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Abstract

In this report a technique is proposed to extend the simulation of a Zeno hybrid

system beyond its Zeno time point. A Zeno hybrid system model is a hybrid system

with an execution that takes an infinite number of discrete transitions during a finite

time interval. Some classical Zeno models that incompletely describe the dynamics

of the system being modeled are revisited to show that the presence of Zeno behavior

indicates that the hybrid system model is incomplete. This motivates the systematic

development of a method for completing hybrid system models through the introduc-

tion of new post-Zeno states, where the completed hybrid system transitions to these

post-Zeno states at the Zeno time point.

In practice, simulating a Zeno hybrid system is challenging in that simulation

effectively halts near the Zeno time point. Moreover, due to unavoidable numerical

errors, it is not practical to exactly simulate a Zeno hybrid system. Therefore, a

method for constructing approximations of Zeno models by leveraging the completed

hybrid system model is proposed. Using these approximation, a Zeno hybrid system

model can be simulated beyond its Zeno point and so the complete dynamics of the

system being modeled is revealed.
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Chapter 1

Introduction

The dynamics of physical systems at the macro scale level (not considering ef-

fects at the quantum level) are continuous in general. Even in a digital computer

that performs computation in a discrete fashion, its fundamental computing elements

(transistors) have continuous dynamics. Therefore, it is a natural choice to model the

dynamics of physical systems with ordinary differential equations (ODEs) or partial

differential equations (PDEs). However, modeling a physical system with only contin-

uous dynamics may generate a stiff model, because the system dynamics might have

several time scales of different magnitudes. Simulating such stiff models in general

is difficult in that it takes a lot of computation time to get a reasonably accurate

simulation result.

Hybrid system modeling offers one way to resolve the above problem by introduc-

ing abstractions on dynamics. In particular, slow dynamics are modeled as piecewise

constants (at different phases) while fast dynamics are modeled as instantaneous

changes, i.e., discretely. In this way, the remaining dynamics will have time scales of

about the same magnitude and the efficiency of simulation, especially the simulation
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speed, is greatly improved. However, special attention must be devoted to hybrid

system models because Zeno hybrid system models may arise from the abstractions.

An execution of a Zeno hybrid system has an infinite number of discrete transitions

during a finite time interval. The limit of the set of switching time points of a Zeno

execution is called the Zeno time. The states of the model at the Zeno time point are

called the Zeno states. Because each discrete transition takes a non-zero and finite

computation time, the simulation of a Zeno hybrid system inevitably halts near the

Zeno time point.

Some researchers have treated Zeno hybrid system models as over abstractions of

the physical systems and tried to rule them out by developing theories to detect Zeno

models [1]–[3]. However, because of the intrinsic complexity of interactions between

continuous and discrete dynamics of hybrid systems, a general theory, which can give

the sufficient and necessary conditions for the existence of Zeno behaviors of hybrid

system models with nontrivial dynamics, is still not available (and does not appear

to be anywhere on the horizon).

Some researchers have tried to extend the simulation of Zeno systems beyond the

Zeno point by regularizing the original system [4], [5] or by using a sliding mode

simulation algorithm [6]. The regularization method requires modification of the

model structure by introducing some lower bound of the interval between consecutive

discrete transitions. However, the newly introduced lower bound invalidates the ab-

stractions and assumptions of the instantaneity of discrete transitions. Consequently,

the simulation performance might suffer from the resulting stiff models. Furthermore,

different behaviors after the Zeno time may be generated depending on the choices of

regularizations. This may not be desirable because the physical system being mod-

eled typically has a unique behavior. The sliding mode algorithm tends to be more
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promising in simulation efficiency and uniqueness of behaviors, but it only applies to

special classes of hybrid system models.

A new technique to extend simulations beyond the Zeno time point is presented

in [7], where a special class of hybrid systems called Lagrangian hybrid systems are

considered. Rather than using regularizations or a sliding mode algorithm, the dy-

namics of a Lagrangian hybrid system before and after the Zeno time point are derived

under different constraints. In this report, we extend the results in [7] to more general

hybrid system models.

Before we get into the details of the algorithm on extending simulation beyond

Zeno time points, we would like to investigate some classical Zeno hybrid system

models including the bouncing ball model [8] and the water tank model [4], and show

that they do not completely describe the behavior of the original physical systems.

1.1 Bouncing Ball
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1q 1e

Figure 1.1. A hybrid system model of a simple bouncing ball.

Considering a ball bouncing on the ground, where bounces happen instantaneously

with a restitution coefficient e ∈ [0, 1]. A hybrid system model for this system is

shown in Fig. 1.1. This model has only one state q1 associated with a second-order

differential equation modeling the continuous dynamics, where the variables x1 and

x2 represent the ball’s position and velocity respectively, and ẋ1 = x2, ẋ2 = −g.
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From this one state, there is a transition e1 that goes back to itself. The transition

has a guard expression, x1 = 0 ∧ x2 ≤ 0, and a reset map, x2 := −e · x2.
1
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Figure 1.2. A more complete hybrid system model of the bouncing ball.

Note that the above guard expression declares that a bounce happens when the

ball touches the ground and its velocity x2 is non-positive, meaning either it is still

or it is moving towards the ground. However, further analysis of the model reveals

that when the following condition holds, x1 = 0 ∧ x2 = 0, meaning that the ball is

at rest on the ground, the supporting force from the ground cancels out the gravity

force. Therefore, the acceleration of the ball should be 0 rather than the acceleration

of gravity. Under this circumstance, the ball in fact has a rather different dynamics

given by ẋ1 = x2, ẋ2 = 0.

This suggests that new dynamics might be necessary to describe the model’s

behavior. Consequently, the complete description of the dynamics of the bouncing

ball system should include both an extra state associated with the new dynamics and

a transition that drives the model into that state. One design of such a hybrid system

model is shown in Fig. 1.2, where q2 and e2 are the new state and transition.

1Identity reset maps, such as x1 := x1, are not explicitly shown.
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1.2 Water Tank

The second model that we will consider is the water tank system consisting of two

tanks. We use x1 and x2 for the water levels, r1 and r2 for the critical water level

thresholds, and v1 and v2 for the constant flow of water out of the tanks. There is a

constant input flow of water w, which goes through a pipe and into either tank at any

particular time point. We assume that (v1 + v2) > w, meaning that the sum of the

output flow in both tanks is greater than the input flow. Therefore, the water levels

of both tanks keep dropping. If the water level of any tank drops below its critical

threshold, the input water gets delivered into that tank. The process of switching the

pipe from one tank to the other takes zero time.

One hybrid system model that describes such system is shown in Fig. 1.3. This

model has two states q1 and q2 corresponding to the different dynamics of the system

when the input water flows into either of the two tanks. Transitions e1 and e2 specify

switching conditions between states.
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Figure 1.3. A hybrid system model of a water tank system.

Note that the guard expressions between those two states are not mutually ex-

clusive, meaning that the guards x1 ≤ r1 and x2 ≤ r2 may be enabled at the same

time. A trivial example will be that the two tanks have initial water levels x1 = r1

and x2 = r2. If the two tanks have initial water levels x1 > r1 and x2 > r2, then the
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water levels of both tanks will drop and the water pipe will switch between the two

tanks. As more and more water flows out of tanks, we will see that the frequency

of the pipe switching becomes higher and higher. In the limit, when this frequency

reaches infinity, both guards become enabled at the same time.

When both guards are enabled, the water tank system will have a different dy-

namics. Recall the assumption that the switching speed of the water pipe is infinitely

fast, the pipe should inject water into both tanks at the same time. In other words,

there are virtually two identical pipes injecting water into both tanks. Also note

that the input water flow is a constant and the pipe cannot hold water, therefore one

possible scenario will be that each tank gets half of the input water. Therefore, at

this time point, the whole system will have a rather different dynamics given by

ẋ1 = w/2− v1, ẋ2 = w/2− v2. (1.1)

We introduce a new state associated with the above dynamics and complete the

transitions going from the existing states to the newly added state. The new design

of the complete hybrid system model for the water tank system is shown in Fig. 1.4,

where q3 is the new state, e3 and e4 are the newly added transitions. Note that for

simplicity we allow the water levels to have negative values. Otherwise, we will need

some other discrete states to show that once a tank is empty, it is always empty.

The hybrid system model in Fig. 1.4 is similar to the temporal regularization

results proposed in [4]. One of the key differences is that the temporal regularization

solution requires the process of switching pipe to take some positive time ε. The

amount of this ε affects the resulting behaviors. In fact, when ε goes to 0, the

temporal regularization result is the same as what we have derived in (1.1).

In the next chapter, we will propose a systematic way to complete the specification

of hybrid system models. In particular, we will discuss how to introduce new states,

to modify the existing transitions, and to construct new transitions to these new
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Figure 1.4. A more complete hybrid system model of the water tank system.

states for model behaviors before and after potential Zeno time points. In Chapter

3, we will develop a feasible simulation algorithm to approximate the exact behaviors

of Zeno hybrid system models. Conclusions will be given in Chapter 4.
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Chapter 2

Completing Hybrid Systems

The purpose of this chapter is to introduce an algorithm for completing hybrid

system models with the goal of carrying executions past the Zeno point. This algo-

rithm can be thought of as a combination of the currently known conditions for the

existence (or nonexistence) of Zeno behavior in hybrid systems. Of course, the char-

acterization of Zeno behavior in the literature is by no means complete, so we cannot

claim that the procedure outlined here is the only way to complete a hybrid system,

nor that the resulting hybrid system is the canonical completed hybrid system. We

only claim that, given the current understanding of Zeno behavior, this method pro-

vides a reasonably satisfying method for completing hybrid systems. We dedicate the

latter half of this chapter to examples, where we carry out the completion process.

2.1 Hybrid System Completion

Define a hybrid system as a tuple,

H = (Γ, D, G, R, F ),

where
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• Γ = (Q, E) is a finite directed graph, where Q represents the set of discrete

states and E represents the set of edges connecting these states. There are

two maps s : E → Q and t : E → Q, which are the source and target maps

respectively. That is s(e) is the source of the edge e and t(e) is its target.

• D = {Dq ⊆ Rn
∞ | q ∈ Q} is a set of domains, one for each state q ∈ Q. While

the hybrid system is in state q, the dynamics of the hybrid system is a trajectory

in Dq. Note that Rn
∞ = Rn ∪ {∞} and Rn

∞ is compact.

• G = {Ge ⊆ Ds(e) | e ∈ E} is a set of guards, where Ge is a set associated with the

edge e and determines the switching behavior of the hybrid system at state s(e).

When the trajectory intersects with the guard set Ge, a transition is triggered

and the discrete state of the hybrid system changes to t(e). Gq =
⋃

s(e)=q Ge is

the union of the guards associated with the outgoing edges from the same state

q. We assume that Gq is closed, i.e., that every Cauchy sequence converges to

an element in Gq.

• R = {Re : Ge → Dt(e) | e ∈ E} is a set of reset maps. We write the image of

Re as Re(Ge) ⊆ Dt(e). These reset maps specify the initial continuous states of

trajectories in the target discrete states.

• F = {fq : Dq → Rn
∞ | q ∈ Q} is a set of vector fields, which specify the dynamics

of the hybrid system when it is in a discrete state q. We assume fq is Lipschitz

when restricted to Dq.

In this report, we will not explicitly define hybrid system behavior and Zeno be-

havior, as these definitions are well-known and can be found in a number of references

(cf. [1], [2], [4], [9]).

The goal of this section is to complete a hybrid system H , i.e., we want to form

a new hybrid system H in which executions are carried beyond the Zeno point. We
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begin by constructing this system theoretically and then discuss how to implement

it practically. The theoretical completion of a hybrid system is carried out using the

following process:

1. Augment the graph Γ of H , based on the existence of higher order cycles, to

include post-Zeno states, and edges to these post-Zeno states.

2. Specify the domains of the post-Zeno states.

3. Specify the guards on the edges to the post-Zeno states.

4. Specify the reset maps on the edges to the post-Zeno states.

5. Specify the vector fields on the post-Zeno states, based on the vector fields on

the pre-Zeno states.

6. Check the existence of higher order cycles again on the completed hybrid sys-

tems. If there is any, go the step 1 and repeat the completing process. Other-

wise, the process terminates.

Before carrying out this process, it is necessary to introduce the notion of higher

order cycles in Γ. We call a finite string consisting of alternating states and edges in

Γ a finite path,

q1
e1−→ q2

e2−→ q3
e3−→ · · · ek−1−→ qk,

with ei ∈ E and qi ∈ Q, s.t., s(ei) = qi and t(ei) = qi+1. We denote such a path by

〈q1; e1, e2, . . . , ek−1; qk〉.

For simplicity, we only consider paths with distinct edges. We could have con-

sidered paths with repeated edges, but that will result in an unbounded number of

paths, each of which is arbitrarily long. This makes the problem intractable. The

number and length of paths with distinct edges are finite. In the worst case scenario,

11



suppose there are N edges in the graph, the number of paths is
∑N

m=1(P
N
m ), where

PN
m gives the number of permutations of choosing m edges from a set of N edges.

Although we only consider paths with distinct edges, we do not require a path to

contain distinct states. In particular, if the starting state is the same as the ending

state, such as 〈q1; e1, e2, . . . , ek−1; q1〉, we call such a path a finite cyclic path. The

set of all finite cyclic paths is called the higher order cycles in Γ and denoted by C.

Formally,

C = {〈q; e1, e2, . . . , ek−1; q〉 | ∀i, j, i 6= j ⇒ ei 6= ej, ei, ej ∈ E, q ∈ Q}. (2.1)

To ease future discussion, we define c0 = 〈q; e1, e2, . . . , ek−1; q〉 ∈ C. We will use

this example cyclic path through the rest of this section.

We also define two operators, πQ and πE, on a cyclic path c ∈ C, where πQ(c) gives

the starting and ending state of the path and πE(c) gives the first edge appearing in

the path. When applied to the path c0, πQ(c0) = q and πE(c0) = e1.

Consider any two edges ei, ej ∈ E appearing a cyclic path such as c0, where ej

immediately follows ei, meaning s(ej) = t(ei). We define a restricted reset map for

the first edge ei, Wei
: Gei

→ Gej
by

Wei
(Gei

) = Rei
(Gei

) ∩Gej
,

where Gei
and Gej

are guard sets associated with edges ei and ej respectively. The

word ”restricted” means that the image of the function Wei
is constrained by the

guard set of the destination state Gej
.

For the last edge ek−1 appearing in the path c0, we define the function Wek−1
by

Wek−1
(Gek−1

) = Rek−1
(Gek−1

) ∩Ge1 ,

where Ge1 is the guard set associated with the first edge e1 appearing in the path c0.
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Then for a cyclic path c ∈ C, we define a function Rc : GπE(c) → GπE(c), where

πE(c) is the first edge appearing in the path c. The function Rc is the composition

of the reset maps along the path c, called the reset map along path c. Choosing the

path c0 as an example, we define the function Rc0 : Ge1 → Ge1 by

Rc0 = R〈q;e1,e2,...,ek−1;q〉 = Wek−1
◦Wek−2

◦ · · · ◦We2 ◦We1 . (2.2)

We write the image of Rc as Rc(GπE(c)). From the definition of Rc, we know

Rc(GπE(c)) must be a subset of GπE(c) because it is resulted from intersection of sets.

If we apply Rc again to Rc(GπE(c)), let R2
c(GπE(c)) denote Rc(Rc(GπE(c))), we have

R2
c(GπE(c)) ⊆ Rc(GπE(c)). Keeping applying the function Rc will result in a sequence

of sets,

GπE(c) ⊇ Rc(GπE(c)) ⊇ R2
c(GπE(c)) ⊇ · · · ⊇ Rk

c (GπE(c)) ⊇ · · · .

A question naturally arises: does the sequence always converge?

It is well known (c.f. [10]) that for any set X, the ordered set (P(X);⊆) with a

set inclusion order is a complete lattice, where the least upper bound (LUB) is given

by the union of subsets and the greatest lower bound (GLB) by the intersection of

subsets. Note that the ordered set (P(X);⊇) with a reverse set inclusion order is

also a complete lattice, where the LUB is given by the intersection and the GLB by

the union of subsets. By this definition, (P(Rn
∞);⊇) is a complete lattice.

A complete lattice is a CPO (an abbreviation for complete partially ordered set).

Therefore, (P(Rn
∞);⊇) is a CPO. A CPO has a bottom element, denoted as ⊥. For

(P(Rn
∞);⊇), the bottom element is Rn

∞.

Every chain in a CPO converges, therefore the sequence of sets,

GπE(c) ⊇ Rc(GπE(c)) ⊇ R2
c(GπE(c)) ⊇ · · · ⊇ Rk

c (GπE(c)) ⊇ · · · ,

which forms a chain, always converges.
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Now our question is whether we can constructively find the set that this sequence

converges to. We will answer this question by applying a least fixed point theorem

in [10] next.

We first define a function for a cyclic path c, Fc : P(Rn
∞) → P(Rn

∞), by

Fc(S) = Rc(S ∩GπE(c)), where S ∈ P(Rn
∞). (2.3)

Theorem 1. Function Fc is monotonic.

Proof. Recall that Fc is monotonic if

∀S1, S2 ∈ P(Rn
∞), S1 ⊇ S2 ⇒ Fc(S1) ⊇ Fc(S2).

Let e = πE(c). Suppose S1 ⊇ S2, then Ge ∩ S1 ⊇ Ge ∩ S2, and Re(Ge ∩ S1) ⊇

Re(Ge ∩ S2). We have We(Ge ∩ S1) ⊇ We(Ge ∩ S2), and therefore Rc(Ge ∩ S1) ⊇

Rc(Ge ∩ S2), which gives Fc(S1) ⊇ Fc(S2).

In fact, a more general conclusion is that function Fc is a monotonic function as

long as function Rc is a total function.

Theorem 2. Function Fc is continuous.

Proof. Recall that Fc is continuous if for any chain L ⊆ P(Rn
∞), where L =

{S1, S2, S3, · · · } and S1 ⊇ S2 ⊇ S3 ⊇ · · · ,

Fc(∧L) = ∧F̂c(L) = ∧{Fc(Si) | Si ∈ L}.

Note that ∀Si, Si ⊇ ∧L. Because Fc is monotonic, Fc(Si) ⊇ Fc(∧L). Therefore,

Fc(∧L) ⊆ ∧F̂c(L).

Now we want to show

∧F̂c(L) ⊆ Fc(∧L).
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For any x ∈ ∧F̂c(L), there must exist y ∈ Si∩GπE(c) for all Si, s.t., x = Rc(y). Also

note that Fc(∧L) = Rc(
⋂

i Si ∩GπE(c)) and y ∈
⋂

i Si ∩GπE(c), therefore x ∈ Fc(∧L).

In other words, ∧F̂c(L) ⊆ Fc(∧L).

In the end,

∧F̂c(L) ⊆ Fc(∧L) and Fc(∧L) ⊆ ∧F̂c(L) ⇒ Fc(∧L) = ∧F̂c(L).

Alternatively, we can prove theorem (2) according to 8.8(2) in [10] (page 178). In

particular, because (P(X);⊇) satisfies the ascending chain condition (ACC) defined

in 2.37(v) in [10] (page 51), and function Fc is monotonic according to theorem (1),

Fc is a continuous function.

Theorem 3 (least fixed point theorem, c.f. [10]). Every continuous function f : X →

X over a CPO X has a least fixed point x, such that f(x) = x. Further more, x is

given by
⊔

n≥0 fn(⊥), where ⊥ is the bottom element of the CPO X.

The proof of this theorem is omitted and can be found in [10]. The important

result is that the sequence of sets,

GπE(c) ⊇ Rc(GπE(c)) ⊇ R2
c(GπE(c)) ⊇ · · · ⊇ Rk

c (GπE(c)) ⊇ · · ·

converges to a set, which is a least fixed point of Fc.

Theorem (3) also gives us a constructive procedure to find such a fixed point.

That is, start by evaluating Fc with Rn
∞, and then keep applying Fc on the evaluated

results until they converge to a fixed point.

However we cannot guarantee that the fixed point can be computed with the

above procedure in a finite number of steps of computation. In fact, example 2.2.4 in

the next section will show that finding the fixed point may take an infinite number

15



of computation steps. In this case, our algorithm breaks down and this is one of the

limitations.

We denote such a fixed point as Zc, called Zeno set of cyclic path c, where

Zc = Fc(Zc). (2.4)

Equation (2.4) states that if a trajectory intersects with the guard set GπE(c) at an

element z ∈ Zc ⊆ GπE(c), then after a series of reset maps, Rc, the initial continuous

state of the new trajectory z′ is again in Zeno set Zc, which is a subset of GπE(c).

Note that the new initial state z′ does not have to be the same as the starting state

z (c.f. [1]). However, the new state z′ will nevertheless trigger the first transition

appearing first in the path to be taken anyway. With the constraint that transitions

happen instantaneously, there will be an infinite number of transitions happening at

the same time point. Therefore, the existence of a nonempty Zeno set Zc indicates the

possible existence of Zeno equilibria (cf. [1]). This motivates the construction of the

completed hybrid system based on a subset of cyclic paths, C ′ = {c ∈ C | Zc 6= ∅}.

For a hybrid system H , define the corresponding completed hybrid system H by

H = (Γ, D, G, R, F ),

where

1. Γ = (Q,E), where Γ has more discrete states and edges than Γ. The set of

extra states is Q′ = Q \ Q, where Q′ is called the set of post-Zeno states. The

set of extra edges is E ′ = E \ E. We pick the extra states and edges to be in

bijective correspondence with Q′, i.e., there exist bijections g : Q′ → C ′ and

h : E ′ → C ′. Consequently, ∀c ∈ C ′, there always exist a unique q ∈ Q′ and a

unique e ∈ E ′.
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We define the source and target maps, s : E → Q and t : E → Q for e ∈ E by

s(e) =

 s(e) if e ∈ E

πQ(h(e)) if e ∈ E ′
, and t(e) =

 t(e) if e ∈ E

g−1(h(e)) if e ∈ E ′
.

Intuitively, for each cyclic path c ∈ C ′ found in Γ, we can find a new discrete

state q = g−1(c) ∈ Q′ and a new edge e = h−1(c) ∈ E ′ that goes from πQ(c) to

q in Γ.

The new discrete state q, which corresponds to the cyclic path c = g(q), copies

all edges of the original state πQ(c) except the first edge appearing in the path,

πE(c). In fact, we can think that the newly introduced edge e = h−1(c) replaces

the edge πE(c).

2. Define D = D ∪D′, where D′ is the set of domains of post-Zeno states, defined

as D′ = {D′
q ⊆ Rn

∞ | q ∈ Q′}. For each c ∈ C ′, D′
q is defined by

D′
q = Zc, where q = g−1(c) ∈ Q′. (2.5)

Note that D′
q is not only the domain for post-Zeno state q but also the guard

set that triggers the transition from the pre-Zeno state πQ(c) to the post-Zeno

state q.

3. In order to define G, we first modify the guard Ge in G by subtracting Zc from

Ge, where c ∈ C ′ with πQ(c) = s(e). Define, for all e ∈ E,

G̃e = Ge\
⋃

c∈C′ s.t. πQ(c)=s(e)

Zc, (2.6)

and define, for all e ∈ E ′,

G′
e = D′

q, where q = t(e). (2.7)

Then the complete definition of G is G = {G̃e | e ∈ E} ∪ {G′
e | e ∈ E ′}.
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4. R = {Re : G̃e → Dt(e) | e ∈ E} ∪ {R′
e : G′

e → Dt(e) | e ∈ E ′}, where the reset

map R′
e is the identity map.

5. F = F ∪ {f ′q : D′
q → Rn

∞ | q ∈ Q′}, where f ′q is the vector field on D′
q. This

vector field may be application-dependent, but in some circumstances, it can

be obtained from the vector field fq′ on Dq′ , where q′ = πQ(g(q)) ∈ Q.

6. Check the existence of higher order cycles again on the completed hybrid sys-

tems. If there is any, go the step 1 and repeat the completing process. Oth-

erwise, the process terminates. This step is necessary for completing hybrid

systems with a state having multiple outgoing edges pointing back to itself.

Upon inspection of the definition of the completed hybrid system, it is evident that

we have explicitly given a method for computing every part of this system except for

the vector fields on the post-Zeno states. We do not claim to have an explicit method

for generally computing f ′q, because this would depend on the constraints imposed by

D′
q which we do not assume are of any specific form. However, in some special cases,

it is possible to find such a vector field. In the next subsection, we will demonstrate

how to carry out the process of completing hybrid systems by revisting the examples

discussed in Sect. 1.

2.2 Examples

2.2.1 Example 1: Bouncing Ball.

We first revisit the bouncing ball example shown in Fig. 1.1. Write this example

hybrid system as a tuple, H = ((Q,E), D, G, R, F ). We have the discrete state

set Q = {q1}, the edge set E = {e1}, the set of guards G = {Ge1}, where Ge1 =
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{(x1, x2) ∈ R2
∞ | x1 = 0 ∧ x2 ≤ 0}, and the set of the reset maps R = {Re1}, where

Re1 is defined by Re1(x1, x2) = (x1,−e · x2), ∀(x1, x2) ∈ Ge1 .

There is only one element, c = 〈q1; e1; q1〉, in the set C of cyclic paths. For path

c, the composition of reset maps along c is Rc = We1 and πE(c) = e1. Evaluating

equation (2.4) with Zc as the guard Ge1 , we get

Z ′
c = Fc(Rn

∞)

= Rc(Rn
∞ ∩Ge1)

= We1(Ge1)

= Re1(Ge1) ∩Ge1

= {(x1, x2) | x1 = 0 ∧ x2 ≥ 0} ∩ {(x1, x2) | x1 = 0 ∧ x2 ≤ 0}

= {(x1, x2) | x1 = 0 ∧ x2 = 0}

= {(0, 0)}.

Keep evaluating equation (2.4) with Z ′
c, and we get

Z ′′
c = Fc(Z

′
c)

= Rc(Z
′
c ∩Ge1)

= We1(Z
′
c)

= Re1(Z
′
c) ∩ Z ′

c

= {(0, 0)} ∩ {(0, 0)}

= {(0, 0)}.

Since Z ′′
c is the same as Z ′

c, we have got a fixed point of Fc, denoted as Zc =

{(0, 0)}. Since Zc is nonempty, we introduce a new state q2 and a new edge e2 such

that Q = {q1, q2} and E = {e1, e2}. The source and target maps are

s(e) = q1 , ∀e ∈ E , and t(e) =

 q1 if e = e1

q2 if e = e2

.
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Because there is only one outgoing edge e1 from the state q1 and this edge appears

in the cyclic path c, the new state q2 copies no edge from q1.

The domain for discrete state q2 is D′
q2

= Zc. Then D = D∪{D′
q2
}. Since the set

D′
q2

only contains one element, the dynamics (vector fields) of the hybrid system is

trivial, where ẋ1(t) = 0, ẋ2(t) = 0. This simply means that the ball cannot move at

all, which is exactly the same as what we got in the introduction.

We must point out that the domain for a post-Zeno state may contain more than

one element. In this case, the dynamics in general cannot be computed without

a model designer’s expertise. However, in some special cases such as mechanical

systems, the vector fields describe the equations of motion for these systems. If in

addition, the guards are derived from unilateral constraints on the configuration space,

then the vector fields on the post-Zeno states can be obtained from the vector fields

on the pre-Zeno states via holonomic constraints. In fact, the vector fields on the

post-Zeno state of the above example can be obtained from a hybrid Lagrangian [7].

A detailed explanation of the process for computing vector fields and more examples

can be found in [7].

Note that D′
q2

is also the guard set of e2 that specifies the switching condition

from q1 to q2, meaning G′
e2

= {(x1, x2) ∈ R2
∞ | x1 = 0 ∧ x2 = 0}. Following (2.6), we

get a modified G̃e1 = {(x1, x2) ∈ R2
∞ | x1 = 0 ∧ x2 < 0}. The set of these two guard

sets gives G = {G̃e1 , G
′
e2
}.

Finally, R = {Re1 , R
′
e2
}, where R′

e2
is just the identity map.

Now we need to check the completed hybrid system again for possible non-empty

Zeno sets. There is still only one cyclic path c. However by repeating the above

procedure, we get Zc = ∅. The detailed derivation process is the same as what

described the above and is omitted here. Therefore the completing process is finished.
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In summary we get the completed hybrid system H = ((Q,E), D, G, R, F ), which

is the same as the model shown in Fig. 1.2.

2.2.2 Example 2: Water Tank.

Now let us revisit the water tank example shown in Fig. 1.3. Write this example

hybrid system as a tuple, H = ((Q, E), D,G,R, F ). We have the discrete state set

Q = {q1, q2}, the edge set E = {e1, e2}, the set of guards G = {Ge1 , Ge2}, where

Ge1 = {(x1, x2) ∈ R2
∞ | x2 ≤ r2} and Ge2 = {(x1, x2) ∈ R2

∞ | x1 ≤ r1}, and the set of

the reset maps R = {Re1 , Re2}, where both reset maps are identity maps.

There are two elements, c1 = 〈q1; e1, e2; q1〉 and c2 = 〈q2; e2, e1; q2〉, in the set C

that contains cyclic paths. For path c1, the composition of reset maps along c1 is

Rc1 = We2 ◦We1 and πE(c1) = e1.

We first compute the fixed point Zc1 for Fc1 by evaluating (2.4) with Zc1 as the

guard Ge1 , we get

Z ′
c1

= Fc1(Rn
∞)

= Rc1(Rn
∞ ∩Ge1)

= (We2 ◦We1)(Ge1)

= We2(We1(Ge1))

= We2(Re1(Ge1) ∩Ge2)

= We2(Ge1 ∩Ge2)

= Re2(Ge1 ∩Ge2) ∩Ge1

= Ge1 ∩Ge2 ∩Ge1

= Ge1 ∩Ge2

= {(x1, x2) | x2 ≤ r2} ∩ {(x1, x2) | x1 ≤ r1}
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= {(x1, x2) | x1 ≤ r1 ∧ x2 ≤ r2}.

Keep evaluating equation (2.4) with Z ′
c1

, we get

Z ′′
c1

= Fc1(Z
′
c1

)

= Rc1(Z
′
c1
∩Ge1)

= (We2 ◦We1)(Z
′
c)

= · · · (steps omitted)

= {(x1, x2) | x1 ≤ r1 ∧ x2 ≤ r2}. (2.8)

Since Z ′′
c1

is the same as Z ′
c1

, we have got a fixed point of Fc1 , denoted as Zc1 =

{(x1, x2) | x1 ≤ r1 ∧ x2 ≤ r2}. Similarly, for path c2, we get Zc2 = {(x1, x2) | x1 ≤

r1 ∧ x2 ≤ r2}, which is the same as Zc1 .

Since both Zc1 and Zc2 are nonempty, we introduce two new states q3 and q4 and

two new edges e3 and e4 such that Q = {q1, q2, q3, q4} and E = {e1, e2, e3, e4}. The

source and target maps are

s(e) =

 q1 if e = e1 ∨ e = e3

q2 if e = e2 ∨ e = e4

, and t(e) =



q2 if e = e1

q1 if e = e2

q3 if e = e3

q4 if e = e4

.

Because there is only one outgoing edge e1 from the state q1 and this edge appears

in the cyclic path c, the new state q3 copies no edge from q1. Similarly, the new state

q4 does not copy edges from q2.

The domain for discrete state q3 is D′
q3

= Zc1 , and the domain for discrete state

q4 is D′
q4

= Zc2 . Then D = D ∪ {D′
q3

, D′
q4
}.

As we pointed out earlier in the previous example, in order to derive the dynamics

for post-Zeno states, a careful analysis has to be performed by model designers, and
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the resulting dynamics may not be unique. For example, one might think that 3/4 of

the input flow goes into the first tank and the rest goes into the second tank. This

dynamics is different from what we had in the introduction chapter. We do not (in

fact, we cannot) determine which result is better.

Note that D′
q3

is also the guard set of e3 that specifies the switching condition

from q1 to q3, meaning G′
e3

= {(x1, x2) ∈ R2
∞ | x1 ≤ r1 ∧ x2 ≤ r2}. Following (2.6),

we get a modified G̃e1 = {(x1, x2) ∈ R2
∞ | x1 ≤ r1 ∧ x2 > r2}. Similarly, we get

G′
e4

= {(x1, x2) ∈ R2
∞ | x1 ≤ r1 ∧ x2 ≤ r2}, and a modified G̃e2 = {(x1, x2) ∈ R2

∞ |

x2 ≤ r2 ∧ x1 > r1}. The set of these two guard sets gives G = {G̃e1 , G̃e2 , G
′
e3

, G′
e4
}.

Finally, R = {Re1 , Re2 , R
′
e3

, R′
e4
}, where all reset maps are identity maps.

Now we need to check the completed hybrid system again for possible non-empty

Zeno sets. There are still only two cyclic paths c1 and c2. However by repeating

the above procedure, we get Zc1 = Zc2 = ∅. The detailed derivation process is the

same as described the above and is omitted here. Therefore the completing process

is finished.

In summary we get the completed hybrid system H = ((Q,E), D, G, R, F ), which

is slightly different from the model shown in Fig. 1.4 in that H contains 4 discrete

states. However, if we choose the same dynamics such as (1.1) for discrete states q3

and q4, then q3 and q4 are the same. Thus we get a model with the same dynamics

as that of the model in Fig. 1.4.

2.2.3 Example 3: A Non-Zeno Hybrid System.

Now let us consider a hybrid system simpler than the bouncing ball example

shown in Fig. 1.1. Similar to the bouncing ball example, this hybrid system has a

single state, Q = {q1}, and a single edge, E = {e1}. The set of guards is G = {Ge1},
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where Ge1 = {x ∈ R | 0 ≤ x ≤ 10}, and the set of the reset maps is R = {Re1},

where Re1 is defined by Re1(x) = x + 1, ∀x ∈ Ge1 .

There is only one element, c = 〈q1; e1; q1〉, in the set C of cyclic paths. For path

c, the composition of reset maps along c is Rc = We1 and πE(c) = e1. Evaluating

equation (2.4) with Zc as the guard Ge1 , we get

Z ′
c = Fc(Rn

∞)

= Rc(Rn
∞ ∩Ge1)

= We1(Ge1)

= Re1(Ge1) ∩Ge1

= {x ∈ R | 1 ≤ x ≤ 11} ∩ {x ∈ R | 0 ≤ x ≤ 10}

= {x ∈ R | 1 ≤ x ≤ 10}.

Keep evaluating equation (2.4) with Z ′
c, and we get

Z ′′
c = Fc(Z

′
c)

= Rc(Z
′
c ∩Ge1)

= We1(Z
′
c)

= Re1(Z
′
c) ∩ Z ′

c

= {x ∈ R | 2 ≤ x ≤ 10}.

Keep evaluating equation (2.4) with the new results for 10 times, and we will get

Z11
c = Fc(Z

10
c )

= Rc(Z
10
c ∩Ge1)

= We1(Z
10
c )

= Re1(Z
10
c ) ∩ Z10

c

= Re1({x ∈ R | x = 10}) ∩ {x ∈ R | x = 10}
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= {x ∈ R | x = 11} ∩ {x ∈ R | x = 10}

= ∅,

where Zn
c indicates the n-th result from evaluating equation (2.4).

The result set Z11
c is an empty set, any set intersecting with an empty set will

result in an empty set. The empty set is the least fixed point of Fc. Because this

fixed point is empty, there is no Zeno point. Therefore, we conclude this model is

non-Zeno and it is already complete.

2.2.4 Example 4: A Zeno Hybrid System.

In this example, we use the same model in Example 2.2.3 but with a different

reset map, R = {Re1}, where Re1 is defined by Re1(x) = x/2, ∀x ∈ Ge1 .

There is only one element, c = 〈q1; e1; q1〉, in the set C of cyclic paths. For path

c, the composition of reset maps along c is Rc = We1 and πE(c) = e1. Evaluating

equation (2.4) with Zc as the guard Ge1 , we get

Z ′
c = Fc(Rn

∞)

= Rc(Rn
∞ ∩Ge1)

= We1(Ge1)

= Re1(Ge1) ∩Ge1

= {x ∈ R | 0 ≤ x ≤ 5} ∩ {x ∈ R | 0 ≤ x ≤ 10}

= {x ∈ R | 0 ≤ x ≤ 5}.

Keep evaluating equation (2.4) with Z ′
c, and we get

Z ′′
c = Fc(Z

′
c)

= Rc(Z
′
c ∩Ge1)
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= We1(Z
′
c)

= Re1(Z
′
c) ∩ Z ′

c

= {x ∈ R | 0 ≤ x ≤ 2.5}.

Keep evaluating equation (2.4) with the new results for n times, and we will get

Zn+1
c = Fc(Z

n
c )

= Rc(Z
n
c ∩Ge1)

= We1(Z
n
c )

= Re1(Z
n
c ) ∩ Zn

c

= Re1({x ∈ R | 0 ≤ x ≤ (1/2)n}) ∩ {x ∈ R | 0 ≤ x ≤ (1/2)n}

= {x ∈ R | 0 ≤ x ≤ (1/2)n+1} ∩ {x ∈ R | 0 ≤ x ≤ (1/2)n}

= {x ∈ R | 0 ≤ x ≤ (1/2)n+1},

where Zn
c indicates the n-th result from evaluating equation (2.4).

It is obvious that the more times we evaluate the equation (2.4), the bigger n will

be. However, there will not be a limit for n.

Analytically, we can conclude that the least fixed point of Fc is a non-empty set

containing only one element, {0}. However, this result cannot be computed in a finite

number steps. Therefore, our constructive procedure does not work for this kind of

hybrid systems.

2.2.5 Example 5: Another Zeno Hybrid System.

Here is another Zeno hybrid system example, we use the same model in Example

2.2.3 but with a different guard set, Ge1 = {x ∈ R | x ≥ 0}.

There is only one element, c = 〈q1; e1; q1〉, in the set C of cyclic paths. For path

c, the composition of reset maps along c is Rc = We1 and πE(c) = e1. Evaluating
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equation (2.4) with Zc as the guard Ge1 , we get

Z ′
c = Fc(Rn

∞)

= Rc(Rn
∞ ∩Ge1)

= We1(Ge1)

= Re1(Ge1) ∩Ge1

= {x ∈ R | x ≥ 1} ∩ {x ∈ R | x ≥ 0}

= {x ∈ R | x ≥ 1}.

Keep evaluating equation (2.4) with Z ′
c, we get

Z ′′
c = Fc(Z

′
c)

= Rc(Z
′
c ∩Ge1)

= We1(Z
′
c)

= Re1(Z
′
c) ∩ Z ′

c

= {x ∈ R | x ≥ 2}.

Keep evaluating equation (2.4) with the new results for n times, we will get

Zn+1
c = Fc(Z

n
c )

= Rc(Z
n
c ∩Ge1)

= We1(Z
n
c )

= Re1(Z
n
c ) ∩ Zn

c

= Re1({x ∈ R | x ≥ n}) ∩ {x ∈ R | x ≥ n}

= {x ∈ R | x ≥ n + 1} ∩ {x ∈ R | x ≥ n}

= {x ∈ R | x ≥ n + 1},

where Zn
c indicates the n-th result from evaluating equation (2.4).
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It is obvious that the more times we evaluate the equation (2.4), the bigger n will

be. However, there will not be a limit for n.

Analytically, noting that R∞ contains ∞, we can conclude that the least fixed

point of Fc is a set containing only one element {∞}. Therefore this system may

have a Zeno behavior, we need to introduce a post-Zeno state for describing the

dynamics after the Zeno point. The completion process is omitted in this report.

However, we have to point out that this fixed point set cannot be computed in a

finite number steps. Therefore, our constructive procedure does not work for this

kind of hybrid systems.
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Chapter 3

Approximate Simulation

In [11], we proposed an operational semantics for simulating hybrid system models.

The key idea of the operational semantics is to treat a complete simulation as a

sequence of unit executions, where a unit execution consists of two phases. The

discrete phase of execution handles all discrete events at the same time point, and

the continuous phase resolves the continuum between two consecutive discrete events.

When simulating a Zeno hybrid system model, we encounter more challenging

practical issues. The first difficulty is that before the Zeno time point, there will be

an infinite number of discrete transitions (events). Handling a discrete event takes

a non-zero time. So it is impossible to handle all discrete transitions in a finite

time interval. In other words, the simulation gets stuck near the Zeno time point.

The second difficulty is numerical errors, which make it impractical to get an exact

simulation. We will first elaborate on the second issue, and then we will come back

to the first issue in subsection 3.3.
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3.1 Numerical Errors

There are two sources of numerical errors: round-off error and truncation error1.

Round-off error arises from using a finite number of bits in a computer to represent

a real value. We denote this kind of difference as η. Then we can say that each

integration operation will incur a round-off error of order η, denoted as O(η). Round-

off error accumulates. Suppose we integrate with a fixed step-size solver with a

integration step size as h. In order to simulate over a unit time interval, we need h−1

integration steps, then the total round-off error is O(η/h). Clearly, the bigger the

step size, the fewer integration steps, the smaller the total round-off error. Similar

results can be inferred for variable step-size solvers.

Truncation error comes from the integration algorithms used by practical ODE

solvers. For example, an nth-order explicit Runge-Kutta method, which is derived

to match the first n + 1 terms of Taylor’s expansion, has a local truncation error of

O(hn+1) and an accumulated truncation error of O(hn). Note that both truncation

errors decrease as h decreases. Ideally we will get no truncation errors as h → 0.

The total numerical error ε for an ODE solver using an nth-order explicit Runge-

Kutta method is the sum of the round-off error and truncation error,

ε ∼ η/h + hn. (3.1)

We can see that with a big integration step size h, the total error is dominated by

truncation error, whereas round-off error dominates with a small step size. Therefore,

although it is desirable to choose a small step size to reduce truncation error, the

accuracy of a calculation result may not be increased due to the accumulation of

round-off error. If we take the derivative of (3.1) with respect to h, then we get that

1We will not give a thorough discussion of numerical errors, which have been extensively studied,
e.g. in [12]. We would rather briefly review and explain the important trade-offs when choosing
integration step sizes.
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when h ∼ η1/(n+1) the total error ε reaches its minimum O(ηn/(n+1)) . Therefore, in

practice, we need to set a lower bound for both the integration step size and error

tolerance (or value resolution) of integration results. We denote them as h0 and ε0

respectively, where

h0 ∼ η1/(n+1), ε0 ∼ ηn/(n+1).

For a good simulation, accuracy is one concern and efficiency is another objective.

Efficiency for numerical integration is usually measured in terms of computation time

or the number of computing operations. Using a big integration step size is an effective

way to improve efficiency but with the penalty of loss of accuracy. So there is a trade-

off. Furthermore, step sizes have upper bounds that are enforced by the consistency,

convergence, and stability requirements when deploying practical integration methods

on concrete ODEs [12]. Therefore, most practical adaptive ODE solvers embed a

mechanism inside the integration process to adjust the step size to meet the desired

tolerance of integration results, so that efficiency gets improved while maintaining the

required accuracy at the same time.

In summary, a practical ODE solver usually specifies a minimum integration step

size h0, some small error tolerance ε0, and an algorithm to adapt step size to meet

requirements on both efficiency and accuracy.

3.2 Computation Difficulties

It is well-known that numerical integration in general can only deliver an approx-

imation to the exact solution of an initial value ODE. However, the distance of the

approximation from the exact solution is controllable for certain kinds of vector fields.

For example, if a vector field satisfies a Lipschitz condition along the time interval

where it is defined, we can constrain the integration results to reside within a neigh-

31



borhood of the exact solution by introducing more bits for representing values to get

better precision and integrating with a small step size.

The same difficulties that arise in numerical integration also appear in event detec-

tion. A few algorithms have been developed to solve this problem [13]–[15]. However,

there is still a fundamental unsolvable difficulty: we can only get the simulation time

close to the time point where an event occurs, but we are not assured of being able

to determine that point precisely.

Simulating a Zeno hybrid system poses another fundamental difficulty. We will

first explain it through a simple continuous-time example with dynamics

ẋ(t) = 1/(t− 1), x(0) = 0, t ∈ [0, 2]. (3.2)

We can analytically find the solution for this example, x(t) = ln |t − 1|. However,

getting the same result through simulation is difficult. Suppose the simulation starts

with t = 0. As t approaches 1, the derivative ẋ(t) keeps decreasing without bound. To

satisfy the convergence and stability requirements, the step size h has to be decreased.

When the step size becomes smaller than h0, round-off error is not neglectable any

more and the simulation results become unreliable. Trying to reduce the step size

further doesn’t help, because the disturbance from round-off error will dominate.

A similar problem arises when simulating Zeno hybrid system models. Recall that

Zeno executions have an infinite number of discrete events (transitions) before reach-

ing the Zeno time point, and the time intervals between two consecutive transitions

shrink to 0. When the time interval becomes less than h0, round-off errors again

dominate.

In summary, it is impractical to precisely simulate the behavior of a Zeno model.

Therefore, similar to numerical integration, we need to develop a computationally

feasible way to approximate the exact model behavior. The objective is to give a
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close approximation under the limits enforced by numerical errors. We will do this in

the next subsection.

3.3 Approximating Zeno Behaviors

In Sect. 2, we have described how to specify the behaviors of a Zeno hybrid system

before and after the Zeno time point and how to develop transitions from pre-Zeno

states to post-Zeno states. The construction procedure works for guards which are

arbitrary sets. However, assuming that each guard is the sub-levelset of a function

(or collection of functions) simplifies the framework for studying transitions to post-

Zeno states. Therefore, we assume that a transition going from a pre-Zeno state to a

post-Zeno state has a guard expression of form,

Gec = {x ∈ Rn
∞ | gec(x) ≤ 0}, (3.3)

for every c ∈ C, where ec = h−1(c) and gec : Rn
∞ → Rk

∞. Furthermore, we assume

that gec(x) is continuously differentiable.

In this section, we will develop an algorithm such that the complete model behav-

ior can be simulated. As the previous subsection pointed out, we can only approximate

the model behaviors before the Zeno time point. Therefore, the first issue is to be

able to tell how close the simulation results are to the exact solutions before the Zeno

time point. This will decide when the transitions from pre-Zeno states to post-Zeno

states are taken. The second issue is how to establish the initial conditions of the

dynamics after the Zeno time point from the approximated simulation results.
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3.3.1 Issue 1: Relaxing Guard Expressions.

To solve the first issue, we first relax the guard conditions defining the transitions

from the pre-Zeno states to the post-Zeno states; if the current states fall into a

neighborhood of the Zeno states (the states at the Zeno time point), the guard is

enabled and transition is taken. Note that when the transition is taken, the system

has a new dynamics and the rest of the events before the Zeno time point, which are

infinite in number, are discarded. Therefore the computation before the approximated

Zeno time point can be finished in finite time.

A practical problem now is to define a good neighborhood such that the approxi-

mation is “close enough” to the exact Zeno behavior. We propose two criteria. The

first criterion is based on the error tolerance ε0
2. We rewrite (3.3) as

Gε0
ec

= {x ∈ Rn
∞ | gec(x) ≤ ε0}, (3.4)

meaning if x(t) is the solution of ẋ = fq(x) with q = s(ec), and if the evaluation

result of gec(x(t)) falls inside [0, ε0], the simulation results of x(t) will be thought as

close enough to the exact solution at the Zeno time point, and the transition will be

taken. In fact, because ε0 is the smallest amount that can be reliably distinguished,

any value in [0, ε0] will be treated the same.

The second criterion is based on the minimum step size h0. Suppose the evaluation

result of gec(x(t)) is outside of the range [0, ε0]. If it takes less than h0 time for the

dynamics to drive the value of gec(x(t)) down to 0, then we will treat the current states

as close enough to the Zeno states. This criterion prevents the numerical integration

from failing with a step size smaller than h0, which may be caused by some rapidly

changing dynamics, such as those in (3.2).

2If gec
(x) is a vector valued function, then ε0 is a vector with ε0 as the elements.
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We first get a linear approximation to function gec(x(t)) around t0 (cf. [13], [15]),

gec(x(t0 + h)) = gec(x(t0)) +
∂gec(x)

∂x
· fq(x) |x=x(t0) ·h + O(h2), (3.5)

where h is the integration step size. Because we are interested in the model’s behavior

when h is close to h0, where h is very small, we can discard the O(h2) term in (3.5).

We are interested in how long it takes for the value of function gec(x(t0)) to go to 0,

so we calculate the required step size by solving (3.5),

h = − gec(x(t0))
∂gec (x)

∂x
· fq(x) |x=x(t0)

. (3.6)

Now we say that if h < h0, the states are close enough to the Zeno point. So we

rewrite the boolean expression (3.3) as

Gh0
ec

=

{
x ∈ Rn

∞ | − gec(x)
∂gec (x)

∂x
· fq(x)

≤ h0

}
. (3.7)

In the end, we give a complete approximated guard expression of the transition

ec from a pre-Zeno state to a post-Zeno state:

Gapprox
ec

= Gε0
ec
∪Gh0

ec
.

This means that if either guard expression in (3.4) and (3.7) evaluates to be true, the

transition will be taken. Performing this process on each guard in the set {Gec | c ∈

C} we obtain the set {Gapprox
ec

| c ∈ C}. Note that to ensure deterministic transitions,

we also subtract the same set from the original guard sets defined in (2.6). Replacing

the guard expressions given in Sect. 2 with these approximated ones, we obtain an

approximation to the completed hybrid system H , H
approx

. This is the completed

hybrid system that is implemented for simulation.

3.3.2 Issue 2: Reinitialization.

The other issue is how to reinitialize the initial continuous states of the new

dynamics defined in a post-Zeno state. Theoretically, these initial continuous states
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are just the states at the Zeno time point, meaning that they satisfy the guard

expression in (3.3). This is guaranteed by the identity reset maps associated with

the transitions.

In some circumstances, like the examples discussed in this report, the initial con-

tinuous states can be explicitly and precisely calculated. However, in general, if there

are more variables involved in guard expressions than the constraints enforced by

guard expressions, we cannot resolve all initial states. In this case, we have to use the

simulation results as part of the initial states. Clearly, since in simulation we do not

actually reach the Zeno time point, the initial states are just approximations. Con-

sequently, the simulation of the dynamics of post-Zeno states will be approximation

too.
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Chapter 4

Conclusion

In this report, a systematic method is introduced for completing hybrid systems

through the introduction of new post-Zeno states and transitions to these states at

the Zeno point. A way to approximate model behaviors at Zeno points is developed

such that the simulation does not halt nor break down. With these solutions, a Zeno

hybrid system model can be simulated beyond its Zeno point and its dynamics is

revealed completely.
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