∈ V and B ; A. Then A ∈ Ri for some i 6= 0. So there

is C : write(`) ∈ Ri−1 such that C
!

; A.

Only If

Suppose (V,E) is witness race free. Let ` be a reference location. Let Aw
1 , Aw

2 , . . . , Aw
n−1

be the write(`) nodes such that for each Aw
i , there is some B : read(`) such that

Aw
i

!
; B. As discussed above, Aw

1 , Aw
2 , . . . , Aw

n−1 are in some total order. Without

loss of generality, we assume that Aw
1 ; Aw

2 ; . . . ; Aw
n−1.

We construct the collections R1,R2, . . . ,Rn and W1,W2, . . . ,Wn as follows. First,

we add the node Aw
i to the collection Wi for each i 6= n. Let A : read(`). Suppose

there is some B : write(`) where B ; A. Then Aw
i

!
; A for some i. As discussed

above, it must be the case that A ; Aw
i+1 if i 6= n− 1. So we put A in the collection

Ri+1. Figure 3.5 depicts this case when (a) i 6= n− 1 and (b) i = n− 1.

Otherwise, there is no B : write(`) such that B ; A. Hence A ; C for any

C : write(`). In particular, A ; Aw
1 . So we put A in the collection R1. This case

corresponds to the diagram (c) in Figure 3.5.

At this point, we have successfully partitioned read(`) nodes with respect to Aw
i ’s.
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What remains are the write(`) nodes that are not among the Aw
i ’s. Let A : write(`)

be such a node. Suppose that there is no B : read(`) such that A ; B. Then it must

be the case that for all B : read(`), B ; A. In particular, for all B : read(`) ∈ Rn,

B ; A. So we put such a node A in the collection Wn. Otherwise, there exists

B : read(`) such that A ; B. Let i be the largest such that there is no C : read(`) ∈ Ri

with A ; C. Note that such i always exists since no read(`) nodes in the collection

R1 can be reached from a write(`) node. So, for each C : read(`) ∈ Ri, we have

C ; A. And since i is the largest, there exists D : read(`) ∈ Ri+1 such that A ; D.

Therefore, A ; Aw
i . Hence we can put the node A in the collection Wi.

Corollary 3.3.3. A λwit program e is witness race free if and only if every trace

graph of e has a read-write pipeline with bottlenecks for every reference location `.

3.3.1 Regions

Corollary 3.3.3 reduces the problem of deciding whether a program e is witness race

free to the problem of deciding if every trace graph of e has a read-write pipeline with

bottlenecks for every reference location `. Therefore it suffices to design an algorithm

for solving the latter problem. But before we do so, we make a slight change to

λwit to make the problem more tractable. In λwit , there is a read-write pipeline with

bottlenecks for each reference location `, but distinguishing dynamically allocated

reference locations individually is difficult for a compile-time algorithm. Therefore, we

add regions to the language so that programs can explicitly group reference locations

that are to be tracked together.

Figure 3.6 shows λreg
wit , λwit extended with regions. The syntax contains two new

expression kinds: letreg x e which creates a new region and ref e e′ which places

the newly created reference in region e′; ref e e′ replaces ref e. Figure 3.7 gives

the semantics of λreg
wit which differs from λwit in two small ways. First, a state now
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e := x | i | λx.e | e e′ | let x = e in e′ | e⊗ e′ | πi(e) | write e1 e2 e3 | read e e′

| ref e e′ | join e e′ | • | letreg x e

Figure 3.6: The syntax of λreg
wit .

E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗ E | πi(E)
| write E e e′ | write e E e′ | write e e′ E | read e E | read E e
| ref E e | ref e E | join E e | join e E

App (R,S, E[(λx.e) e′])⇒ (R,S, E[e[a/x]] ] {a 7→ e′})
Let (R,S, E[let x = e in e′])⇒ (R,S, E[e′[a/x]] ] {a 7→ e[a/x]})
Pair (R,S, E[πi(e1 ⊗ e2)])⇒ (R,S, E[ei])
Write (R,S, E[write ` e •]⇒ (R,S[`← a], E[•] ] {a 7→ e})
Read (R,S, E[read ` •])⇒ (R,S, E[S(`)⊗ •])
Ref (R,S, E[ref e r])⇒ (R,S ] {` 7→ a}, E[`] ] {a 7→ e})
Join (R,S, E[join • •])⇒ (R,S, E[•])
LetReg (R,S, E[letreg x e])⇒ (R ] {r}, S, E[e[a/x]] ] {a 7→ r})
Arrive (R,S, E[a] ] {a 7→ e})⇒ (R,S, E[e] ] {a 7→ e}) where e ∈ V
GC (R,S, D ]D′)⇒ (R,S, D) where � /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Figure 3.7: The semantics of λreg
wit .

contains a set of regions R. We use symbols r, r′, ri, etc. to denote regions. Regions

are safe to duplicate, i.e., r ∈ V . The R’s are used only for ensuring that the newly

created region r at a LetReg step is fresh. (We overload the symbol ] such that

R ] R′ = R ∪ R′ if R ∩ R′ = ∅ and is undefined otherwise.) Note that evaluation

contexts E do not extend to the subexpressions of letreg x e. The second difference

is that a Ref step now takes a region r along with the initializer e to indicate that the

newly created reference location ` belongs to the region r. Note that the semantics

does not actually associate the reference location ` and the region r, and therefore

grouping of reference locations via regions is entirely conceptual.3

3Regions are traditionally coupled with some semantic meaning such as memory manage-
ment [TT94; GMJ+02]. It is possible to extend λreg

wit to do similar things with its regions.
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Regions force programs to abide by witness race freedom at the granularity of

regions instead of at the granularity of individual reference locations. That is, in-

stead of read(`) nodes and write(`) nodes, we use read(r) nodes and write(r) nodes.

Formally, a trace graph for λreg
wit is constructed by the following graph construction

semantics:

Write (R,K, S, E[write ` e A])⇒ (R,K, S[`← a], E[B] ] {a 7→ e})

V:=V ∪ {B} where B is a new write(K(`)) node

E:=E ∪ {(A, B)}

Read (R,K, S, E[read ` A])⇒ (R,K, S, E[S(`)⊗B])

V:=V ∪ {B} where B is a new read(K(`)) node

E:=E ∪ {(A, B)}

Join (R,K, S, E[join A B])⇒ (R,K, S, E[C])

V:=V ∪ {C} where C is a new join node

E:=E ∪ {(A, C), (B, C)}

Ref (R,K, S, E[ref e r])⇒ (R,K ] {` 7→ r}, S ] {` 7→ a}, E[`] ] {a 7→ e})

In the rules above, K is a mapping from reference locations to regions. The mapping

K starts empty at the beginning of evaluation. Other reductions rules are unmodified

except that the function K is passed from left to right in the obvious way.

Since there is less information available in a λreg
wit trace graph than in a λwit trace

graph, the witness race freedom condition is more conservative for λreg
wit . That is, we

still need the condition that for any A : write(r) and B : read(r), either A ; B or

B ; A. But we need to tighten the second condition so that for any A : read(r) if

there are B1, B2 : write(r) such that B1 ; A and B2 ; A, then either B1 ; B2

or B2 ; B1. This condition is strictly more conservative than for λwit , which only

requires some C : write(r) such that C
!

; A in such a situation. The reason for this

conservativeness is that we do not know from a trace graph of λreg
wit whether B1 and
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B2 both write to the same reference location.

Formally, witness race freedom for λreg
wit can be defined as follows.

Definition 3.3.4 (Witness Race Freedom for λreg
wit). We say that a λreg

wit trace graph

(V,E) is witness race free if for every region r,

• for every A : read(r) ∈ V and B : read(r) ∈ V, either A ; B or B ; A, and

• for every A : read(r) ∈ V and B1, B2 : write(r) ∈ V such that B1 ; A and

B2 ; A, we have B1 ; B2 or B2 ; B1.

Theorem 3.3.5. If a λreg
wit program e is witness race free, then e is confluent.

Proof. For any evaluation of e, carry out the same reduction sequence with the trace

graph building action of λwit , i.e., the trace graph G generated is at the granularity of

reference locations. Then it is easy to see that if G satisfies the above two conditions,

G also satisfies the two conditions of Theorem 3.2.4.

It is easy to see that Definition 3.3.4 is the weakest possible restriction to the

original witness race freedom under the region abstraction because for any λreg
wit trace

graph that is not witness race free, one can easily find a non-confluent program that

produces the graph.

In a witness-race-free trace graph for λreg
wit , the read-write pipeline with bottlenecks

for a region r consisting of the collections (R1, . . . ,Rn,W1, . . . ,Wn) has the following

property: each set {A | A : write(r) ∈ Wi} for i 6= n can be totally ordered (with

; as the ordering relation). The theorem below is immediate from Corollary 3.3.3

under this additional property.

Theorem 3.3.6. A λreg
wit program e is witness race free if and only if every trace graph

of e has a read-write pipeline with bottlenecks for every region r.

This additional property helps in designing a static checking algorithm.
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3.3.2 From Network Flow to Types

Now our goal is to design an algorithm for statically checking if every trace graph of

a λreg
wit program e has a read-write pipeline with bottlenecks for every region r. Our

approach exploits a network flow property of read-write pipelines with bottlenecks.

Consider a trace graph as a network of nodes with each edge (A, B) able to carry any

non-negative flow from A to B. (Recall edges are directed.) As usual with network

flow, we require that the total incoming flow equal the total outgoing flow for every

node in the graph. Now, let us add a virtual source node AS and connect it to every

node B by adding an edge (AS, B). We assign incoming flow 1 to AS. Then it is not

hard to see that if there exists a read-write pipeline with bottlenecks for the region

r then there exists flow assignments such that every read(r) node and write(r) node

gets a positive flow and every A : write(r) ∈ Wi for i 6= n gets a flow equal to 1.

It turns out that the converse also holds. That is, given a trace graph, if there

is a flow assignment such that each read(r) node and write(r) node gets a positive

flow and each A : write(r) that has some B : read(r) such that B 6; A gets a flow

equal to 1, then there is a read-write pipeline with bottlenecks for the region r. By

Theorem 3.3.6, this implies that there exists such a flow assignment for every region

r if and only if the trace graph is witness race free. Because edges in a trace graph

are traces of witnesses, our idea is to assign a type to a witness such that the type

contains flow assignments for each (static) region. We use this idea to design a type

system such that a well-typed program is guaranteed to be witness race free.

Formally, a witness type W is a function from the set of static region identifiers

RegIDs to rational numbers in the range [0, 1], i.e., W : RegIDs → [0, 1]. The

rational number W (ρ) indicates the flow amount for the static region identifier ρ in

the witness type W . We use the notation {ρ1 7→ q1, . . . , ρn 7→ qn} to mean a witness

type W such that W (ρ) = qi if ρ = ρi for some 1 ≤ i ≤ n and W (ρ) = 0 otherwise.

56



Chapter 3. Deterministic Functional Programming with References

τ := int | τ q→ τ ′ | τ ⊗ τ ′ | ref (τ, τ ′, ρ) | reg(ρ) | W

Figure 3.8: The type language.

(We use the symbols q, qi, q′, etc for non-negative rational numbers, including those

larger than 1.)

The rest of the types are defined in Figure 3.8. Types include integer types int,

function types τ
q→ τ ′, pair types τ ⊗ τ ′, reference types ref (τ, τ ′, ρ), and region types

reg(ρ). The non-negative rational number q in τ
q→ τ ′ represents the number of times

the function can be called. We allow the symbols q, q′, etc to take the valuation∞ to

imply that the function can be called arbitrarily many times. We use the following

arithmetic relation: q +∞ =∞, q ×∞ =∞ for q 6= 0, and 0×∞ = 0.

Figure 3.9 and Figure 3.10 show the main type judgment rules. Our type system

belongs to the family of substructural type systems, which includes linear types. We

discuss the rules from top-to-bottom and left-to-right, except for Sub which we defer

to the end. Var and Int are standard. Dummy gives a dummy witness • an empty

witness type; note that ∅(ρ) = 0 for any static region identifier ρ.

Source uses additive arithmetic over types defined in Figure 3.11. The rule

adds W3 amount of flow from the virtual source nodes (i.e., nodes AS from the first

paragraph of this section) to W2. In the type judgment relation Γ; W ` e : τ , the

witness type W represents the flow the expression e receives from the virtual source

nodes. Therefore, Source says that assuming that we took W1 flow from the virtual

source nodes in the precondition, we are now taking W3 more.

In Abs, we multiply the left hand side of the judgments by the number of times

that the function can be used. Multiplication over type environments Γ is defined as

follows:

(Γ, x :τ)× q = (Γ× q), x : (τ × q)
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Γ; W ` e : τ τ ≥ τ ′

Γ; W ` e : τ ′
Sub

Γ(x) = τ

Γ; W ` x : τ
Var

Γ; W ` i : int
Int

Γ; W ` • : ∅
Dummy

Γ; W1 ` e : W2

Γ; W1 + W3 ` e : W2 + W3

Source

Γ, x :τ ; W ` e : τ ′

Γ× q; W × q ` λx.e : τ
q→ τ ′

Abs

Γ; W ` e : τ
q→ τ ′ Γ′; W ′ ` e′ : τ q ≥ 1

Γ + Γ′; W + W ′ ` e e′ : τ ′
App

Γ; W ` e : τ Γ′; W ′ ` e′ : τ ′

Γ + Γ′; W + W ′ ` e⊗ e′ : τ ⊗ τ ′
Pair

Γ; W ` e : τ1 ⊗ τ2

Γ; W ` πi(e) : τi

Proj

Γ; W ` e : τ Γ′; W ′ ` e′ : reg(ρ)

Γ + Γ′; W + W ′ ` ref e e′ : ref (τ, τ, ρ)
Ref

Figure 3.9: Type judgment rules I.

So for example, if λx.e captures a witness as a free variable y and that Γ(y) = W ,

then (Γ × q)(y) = W × q. Thus if the function body requires W amount of flow in

the witness, then we actually require W × q amount of flow because the function may

be called q times.

In App, the precondition q ≥ 1 says that the number of times the function can be

used must be at least 1. The left hand side of the two judgments in the precondition

are added so that we can compute the combined flow required for the expressions e
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Γ1; W1 ` e1 : ref (τ, τ ′, ρ) Γ2; W2 ` e2 : τ ′

Γ3; W3 ` e3 : W W (ρ) ≥ 1

Γ1 + Γ2 + Γ3; W1 + W2 + W3 ` write e1 e2 e3 : W
Write

Γ; W1 ` e : ref (τ, τ ′, ρ) Γ′; W2 ` e′ : W W (ρ) > 0

Γ + Γ′; W1 + W2 ` read e e′ : W ⊗ τ
Read

Γ, x :reg(ρ); W + {ρ 7→ q} ` e : τ
q ≤ 1 ρ /∈ free(Γ) ∪ free(W ) ∪ free(τ)

Γ; W ` letreg x e : τ
LetRegion

Γ; W1 ` e : W Γ; W2 ` e′ : W ′

Γ + Γ′; W1 + W2 ` join e e′ : W + W ′ Join

Γ; W ` e′[e/x] : τ e ∈ V x /∈ free(e)

Γ; W ` let x = e in e′ : τ
LetA

Γ, x :τ ; W ` e : τ Γ′, x :τ ; W ′ ` e′ : τ ′

τ ≥ τ ×∞ if x ∈ free(e)

Γ + Γ′; W + W ′ ` let x = e in e′ : τ ′
LetB

Figure 3.10: Type judgment rules II.

and e′. Addition over type environments is defined as follows:

(Γ, x :τ) + (Γ′, x :τ ′) = (Γ + Γ′), x : (τ + τ ′)

Pair and Proj are self-explanatory.

In a reference type ref (τ, τ ′, ρ), the static region identifier ρ identifies the region

where the reference belongs while the type τ is the read type of the reference and

the type τ ′ is the write type of the reference. Initially the read and write types are

the same as seen in Ref. Write matches the type of the to-be-assigned expression e2

with the write type of the reference while Read uses the read type of the reference

type. We require W (ρ) ≥ 1 at Write and W (ρ) > 0 at Read; both correspond

to the flow requirement for writes and reads. The reason for read-type/write-type
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reg(ρ) + reg(ρ) = reg(ρ)
int + int = int

τ
q→ τ ′ + τ

q′
→ τ ′ = τ

q+q′
→ τ ′

τ1 ⊗ τ2 + τ3 ⊗ τ4 = (τ1 + τ3)⊗ (τ2 + τ4)
ref (τ1, τ, ρ) + ref (τ2, τ, ρ) = ref (τ1 + τ2, τ, ρ)
W + W ′ = {ρ 7→ W (ρ) + W ′(ρ) | ρ ∈ RegIDs}

reg(ρ)× q = reg(ρ)
int× q = int

τ
q′
→ τ ′ × q = τ

q′×q→ τ ′

τ ⊗ τ ′ × q = (τ × q)⊗ (τ ′ × q)
ref (τ, τ ′, ρ)× q = ref (τ × q, τ ′, ρ)
W × q = {ρ 7→ W (ρ)× q | ρ ∈ RegIDs}

Figure 3.11: Arithmetic over types.

separation is subtle. Consider the following expression where the expressions e1 and

e3 are witnesses and the expression e2 is a region:

let x = (ref e1 e2) in let w = (write x e3 •) in read x w

Suppose we just have read types so that the type system uses read types at instances

Write as well as at instances Read. Then the type system is unsound (even without

Sub) for the following reason. The type system may assign some flow W to the

occurrence of the variable x at the write and some flow W ′ to the occurrence of the

variable x at the read. But there is no constraint to force W = W ′, so the type

system can let W ′ > W while keeping the sum W + W ′ fixed, i.e., we get more flow

from a reference than what was assigned to the reference. Separating read and write

types prevents this problem because addition and multiplication do not act on write

types.

LetRegion introduces a fresh static region identifier ρ. The witness type {ρ 7→ q}
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τ ≥ τ

τ1 ≤ τ ′1 τ2 ≥ τ ′2 q ≥ q′

τ1
q→ τ2 ≥ τ ′1

q′
→ τ ′2

τ1 ≥ τ ′1 τ2 ≥ τ ′2
τ1 ⊗ τ2 ≥ τ ′1 ⊗ τ ′2

τ1 ≥ τ ′1 τ2 ≤ τ ′2
ref (τ1, τ2, ρ) ≥ ref (τ ′1, τ

′
2, ρ)

W (ρ) ≥ W (ρ) for all ρ ∈ RegIDs

W ≥ W ′

Figure 3.12: Subtyping.

represents the virtual source node for the new region. We constrain q ≤ 1 to ensure

that we do not use more than 1 unit total from the source.

Join combines two witnesses by adding their types.

There are two rules, LetA and LetB, for the expression kind let x = e in e′.

LetA is less conservative and should be used whenever x occurs more than once in e′

and e ∈ V . This rule corresponds to the usual substitution interpretation of let-based

predicative polymorphism with the value restriction. LetB is used if e /∈ V or x

occurs at most once in e′. Here, free(τ) is the set of static region identifiers in the

type τ where free(W ) = {ρ | W (ρ) 6= 0}, and free(Γ) =
⋃

τ∈ran(Γ) free(τ).

Finally, we return to Sub. The subtyping relation is defined in Figure 3.12. As

usual, argument types of function types are contravariant. Write types of reference

types are also contravariant; this treatment of reference subtyping is identical to that

of a type-based formulation of Andersen’s points-to analysis [FFSA98]. Intuitively,

the rule Sub expresses the observation that the flow graph property may be relaxed

so that the sum of the outgoing flow can be less than the sum of the incoming flow,

i.e., if we could find a flow assignment satisfying the required flow constraints at reads

and writes under this relaxed condition, then we still have a read-write pipeline with

bottlenecks.

We say that a λreg
wit program e is well-typed if ∅; ∅ ` e : τ for some type τ . The

following theorem states that the type system is sound.

Theorem 3.3.7. If a λreg
wit program e is well-typed, then e is witness race free.
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The proof appears in Section 3.5.

We point out a few of the positive properties of this type system. If a program

contains no reads or writes and can be typed by a standard Hindley-Milner poly-

morphic type system, then it can also be typed by our type system; we may use the

qualifier ∞ for all function types and use 0 for all flows. In general, we can give

the ∞ qualifier to the function type of any function that does not capture a witness

(directly or indirectly). We can also assign 0 to any flow for a region r that does not

flow into a reference operating on the region r.

The type system is quite expressive. In particular, it is able to type all of the con-

fluent examples that were used up to this point in the chapter (with straightforward

modification to translate λwit programs into λreg
wit). In fact, assuming that write(r)

nodes in each collection Wi are totally ordered for each r, the type system is complete

for the first-order fragment (i.e., no higher order functions) with no recursion and no

storing of witnesses in references.

The limitations of the type system are the standard ones: let-based predicative

polymorphism, flow-insensitivity of reference types, and unsoundness under call-by-

name semantics; the latter is a typical limitation of a non-linear substructural type

system. Another limitation is that the type system enforces write(r) nodes in every

collection Wi to be totally ordered for each r whereas witness race freedom permits

an absence of ordering for the case i = n; we believe that this is a minor limitation.

3.3.3 Inference

We next present the type inference algorithm. By Theorem 3.3.7, this results in an

algorithm for statically checking witness race freedom.

At a high-level, our type system is a standard Hindley-Milner type system with

some additional rational arithmetic constraints. Therefore we could perform infer-
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Fresh(int) = int

Fresh(σ→σ) = Fresh(σ)
β→ Fresh(σ) where β is fresh

Fresh(σ ⊗ σ′) = Fresh(σ)⊗ Fresh(σ)
Fresh(ref (σ, σ′, ρ)) = ref (Fresh(σ),Fresh(σ′), ρ)
Fresh(reg(ρ)) = reg(ρ)
Fresh(I) = {ρ 7→ α | ρ ∈ I} where α is fresh

Figure 3.13: Fresh.

Γ, W `b eI : τ, C
Γ, W + Fresh(I) `a eI : τ + Fresh(I), C

Γ, W `b eσ : τ, C σ /∈ type I

Γ, W `a eσ : τ, C

Figure 3.14: Type inference `a.

ence by employing a standard type inference technique to solve all type-structural

constraints while generating rational arithmetic constraints on the side, and then

solving the generated arithmetic constraints separately. Unfortunately, the arith-

metic constraints may be non-linear since they involve the multiplication of variables.

Because there is no efficient algorithm for solving general non-linear rational arith-

metic constraints, we need to dive into lower-level details of the type system.

Let us separate type inference into two phases. The first phase carries out type

inference after erasing all rational numbers from the type system. That is, the types

inferred in this phase are:

σ := int | σ→σ′ | σ ⊗ σ′ | ref (σ, σ′, ρ) | reg(ρ) | I

where a type I is a subset of RegIDs. Intuitively, each type I represents the non-0

domain of some witness type W . The first phase can be carried out by a standard

Hindley-Milner type inference, albeit with regions, which is no harder than type

variables. We omit the details of this phase. We may safely reject the program if the
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τ = Fresh(σ)

{x :τ}, ∅ `b xσ : τ, ∅ ∅, ∅ `b i : int, ∅ ∅, ∅ `b • : ∅, ∅

Γ, W `a e : τ, C β is fresh

Γ× β, W × β `b λx.e : Γ(x)
β→ τ, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2 τ = Fresh(σ) τ ′ = Fresh(σ′)

β is fresh Γ3 = Γ1 + Γ2/C3 C = C1 ∪ C2 ∪ C3 ∪ {τ1 ≥ τ
β→ τ ′, β ≥ 1, τ2 ≥ τ}

Γ3, W1 + W2 `b eσ→σ′
1 e2 : τ ′, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2 Γ3 = Γ1 + Γ2/C3
Γ3, W1 + W2 `b e1 ⊗ e2 : τ1 ⊗ τ2, C1 ∪ C2 ∪ C3

Γ, W `a πi(e) : τ, C τ1 = Fresh(σ) τ2 = Fresh(σ′)

Γ, W `b πi(e
σ1⊗σ2) : τi, C ∪ {τ ≥ τ1 ⊗ τ2}

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2 Γ3 = Γ1 + Γ2/C3
Γ3, W1 + W2 `b ref e1 e

reg(ρ)
2 : ref (τ1, τ2, ρ), C1 ∪ C2 ∪ C3

Figure 3.15: Type inference `b II.
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Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
Γ3, W3 `a e2 : τ3, C3 τ = Fresh(σ) τ ′ = Fresh(σ′)
C = C1 ∪ C2 ∪ C3 ∪ {τ1 ≥ ref (τ, τ ′, ρ), τ2 ≥ τ ′, τ3(ρ) ≥ 1}

Γ = Γ1 + Γ2 + Γ3/C3 W = W1 + W2 + W3

Γ, W `b write e
ref (σ,σ′,ρ)
1 e2 e3 : τ3, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
τ = Fresh(σ) τ ′ = Fresh(σ′)

C = C1 ∪ C2 ∪ C3 ∪ {τ1 ≥ ref (τ, τ ′, ρ), τ2(ρ) > 0}
Γ3 = Γ1 + Γ2/C3

Γ3, W1 + W2 `b read e
ref (σ,σ′,ρ)
1 e2 : τ ⊗ τ2, C

Γ, W `a e : τ, C
Γ, W `b letreg xreg(ρ) e : τ, C ∪ {W (ρ) ≤ 1}

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2 Γ3 = Γ1 + Γ2/C3
Γ3, W1 + W2 `b join e1 e2 : τ1 + τ2, C1 ∪ C2 ∪ C3

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2K
x /∈ free(e1) C = C1 ∪ C2 ∪ C3 ∪ {τ1 ≥ Γ2(x)} Γ3 = Γ1 + Γ2/C3

Γ3, W1 + W2 `b let x = e1 in e2 : τ2, C

Γ1, W1 `a e1 : τ1, C1 Γ2, W2 `a e2 : τ2, C2
x ∈ free(e1) Γ3 = Γ1 + Γ2/C3

C = C1 ∪ C2 ∪ C3 ∪ {τ1 ≥ Γ1(x)×∞, τ1 ≥ Γ2(x)}
Γ3, W1 + W2 `b let x = e1 in e2 : τ2, C

Figure 3.16: Type inference `b II.
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reg(ρ) + reg(ρ) = reg(ρ)∅
int + int = int∅
τ1

q→ τ ′1 + τ2
q′
→ τ ′2 = τ1

q+q′
→ τ ′1/{τ1 = τ2, τ

′
1 = τ ′2}

τ1 ⊗ τ2 + τ3 ⊗ τ4 = τ ⊗ τ ′/C ∪ C ′ where
τ1 + τ3 = τ/C
τ2 + τ4 = τ ′/C ′

ref (τ1, τ3, ρ) + ref (τ2, τ4, ρ) = ref (τ ′, τ3, ρ)/{τ3 = τ4} ∪ C where τ1 + τ2 = τ ′/C
W + W ′ =
{ρ 7→ W (ρ) + W ′(ρ) | ρ ∈ dom(W ) ∧ ρ ∈ dom(W ′)}
∪{ρ 7→ W (ρ) | ρ ∈ dom(W ) ∧ ρ /∈ dom(W ′)}
∪{ρ 7→ W ′(ρ) | ρ ∈ dom(W ′) ∧ ρ /∈ dom(W )}/∅

Figure 3.17: Addition over types for type inference.

first phase fails. Otherwise we annotate each subexpression e by its inferred type σ:

eσ. In the second phase, we use the annotated program to generate the appropriate

rational arithmetic constraints via bottom-up type-inference. Let e be an annotated

program. Then the generated constraints for e is C where Γ, W `a e : τ, C for some

Γ, W , and τ .

The second-phase type inference rules are separated into two kinds, `a (Fig-

ure 3.14) and `b (Figure 3.15 and Figure 3.16), which must occur in strictly inter-

leaving manner. The purpose of `a is to account for the type judgment rule Source,

whereas `b accounts for all other rules.

We should note that, strictly speaking, types τ appearing in the algorithm are

different from the ones in the type judgment rules. That is, instead of rational num-

bers, the types τ in the algorithm are qualified by rational number variables α, β, γ,

etc. Also the domain of a witness type W is not the entire RegIDs set but only some

subset of it. In other words, a witness type W is a partial function from RegIDs to

rational number variables. Also, because we will be adding types containing differ-

ent rational number variables, we augment addition of types to emit constraints as

shown in Figure 3.17. We also re-define the addition of type environments such that
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Γ1 + Γ2 = Γ/C where for each x ∈ dom(Γ1) ∪ dom(Γ2), there exists Cx such that

• Γ(x) = Γ1(x) + Γ2(x) Cx if x ∈ dom(Γ1) and x ∈ dom(Γ1),

• Γ(x) = Γi(x) and Cx = ∅ if x ∈ dom(Γi) and x /∈ dom(Γj) for i, j ∈ {1, 2},

and C =
⋃

x∈dom(Γ1)∪dom(Γ2) Cx. Without loss of generality, we assume that bound

variables are distinct.

We omit annotations when they are not used (i.e., we say e instead of eσ, etc.).

There are only two cases for `a. The first case is for expressions that were given a

witness type I in the first phase. In this case, we add Fresh(I) to τ and W to account

for a possible application of Source. Fresh is defined in Figure 3.13. The second case

is for expressions that were not given a witness type. In this case, we simply pass the

result of the subderivation `b up.

We discuss a few representative `b rules. Note that `b rules are syntax directed.

In the case of a variable xσ, we create a fresh τ from σ and pass {x :τ}, ∅ `b xσ : τ, ∅

up to the parent derivation. (Recall our type inference is bottom-up.) The case for

integers and dummy witnesses are trivial. In the case of an abstraction λx.e, we

multiply Γ and W passed from the subderivation by β. In the case of a function

application eσ→σ′
1 e2, we add the constraints {τ1 ≥ τ

β→ τ ′, β ≥ 1, τ2 ≥ τ} to connect

arguments and returns as well as requiring β to be at least 1. Note that the type rule

Sub is implicitly incorporated in the constraints. In the case of write e
ref (σ,σ′,ρ)
1 e2 e3,

we add the constraint τ2(ρ) ≥ 1 to match the type rule Write. The first phase

guarantees that ρ ∈ dom(τ3). In the case letreg xreg(ρ) e, the constraint W (ρ) ≤ 1

is effective only when ρ ∈ dom(W ) as ρ /∈ dom(W ) implies that the region was not

used at all. There is no case corresponding to the type rule LetA. Prior to running

the algorithm, we replace each occurrence of the expression let x = e in e′ in the

program by the expression e′[e/x] whenever e ∈ V , x /∈ free(e), and x occurs more

than once in e′.
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{r :reg(ρ)}; ∅ `a ref 1 r : ref (int, int, ρ), ∅

Γ; {ρ 7→ γ1 + γ2} `a write x 2 • : {ρ 7→ γ1 + γ2}, {γ1 ≥ 1}
where Γ = {x :ref (int, int, ρ)}

Γ; W `a λy.read x w : int
β1→ int⊗ {ρ 7→ α1 + γ3}, C

where Γ = {x :ref (int, int, ρ), w :{ρ 7→ α1 × β1}}
and W = {ρ 7→ γ3 × β1}
and C = {α1 + γ3 > 0}

Γ; ∅ `a (f 0)⊗ (f 0) : τ, C
where Γ = {f : int

β2+β3→ int⊗ {ρ 7→ α2}}
and τ = (int⊗ {ρ 7→ α2})⊗ (int⊗ {ρ 7→ α2})
and C = {β2 ≥ 1, β3 ≥ 1}

Γ; {ρ 7→ γ4} `a write x 3 . . . : {ρ 7→ α3 + α4 + γ4}, C
where Γ = {x :ref (int, int, ρ), z :τ}
and τ = (int⊗ {ρ 7→ α3})⊗ (int⊗ {ρ 7→ α4})
and C = {α3 + α4 + γ4 ≥ 1}

Figure 3.18: Generated constraints.

As an example, consider the following program (a λreg
wit version of the last example

from Section 3.1):

letreg r

let x = ref 1 r in

let w = write x 2 • in

let f = λy.read x w in

let z = (f 0)⊗ (f 0) in

let w = write x 3 join π2(π1(z)) π2(π2(z)) in z

Suppose the first phase assigns r the type reg(ρ). Assume each let-bound variable

is treated monomorphically. The second phase generates the constraints shown in
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Figure 3.18 for the let-bound expressions (slightly simplified for readability). The

final constraints, after some simplification, is as follows:

γ1 ≥ 1, 1 ≥ γ1 + γ2 + γ3 × β1 + γ4, β1 ≥ β2 + β3,

β2 ≥ 1, β3 ≥ 1, γ1 + γ2 ≥ α1 × β1, α1 + γ3 > 0,

α1 + γ3 ≥ α2, α3 + α4 + γ4 ≥ 1, α2 ≥ α3, α2 ≥ α4

The constraints are satisfiable, e.g., by the substitution

β1 = 2 β2 = β3 = γ1 = 1 α1 = α2 = α3 = α4 = 0.5 γ2 = γ3 = γ4 = 0

In general, a program e is well-typed if and only if the constraints C generated by

type inference are satisfiable. So it suffices to show that the satisfaction problem for

any C generated by the type inference algorithm can be solved.

To this end, we first observe that because of the first phase, any constraint τ ≥

τ ′ ∈ C can be reduced to a set of rational arithmetic constraints of the form p ≥ p′

where p, p′ are rational polynomials. The troublesome non-linearity comes from Γ×β

and W ×β in the λx.e case. Let us focus our attention on the set B of variables used

in such multiplications. (We have used the meta-variable β instead of α just for this

case in the pseudo-code to make it clear that these variables are special.) We can

show that the following holds:

Theorem 3.3.8. Let p�p′ ∈ C where � ∈ {≥, >}. If β ∈ B occurs in the polynomial

p, then it must be the case that � =≥, p = β, and that the polynomial p′ consists

only of symbols in the set {+,×, 1,∞} ∪ B.

Proof. Let Γ, W `a e : τ, C. For any τ ′ ∈ Γ, × and + only appear at the top-level,

i.e., not within argument and return types of a function type. Secondly, we can show

by induction that within the type τ , × only appears in negative positions. More
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precisely, for any p ∈ Pos(τ), the polynomial p contains no × where Pos is defined

as follows:

Pos(τ
p→ τ ′) = Neg(τ) ∪ Pos(τ ′) ∪ {p}

Pos(τ ⊗ τ ′) = Pos(τ) ∪ Pos(τ ′)

Pos(ref (τ, τ ′, ρ)) = Pos(τ) ∪ Neg(τ ′)

Pos(W ) = ran(W )

Neg(int) = Pos(int) = Neg(reg(ρ)) = Pos(reg(ρ)) = ∅

Neg(τ
p→ τ ′) = Pos(τ) ∪ Neg(τ ′)

Neg(τ ⊗ τ ′) = Neg(τ) ∪ Neg(τ ′)

Neg(ref (τ, τ ′, ρ)) = Neg(τ) ∪ Pos(τ ′)

Neg(W ) = ∅

Third, for any + that appears in a positive position of τ , i.e. in some p ∈ Pos(τ), the

polynomial p does not contain any β ∈ B. Then the result follows from inspection of

the subtyping rules.

The theorem implies that we can compute all assignments to the variables in B

by computing the minimum satisfying assignment for C ′ = {β ≥ p | β ∈ B} ⊆ C.

It is easy to see that such an assignment always exists. (Recall that the range is

non-negative.) This problem can be solved in quadratic time by an iterative method

in which all variables are initially set to 0, and at each iteration the new values for

the variables are computed by taking the maximum of the right hand polynomials

evaluated at the current values. It is possible to show that if the minimum satisfying

assignment for a variable β is some q < ∞, then the iterative method finds q for

β in 2|C ′| iterations. Hence any variable changing after the 2|C ′|th iteration can be

safely set to ∞. All variables are then guaranteed to converge within 3|C ′| iterations.

Because each iteration examines every constraint, the overall time is at most quadratic
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App (L, E[(λx.e) e′])⇒alt (L, E[e[a/x]] ] {a 7→ e′})
Let (L, E[let x = e in e′])⇒alt (L, E[e′[a/x]] ] {a 7→ e[a/x]})
Pair (L, E[πi(e1 ⊗ e2)])⇒alt (L, E[ei])
Write (L, E[write 〈`, a′〉 e T ])⇒alt (L, E[write(T, `, a)] ] {a 7→ e})
Read (L, E[read 〈`, a〉 T ])⇒alt (L, E[read(T, `, a)⊗ T ])
Ref (L, E[ref e])⇒alt (L ] {`}, E[〈`, a〉] ] {a 7→ e})
Join (L, E[join T T ′])⇒alt (L, E[join(T, T ′)])
Arrive (L, E[a] ] {a 7→ e})⇒alt (L, E[e] ] {a 7→ e}) where e ∈ V
GC (L, D ]D′)⇒alt (L, D) where � /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Figure 3.19: The alternative semantics for λwit .

in the size of C ′.

Substituting the computed assignments for B in C results in linear rational con-

straints, which can be solved efficiently by a linear programming algorithm.

3.4 Proof of Theorem 3.2.4

Theorem 3.2.4 If e is witness race free then e is confluent.

We prove the theorem by showing that the λwit semantics is equivalent to an alter-

native semantics provided that e is witness race free. The alternative semantics is

confluent for any program, witness-race-free or not. Hence it follows that e is confluent

with the λwit semantics.

Figure 3.19 shows this alternative semantics. Evaluation contexts E are un-

changed. L is some set of reference locations. The new expression kind 〈`, a〉 is

merely a pair of a reference location and a port, and is also a value (i.e., 〈`, a〉 ∈ V ).

A table T is a function from reference locations to ports. The symbol • is interpreted
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as a table such that •(`) = ⊥ for all `. Operations on tables are defined as follows:

write(T, `, a) = {`′ 7→ a′ | `′ 7→ a′ ∈ T ∧ `′ 6= `} ∪ {` 7→ a}

read(T, `, a) =

a if T (`) = ⊥

T (`) if T (`) 6= ⊥

join(T, T ′) = {` 7→ T (`) | T ′(`) = T (`) ∨ T ′(`) = ⊥}

∪{` 7→ T ′(`) | T (`) = ⊥}

∪{` 7→ ⊥ | T (`) = T ′(`) = ⊥ ∨ T (`) 6= T ′(`)}

Two states (L, D) and (L′, D′) are defined to be observationally equivalent if

Erase(D) ≈ Erase(D′) where Erase(D) is D but with each occurrence of a table

replaced by • and each occurrence of 〈`, a〉 replaced by `. There are no reference

stores in the alternative semantics, i.e., the alternative semantics is trivially side

effect free. Therefore, while we will not prove it formally, it is not hard to see that

the alternative semantics is always confluent, i.e., for any states (L, D), (L1, D1) and

(L2, D2) such that (L, D) ⇒∗
alt (L1, D1) and (L, D) ⇒∗

alt (L2, D2), there exist states

(L′1, D
′
1) and (L′2, D

′
2) such that (L1, D1) ⇒∗

alt (L′1, D
′
1), (L2, D2) ⇒∗

alt (L′2, D
′
2), and

Erase(D′
1) ≈ Erase(D′

2). Hence, it suffices to prove that if a program e is witness

race free then for any evaluation (∅, D = {� 7→ e})⇒∗ (S, D1) there is an evaluation

(∅, D) ⇒∗
alt (L, D2) such that for any evaluation (L, D2) ⇒∗

alt (L′, D′
2) there is an

evaluation (S, D1)⇒∗ (S ′, D′
1) such that D′

1 ≈ Erase(D′
2).

We augment the graph constructing semantics slightly by adding information

about the written port to each write(`) node:

Write (S, E[write ` e A])⇒ (S[`← a], E[B] ] {a 7→ e})

V:=V ∪ {B} where B is a new write(`, a) node;E:=E ∪ {(A, B)}

For observational equivalence, we ignore this information, i.e., formally, each node is
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replaced by •.

Our idea is to show that for a witness-race-free program e,⇒ and⇒alt can simulate

each other while maintaining the following relationship.

Definition 3.4.1. (S, D1) ∼(V,E) (L, D2) if

• L = dom(S),

• D1 = Erase(D2),

• if ` has not been written, i.e., there is no write(`) nodes in V, then for any

occurrence of 〈`, a〉 in D2, a = S(`), and

• for any table T occurring in D2, T (`) = a 6= ⊥ off there exists a node B :

write(`, a) such that B
!

; A where A is the node associated with T .

The phrase node associated with a table used in the last sentence is defined as

follows: the table T at the expression store D2 = E[T ] is associated with the node A

at the expression store D1 = Erase(E)[A].

We now state the main claim which carries out the aforementioned simulation.

Lemma 3.4.2. Let a program e be witness race free. Then there exists a set Ωe

such that ((∅, {� 7→ e}), (∅, ∅), (∅, {� 7→ e})) ∈ Ωe and furthermore, for any triple

((S, D1), (V,E), (L, D2)) ∈ Ωe,

• (S, D1) ∼(V,E) (L, D2),

• (∅, {� 7→ e})⇒∗ (S, D1) with the trace graph (V,E),

• if (S, D1) ⇒ (S ′, D′
1) with the corresponding trace graph action updating the

trace graph from the state (V,E) to the state (V′,E′), then there exists a state

(L′, D′
2) such that (L, D2) ⇒alt (L′, D′

2) and ((S ′, D′
1), (V

′,E′), (L′, D′
2)) ∈ Ωe,

and
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• if (L, D2) ⇒alt (L′, D′
2), then there exists a state (S ′, D′

1) and a trace graph

(V′,E′) such that (S, D1) ⇒ (S ′, D′
1) with the corresponding trace graph action

updating the trace graph from the trace graph (V,E) to the trace graph (V′,E′)

and ((S ′, D′
1), (V

′,E′), (L′, D′
2)) ∈ Ωe.

The first condition says that the two states in a triple in Ωe are ∼-related with the

trace graph in the triple. The second condition says that these states can be reached

while generating the trace graph. The third and fourth conditions are the simulation

steps, i.e., showing that a step in⇒ can be simulated by a step in⇒alt and vice versa.

Proof. Our proof constructs Ωe inductively. For the base case, it is easy to see that

(∅, {� 7→ e}) ∼(∅,∅) (∅, {� 7→ e}) and (∅, {� 7→ e}) ⇒∗ (∅, {� 7→ e}) with the trace

graph (∅, ∅). Therefore, we may set Ωe = {((∅, {� 7→ e}), (∅, ∅), (∅, {� 7→ e}))}

initially.

The inductive case is split into case by reduction kinds. Let

((S, D1), (V,E), (L, D2)) ∈ Ωe

App, Let, Pair, Arrive, GC

Suppose D1 = E1[(λx.e) e′] and we took a App step so that

(S, E1[(λx.e1) e′1])⇒ (S, E1[e1[a/x]] ] {a 7→ e′1})

Note that the trace graph (V,E) is not updated by this reduction. Let us take a ⇒alt

version of App from the state (L, D2) so that

(L, D2 = E2[(λx.e2) e′2])⇒alt (L, E2[e2[a/x]] ] {a 7→ e′2})

where Erase(E2) = E1. Such E2 exists since D1 = Erase(D2). Also, it is easy to see
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that

(S, E1[e1[a/x]] ] {a 7→ e′1}) ∼(V,E) (L, E2[e2[a/x]] ] {a 7→ e′2})

So we add ((S, E1[e1[a/x]]]{a 7→ e′1}), (V,E), (L, E2[e2[a/x]]]{a 7→ e′2})) to Ωe. The

converse case where we take the App step from the state (L, D2) is analogous. A

similar argument works for the case a Let step, a Pair step, an Arrive step, or a

GC step is taken from the state (S, D1) or the state (L, D2).

Write

Suppose D1 = E1[write ` e1 A]] and we took a Write step so that

(S, E1[write ` e1 A]])⇒ (S[`← a], D′
1 = (E1[B] ] {a1 7→ e}))

with V
′ = V ∪ {B} and E

′ = E ∪ {(A, B)} where B : write(`, a). Let us take a ⇒alt

version of Write from (L, D2) so that

(L, D2 = E2[write 〈`, a′〉 e2 T ])⇒alt (L, D′
2 = (E2[write(T, `, a)] ] {a 7→ e2}))

where Erase(E2) = E1. Clearly, D′
1 = Erase(D′

2). For any table T in the expression

store D2 other than the table T ′ = write(T, `, a) at the context E2[ ], it is easy to see

that the fourth condition from the definition of ∼(V′,E′) holds since there is no node

reachable from the newly added node B. So consider the port T ′(`′). If `′ = `, then

T ′(`) = a, which is consistent with the condition since B
!

; B and B : write(`, a).

On the other hand, if `′ 6= `, then T ′(`′) = T (`), and again this is consistent with

the condition because the node A is associated with the table T and for any C :

write(`′, a′), C
!

; B if and only if C
!

; A. Therefore, (S[`← a], D1) ∼(V′,E′) (L, D2).

So we add the triple ((S[` ← a], D1), (V
′,E′), (L, D2)) to the set Ωe. The converse
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case where we take a Write step from the state (L, D2) is analogous.

Ref

Suppose D1 = E1[ref e1] and we took a Ref step so that

(S, D1 = E1[ref e1])⇒ (S ] {` 7→ a}, D′
1 = (E1[`] ] {a 7→ e1}))

Note that the trace graph (V,E) is not updated by this reduction. Let us take a ⇒alt

version of Ref from the state (L, D2) so that

(L, D2 = E2[ref e2])⇒alt (L ] {`}, D′
2 = (E2[〈`, a〉] ] {a 7→ e2}))

where Erase(E2) = E1. Clearly, D′
1 = Erase(D′

2). Also, L ] {`} = dom(S ] {` 7→

a}). The reference location ` has not been written and a = (S ] {` 7→ a})(`).

Therefore (S ] {` 7→ a}, D1) ∼(V′,E′) (L ] {`}, D2). So we add the triple ((S ] {` 7→

a}, D1), (V,E), (L]{`}, D2)) to Ωe. The converse case where we take a Ref step from

the state (L, D2) is analogous.

Read

Suppose D1 = E1[read ` A] and we took a Read step so that

(S, D1 = E1[read ` A])⇒ (S, D′
1 = E1[S(`)⊗B])

with V′ = V∪{B} and E′ = E∪{(A, B)} where B : read(`). Let us take a⇒alt version

of Read from the state (L, D2) such that

(L, D2 = E2[read 〈`, a〉 T ])⇒alt (L, D′
2 = E2[read(T, `, a)⊗ T ])

where Erase(E2) = E1. Now consider the table read(T, `, a). If the reference location
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` has not been written, i.e., there are no write(`) nodes in the vertex set V, then we

have S(`) = a. Also, T (`) = ⊥ since otherwise there is some C : write(`) such that

C
!

; A, which contradicts the statement we just made. Hence read(T, `, a) = a.

Otherwise, the reference location ` has been written, i.e., there exists C : write(`) in

the vertex set V. By witness race freedom, it must be the case that either C ; B

or B ; C, but since B is a newly added node, it must be the case that C ; B.

Therefore, again by witness race freedom, it must be the case that there exists a node

C ′ : write(`, a′) for some port a′ such that C ′ !
; B. Obviously, C ′ !

; A. Therefore

read(T, `, a) = a′. Suppose for contradiction that S(`) = a′′ 6= a′. Then there must

be a node C ′′ : write(`, a′′) such that this node was added after C ′ was added. But

by witness race freedom, it must be the case that C ′′ ; B. Hence C ′′ ; C ′ by

the definition of
!

;. But this implies that C ′′ was added before C ′ was added, a

contradiction. Hence S(`) = a and D′
1 = Erase(D′

2). Lastly, for any C, C
!

; A

if and only if C
!

; B. Therefore (S, D1) ∼(V′,E′) (L, D2). So we add the triple

((S, D1), (V
′,E′), (L, D2)) to the set Ωe. The converse case where we take a Read

step from the state (L, D2) is analogous.

Join

Suppose D1 = E1[join A B] and we took a Join step so that

(S, E1[join A B])⇒ (S, E1[C])

with V′ = V ∪ {C} and E′ = E ∪ {(A, C), (B, C)} where C : join. Let us take a ⇒alt

version of Join from the state (L, D2) so that

(L, D2 = E2[join T T ′])⇒alt (L, D′
2 = E2[join(T, T ′)])

where Erase(E2) = E1. Clearly, D′
1 = Erase(D′

2). Consider the table join(T, T ′)(`).
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Because C is a new node, there exists C ′ : write(`, a) such that C ′ !
; C iff either

1. C ′ !
; A and C ′ !

; B,

2. C ′ !
; A and there exists no C ′′ : write(`, a) such that C ′′ 6= C ′ and C ′′ !

; B, or

3. C ′ !
; B and there exists no C ′′ : write(`, a) such that C ′′ 6= C ′ and C ′′ !

; A.

For case 1, T (`) = T ′(`) = a. For case 2, T (`) = a and T ′(`) = ⊥. For case 3, T (`) =

⊥ and T ′(`) = a. In all three cases, join(T, T ′)(`) = a. Therefore (S, D1) ∼(V′,E′)

(L, D2). So we add the triple ((S, D1), (V
′,E′), (L, D2)) to the set Ωe. The converse

case where we take a Join step from the state (L, D2) is analogous.

The preceding lemma implies that for a witness-race-free e, any evaluation

(∅, {� 7→ e}) ⇒∗ (S, D) has a corresponding simulation (∅, {� 7→ e}) ⇒∗
alt (L, Dalt)

such that any evaluation (L, Dalt) ⇒∗
alt (L′, D′

alt) has a corresponding simulation

(S, D)⇒∗ (S ′, D′) such that D′ ≈ Erase(D′
alt).

4

So suppose (∅, {� 7→ e}) ⇒∗ (S1, D1) and (∅, {� 7→ e}) ⇒∗ (S2, D2). Then there

are (L1, D1,alt) and (L2, D2,alt) such that

• (∅, {� 7→ e})⇒∗
alt (L1, D1,alt),

• (∅, {� 7→ e})⇒∗
alt (L2, D2,alt),

• for any evaluation (L1, D1,alt) ⇒∗
alt (L′1, D

′
1,alt), there is (S ′1, D

′
1) such that

(S1, D1)⇒∗ (S ′1, D
′
1) and D′

1 ≈ Erase(D′
1,alt), and

• for any evaluation (L2, D2,alt) ⇒∗
alt (L′2, D

′
2,alt), there is (S ′2, D

′
2) such that

(S2, D2)⇒∗ (S ′2, D
′
2) and D′

2 ≈ Erase(D′
2,alt).

4In fact, Lemma 3.4.2 implies that there is one that maintains ≈ relation at every step of the
simulation. But ≈ at the end of the simulation is sufficient to prove the theorem.
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E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗ E | πi(E)
| write E e e′ | write e E e′ | write e e′ E | read e E | read E e
| ref E e | ref e E | join E e | join e E

Figure 3.20: Evaluation contexts for flow annotated λreg
wit semantics.

But since ⇒alt is confluent, there are states (L′1, D
′
1,alt) and (L′2, D

′
2,alt) such that

Erase(D′
1,alt) ≈ Erase(D′

2,alt). Hence there are (S ′1, D
′
1) and (S ′2, D

′
2) such that

(S1, D1) ⇒∗ (S ′1, D
′
1), (S2, D2) ⇒∗ (S ′2, D

′
2), and Erase(D′

1) ≈ Erase(D′
2), i.e., e

is confluent even with ⇒.

3.5 Proof of Theorem 3.3.7

Theorem 3.3.7 If a λreg
wit program e is well-typed, then e is witness race free.

We prove the result by showing that any evaluation of e generates a witness-race-

free trace graph. By Theorem 3.3.2, it suffices to show that the evaluation builds a

read-write pipeline with bottlenecks for every r. Then, as discussed in Section 3.3.2,

it suffices to show that for each r there exists flow assignments to the trace graph

with a source node having flow 1 such that every read(r) node gets a positive flow

(i.e., flow > 0) and every write(r) node gets a flow equal to 1.

To this end, we annotate the semantics with flow information such that generated

trace graph is constructed together with flow assignments. The resulting semantics

⇒flow shown in Figure 3.20 and Figure 3.21 has the following differences from the

unannotated version.

1. R’s are now mapping from some set of regions to rational numbers in the range

[0, 1]. Intuitively, R(r) represents the amount of flow remaining in the source

node for r.
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App (R,K, S, E[(λx.e) e′])⇒flow (R,K, S, E[e[a/x]] ] {a 7→ e′})
Let (R,K, S, E[let x = e in e′])⇒flow (R,K, S, E[e′[a/x]] ] {a 7→ e[a/x]})
Pair (R,K, S, E[πi(e1 ⊗ e2)])⇒flow (R,K, S, E[ei])
Write (R,K, S, E[write ` e 〈A, P 〉]⇒flow (R,K, S[`← a], E[〈B, P 〉] ] {a 7→ e})

V:=V ∪ {B} where B is a new write(K(`)) node
E:=E ∪ {(A, B)}
for each r flow P (r) from A to B

Read (R,K, S, E[read ` 〈A, P 〉])⇒flow (R,K, S, E[S(`)⊗ 〈B, P 〉])
V:=V ∪ {B} where B is a new read(K(`)) node
E:=E ∪ {(A, B)}
for each r flow P (r) from A to B

Ref (R,K, S, E[ref e r])⇒flow (R,K ] {` 7→ r}, S ] {` 7→ a}, E[`] ] {a 7→ e})
Join (R,K, S, E[join 〈A, P 〉 〈B, P ′〉])⇒flow (R,K, S, E[〈C, P + P ′〉])

V:=V ∪ {C} where C is a new join node
E:=E ∪ {(A, C), (B, C)}
for each r flow P (r) from A to C
for each r flow P ′(r) from B to C

LetReg (R,K, S, E[letreg x e])⇒flow (R ] {r 7→ 1}, K, S,E[e[a/x]] ] {a 7→ r})
Arrive (R,K, S, E[a] ] {a 7→ e})⇒flow (R,K, S, E[e1] ] {a 7→ e2})

where e ∈ V ∧ e = e1 + e2

GC (R,K, S, D ]D′)⇒flow (R,K, S, D)
where � /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Source (R + P ′, K, S,E[〈A, P 〉])⇒flow (R,K, S, E[〈A, P + P ′〉])
for each r flow P (r) from the source node to A

Figure 3.21: Flow annotated λreg
wit semantics.

2. Each witness (i.e., a graph node) is paired with a packet P . A packet P is a

function from regions to rational numbers in the range [0, 1]. Intuitively, the

pair 〈A, P 〉 implies that P (r) amount of flow for region r is flowing from the

node A.

3. Arrive “splits” the expression e into expressions e1 and e2 instead of duplicat-

ing e. Splitting is defined using the additive arithmetic e1 + e2 = e given in
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e + e = e where e = x, i, a, r, `, or λx.e
e1 ⊗ e2 + e′1 ⊗ e′2 = (e1 + e2)⊗ (e′1 + e′2)
〈A, P1〉+ 〈A, P2〉 = 〈A, P1 + P2〉
P1 + P2 = {r 7→ P1(r) + P2(r) | r ∈ Regions}

Figure 3.22: Additive arithmetic of e ∈ V .

Figure 3.22.5 Note that the addition P1 + P2 is also used at the Join rule to

combine two packets.

4. Flow assignments are made at Read, Write, and Join.

5. The new reduction rule Source is introduced to account for flow from the source

node to an arbitrary node.

Any ⇒flow evaluation sequence has a corresponding unannotated evaluation se-

quence, i.e., replace packets by • and bypass Source steps. Conversely, any ⇒ eval-

uation sequence has at least one corresponding flow-annotated evaluation sequence.

However, this correspondence is not a bijection since different ⇒flow evaluation se-

quences may correspond to the same ⇒ evaluation sequence. In particular, even for

a well-typed-program, there may be a⇒flow evaluation sequence which does not have

the proper flow requirement, i.e., some read(r) node gets flow ≤ 0 or some write(r)

node gets flow < 1.

Our goal is to show that for any ⇒ evaluation sequence of a well-typed program

e, there is a corresponding ⇒flow evaluation sequence with proper flow assignments.

The proof is by subject reduction, i.e., a ⇒ step from a well-typed state X always

has (a) corresponding ⇒flow step(s) taking X to another well-typed state Y . As we

shall see, we can always assign proper flow as long as we are in well-typed states.

But before we define well-typed states, we need to extend the type system to type

5We do not need to split below the body of λx.e since there cannot be any packets captured in
a λ abstraction.
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non-source expression kinds:

for each r ∈ dom(Γ), P (r) = W ′(ρ) where Γ(r) = reg(ρ)

Γ; W ` 〈A, P 〉 : W ′ Packet

Γ(r) = reg(ρ)

Γ; W ` r : reg(ρ)
Region

Γ(`) = ref (τ, τ ′, ρ)

Γ; W ` ` : ref (τ, τ ′, ρ′)
Loc

Γ(a) = τ

Γ; W ` a : τ
Port

Also, we need to extend arithmetic over type environments such that

(Γ, e :τ) + (Γ′, e :τ ′) = (Γ + Γ′), e : (τ + τ ′)

and

(Γ, e :τ)× q = (Γ× q), e : (τ × q)

for any expression e that is either a port, a variable, a reference location, or a region.

We are now ready to define well-typed states.

Definition 3.5.1. The state (R,K, S, D) is well-typed under the environment Γ; W

(written Γ; W ` (R,S, K, D)) if

• dom(R) = dom(Γ) ∩Regions,

• dom(S) = dom(K) = dom(Γ) ∩ Locations,

• dom(D) = dom(Γ) ∩Ports,

• For any region r ∈ dom(R), R(r) ≥ W (ρ) where Γ(r) = reg(ρ),

• For any reference location ` ∈ dom(K), Γ(K(`)) = reg(ρ) where Γ(`) =

ref (τ, τ ′, ρ) for some τ and τ ′, and
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• Suppose D = {a1 7→ e1, . . . , an 7→ en} and S = {`1 7→ a′1, . . . , `m 7→ a′m}, then

there exists environments Γ1; W1, . . . , Γn; Wn, Γ
′
1; W

′
1, . . . , Γ

′
m; W ′

m such that

– Γ =
∑n

i=1 Γi +
∑m

i=1 Γ′i,

– W =
∑n

i=1 Wi +
∑m

i=1 W ′
i ,

– for each port ai, Γi; Wi ` D(ai) : Γ(ai), and

– for each reference location `i, Γ′i; W
′
i ` S(`i) : τ where Γ(`i) = ref (τ, τ ′, ρ)

for some types τ and τ ′ such that τ ≤ τ ′ and a static region identifier ρ

such that Γ(K(`)) = reg(ρ).

It becomes cumbersome later when we repeatedly pick just one Γi; Wi or Γ′i; W
′
i ,

and so for convenience, given Γ; W ` (R,S, K, D ] {a 7→ e}), we often say “Γ′; W ′

is the environment for {a 7→ e}” to mean that the environment Γ′; W ′ is one of the

environments Γi; Wi from the definition above such that Γi; Wi ` e : Γ(a). Similarly,

given Γ; W ` (R,S ] {` 7→ a}, K, D), we often say “Γ′; W ′ is the environment for

{` 7→ a}” to mean that the environment Γ′; W ′ is one of the environments Γ′i; W
′
i

from the definition above such that Γ′i; W
′
i ` a : Γ(`).

Before we prove the main subject reduction lemma (Lemma 3.5.6), we need a few

side lemmas. The following lemma is needed to “convert” an application of a Source

type rule to a step of a Source ⇒flow rule.

Lemma 3.5.2. Suppose Γ; W + W ′ ` (R,K, S, D ] {a 7→ E[〈A, P 〉]}) such that one

application of the type rule Source with W ′ is applied at the context E[ ] following

the type rule Packet in the type judgment for the expression E[〈A, P 〉], i.e.,

. . .

Γ′; W ′′ ` 〈A, P 〉 : WP

Packet

Γ′; W ′′ + W ′ ` 〈A, P 〉 : WP + W ′

appears in the judgment for the expression E[〈A, P 〉] in Γ; W + W ′ ` (R,K, S, D ]
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{a 7→ E[〈A, P 〉]}). Then there exists P ′ such that Γ; W ` (R′, S,K,D ] {a 7→

E[〈A, P +P ′〉]}) where R = R′+P ′ without using the type rule Source at the context

E[ ].

Proof. Choose a packet P ′ such that for each region r, P ′(r) = W ′(ρ) where Γ(r) =

reg(ρ) and P ′(r) = 0 if r /∈ dom(Γ). Suppose the environment Γi; Wi is the environ-

ment for {a 7→ E[〈A, P 〉]} in the environment Γ; W + W ′, i.e., Γi; Wi ` E[〈A, P 〉] : τ

for some type τ . Then it is easy to see that Γi; Wi −W ′ ` E[〈A, P + P ′〉] : τ by not

using the type rule Source at the context E[ ]. Hence Γ; W ` (R′, S,K,D ] {a 7→

E[〈A, P + P ′〉]}).

The following side lemma shows that any expression e ∈ V can be “split” according

to a splitting of its types. This lemma is used only to prove Lemma 3.5.4.

Lemma 3.5.3. Suppose e ∈ V , Γ; W ` e : τ , and τ = τ1 + τ2. Then there exists

expressions e1 and e2, and environments Γ1; W1 and Γ2; W2 such that e = e1 + e2,

Γ = Γ1 + Γ2, W = W1 + W2, Γ1; W1 ` e1 : τ1, and Γ2; W2 ` e2 : τ2.

Proof. By structural induction on the expression e. The case e = i is trivial. For

the case the expression e is x, a, `, or r, we let e1 = e2 = e and split the type

Γ(e) accordingly (the rest of the environment Γ may be split in any way), and if

Γ(e) = W ′ for some witness type W ′, then we also split the witness W in case the

type rule Source was used in the judgment Γ; W ` e : τ .

For the case e = 〈A, P 〉, τ1 and τ2 are witness types. Therefore there exist packets

P1 and P2 such that P = P1 + P2, Γ1; W1 ` 〈A, P1〉 : τ1, and Γ2; W2 ` 〈A, P2〉 : τ2

where W1 + W2 = W and Γ1 + Γ2 = Γ. Here, W1 and W2 are split according to the

uses of Source in typing τ1 and τ2. Γ1 and Γ2 can be split in any way.

The case e = v ⊗ v′ follows from the induction and the type rule Pair. I.e., since

τ = τ ′ ⊗ τ ′′ for some τ ′ and τ ′′, we split v and v′ according to how τ ′ and τ ′′ are
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split, and add the environments of each half to obtain Γ1; W1 and Γ2; W2. Details are

omitted but are straightforward.

For the case e = λx.e′, as discussed before, we only consider the case when e′

contains no packets because no evaluation produces a λ abstraction containing a

packet. So we may let e1 = e2 = λx.e. Since τ1 = τ ′
q1→ τ ′′ and τ2 = τ ′

q2→ τ ′′ for some

τ ′, τ ′′, q1, and q2, we may split Γ into Γ1 = Γ× q1 and Γ2 = Γ× q2, and split W into

W1 = W × q1 and W2 = W × q2. Checking the arithmetic is straightforward.

The following side lemma is required when we take Arrive steps in the subject

reduction argument.

Lemma 3.5.4. Suppose Γ; W ` (R,S, K, E[a] ] {a 7→ e}) and e ∈ V , then there

exist expressions e1, e2 and a type environment Γ′ such that e = e1 + e2 and Γ′; W `

(R,S, K, E[e1] ] {a 7→ e2}).

Proof. Let D = E[a] ] {a 7→ e}. Let n + m environments Γ1; W1, . . . , Γn; Wn,

Γ′1; W
′
1, . . . , Γ

′
m; W ′

m be such that Γ =
∑n

i=1 Γi +
∑m

i=1 Γ′i, W =
∑n

i=1 Wi +
∑m

i=1 W ′
i ,

for each ai, Γi; Wi ` D(ai) : Γ(ai), and for each `i, Γ′i; W
′
i ` S(`i) : Γ(`i). Suppose

a = ai and E[ ] = {aj 7→ E ′[ ]} ∪D′. Note that i 6= j.

Then by Lemma 3.5.3 and by induction on the structure of E and the type judg-

ment rules, it follows that there exist expressions e1 and e2 such that D(ai) = e1 + e2

where there exist Γi1 , Γi2 , τ1, τ2, Wi1 , and Wi2 such that

• Γi = Γi1 + Γi2 ,

• Wi = Wi1 + Wi2 ,

• Γi1 ; Wi1 ` e1 : τ − τ2, and

• Γj − {a :τ2}+ Γi2 ; Wj + Wi2 ` E ′[e2] : Γ(aj)
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Let Γ′ = Γ− Γi − Γj + Γi1 + (Γj − {a :τ2}+ Γi2) = Γ− {a :τ2}. Then it follows that

Γ′; W ` (R,S, K, E[e1] ] {a 7→ e2})

The following lemma allows us to elide the type checking rule LetA when proving

the main lemma.

Lemma 3.5.5. Let e and e′ be programs such that e′ is identical to e except that an

occurrence of the expression let x = e1 in e2 is replaced by the expression e2[e1/x]

where e1 ∈ V . Then, there is an evaluation of e′ that generates a trace graph G iff

there is an evaluation of e that generates G.

Proof. By inspection of the reduction rules.

Based on Lemma 3.5.5, we assume in the next lemma that no type judgment uses

LetA. Let Erase be an operation that replaces each occurrence of 〈A, P 〉 by A. We

are now ready to state and prove the main lemma.

Lemma 3.5.6. Suppose

Γ; W ` (R,S, K, D)

and

(dom(R), S,Erase(D))⇒ (Ro, So, Do)

Then there exist Rf , Kf , Sf , Df , Γ′, and W ′ such that

• (R,S, K, D)⇒flow (Rf , Sf , Kf , Df ),

• Γ′; W ′ ` (Rf , Sf , Kf , Df ),

• dom(Rf ) = Ro,
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• So = Sf , and

• Erase(Do) = Df .

Furthermore, if the above ⇒flow step is a Write step writing to location ` then

P (Kf (`)) ≥ 1 where P is the packet at the write, and if it is a Read step read-

ing from ` then P (Kf (`)) > 0 where P is the packet at the read.

This lemma implies that there is a proper flow assignment for a trace graph

constructed from reducing a well-typed state.

Proof. We prove the lemma by case analysis on ⇒.

App

We have

(dom(R), S,Erase({a′ 7→ E[(λx.e) e′]} ]D′))⇒ (Ro, So, Do)

where {a′ 7→ E[(λx.e) e′]} ]D′) = D, Ro = dom(R), So = S, and Do = Erase({a′ 7→

E[e[a/x]]} ]D′ ] {a 7→ e′}). Pick a App step for ⇒flow such that

(R,K, S, D = {a′ 7→ E[(λx.e) e′] ]D′})⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a′ 7→ E[e[a/x]]}]D′]{a 7→ e′}). It is easy

to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a′ 7→ E[(λx.e) e′]} in

Γ; W ` (R,S, K, D) such that

Γ2; W2 ` λx.e : τ
q→ τ ′ Γ3; W3 ` e′ : τ q ≥ 1

Γ2 + Γ3; W2 + W3 ` (λx.e) e′ : τ ′

appears in the subderivation at the context E[ ]. Then because q ≥ 1, by inspection

of the type checking rules, it follows that Γ2, a :τ ; W2 ` e[a/x] : τ ′.
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We construct an environment Γ′; W ′ by keeping the portions for the expression

store D′ and the reference location store S the same as the environment Γ; W and by

using the environment Γ1 + Γ2, a : τ ; W1 + W2 for {a′ 7→ E[e[a/x]]} and by using the

environment Γ3; W3 for {a 7→ e′}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

Let

We have

(dom(R), S,Erase(D = ({a′ 7→ E[let x = e in e′]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a′ 7→ E[e′[a/x]]}]D′]{a 7→ e[a/x]}).

The case x /∈ free(e) identical to the App case. So suppose x ∈ free(e). Pick a Let

step for ⇒flow such that

(R,K, S, D = ({a′ 7→ E[let x = e in e′]} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a′ 7→ E[e′[a/x]]} ]D′ ] {a 7→ e[a/x]}). It

is easy to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Since x ∈ free(e), Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a′ 7→

E[let x = e in e′]} in Γ; W ` (R,S, K, D) such that

Γ2, x :τ ; W2 ` e : τ Γ3, x :τ ; W3 ` e′ : τ ′ τ ≥ τ ×∞
Γ2 + Γ3; W2 + W3 ` let x = e in e′ : τ ′

appears in the subderivation at the context E[ ]. Then by inspection of the type

checking rules, it follows that Γ2, a : τ ; W2 ` e[a/x] : τ and Γ3, a : τ ; W3 ` e′[a/x] : τ ′.

We construct an environment Γ′; W ′ by keeping the portions for the expression store

D′ and the reference location store S the same as the environment Γ; W and by using

the environment Γ2, a :τ ; W2 for {a 7→ e[a/x]} and using the environment Γ1 + Γ3, a :
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τ ; W1 +W3 for {a′ 7→ E[e′[a/x]]}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ) since

τ ≥ τ ×∞ implies that τ + τ = τ .

Pair

We have

(dom(R), S,Erase(D = ({a 7→ E[πi(e1 ⊗ e2)]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a 7→ E[ei]} ]D′). Pick a Pair step

for ⇒flow such that

(R,K, S, D = {a 7→ E[πi(e1 ⊗ e2)] ]D′})⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a 7→ E[ei]} ] D′). It is easy to see that

dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2; W1 + W2 be the environment for {a 7→ E[πi(e1 ⊗ e2)]} in Γ; W `

(R,S, K, D) such that
Γ2, W2 ` e1 ⊗ e2 : τ1 ⊗ τ2

Γ2; W2 ` πi(e1 ⊗ e2) : τi

appears in the subderivation at the context E[ ]. Then by inspection of the type

checking rules, it follows that Γ2; W2 ` ei : τi. We construct an environment Γ′; W ′

by keeping the portions for the expression store D′ and the reference location store

S the same as Γ; W and by using the environment Γ1 + Γ2; W1 + W2 for {a 7→ E[ei]}.

Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

Write
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We have

(dom(R), S = (S ′ ] {` 7→ a′′}),Erase(D = ({a′ 7→ E[write ` e 〈A, P 〉]} ]D′)))

⇒ (Ro, So, Do)

where Ro = dom(R), So = (S ′ ] {` 7→ a}), and Do = Erase({a′ 7→ E[〈B, P 〉]} ]D′ ]

{a 7→ e}).

Suppose in Γ; W ` (R,S, K, D = ({a′ 7→ E[write ` e 〈A, P 〉]} ]D′)) the type rule

Source is applied at E[write`e[ ]] with some witness type W6. Then by Lemma 3.5.2,

there exists P ′ such that Γ; W −W6 ` (R−P ′, S,K, {a′ 7→ E[write`e〈A, P + P ′〉]}]

D′). Pick a Source step followed by a Write step for ⇒flow such that

(R,K, S = (S ′ ] {` 7→ a′′}), D = ({a′ 7→ E[write ` e 〈A, P 〉]} ]D′))

⇒flow (R− P ′, S ′ ] {` 7→ a′′}, K, {a′ 7→ E[write ` e 〈A, P + P ′〉]} ]D′)

⇒flow (Rf , Kf , Sf , Df )

where Rf = R − P ′, Kf = K, Sf = (S ′ ] {` 7→ a}), Df = ({a′ 7→ E[〈B, P + P ′〉]} ]

D′ ] {a 7→ e}). It is easy to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3 + Γ4; W1 + W2 + W3 + W4 be the environment for {a′ 7→

E[write`e〈A, P + P ′〉]} in Γ; W−W6 ` (R−P ′, S,K, {a′ 7→ E[write`e〈A, P + P ′〉]}]

D′) such that

Γ2; W2 ` ` : ref (τ, τ ′, ρ) Γ3; W3 ` e : τ ′

Γ4; W4 ` 〈A, P + P ′〉 : W5 W5(ρ) ≥ 1

Γ2 + Γ3 + Γ4; W2 + W3 + W4 ` write ` e 〈A, P + P ′〉 : W5

appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′

by keeping the portions for the expression store D′ and the reference location store

S ′ the same as the environment Γ; W − W6 and by using the environment Γ3; W3

for {a 7→ e}, the environment Γ1 + Γ4; W1 + W4 for {a′ 7→ E[〈B, P + P ′〉]}, and
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the environment a : τ ; ∅ for {` 7→ a}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df )

since τ ′ ≥ τ . Also, since we eliminated the type rule Source for the expression

〈A, P + P ′〉 at the context E[write ` e [ ]], it must be the case that (P + P ′)(r) ≥ 1

where Γ(r) = reg(ρ). Since Γ2; W2 ` ` : ref (τ, τ ′, ρ) implies that Kf (`) = r, we have

(P + P ′)(Kf (`)) ≥ 1 as required.

Read

We have

(dom(R), S = (S ′ ] {` 7→ a}),Erase(D = ({a′ 7→ E[read ` 〈A, P 〉]} ]D′)))

⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a′ 7→ E[a⊗ 〈B, P 〉]} ]D′).

Suppose in Γ; W ` (R,S, K, D = ({a′ 7→ E[read ` 〈A, P 〉]} ]D′)), the type rule

Source is applied at the context E[read ` [ ]] with some witness type W5. Then by

Lemma 3.5.2, there exists a packet P ′ such that Γ; W −W5 ` (R − P ′, S,K, {a′ 7→

E[read ` 〈A, P + P ′〉]} ]D′). Pick a Source step followed by a Read step for ⇒flow

such that

(R,K, S = (S ′ ] {` 7→ a}), D = ({a′ 7→ E[read ` 〈A, P 〉]} ]D′))

⇒flow (R− P ′, S,K, {a′ 7→ E[read ` 〈A, P + P ′〉]} ]D′)

⇒flow (Rf , Kf , Sf , Df )

where Rf = R − P ′, Kf = K, Sf = S, Df = ({a′ 7→ E[a⊗ 〈B, P + P ′〉]} ]D′). It is

easy to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1+Γ2+Γ3; W1+W2+W3 be the environment for {a′ 7→ E[read`〈A, P + P ′〉]}

in Γ; W −W5 ` (R− P ′, S,K, {a′ 7→ E[read ` 〈A, P + P ′〉]} ]D′) such that

Γ2; W2 ` ` : ref (τ, τ ′, ρ) Γ3; W3 ` 〈A, P + P ′〉 : W4 W4(ρ) > 0

Γ2 + Γ3; W2 + W3 ` read ` 〈A, P + P ′〉 : W4 ⊗ τ
Read
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appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′

by keeping the portions for the expression store D′ and the reference location store

S ′ the same as the environment Γ; W − W5. Let Γ6; W6 be the environment for

{` 7→ a} in Γ; W −W5 ` (R − P ′, S,K, {a′ 7→ E[read ` 〈A, P + P ′〉]} ] D′). Then

in the environment Γ′; W ′, we use the environment Γ6 − {a : τ}; W6 for {` 7→ a}

and the environment Γ1 + Γ3 + {a : τ}; W1 + W3 for {a′ 7→ E[a ⊗ 〈B, P + P ′〉]}.

This implies that Γ′(`) = (Γ − Γ2)(`) ≥ ref (τo − τ , τ ′o, ρ) where Γ(`) = ref (τo, τ
′
o, ρ).

Therefore,Γ′; W ′ ` (Rf , Sf , Kf , Df ). Also, since we eliminated the type rule Source

at the expression 〈A, P + P ′〉 at the context E[read ` [ ]], it must be the case that

(P + P ′)(r) > 0 where Γ(r) = reg(ρ). Since Γ2; W2 ` ` : ref (τ, τ ′, ρ) implies that

Kf (`) = r, we have (P + P ′)(Kf (`)) ≥ 1 as required.

Ref

We have

(dom(R), S,Erase(D = ({a′ 7→ E[ref e r]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = (S ] {` 7→ a}), and Do = Erase({a′ 7→ E[`]} ]D′ ] {a 7→

e}). Pick a Ref step for ⇒flow such that

(R,K, S, D = ({a′ 7→ E[ref e r]} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = (K ] {` 7→ r}), Sf = (S ] {` 7→ a}), Df = ({a′ 7→ E[`]} ]D′ ]

{a 7→ e}). It is easy to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2 + Γ3; W1 + W2 + W3 be the environment for {a′ 7→ E[ref e r]} in

Γ; W ` (R,S, K, {a′ 7→ E[ref e r]} ]D′) such that

Γ2; W2 ` e : τ Γ3; W3 ` r : reg(ρ)

Γ2 + Γ3; W2 + W3 ` ref e r : ref (τ, τ, ρ)
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appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′

by keeping the portions for the expression store D′ and the reference location store S

the same as the environment Γ; W and by using the environment Γ2; W2 for {a 7→ e},

the environment Γ1, ` :ref (τ, τ, ρ); W1 for {a′ 7→ E[`]}, and the environment a :τ ; ∅ for

{` 7→ a}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

Join

We have

(dom(R), S,Erase(D = ({a 7→ E[join 〈A, P 〉 〈B, P ′〉]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R), So = S, and Do = Erase({a 7→ E[〈C, P + P ′〉]} ]D′). Pick a

Join step for ⇒flow such that

(R,K, S, D = ({a 7→ E[join 〈A, P 〉 〈B, P ′〉]} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a 7→ E[〈C, P + P ′〉]} ] D′). It is easy to

see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1+Γ2+Γ3; W1+W2+W3 be the environment for {a 7→ E[join〈A, P 〉〈B, P ′〉]}

in Γ; W ` (R,S, K, {a 7→ E[join 〈A, P 〉 〈B, P ′〉]} ]D′) such that

Γ2; W2 ` 〈A, P 〉 : W4 Γ2; W3 ` 〈B, P ′〉 : W5

Γ2 + Γ3; W2 + W3 ` join 〈A, P 〉 〈B, P ′〉 : W4 + W5

appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′

by keeping the portions for the expression store D′ and the reference location store S

the same as the environment Γ; W and by using the environment Γ1 + Γ2 + Γ3; W1 +

W2 + W3 for {a 7→ E[〈C, P + P ′〉]}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

LetReg
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We have

(dom(R), S,Erase(D = ({a′ 7→ E[letreg x e]} ]D′)))⇒ (Ro, So, Do)

where Ro = dom(R]{r 7→ 1}), So = S, and Do = Erase({a′ 7→ E[e[a/x]]}]D′]{a 7→

r}). Pick a LetReg step for ⇒flow such that

(R,K, S, D = ({a′ 7→ E[letreg x e]} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R]{r 7→ 1}, Kf = K, Sf = S, Df = ({a′ 7→ E[e[a/x]]}]D′]{a 7→ r}).

It is easy to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df .

Let Γ1 + Γ2; W1 + W2 be the environment for {a 7→ E[letreg x e]} in Γ; W `

(R,S, K, {a 7→ E[letreg x e]} ]D′) such that

Γ2, x :reg(ρ); W2 + {ρ 7→ q} ` e : τ q ≤ 1 ρ /∈ free(Γ2, W2, τ)

Γ2; W2 ` letreg x e : τ

appears in the subderivation at the context E[ ]. We construct an environment Γ′; W ′

by keeping the portions for the expression store D′ and the reference location store

S the same as the environment Γ; W and by using the environment Γ1 + Γ2 + {a :

reg(ρ)}; W1 +W2 + {ρ 7→ 1} for {a′ 7→ E[e[a/x]]} and the environment r :reg(ρ); ∅ for

{a 7→ r}. Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ) since q ≤ 1.

Arrive

We have

(dom(R), S,Erase(D = ({a′ 7→ E[a]} ] {a 7→ e} ]D′)))⇒ (Ro, So, Do)

where e ∈ V , Ro = dom(R]{r 7→ 1}), So = S, and Do = Erase({a′ 7→ E[e]}] {a 7→
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e} ]D′).

By Lemma 3.5.4, there exist expressions e1, e2, and a type environment Γ′ such

that Γ′; W ` (R,S, K, {a′ 7→ E[e1]} ] {a 7→ e2} ]D′). Pick an Arrive step for ⇒flow

with the above e1 and e2, i.e.,

(R,K, S, D = ({a′ 7→ E[a]} ] {a 7→ e} ]D′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = ({a′ 7→ E[e1]} ] {a 7→ e2} ] D′). It is easy

to see that dom(Rf ) = Ro, So = Sf , and Erase(Do) = Df . Let W ′ = W . Then it

follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

GC

We have

(dom(R), S,Erase(D = (D′ ]D′′)))⇒ (Ro, So, Do)

where � /∈ dom(D′′), dom(D′′) ∩ free(D′) = ∅, Ro = dom(R), So = S, and Do =

Erase(D′). Pick a GC step for ⇒flow such that

(R,K, S, D = (D′ ]D′′))⇒flow (Rf , Kf , Sf , Df )

where Rf = R, Kf = K, Sf = S, Df = D′. It is easy to see that dom(Rf ) = Ro,

So = Sf , and Erase(Do) = Df .

We construct an environment Γ′; W ′ by subtracting the portions for the expression

store D′′ from the environment Γ; W . Then it follows that Γ′; W ′ ` (Rf , Sf , Kf , Df ).

Finally, to start off subject reduction, we need the initial state to be well-typed.

Lemma 3.5.7. If e is a well-typed program, then ∅; ∅ ` (∅, ∅, ∅, {� 7→ e}). That is,

95



Chapter 3. Deterministic Functional Programming with References

the initial state is well-typed.

Combining Lemma 3.5.6 and Lemma 3.5.7, it follows that any trace graph of a

well-typed program has a proper flow assignment.
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Related Work

In both Chapter 2 and Chapter 3, the key step was to derive a sufficient condition for

ensuring determinism in terms of dependencies among accesses on shared resources.

Because an access A dependent on an access B is guaranteed to happen after B, we

are able to prove, for example, a program is deterministic if the assignment x := 1 is

dependent on the assignment x := 2 and there are no other resource accesses in the

program.

Hence, the task of the static analysis was reduced to proving that necessary de-

pendences exist. In this sense, our system is different in spirit from approaches that

obtain determinism as a corollary of well-studied concepts such as linear types and

monads. In the rest of the chapter, we show that our system is actually able to prove

more programs to be deterministic by showing that these other approaches can be

expressed as the restricted cases of our system (as already seen in Section 2.1.1 for

linearly typed process algebra).
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4.1 Communicating Processes

We compare the system presented in Chapter 2 with related work on communicating

processes.

Kahn process networks [Kah74] restrict communication to input buffered chan-

nels with a unique sender process to guarantee determinism. Edwards et al. [ET05]

restricts communication to rendezvous channels with a unique sender process and a

unique receiver process to model deterministic behavior of embedded systems. These

models are the easy cases for our system where capabilities are not passed between

processes.

Linear type systems can infer partial confluence by checking that each channel is

used at most once [NS97; KPT99]. Section 2.3 discusses how to express linearly typed

channels in our system. König presents a type system that can be parameterized

to check partial confluence in the π-calculus [Kön00]. Her system corresponds to

the restricted case of our system where each (rendezvous) channel is given a type

of the form ch(ρ, τ, 0 [w(ρ) 7→ 1], 0 [r(ρ) 7→ 1]), i.e., each channel sends its own write

capability at writes and sends its own read capability at reads. Therefore, for example,

while her system can check the confluence of !(c, 1); ?(c, x)||?(c, x); !(c, 2), it cannot

check the confluence of !(c, 1); !(c, 2)||?(c, x); ?(c, x).

Boyland has proposed a system similar to ours, but for a language without

channels (i.e., shared references are the only means for inter-process communica-

tion) [Boy03]. His system can only reason about synchronization at process joins,

and therefore cannot infer confluence of channel-communicating processes.

The literature on process algebra has popularized the asynchronous π calcu-

lus [Bou92; HT92]. Here, the term asynchronous is different from the notion we

have been in this thesis. (The processes in vanilla π calculus are asynchronous in the

sense that they do not run in lock step.) Essentially, the asynchronous π calculus is
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the π calculus with the following restriction: a write to a channel cannot be sequen-

tially followed by an action (i.e., !(e, e′); s is not allowed). Since the asynchronous π

calculus is a subset of the π calculus, it can be handled by our system. In fact, our

system is more powerful than other approaches even in this restricted setting. For

example, our approach can prove that the following program is confluent:

!(c, 1) || ?(d, x); !(c, 2) || ?(c, y); spawn(!(d, 0)); ?(c, y)

4.2 Functional Languages with References

We compare the system presented in Chapter 3 with related work on functional

programs with references.

Adding side effects to a functional language is an old problem with many pro-

posed solutions. Here we compare our technique against two of the more prominent

approaches: linear types [Wad98; GH90; AvGP93] and monads [Mog91; ORH93;

JW93; LS97].

In approaches based on linear types [Wad98; GH90; AvGP93], there is an explicit

world program value (or one world per region for languages with regions) that con-

ceptually represents the current program state. By requiring each world have a linear

type, the type system ensures that the world can be updated in place.

Such a system can be expressed in our type system by restricting every flow

to 1, every witness to contain only one flow, and designating one dummy witness

to serve the role of the “starting” witness (or for regions, one dummy witness per

region). Thus our approach is more expressive than such an approach. Note that this

also implies that every function type can be restricted to have either 1 or ∞ as the

qualifier. It is easy to see that the program is well-typed under this restriction if and

only if it is well-typed by the linear type system. The restriction limits programs to
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manipulate witnesses only in a linear fashion. In practice, this implies that there can

be no parallel reads, no dead witnesses, no redundant witnesses, and no duplication

of values containing witnesses.

Monadic approaches [Mog91; ORH93; JW93; LS97] are inspired by category the-

ory. In programming languages, monads are simply used to create ordering depen-

dencies much like witnesses or states in the linear types based approach. Like linear

types, monads enforce strictly sequential order. Our system can implement monadic

primitives as follows (for concrete comparison, we use state monads [LS97]):

newVar = λx.λy.let z = (ref x π2(y)) in y ⊗ z

readVar = λx.λy.let z = (read x π1(y)) in (π2(z)⊗ π2(y))⊗ π1(z)

writeVar = λx.λw.λy.let z = (write x w π1(y)) in (z ⊗ π2(y))⊗ w

>>= = λf.λg.λx.let y = (f x) in g π2(y) π1(y)

returnST = λx.λy.y ⊗ x

runST e = letreg x π2(e (• ⊗ x))

The idea behind these definitions is to implement each state monad of the type

ST (α, τ) as a function that takes a witness and the region α as arguments and returns

a witness, the region α, and a value of the type τ . It is easy to see that if a state

monad program is well-typed by the monadic type system, then it is also well-typed

with our type system using the above definitions for the monadic primitives. Thus,

our approach is more expressive than monads.

The monadic approach shares essentially the same limitations as linear types; for

example, side effects are restricted to a linear, sequential order. (In fact, it is not too

hard to see that we can actually implement monadic primitives with the linear types

restriction with only slightly longer code.) On the other hand, a monadic type system

has an engineering advantage as it only requires Hindley-Milner type inference.
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Research in data flow languages has also proposed adding references in ways that

do not guarantee determinism, such as M-structures [BNA91].

4.3 Other Models of Concurrency

We discuss deterministic concurrency in computation models other than the two

models discussed above.

Purely functional languages without references are confluent. Researchers have

worked on applying purely functional languages to parallel computing for decades,

but unfortunately, with little success in software practice. We cite a survey and an

annotated bibliography containing over 400 references on this topic [Ham94; Sch93].

Current research in data flow architectures seems to focus on compiling se-

quential languages, such as C, rather than data flow languages or functional lan-

guages [SMSO03; BVCG04]. While determinism is trivially guaranteed with sequen-

tial programs, it is not clear whether data flow architectures will be able to run

sequential programs faster than traditional microprocessors. In fact, there is some

evidence suggesting otherwise [BAG05].

Unlike in an asynchronous model of concurrency (which includes all of the models

discussed thus far in this thesis), program components run in lock step in a syn-

chronous model. The synchronous model dominates hardware design practice, and

is also often used to model control systems where synchronous languages like Es-

terel [BG92; Ber00] and Lustre [CPHP87; HCRP91] have been designed specifically

for that purpose. Many of the issues discussed in this thesis seem to disappear in

the synchronous model due to the absence of timing issues. Nevertheless, determin-

ism is important for synchronous concurrency, and is often checked with the help of

simulation and human inspection [SSV05].

An exhaustive approach for checking partial confluence has been proposed in
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which the confluence for every state of the program is individually checked by follow-

ing the transitions from that state [GvdP00; BvdP02]. These methods, which have

been shown effective for programs with a small number of states, are language inde-

pendent and hence potentially work with any computation models. These methods

are designed specifically to drive state space reduction, and hence have a somewhat

different aim than this thesis.
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Conclusions

This thesis presented a system to ensure partial determinism in two settings: asyn-

chronously running sequential processes communicating via channels and shared refer-

ences (Chapter 2) and functional programming languages with references (Chapter 3).

The underlying ideas behind both systems are as follows:

• Identify a sufficient condition to ensure confluence based on dependencies be-

tween shared resource accesses.

• Formulate a type-based analysis for enforcing this condition.

In Chapter 2, dependencies are induced by the sequential composition (i.e., s1 hap-

pens before s2 in s1; s2), and the semantics of channels (e.g., the write to an output

buffered channel happens before the corresponding read), whereas Chapter 3 intro-

duced witnesses to explicitly create the needed dependencies. We showed that our

approach is powerful enough to prove more programs partially deterministic than

previous approaches.
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