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Abstract— We explore techniques to reduce the sensi-
tivity of large-scale data aggregation networks to the loss
of data. Our approach leverages multi-level modeling and
prediction techniques to account for missing data points
and is enabled by the temporal correlation that is present
in typical data aggregation applications. The result can
tolerate significant involuntary data loss while minimizing
overall impact on accuracy. Further, this technique permits
nodes to probabilistically remove themselves from the
network in order to reduce overall resource usage such
as bandwidth or power consumption. In simulation, we
explore the tradeoff between algorithmic complexity and
prediction performance across a variety of data sets with
different dynamic properties. We quantify the temporal
correlation in several real-world datasets, and achieve
more than 50% resource savings in an environment with
significant loss, while maintaining high accuracy.

Index Terms— Statistics, Simulations, Network Mea-
surements.

I. INTRODUCTION

The growing deployment of large-scale distributed
networks, such as sensor and overlay networks, presents
an interesting opportunity for distributed data mea-
surement and collection applications. Nodes in these
networks perform local data collection operations, and
cooperate to disseminate the data to other decision mak-
ing nodes. For example, overlay nodes deployed across
a wide-area network, can each monitor local network
traffic and collaborate to detect network intrusions or
attacks [1]. Similarly, each overlay node could monitor
the performance quality of access to a set of web sites. In
sensor networks, individual nodes collect and propagate
physical information, such as temperature, humidity,
light, etc [2].

For communication efficiency, a large network of data
gathering nodes is typically organized into a hierarchical,
latency-optimized tree structure that aggregates collected
data and delivers the result to a small set of root servers,
as shown in Figure 1. At periodic intervals, each node
performs a local measurement, optionally aggregates it
with data from other nodes by applying data aggregation
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Fig. 1. Calculating MAX using tree-based aggregation.

functions such as COUNT , MAX, SUM and AVERAGE,
and then sends the result towards the root server by
forwarding to its parent in the hierarchy.

Large-scale data aggregation alone does not solve the
challenge of dealing with the associated high commu-
nication costs. Timely dissemination of collected data
often directly conflicts with overall network stability. In
sensor networks, the frequent communication required
for timely result delivery taxes the computational and
power resources of limited, battery-powered sensors.
In wired peer-to-peer overlays, frequent communication
consumes bandwidth and may cause congestion and data
loss, which can be particularly costly when measuring
performance or detecting failures and network attacks.

In this paper, we apply statistical algorithms to hierar-
chical in-network data aggregation systems in distributed
networks. We propose to exploit existing time-series
correlation in real-world measurements for resource sav-
ings by allowing nodes in an aggregation network to
voluntarily opt-out of certain rounds of aggregation. We
describe a number of prediction techniques that allow
the network to minimize the resulting loss of accuracy
by approximating or predicting values. We show that by
accepting a small loss in accuracy, nodes can signifi-
cantly reduce power and bandwidth consumption. More
specifically, we provide the following contributions:

• We observe that real-world measurement data, such
as those taken by sensors or network measurement
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nodes, generally exhibit a high correlation across
time epochs. We validate this by applying statistical
methods to real sensor data.

• We propose the use of multi-level prediction to
accurately recover lost data and evaluate its effec-
tiveness. To the best of our knowledge, this is the
first practical application of multiple-level predic-
tion algorithms for data recovery in real systems.

• We propose the idea of selective participation of
nodes to reduce the overall consumption of re-
sources such as bandwidth and power.

• We explore the tradeoff between algorithmic com-
plexity and prediction performance across a variety
of datasets with different dynamic properties.

• We run extensive simulations on two large real-
world datasets and a synthetic dataset, and show
that we can achieve more than 60% resource savings
while maintaining 90% accuracy in the lossless
environment and 80% accuracy in an environment
with a 20% average loss rate.

The rest of the paper is structured as follows: We
first discuss previous and related work in Section II, and
define our aggregation model in Section III. Next, we
compare time-series correlation patterns of real-world
and synthetic data traces in Section IV and propose
the use of several prediction algorithms to recover from
data loss in Section V. Given these mechanisms, we
propose a selective participation mechanism for reducing
resource utilization in Section VI. Finally, we provide
simulation and analytical results in Section VII, followed
by a discussion of future work and our conclusions in
Section VIII.

II. RELATED WORK

A number of previous and ongoing projects in the net-
working and database research areas are relevant to our
work. Astrolabe [3] performs aggregation per partitioned
zone, and propagates data across zones using a gos-
sip protocol. In resource-constrained sensor networks,
several systems use the in-network processing approach
to compute aggregates based on disjoint subsets for
decomposable functions [4]–[8]. Among them, TAG [8]
proposes an aggregation service for ad-hoc networks
using an SQL-style query interface. However, the current
TAG approach is sensitive to data loss, especially for
large size networks. Based on TAG framework Considine
et al. investigate the use of approximate in-network
aggregation using small sketches [9].

In a lossy environment, data aggregation systems can
approximate or predict lost values based on a history of
past values, or nearby (in terms of logical or physical

location) current values. A natural tradeoff exists be-
tween prediction accuracy and computational and storage
cost. While most data aggregation systems to date use
the simplest mechanism based on last-value prediction,
more complex and effective statistical algorithms have
been applied in other fields of network research. For
audio/video and network data traffic, linear prediction
method has been considered as an efficient and effective
alternative [10], [11].

Qiao et al. empirically study the multi-scale pre-
dictability of network traffic [12]. They use wavelet
approximations as the key tool for multi-scale data rep-
resentation and prediction. However, they only consider
“one step-ahead” predictability, instead of the multi-
step-ahead prediction required to deal with bursty and
consecutive loss in real networks. Their results are also
limited to single data traces. Finally, using wavelets for
decomposition is computationally expensive, and would
be difficult to integrate into an online algorithm for
continuous aggregation.

Few data aggregation systems use advanced statistical
algorithms to predict lost values [7], [8], [13]. None
of the above algorithms have been used to predict data
based on temporal correlation of measured data.

The database community has looked at approximate
queries based on partial information using sampling al-
gorithms, generally using centralized aggregation. Olken
discusses random sampling on B+ trees, hash files, and
relational operations in [14]. Hellerstein et al. propose
using online aggregation to evaluate queries progres-
sively with random sampling [15]. Chaudhuri et al. pro-
pose a combination of outlier-indexing with a weighted
sampling mechanism for approximate queries [16]. Fi-
nally, Olston et al. propose adaptive filters for continuous
queries based on centralized techniques [17]. However,
it is unclear whether these mechanisms can be applied
to the online data aggregation in a decentralized, high
loss environment.

III. AGGREGATION MODEL

In this section, we define our operating context and
system model for data aggregation. Our work targets
large-scale networks performing periodic measurements
yielding an ordered stream of aggregated outputs. Be-
cause a tree-based hierarchy can scale to large networks
while operating with well-defined latency bounds, we
assume here a tree-based aggregation model (see Fig-
ure 1), where end hosts (nodes) perform measurements,
aggregate and forward results to an output server (root
server). While we recognize that how aggregation trees
are constructed impacts its performance (e.g. minimal la-
tency spanning trees in ad-hoc routing [18] or structured
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Technique Multi-tree Retransmission Prediction
CPU Usage moderate low low to high

Comm. Overhead very high high none
Latency low high low

TABLE I

Comparison of fault-tolerance techniques.

peer-to-peer routing [19]), construction algorithms are
orthogonal to our work, and our approach would work
on top of any tree-based structure.

We focus on using selective participation and predic-
tion techniques (see Section VI and V) on tree-based
in-network processing to enable a large-scale aggrega-
tion network to conserve resources (e.g., bandwidth and
power) with minimal loss in aggregation accuracy. We
address the issue of continuous queries, where aggregate
values are continually computed and routed up towards
the root server. We also assume all nodes have relatively
synchronized clocks (i.e. their offsets are kept constant).
We partition time into epochs, and produce a single
aggregated result per epoch for each running query. At
each epoch, each node in the tree sends its aggregated
value to its parent node. Once a node has heard from all
of its children, it aggregates the data with its own value
and forwards it to its own parent.

However, if all nodes participate in every epoch, a sen-
sor will quickly drain its batteries and lose power, while
nodes in an overlay can consume a lot of communication
bandwidth and collectively cause network congestion.
We propose an alternative to the traditional model where
all nodes participate in data aggregation in every epoch.
Instead, nodes can participate probabilistically according
to a well defined rate. Nodes in the network can vol-
untarily opt-out of certain rounds of aggregation to re-
duce power consumption and communication overhead.
Meanwhile, the network can exploit existing time-series
correlation in data streams to predict lost values and
maintain accuracy in the aggregated result.

Our prediction algorithms are geared towards “recov-
ering” from data loss due to loss at the network layer
and loss from nodes not participating in the aggregation.
Our prediction algorithms currently require parent nodes
to build models and predict lost data for its children.
A useful optimization is for the child to periodically
generate statistics based on history of its own values,
and send the compressed model up to its parent node.
The parent can then recalibrate its model to improve
its accuracy. Over time, this synchronization mechanism
bounds the amount of deviation present in the parent
node’s model.

We do not explicitly address issues related to nodes
failing/crashing. They can be addressed by techniques

in dynamic topology management to modify and adapt
aggregation trees to failures. Existing systems have used
other mechanisms to improve resiliency of data aggre-
gation, including aggregating data across multiple inde-
pendent aggregation trees and using data retransmission
for reliability. These mechanisms make use of additional
resources to improve reliability. These techniques are
orthogonal and complementary to the ones we propose
here. Table I shows the tradeoffs between different
mechanisms.

IV. TEMPORAL PROPERTIES OF REAL-WORLD

DATASETS

Before we present our algorithms, we test our observa-
tion that temporal correlation exists in most application
sensor measurements. We introduce several statistical
metrics and apply standard statistical techniques to sev-
eral real-world traces to extract their temporal variance.

A. Datasets And Metrics

We have been looking for datasets from different fields
and with different degrees of temporal correlation for
our analysis and experiments. However, a few envi-
ronment/network traffic monitoring datasets with large
number of individual data streams are publicly available.

We download a large temperature dataset from Na-
tional Climatic Data Center [20]. It consists of more
than 5,000 streams of temperature measured by stations
all over the world on daily intervals in year 2000.
We also obtain a small dataset (less than 100 streams)
of bandwidth measurements for network interfaces on
Abilene routers in year 2004 [21].

Since large sets of stock quote data streams are pub-
licly available, we examine their temporal characteristics
and consider the validity of using them as a large time-
based stream dataset. We downloaded monthly stock
quotes for a random set of 5,000 stocks, where each
stock’s data stream included at least 200 data points
across time.

In addition, we generated two artificial datasets, in-
cluding a random dataset and a random walk dataset.
The random dataset is generated with values uniformly
distributed over the range [0, 50]. The random walk
dataset is generated using the statistics of the stock
dataset. For each data stream i in the stock dataset, we
compute its mean µi and the variance σi of its relative
change between data points. We then generate each data
stream i in the random walk dataset such that its mean
is µi, and its relative change is drawn from the Gaussian
distribution G ∼ N(0, σ2

i ).
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Fig. 2. Real-world data traces and synthetic traces.

We normalize values in all datasets to the same
absolute range for comparison, and plot trace segments
in Figure 2. We compare the temporal characteristics
of stock, random and random walk datasets to the two
measurement datasets using two key statistical metrics:
Relative Standard Deviation (RSD) and Mean abso-
lute Relative Increment (MRI). Given a series of data
xi, i = 1, ...n, let x̄ be the mean and std(x) be the
standard deviation. The RSD is defined as:

RSD =
std(x)

x̄
(1)

Intuitively, RSD measures how data values in the dataset
spread out based on their mean value. It represents the
static distribution of data values in the space.

Let ∆xd
i = xi+d − xi, the increment in d intervals

starting at i. The Relative Increment in d intervals is
defined as:

RId
i =

∆xd
i

x̄
(2)

The d − interval MRI is defined as:

MRId =
1

(n − d)

n−d
∑

i=1

∣

∣

∣

∣

∆xd
i

x̄

∣

∣

∣

∣

(3)

Intuitively, MRI measures how big data values change in
given time intervals. It represents how dynamic a data
stream is along time epochs.

B. Correlation

We compare the statistical properties of all five
datasets in Table II. While the stock data and the random
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Fig. 3. Density distributions of Relative Increment.

Dataset Mean RSD MRI
Temperatures 17.10 3.11 0.040
Network B/W 16.88 1.31 0.063
Stock Quotes 22.08 5.09 0.073
Random Walk 36.60 1.17 0.055

Random 24.09 7.99 0.810

TABLE II

Statistical properties of different data streams.

walk data share similar statistical properties with those
of the temperature and network datasets, the random
data differs strongly from measurement datasets, with a
MRI that is an order of magnitude greater than the other
four. Figure 3 plots the density distributions of Relative
Increment in single interval for all traces. Again, the two
measured traces share similar distributions with the stock
data and the random walk data, while the random data
distribution is significantly different. Thus, we conclude
that the temperature, stock and random walk datasets are
all reasonable datasets to use in our measurements. The
temperature dataset is not very dynamic, and shows high
temporal correlation. In contrast, the stock quotes dataset
is highly dynamic, and shows less temporal correlation
than the other measurement datasets. These two datasets
cover the two extreme ends of dynamics in real datasets,
and their results should be indicative of those from real
world sensor data.

V. RECOVERING FROM DATA LOSS

In this section we explore ways in which we can
exploit the temporal correlation of Section IV to recover
lost data items. When a node does not report its aggre-
gate value during a cycle, either due to intentionally not
sending it or to data loss at the network link layer, its
parent node can attempt to mitigate the negative impact
on accuracy by using statistical techniques. Our focus
is on improving accuracy with minimal commitment of
additional resources. We discuss several existing statis-
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tical estimation approaches for recovering missing data
values, and then propose the use of a novel multi-level
estimation algorithm.

A. Existing Estimation Algorithms

For datasets that exhibit temporal correlation, a simple
estimation technique is to reuse the last received value
from the child node. This technique requires no compu-
tation and very little state, but has limited effectiveness
(see Section VII).

An alternative is to use more advanced statistical
techniques to improve accuracy. One choice is linear
prediction of order m, where the estimated value is
expressed as a linear function of the previous m values
[22], [23]. This function can be visualized in a m dimen-
sional space spanned by x(n−1), x(n−2), ..., x(n−M),
where:

x̂(n|n − 1, n − 2, ..., n − m) =
k=m
∑

k=1

akx(n − k) (4)

where ak are constant coefficients.
The Mean Square Error (MSE) metric is often used

to quantify the difference between estimated and actual
values. Improving accuracy by minimizing the MSE is
defined as: Minimize E[e2(n)] where e(n) = |x(n)−
x̂(n)|, reducing the problem to linear prediction with
Minimum Mean Square Estimation (MMSE). Several
practical algorithms apply to this problem [23] and we
evaluate them in Section VII.

We have observed that real-life data streams contain
both long-term trends and transient oscillations. There-
fore it is very difficult for a single linear prediction
algorithm to model trends in both short and long time-
scales. To make things worse, data loss is bursty and
consecutive drops occur often in real network settings.
During a bursty loss phase, linear prediction algorithms
generally do not have enough history information to
make accurate estimates, resulting in high relative errors.

This problem, along with results we show in Sec-
tion VII, show that the accuracy of linear prediction is
limited for real datasets. We have even observed that the
last-value estimation method often outperforms a more
complex linear prediction algorithm.

B. Multi-level Estimation

To address the need to recognize and utilize both long
term trend and short term oscillations, we now propose
a novel multi-level estimation algorithm.

Data streams from real world we examined in Section
IV can be decomposed into two or more levels. We
see from Figure 2 that while temporal correlation exists
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Fig. 4. Two-level representation of a stock data trace.

in the form of a long-term trend, high frequency, low-
amplitude oscillations can be found in the short time-
scale.

The general intuition behind multi-level estimation
is to decompose a sequence of values (in our case
the sequence of values reported by a child node) into
multiple independent functions with different time-scales
of statistical behavior. For our purposes, we identify two
time-scales corresponding to long term temporal corre-
lation and short term oscillations. We now discuss how
a two-level estimation algorithm can be implemented.

1) Two-level Representation: We propose to decom-
pose a data stream into two levels, as shown in Figure 4,
using B-spline curves to model the long-term trend and
the AutoRegressive Moving Average (ARMA) model to
model short-term oscillations. Several techniques can be
employed to decompose data stream into two levels,
including Low Pass Filtering and Least-Square Regres-
sion. For our purpose, we use the Least-Square B-spline
Regression technique to decompose data streams [24].

Although the long-term trend changes slowly, it has
a complex shape along the time axis, and is difficult to
represent using an analytical curve. Hence a piecewise
parametric curve must be used. A B-spline curve is a
piecewise polynomial curve that we use to represent the
complex curves of time series data. The advantages of
using B-spline regression model are:

• We can use a low degree B-spline curve (we use de-
gree d = 3) to describe an arbitrary complex shape
and avoid the instability of numerical computation
of a high degree polynomial.

• There are fast linear algorithms for computing posi-
tions and derivatives of points on a B-spline curve.

• It provides a compact representation of the original
data. As shown in Figure 4, we create a B-spline
curve one-eighth the original data’s size that cap-
tures the original data’s dominant change with a
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Last-Value Linear ARMA Two-Level
CPU 0 O(m3T ) O(k3T ) O(k3T ) + O(d3T )

Storage O(1) T T c · T, 1.0 < c < 2.0

TABLE III

CPU and storage complexity of prediction algorithms.

mean relative error between them of only 0.021.
We observe that short term oscillations in the data

have a zero mean and a form of stationarity property.
The ARMA model provides one of the basic time series
modeling tools for capturing the statistical dependence of
these oscillations [25]. An ARMA(p, q) model consists
of two components, an AutoRegressive (AR) component
of order p and a Moving Average (MA) component of
order q. There are standard routines to determine the
value of p and q. We omit the details due to space
constraints. For our purposes we use p = q = 2.

To provide immediate estimations of lost values, we
need online algorithms to incrementally decompose a
data stream. With each new value, we update the long-
term trend spline curve, and calculate the short-term
oscillation as the difference between the result and the
real value. We use a piecewise continuous B-spline with
degree d = 3 because it has a low overhead online
regression algorithm. Incoming data will only affect the
shape of a spline in a local area, thus we only need to
update the several adjacent pieces of segments.

2) Two-Level Prediction: Each node in the aggre-
gation tree maintains a window of two-layer history
data (we currently use window size of 30 measurement
periods). Upon a data loss, the two level prediction
algorithm is invoked to estimate the lost data.

We obtain a smooth curve of long-term trend up to
the current epoch by fitting a spline to the history data.
There are several ways to extend this spline to predict
future values. One is a linear extension of the spline in
the direction of the first derivative. A better alternative
is a curvature continuous spline extension [26].

We apply ARMA forecasting to the residual data
(transient oscillations), using an algorithm in [25], to
build an ARMA model, estimate its parameters, and
derive a recursive equation that can be used to estimate
future data values with low complexity [25].

With our approach, every data stream is decomposed
into multiple layers only once at the node which pro-
duces this data stream. In our data aggregation system,
data streams are stored, transferred and aggregated in this
multi-layer format. Whenever there is a data loss, we use
multi-level prediction to estimate the lost data. Note that
the storage and transmission bandwidth requirements are
both low, since we can maintain a compact multi-level
representation by borrowing ideas from Wavelet multi-
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resolution decomposition and representation [27].
3) Complexity of Prediction Algorithms: We analyze

the computation and storage complexity of several pre-
diction algorithms and summarize the results in Table III.
In the table, T is the window size for history data and
T = 30 in our setting. In linear prediction, m is the
order of the predictor and m = 4 in our setting. In both
ARMA and two-level prediction, k = max(p, q + 1),
where (p, q) are the order of ARMA model and p =
q = 2 in our setting. In two-level prediction, d is the
degree of B-spline curve and d = 3 in our setting.
Last-value prediction has the lowest complexity with no
computation and a little storage. All other algorithms
have storage complexity that increases with T . Two-
level prediction has the highest computation complexity,
comprised of the complexity of ARMA model and the
complexity of B-spline model. In general, algorithms of
linear prediction, ARMA model and B-spline regression
all require computation to optimize a set of curve-fitting
parameters. Their complexity goes up with the cube of
the number of parameters, which corresponds to the
order of the model. For B-spline regression with degree
d = 3, there is a fast algorithm for parameters estimation,
and its complexity is O(32 · T ) = O(9 · T ) [24].

4) Performance of Prediction Algorithms: Here we
use a simulation to compare the accuracy of last-value
prediction, linear prediction and two-level prediction
algorithms, where accuracy is measured by the absolute
relative error of predicted values with multiple steps
ahead of time. We implement a predictor with the three
prediction algorithms. In the experiment, the predictor
makes real-time predictions multiple time steps into the
future using only a history cache of the previous 30
data values reported. We measure the absolute relative
difference between the predicted future data and real
incoming future data, and plot them on the Y-axis. We
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perform continuous prediction for 200 epochs and plot
mean values for each data point. Figure 5 shows the
result on one data trace.

The MRI curve is the mean absolute relative increment
of the data trace with intervals equal to the multi-step-
ahead of time. As described in Section IV, it captures
the dynamic property of the data trace. We can see that
all three prediction algorithms are effective in predicting
values with small relative error, even when predicting
multiple steps ahead. Two-level prediction performs the
best and last-value prediction performs the worst. Their
prediction error curves are greatly shaped by MRI, the
dynamic property of the data trace. As expected, linear
prediction performs well a small number (< 6) of steps
into the future, but suffers when required to predict with
a larger number (> 7) of missing values.

VI. SELECTIVE PARTICIPATION

Since the techniques of the previous section permit our
data aggregation network to tolerate data loss, we now
introduce the notion of selective participation of nodes
as a technique for reducing overall resource utilization.
We present two approaches to distributing participation
load across the network, and discuss their impact on
overall aggregation accuracy. We also briefly discuss how
participation rates are realized, and their relationship to
lossy networks.

To perform selective participation, each node makes a
local decision about whether it should participate (listen
to and receive data from children, perform aggregation
with local measurement and send results to parent node
in tree), or not participate (go to sleep and ignore all
data for this aggregation cycle). In each cycle, if a parent
hears nothing from a child, it can proceed by estimating
the missing value based on a history of its previous
values, as discussed in Section V.

While our scheme allows the network topology itself
to change over time, we do not address the issues
surrounding topology adaptation in this paper. Existing
works ( [28], [29]) address issues of how to adaptively
maintain dissemination trees across changes in network
membership.

Having defined the context of our work, we now
discuss two approaches to distributing aggregation load
(or participation rates) across the network:

a) Uniform Participation: Nodes participate in ag-
gregation at an equal rate across the network. The
drawback of this simple approach is that nodes near
the aggregation root will discard a large portion of the
aggregated values when they opt out of a cycle.
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Fig. 6. The amount of data getting to root versus node non-
participation rate

b) Subtree-Size Based Participation: This algo-
rithm sets participation rates across the network so that
the probability a node participates in aggregation is
proportional to the number of nodes in its aggregation
subtree. Since nodes higher in the tree handle values
representing the aggregate result of more data points,
this scheme increases their likelihood of participating.
Nodes low in the tree handle fewer values, and have a
lower probability of participating.

To calculate subtree sizes, nodes aggregate and report
their subtree sizes along with measurement values. For
fair distribution of resource consumption and avoidance
of hotspots, the network could distribute different aggre-
gation operations across interior-disjoint trees, similar to
bandwidth distribution in SplitStream [30].

Figure 6 shows the actual number of data values
that get through the aggregation tree using both ap-
proaches. As the portion of nodes choosing to opt out
increases, subtree-size participation distributes most of
sleeping nodes near the bottom of the tree, allowing
more data values to aggregate through. In contrast, in
uniform participation nodes near the root are equally
likely to opt out, removing large numbers of values from
consideration.

Once a node is assigned a participation rate, it can
choose different ways to implement the rate to create its
participation pattern. A node can act without regard to
its history, by calculating its current action independently
at each aggregation cycle. An alternative approach is to
generate a near-ideal short term participation pattern, by
using short-term history to guide current choices.

Finally, from the perspective of a parent node in
the aggregation tree, a child node’s voluntary non-
participation is equivalent to the data for that aggre-
gation cycle being lost. In fact, a uniform participation
rate distribution is analogous to a network with evenly
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Fig. 7. Accuracy for the stock dataset versus participation rate distribution.

distributed link loss rates. Thus, the value estimation
techniques we introduce to increase aggregation accuracy
are also applicable as data recovery algorithms in a lossy
environment.

VII. SIMULATION RESULTS

In this section, we evaluate our selective participation
and prediction algorithms using two large real world
datasets and a synthetic dataset. They are the stock,
temperature and random walk datasets we discussed in
Section IV. They are from different applications, exhibit
drastically different degrees of temporal correlation, and
demonstrate the applicability of our algorithms to a
broad range of applications. We mainly use the stock
dataset for most of our experiments, and perform select
experiments on the random walk and temperature data
traces to verify results obtained using the stock dataset.
The network bandwidth dataset is not sufficiently large
for our experiments.

For simulation, we use a packet-level simulator that
performs tree-based data aggregation on different topolo-
gies1. We present here the results based on a 5,000 node
transit-stub topologies [31]. We construct aggregation
trees with randomly chosen roots at transit nodes. Each
node reads data from a trace (stock and temperature)
or generates values according to a distribution (random
walk).

The simulator includes the following components: (1)
a Tree builder that uses Dijkstra’s shortest-path-tree algo-
rithm [32] to construct and maintain a tree topology; (2)
a Data aggregator that performs aggregation using func-
tions (e.g., MIN, MAX, COUNT, SUM, and AVG); (3)
a Data sampler that performs node selective participation

1Note that the simulator does not model network effects such as
cross traffic and retransmission.

using the local strategies in Section VI; and (4) a Data
estimator that performs statistical estimation based on
available data using one of the discussed algorithms
whenever there is data loss or non-participation.

We use accuracy as our key metric, and define it
as (1−error/TrueValue), where error is the difference
between TrueValue (calculated without loss), and the
result calculated with selective participation and loss. We
perform continuous queries for at least 200 epochs and
plot mean values for each data point. For the simula-
tions, we vary each algorithm’s parameters to generate
distributions that correspond to a range of participation
from full participation by all nodes to non-participation
by most nodes.

A. Extensive Evaluation Using Stock Trace

We randomly map individual stocks to single nodes
in the topology and perform continuous queries on the
aggregation tree.

Figure 7 (a) shows the tradeoff between accuracy and
resource consumption for the MAX operation under uni-
form participation and subtree-size based participation
approaches. As fewer nodes participate, overall accuracy
decreases for all algorithms. As expected, subtree-size
based participation performs much better than uniform
participation. Figure 7 (b) shows similar results for the
AVG operation. Comparing the two figures, we can see
that for the same participation rate, results of the AVG
operation are generally more accurate than those of
the MAX operation. This is as expected, since the AVG
operation is less sensitive to data loss than MAX.

These results confirm that simple techniques to exploit
temporal correlation can yield good approximation re-
sults despite partial node participation. Tuning the partic-
ipation rate gives applications fine-grained control over
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Fig. 8. MAX aggregation operation accuracy using different prediction algorithms on the stock dataset in a lossless network.
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Fig. 9. MAX aggregation operation accuracy using different prediction algorithms for the stock dataset, on a network with an
average 20% loss rate. The loss rate ratio of transit-transit links to transit-stub and stub-stub links is 3:1.

the tradeoff between aggregation accuracy and resource
consumption. For optimal results, the distribution of a
node’s participation rate should be proportional to the
amount of data the node is aggregating (i.e., the size of
its subtree), and the dynamicity of the data.

Next, we examine how various prediction algorithms
perform in improving the accuracy of the MAX operation
in a lossless environment, In this and all following
figures, No Prediction means that if a parent node does
not receive data from a child node, it just ignores
the child and performs aggregation with data from the
rest of other nodes. Figure 8 (a) shows the result of
node non-participation using a uniform participation rate
distribution, and Figure 8 (b) shows the result when using
a subtree-size based participation rate distribution. We
can see that all prediction algorithms are effective in
improving aggregation accuracy, but two-level prediction
algorithm performs the best, achieving an accuracy of
more than 90%, even for node non-participation rate of

up to 60% (0.6). Compared to simple last-value predic-
tion, the more complex and computationally expensive
linear prediction algorithm performs worse because of
its limited ability to cope with consecutive data loss.

We observe through experiments that prediction algo-
rithms only improve accuracy up to a point. As shown
in Figure 6, the amount of data reaching the aggregation
root under uniform participation decreases exponentially
with the rate of non-participation. Once the rate of non-
participation increases beyond 0.6, less than 1% of data
is getting to the top of the tree. At this point, so much
data has been lost that any temporal correlation will be
destroyed, and prediction algorithms will be rendered
useless. The result is a “cliff” point past which prediction
algorithms fail to provide any improvement in accuracy.
Therefore we will only show non-participation up to 0.6
in the rest of our figures.

To demonstrate the value of prediction algorithms
under lossy conditions, we plotted the accuracy im-
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Fig. 10. Aggregate MAX operation accuracy for the random
walk dataset versus participation rate distribution.

provement for MAX operation with node voluntary non-
participation and prediction algorithms in a lossy envi-
ronment. We added involuntary loss on each link, with an
overall average link loss rate of 20%2. The link loss rate
distribution is as follows: links between stub nodes have
the same loss rate as those between stub nodes and transit
nodes. The ratio of loss rate of links between transit-
transit nodes to those between transit-stub nodes is 3 : 1
(We also tried network with different loss settings and all
results are similar). As in previous figures, Figure 9 (a)
shows the results of different prediction algorithms with
node non-participation using a uniform rate distribution,
and (b) shows the result using a subtree-size based rate
distribution. These results demonstrate that all prediction
algorithms can improve accuracy significantly even in a
high loss environment. And again, two-level prediction
algorithm performs the best. In a high loss environment
with average loss rates of up to 20%, two-level prediction
can still achieve 80% of accuracy even with a 0.6 node
non-participation rate. Linear prediction again underper-
forms the simple last-value prediction algorithm.

B. Application of Algorithms to Random Walk Trace

In this section, we perform selected experiments on the
random walk dataset to verify the results obtained using
the stock dataset. For these experiments, we generated
5,000 random walk data streams using the method in
Section IV. Each stream is randomly mapped to a node
in the transit-stub topology, as if the data were generated
by this node.

Figure 10 shows the effects of different participation
rate distribution algorithms on the MAX operation for

2Note that such high loss is common in wireless or sensor
networks. High loss also occurs on the Internet in the presence of
worm or DDos attacks.
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Fig. 12. Aggregate MAX operation accuracy for the temperature
dataset versus participation rate distribution.

the random walk data trace. Figure 11 shows the per-
formance of prediction algorithms for MAX operation
under uniform participation rate distribution. Figure 11
(a) shows results for a lossless environment, and (b)
shows results for a lossy environment. We observe that
all results are consistent with those on stock dataset in
following respects:

• As fewer nodes participate, overall accuracy de-
creases for all algorithms, and subtree-size based
participation performs much better than uniform
participation.

• All prediction algorithms are effective in improving
aggregation accuracy.

• Two-level prediction performs the best.
• Linear prediction performs worse than the simple

last-value prediction algorithm in most cases.

C. Application of Algorithms to Temperature Trace

In this section, we perform selected experiments on the
temperature dataset to verify results obtained on previous
datasets.

Figure 12 shows the effect of uniform and subtree-
size based participation rate distribution on the MAX op-
eration. Figure 13 shows the performance of last-value,
linear and two-level prediction algorithms for the MAX
operation under uniform participation rate distribution.
Figure 13 (a) shows results in a lossless environment,
and (b) shows results in a lossy environment. From these
figures, we can see that all results here are consistent
with those obtained using the stock and random walk
datasets. When comparing these results with those of
stock dataset and random walk dataset, we can see
that temperature dataset accuracies are less sensitive to
node non-participation and data loss, because there is
less dynamic range in temperature data streams, as we
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(b) Environment with 20% average loss rate.

Fig. 11. Aggregate MAX operation accuracy on random walk dataset, using different prediction algorithms with node uniform
participation rate distribution.
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Fig. 13. Accuracy of an aggregate MAX operation on temperature dataset, using different prediction algorithms with uniform
participation rate distribution.

explored in Section IV. For such dataset with rich tem-
poral correlation, simple last-value prediction algorithm
is good enough to explore the correlation among data
and is as effective as the complex two-level prediction
algorithm.

D. Summary of Experiment Results

Using large datasets with different degrees of dynam-
ics and temporal correlation, we ran extensive simula-
tions to examine the performance of a set of prediction
algorithms in a hierarchical tree-based data aggregation
system.

For the temperature dataset, which has rich temporal
correlation and is less dynamic, simple last-value pre-
diction algorithm is enough to improve the accuracy,
and is as effective as the complex two-level prediction
algorithm. However, for data that contains less temporal

correlation and is more dynamic like the stock dataset,
the more complex two-level prediction algorithm does a
much better job of extracting short and long terms trends
in order to significantly improve accuracy.

We conclude that across a wide variety of datasets,
statistical estimation algorithms can exploit and leverage
any existing temporal correlation to improve aggregation
accuracy in both lossless and lossy environments. In
our experiments, the two-level prediction algorithm we
proposed outperforms all other techniques.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose the use of prediction tech-
niques to recover from data loss in large-scale data
aggregation networks. We evaluate the effectiveness of
several prediction algorithms that exploit temporal cor-
relation on real and artificial datasets. In addition, we
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propose a novel multi-level prediction algorithm that
extracts both short-term and long-term trends. Given the
ability to recover from lost data items, we propose se-
lective participation to reduce resource consumption and
communication overhead in tree-based data aggregation
networks.

Simulation results show that by adding statistical al-
gorithms to hierarchical in-network aggregation, we can
effectively improve accuracy in a lossy environment and
achieve good approximation results with only a subset
of nodes participating. Our main contributions are:

• We propose a multi-level prediction algorithm that
significantly outperforms previous techniques to
provide accurate results even under high loss and
with many nodes not participating.

• We explore the tradeoff between algorithmic com-
plexity and prediction performance across a variety
of datasets with different dynamic properties.

By evaluating the performance of algorithms on different
datasets, we clarify the fine-grained tradeoff between
aggregation accuracy and the resources we want to
allocate to this operation.

In our ongoing work, we are designing low-overhead
wavelet algorithms for multi-level data decomposition,
representation and prediction. We will also further ex-
plore tradeoffs between prediction accuracy and com-
putation and storage cost. Finally, we are building a
real system to support network health monitoring, traffic
measurement, and router statistics aggregation applica-
tions, and plan to deploy and evaluate it on the Planet-
Lab [33] testbed.
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