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Abstract

Embedded systems are often assembled from black box
components. System-level analyses, including verification
and timing analysis, typically assume the system descrip-
tion, such as RTL or source code, as an input. There is
therefore a need to automatically generate formal models
of black box components to facilitate analysis.

We propose a new method to generate models of real-
time embedded systems based on machine learning from ex-
ecution traces, under a given hypothesis about the system’s
model of computation. Our technique is based on a novel
formulation of the model generation problem as learning a
dependency graph that indicates partial ordering between
tasks. Tests based on an industry case study demonstrate
that the learning algorithm can scale up and that the de-
duced system model accurately reflects dependencies be-
tween tasks in the original design. These dependencies help
us formally prove properties of the system and also extract
data dependencies that are not explicitly stated in the spec-
ifications of black box components.

1. Introduction

The design and verification of safety-critical real-time
embedded systems involve the analysis of end-to-end laten-
cies and task dependencies. This analysis requires having
a precise and formal system model. However, in practice,
many systems are assembled from black box components
with imperfect accompanying specifications. In such situa-
tions, it is difficult to perform system integration and analy-

∗This research was supported in part by the MARCO Gigascale Sys-
tems Research Center and CHESS (the Center for Hybrid and Embedded
Software Systems), which receives support from NSF and the following
companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon,
Microsoft, and Toyota.

sis without taking an extremely pessimistic view of the sys-
tem. Automatic model generation mitigates this problem by
providing a robust method of generating implicit dependen-
cies and model features, thereby facilitating verification of
safety of real-time embedded systems.

As an instance, original equipment manufacturers
(OEMs) in the automotive domain such as General Mo-
tors (GM) face many challenges related to the integration of
electrical content [5], including the key issue of integrating
multiple black box components into a single system. The
OEMs tend to have a high level specification of the control
flow model of a particular black box component, but when
the components are integrated, the system level control flow
model is difficult to infer especially in the presence of non-
determinism from the operating system [1] and the CAN
communication bus [3]. Hence, performing an end-to-end
timing analysis is difficult without assuming that all mes-
sages and tasks are potentially independent at the system
level [11]. This approach is extremely pessimistic. Instead,
by automatically generating the system-level control flow
model defining actual data dependencies between tasks, this
end-to-end timing analysis pessimism is significantly im-
proved.

In this paper, we present a novel machine learning-based
approach to automatically generate a system-level control
flow model from execution traces of real-time embedded
systems. Past work include model generation based on it-
erative processes on recording real-time execution traces,
but this method is high in complexity [4]. Our formula-
tion of model generation as the learning problem is inspired
by the work of Lau et al [6] on programming by demon-
stration. There already exist techniques for automatically
generating a model for finite-state systems by observing ex-
ecution traces based on a machine learning algorithm first
proposed by Angluin [2] and improved upon by Rivest and
Schapire [10]. However, techniques are not well-defined
for real-time systems, including for learning partial orders
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Figure 1. A simple system design model
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Figure 2. An example trace with three periods

between tasks and events. To our knowledge, ours is the
first work on automatic generation of a real-time control
flow model from execution traces. We give two algorithms:
one that is optimal, but worst-case exponential-time, and the
other that is heuristic, but converges to a learned model in
polynomial time. We demonstrate the practical applicabil-
ity of the latter algorithm by applying it to an industrial case
study from GM.

2. The Learning Problem

In this section, we present the underlying formalism in-
cluding the formulation of model generation as a learning
problem.

2.1. Model of Computation

A model of computation (MOC) is the abstraction of a
system into a model on which one could do mathematical
computations [7] . The MOC assumed here is a control flow
MOC [9]. The basic rule is that tasks are executed in a data
driven manner where the firing rule of the task is the arrival
of all its required inputs.

An automotive system is modeled with a set of prede-
fined tasks repeatedly being executed in periods. After a
task ends executing, it may send messages to other tasks to
be executed in the same period. We assume that no message
may cross the period boundary.

The system can be represented with a graph, which de-
fines all possible behavior within one single period. Dif-
ferent periods in an execution conform to the same graph,
although the behavior need not be unique due to the log-
ical decisions made. Nodes in the graph are individual
tasks. The edges represent messages between tasks. Figure
1 shows an example of this type of model, where t1 is de-
signed to send message(s) to t2 or t3 or both in each period,
and t2 and t3 independently send messages to t4 if executed.

However, we assume that we do not have access to the
system design. Instead, we are trying to reconstruct depen-
dency models, whose edges represent dependencies. This
type of model is different from the system design model
mentioned previously, because a task may indirectly depend
on or determine another with no explicit messages between
them. When we mention messages, we are talking about
system designs; when we mention dependencies, we are as-
suming dependency models.

We distinguish two special types of nodes. A disjunc-
tion node is one that conditionally sends messages to other
tasks, and in this way choose execution paths, such as t1
above. A conjunction node is one that passively receives
messages from other tasks, depending on the decisions that
others made, e.g. t4. We further assume that in any pe-
riod, there could be at most one message sent between any
sender-receiver pair. E.g., if t1 wants to send 2 events to t2 in
a period, it groups the events and send them in one message.
This is realistic because we assume that messages can only
be sent when the sender task finishes. Thus, the overhead of
sending multiple events is reduced by queuing the events at
the sender side and sending them all at once.

A trace is a time stamped sequence of events, where an
event is the start or end of a task or message. However, we
have no information about the sender, the receiver, or the
contents of a message. Nor do we assume to know a priori
whether a node is disjunction, or conjunction, or neither of
the two.

Figure 2 is an imaginary execution trace of the above
example. It shows only 3 periods. In a period, a task may
execute at most once. A task can not execute if it does not
receive its required message(s).

2.2. Basic Definitions

The following basic definitions are due to Mitchell [8]:
Definition 1 (Instances). I is the set of instances for the
learning problem. In our case, each instance i∈ I represents
a fact, i.e. no negative examples.

Definition 2 (Hypothesis space). H is the hypothesis
space. A partial order (see below) is defined on this space.
Each h∈H is an approximation to the desired property with
respect to the partial order.

Definition 3 (Matching function). M : H× I→ boolean is
the matching function. M(h, i) for h ∈ H and i ∈ I is true if
and only if hypothesis h matches instance i. Informally, we
may as well use M : H×P (I)→ boolean depending on the
context, so that ∀I0 ⊆ I.(M(h, I0)⇔∀i ∈ I0.M(h, i)). 1

Definition 4 (More-specific-than relation). The partial or-
der vH on H is defined in terms of more-specific-than re-

1P (I) represents the power set of I.
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Figure 3. Lattice of dependency values

lation: ∀h1,h2 ∈ H, h1 is more specific than h2 if and only
if ∀i ∈ I.M(h1, i)⇒M(h2, i). This is denoted by h1 vH h2.
(@H is defined similarly.)

In our case, I is an execution trace. Each instance i ∈ I
is a period in that trace (order irrelevant). H is the set of
hypotheses of task dependencies. M indicates whether a
hypothesis matches an instance. By “matching” we mean
that the instance period conforms to the hypothesized de-
pendency. E.g., if the instance contains a message assumed
to be sent from s to r (an example later shows how assump-
tions are made), any hypothesis that matches this instance
should define a directed dependency between s and r.

2.3. Problem Formulation

We formulate dependencies with functions. A partial or-
der is defined on the set of possible dependency functions.

Definition 5 (Dependency functions). d ∈D : T ×T →V ,
where T is the set of predefined tasks, and V = {‖,→,←
,↔,→?,←?,↔?} is the set of possible dependency values.
For any t1, t2 ∈ T :

• d(t1, t2) =‖: t1 always executes in parallel with t2.
• d(t1, t2) =→: if t1 executes in a period, it always de-

termines the execution of t2.
• d(t1, t2) =←: if t1 executes in a period, it always de-

pends on the execution of t2.
• d(t1, t2) =↔: t1 and t2 depend on each other. (This

relation never happens in our case. It is defined only
for completeness.)

• d(t1, t2) =→?: if t1 executes in a period, it may or may
not determine the execution of t2.

• d(t1, t2) =←?: if t1 executes in a period, it may or may
not depend on the execution of t2.

• d(t1, t2) =↔?: t1 and t2 may or may not depend
on/determine each other.

We define a partial order vV on V . This partial order is
illustrated in Figure 3 in the form of a lattice.

We define a partial order vD on D. ∀d1,d2 ∈ D.(d1 vD
d2⇔∀t1, t2 ∈ T.d1(t1, t2)vV d2(t1, t2)). vD is also a lattice.

We further define the most specific hypothesis d⊥ ∈D so
that ∀t1, t2 ∈ T.d⊥(t1, t2) =‖, and the least specific hypoth-
esis d> ∈ D so that ∀t1, t2 ∈ T.d>(t1, t2) =↔?. Obviously,
∀d ∈ D.d⊥ vD d vD d>.

In this paper, hypotheses are dependency functions, so
we define hypothesis space

〈
H,vH

〉
with H ::= D and

vH ::=vD.
Definition 6 (Abstracted learning problem). Given I,
with T ,

〈
D,vD

〉
, and M predefined, find D∗ ⊆D such that

1. ∀d∗ ∈ D∗.M(d∗, I). This is the correctness require-
ment.

2. ∀d ∈ D.M(d, I)⇒ (∃d∗ ∈ D∗.d∗ vD d). This is the
completeness and optimality requirement. 2

3. The Generalization Algorithm

The input to the algorithm is an exhaustive trace of mes-
sage and task executions along with a global timestamp.
Our algorithm is based on breadth-first-search and addi-
tional heuristics to bound memory consumption. It starts
with the set containing only the most specific hypothesis.
Every time a new instance is given, the algorithm tries to
match it with the hypotheses in that set. Hypotheses that do
not match the new instance will be generalized.

3.1. Message-Guided Generalization

Starting from D0 = {d⊥} with d⊥ being the globally
most specific hypothesis, the algorithm handles one period
in the execution trace at a time. This learning process is in-
cremental. The set of hypotheses keeps growing in terms of
generality but not necessarily cardinality.

We denote the k occurrences of messages in the trace
with m1,m2, · · · ,mk. Since each period corresponds to an
instance, we denote periods with i1, i2, · · · , in. Multiple mes-
sages may be found in a single period. If mp belongs to iq,
we write mp ∝ iq.

Initially, when the algorithm is provided with i1,
it first analyzes the first message in it, which is
m1 ∝ i1. Its possible sender-receiver pairs are com-
puted: {(s,r)|s ∈ T can be the sender of m1 ∧ r ∈
T can be the receiver of m1}. Then for any sender-
receiver combination, we create a new hypothesis with
this combination as its assumption. E.g., if s and r are
assumed to be the sender and receiver, respectively, we
may generalize d⊥ to d11 such that ∀t1, t2 ∈ T :

d11(t1, t2) =

 → t1 = s ∧ t2 = r
← t1 = r ∧ t2 = s
‖ otherwise

2The reason for finding the most specific hypotheses is that any more
general dependency function will automatically match all the instances.
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Note that each time we only generalize as much as neces-
sary. E.g., we could let d11(s, t) be →? instead of → as
defined above, and still satisfy the correctness requirement.
However, this is not the most specific generalization.

With n1 different assumptions of m1, a set of new hy-
potheses is obtained: D1 = {d11,d12, · · · ,d1n1}.

If m2 is also in i1 (m2 ∝ i1), the algorithm
also analyzes m2 after analyzing m1. It also
computes the set of possible sender-receiver
pairs: {(s,r)|s ∈ T can be the sender of m2 ∧ r ∈
T can be the receiver of m2}. Then we try to general-
ize hypotheses in D1 for any assumed sender-receiver pair
(if necessary). For any d1 j ∈ D1, we try to find the set
D1 j = {d1 j1,d1 j2, · · · ,d1 jm} such that for any d1 jk ∈ D1 j,
the following conditions hold:

1. d1 j vD d1 jk

2. M(d1 jk, i2) = true
3. The sender-receiver pair (s,r) that d1 jk assumes is not

in the assumptions of d1 j. As mentioned above, we as-
sume that between any two data dependent tasks, there
can be only one message between them in a period.

4. The optimality requirement: ¬∃d′ ∈ D s.t. d1 j @D
d′ @D d1 jk and d′ still satisfies the above conditions
(because we generalize only as much as necessary).

When it is obtained from d1 j, d1 jk will have all the assump-
tions that d1 j has, plus one new assumption of the sender-
receiver pair for m2.

The assumptions are important because they help to ef-
ficiently reduce the number of hypotheses. The system we
defined in this paper assumes that in any period, for any
sender-receiver pair (s,r), there can be at most one message
from s to r. If a hypothesis obtained earlier already assumes
s to send a message to r, then later in the same period, we
will not consider the same sender-receiver pair again.

The algorithm repeats this until all the messages in i1
are analyzed. At the end of the period, a post-processing
operation is performed. The post-processing operation first
deletes the assumptions of hypotheses in the set. Two or
more hypotheses in the current set Dcur may become equal
and thus be unified. The post-processing operation also tries
to shrink Dcur by removing redundant hypotheses. d ∈Dcur
is redundant if and only if ∃d′ ∈ Dcur.d′ @D d. This means,
if d is strictly more general than any other hypothesis, then
it can be removed. This is because 1) all the hypotheses in
Dcur match the instances seen so far, and 2) we are trying to
find the most specific hypotheses (w.r.t. vD).

The algorithm processes all the periods in the same way,
until the whole trace is learned. If ∅ is obtained at the end,
it means either the instances contain errors, or the gener-
alization language is not expressive enough to describe the
desired property. If only one hypothesis is left in the set, we
say the algorithm converges to a unique most specific solu-

tion. If there are two or more hypotheses left, we need more
traces that reveal other aspects of the model. 3

3.2. Heuristics

The algorithm discussed above is exponential in the
number of messages. Hardness of this problem is proved
by Theorem 1. We develop a heuristic which does not vio-
late the algorithm’s soundness. However, it is conservative
because the result is no longer guaranteed to be the most
specific. This conservativeness is later justified by the con-
vergence theorem.

Instead of keeping a set of current hypotheses, we keep
an ordered list of them. A weight function is used as or-
dering criteria. This particular weight function is used to
make all dependencies in D inter-comparable. As in Figure
3 a parallel execution is more specific than a directed execu-
tion, and that is more specific than a probable dependency.
Naturally, the higher a dependency-relation ranks in the lat-
tice height, the more weight we give to that hypothesis.

Definition 7 (Distance). distance : V → N computes the
square distance (a natural number) from any dependency
value to the lattice bottom ‖:

distance(v) =


0, v ∈ {‖}
1, v ∈ {→,←}
4, v ∈ {→?,↔,←?}
9, v ∈ {↔?}

Definition 8 (Weight). weight : D→ N is defined as

weight(d) = ∑
t1,t2∈T

distance(d(t1, t2))

Hypotheses are ordered by the weight function in the list.
According to the heuristics, every time a new hypothesis is
added, if the total number of hypotheses becomes 1-greater
than the given bound, the two hypotheses with the least
weights are replaced with their least upper bound.

3.3. A Simple Example

We will demonstrate the generalization algorithm with
the example in Section 2. There are 4 tasks in total. Figure
2 illustrates the first three periods of a possible trace. After
analyzing m1, there are two most specific hypotheses:

3This may not be possible because of the scheduler’s property. The
scheduler used in the model’s execution may not produce strictly random
schedules that the model allows. I.e., it may always exhibit a fixed part of
the model’s possible behavior, so the dependency functions learned from
the trace will be more specific than the real dependency function.

4



d11 t1 t2 t3 t4
t1 ‖ → ‖ ‖
t2 ← ‖ ‖ ‖
t3 ‖ ‖ ‖ ‖
t4 ‖ ‖ ‖ ‖

m1 : t1 7→ t2

d12 t1 t2 t3 t4
t1 ‖ ‖ ‖ →
t2 ‖ ‖ ‖ ‖
t3 ‖ ‖ ‖ ‖
t4 ← ‖ ‖ ‖

m1 : t1 7→ t4

The assumptions of the hypotheses are shown below the
tables. In this case, d11 is obtained by assuming m1 to be
sent from t1 to t2, while d12 assumes m1 is from t1 to t4. Af-
ter this step, the current set of hypotheses Dcur = {d11,d12}.
Both d11 and d12 are the most specific hypotheses, and they
are correct w.r.t. the first message.

The algorithm further handles m2 by generalizing any
hypothesis in Dcur (if necessary). New hypotheses with du-
plicated assumptions will not be considered. E.g., d12 as-
sumes m1 to be sent from t1 to t4. This assumption will
not allow us to create a new hypothesis with an assumption
about m2 being sent from t1 to t4. The following tables show
the three new hypotheses that we obtain:

d21 t1 t2 t3 t4
t1 ‖ → ‖ →
t2 ← ‖ ‖ ‖
t3 ‖ ‖ ‖ ‖
t4 ← ‖ ‖ ‖

m1 : t1 7→ t2; m2 : t1 7→ t4

d22 t1 t2 t3 t4
t1 ‖ → ‖ ‖
t2 ← ‖ ‖ →
t3 ‖ ‖ ‖ ‖
t4 ‖ ← ‖ ‖

m1 : t1 7→ t2; m2 : t2 7→ t4
d23 t1 t2 t3 t4
t1 ‖ ‖ ‖ →
t2 ‖ ‖ ‖ →
t3 ‖ ‖ ‖ ‖
t4 ← ← ‖ ‖

m1 : t1 7→ t4; m2 : t2 7→ t4

After period 1, we update Dcur with {d21,d22,d23}. Post-
processing operations are performed at the end of each pe-
riod to remove all the assumptions, test conditional depen-
dencies, and delete redundant hypotheses.

The algorithm then proceeds to period 2. After period 2
and the post-processing, Dcur contains 5 hypotheses. After
period 3, these 5 hypotheses remain in Dcur:

d81 t1 t2 t3 t4
t1 ‖ →? →? →
t2 ← ‖ ‖ ‖
t3 ← ‖ ‖ →
t4 ← ‖ ←? ‖

d82 t1 t2 t3 t4
t1 ‖ ‖ →? →
t2 ‖ ‖ ‖ →
t3 ← ‖ ‖ →
t4 ← ←? ←? ‖

d83 t1 t2 t3 t4
t1 ‖ →? ‖ →
t2 ← ‖ ‖ →
t3 ‖ ‖ ‖ →
t4 ← ←? ←? ‖

d84 t1 t2 t3 t4
t1 ‖ →? →? →
t2 ← ‖ ‖ →
t3 ← ‖ ‖ ‖
t4 ← ←? ‖ ‖

t1

t2

t3

t4

Figure 4. Dependency graph of the simple
model

d85 t1 t2 t3 t4
t1 ‖ →? →? ‖
t2 ← ‖ ‖ →
t3 ← ‖ ‖ →
t4 ‖ ←? ←? ‖
Each of these hypotheses is the most specific ones that

satisfy all the instances. However, because of the lim-
ited number of instances, the algorithm cannot converge.
Optionally, we may consider their least upper bound dLUB
(which no longer guarantees optimality) as the result:

dLUB t1 t2 t3 t4
t1 ‖ →? →? →
t2 ← ‖ ‖ →
t3 ← ‖ ‖ →
t4 ← ←? ←? ‖
dLUB satisfies ∀s ∈ T, t ∈ T.dLUB(s, t) = d81(s, t) t

d82(s, t)t ·· · t d85(s, t), where t is least upper bound op-
erator on V , defined by the lattice in Figure 3.

The result is illustrated in Figure 4. One interesting re-
sult is: t1 always determines t4 (→). This result cannot be
acquired by merely looking at the original model (even if
we have it). With the original model, we could only tell that
t1 may or may not send messages to t2 and t3, but we did not
have this unconditional dependency by transitive closure.

3.4. Case Study

The algorithm was applied to a distributed system com-
prised of 18 tasks and 330 messages transmitted on one
CAN bus. The execution trace contained 27 rounds and 700
event-pair executions of tasks and messages. An example
of event-pair for task A from a trace is as follows:

A] Begin execution for round 27 at time 798.015

A] End execution for round 27 at time 798.017

The original model was a General Motors (GM) con-
troller in a black box. For proprietary reasons, we cannot
disclose actual names of tasks. We abstract these tasks us-
ing letters A to P and S. Heuristics were used to reduce run-
time. Results in the textual format were extrapolated into
a dependency graph (Figure 5). We used this dependency
graph to prove properties (i.e. dependencies and operation
mode of tasks, such as conjunction or disjunction) of the
system. The output of the algorithm confirmed some prop-
erties that were known in advance; e.g. Tasks A and B are

5
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d(t1, t2) =→? ∧
d(t2, t1) =←
d(t1, t2) =→ ∧
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d(t1, t2) =→ ∧
d(t2, t1) =←

Figure 5. Dependency graph of a GM model

disjunction nodes. Other properties are learned, e,g, Tasks
H, P and Q are conjunction nodes, no matter which mode
task A chooses, task L must execute (d(A,L) =→), and no
matter which mode task B chooses, task M must execute
(d(B,M) =→).

High-level properties such as ”if brake is pressed, then
seat belts must tighten,” are known a priori at design time.
However, some properties, for example the data dependency
between Q and O (refer to Figure 5) come from the integra-
tions of a CAN bus or an OSEK scheduler, are not known
at design time.

The dependency relations that we obtained significantly
improve the pessimistic analysis of end-to-end latencies of
the original system model. For example, one path that was
examined in this case study was the critical path including
task Q. Our learning algorithm introduces an implicit de-
pendency between task Q and O, which reduces the pes-
simisms when calculating the end to end path latency in the
way of excluding the possible preemption from higher pri-
ority task O during the execution of task Q. Note that since
the system is a black box, the correctness of the generated
model is based on how exhaustive the traces are.

The run time of our implementation is tested in Windows
XP with a Pentium M 1.7 GHz processor and 1 GB memory
with different bounds. When unbounded, the exponential
algorithm runs for minutes without stopping.

Bound Run time (sec) Bound Run time (sec)
1 0.220 64 5.899
4 0.471 100 12.608

16 1.202 120 16.294
32 2.573 150 19.048

4. Properties of the Algorithm

Theorem 1 (NP-hard). The problem of finding the set of
most specific hypotheses for a given trace is NP-hard.

Proof. This can be proved by transforming the gen-
eral Boolean Satisfiability Problem (SAT), known to be NP-
complete, to the learning problem.

To show the transformation, we need to prove the fol-
lowing fact first:

Boolean expression x1 ∨ x2 ∨ ·· ·∨ x j is satisfiable if and
only if (v∨ x1 ∨ x2 ∨ ·· · ∨ xi)∧ (¬v∨ xi+1 ∨ ·· · ∨ x j) (0 <
i < j, v is a fresh boolean variable) is satisfiable. The proof
is simple because x∨ y is satisfiable if and only if (v∨ x)∧
(¬v∨y) is satisfiable, and x and y themselves can be boolean
expressions.

For each clause in the SAT problem, we separate vari-
ables and their negations (if any) into two clauses with the
above mechanism, introducing fresh variables when neces-
sary. This results in clauses with only positive literals or
negative literals. From now on, we only consider boolean
expressions of this form. Let n be the total number of vari-
ables including the introduced ones, and m be the total num-
ber of clauses.

We now transform any given SAT problem with n vari-
ables {x1,x2, · · · ,xn} and m clauses into a trace learning
problem with n+1 tasks {t1, t2, · · · , tn,τ}. This transforma-
tion is conducted by examining every clause in the boolean
expression, and creating a corresponding period in the trace.
For the i-th clause, let {xi1,xi2, · · · ,xik} be the k variables in
it. If they all appear positive, then in the period, ti1, ti2, · · · , tik
are created (order irrelevant), followed by a single mes-
sage mi, followed by τ. This means mi was sent by one
of ti1, ti2, · · · , tik to τ, therefore reflecting the “or” relation
between them. If {xi1,xi2, · · · ,xik} appear negative instead,
the creation of this period is similar: τ comes first, followed
by mi, followed by ti1, ti2, · · · , tik. This implies that mi was
sent by τ to one of ti1, ti2, · · · , tik. This process is repeated
for every clause in the boolean expression, yielding m total
periods in the trace. The learning problem seeks to find the
most specific hypotheses that match all the periods, reflect-
ing the “and” relation between clauses.

With any algorithm to learn the dependency from the
above-constructed trace, we can either give an assignment
to all the variables so that the boolean expression is satisfied
or decide that the expression is unsatisfiable:
• If the following is true for any of the most specific hy-

potheses in the result, then the boolean expression is
satisfiable:

∀ti ∈ {t1, t2, · · · , tn}.d(ti,τ) @V↔?

An assignment to make the expression true is as fol-
lows:

xi =

 true d(ti,τ) =→ ∨ d(ti,τ) =→?

f alse d(ti,τ) =← ∨ d(ti,τ) =←?

any d(ti,τ) =‖

This assignment is due to the observation that if ti
(sometimes) determines τ but it never depends on τ,
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then xi should be assigned true; if the opposite holds,
then xi should be assigned false.

• If the following is true for all of the resulting most spe-
cific hypotheses, then the original boolean expression
is unsatisfiable:

∃ti ∈ {t1, t2, · · · , tn}.d(ti,τ) =↔?

This is because any assignment to satisfy the boolean
expression would require xi to be assigned both true
and false, which is impossible.

SAT is NP-complete, and the transformation from SAT
to the learning problem is polynomial, so the learning prob-
lem is NP-hard. �

Theorem 2 (Correctness). The algorithm (with or without
heuristics) guarantees correctness. I.e., if I is the set of in-
stances in the trace, and D∗ is the set of hypotheses that the
algorithm returns, then ∀d∗ ∈ D∗.M(d∗, I).

Proof. This can be proved by induction on the number of
steps (i.e., periods) in the algorithm. The induction claim is
that in every step, the hypotheses match all the instances up
to that step.
• Base case: The claim is true initially when we have

learned no period, and the initial set of hypothesis is
simply {d⊥}.

• Induction step: Assuming that up to the previous pe-
riod the claim is true, then in the current period, any
hypothesis that does not match the dependencies in this
period will be generalized. So at the end of this period,
the remaining hypotheses match this period as well as
all previous periods. �

Theorem 3 (Optimality and completeness). The algo-
rithm without heuristics guarantees optimality and com-
pleteness. I.e., if I is the set of instances in the trace, and
D∗ is the set of hypotheses that the algorithm returns, then
∀d ∈ D.M(d, I)⇒ (∃d∗ ∈ D∗.d∗ vD d).

Proof. This can be proved by induction on the number of
steps (i.e., periods). Let the first period be i1 ∈ I, the second
period be i2 ∈ I, etc. Let Ik be the set of first k periods
{i1, i2, · · · , ik} ⊆ I. Let D∗k be the set of hypotheses learned
from all the elements of Ik.
• Base case: As the result of learning from the first

period, D∗1 is obtained. By construction, the algo-
rithm constrains D∗1 so that the hypotheses in it are
the most specific that match I1 = {i1}. For each mes-
sage in i1, the algorithm explores all possible sender-
receiver pairs as the hypotheses’ assumptions. There-
fore, ∀d ∈D, if M(d, I1), then d matches all those mes-
sages with a specific combination of sender-receiver
pairs. This combination must have been explored
by the above exhaustive learning algorithm. Hence,
∃d∗1 ∈ D∗1.d

∗
1 vD d.

• Induction step: Assume that after learning period k,
∀d ∈ D.M(d, Ik) ⇒ (∃d∗k ∈ D∗k .d

∗
k vD d). We now

show that the claim is also true for k + 1. For any
d ∈D, if M(d, Ik+1), then M(d, Ik)∧M(d,{ik+1}). Be-
cause of the induction assumption and M(d, Ik), ∃d∗k ∈
D∗k .d

∗
k vD d. For period k + 1, the algorithm general-

izes d∗k only as much as necessary to match ik+1 (refer
to the optimality requirement in Section 3.1). Hence,
∃d∗k+1 ∈ D∗k+1.d

∗
k+1 vD d (d∗k+1 is a generalized from

d∗k with instance ik+1). �

Lemma. If the algorithm returns the set of hypotheses D∗

with the bound set to b, and d∗ is the hypothesis obtained
with the bound set to 1, then d∗ =

F
D∗ (the least upper

bound of all the elements in D∗).
Proof. This can be proved by induction on the number

of generalizations (i.e. messages). We do not consider the
post-processing after every period because it only modifies
the assumptions but not the hypotheses.
• Base case: Initially, the algorithm starts with {d⊥} no

matter what the bound is, so the claim is trivially true
because d⊥ =

F
{d⊥}.

• Induction step: Assume that after learning message mi,
Di is obtained with the bound set to b, and di is the only
hypothesis obtained with the bound set to 1. According
to the induction assumption, di =

F
Di.

When examining message mi+1 (whether it is in the
same period as mi or not), the algorithm with the
bound set to b generalizes all hypotheses in Di as
much as necessary so that they match mi+1. This re-
sults in Di+1. On the other hand, with the bound set
to 1, the algorithm returns di+1. We now prove that
(di+1 vD

F
Di+1) and (

F
Di+1 vD di+1).

1. All hypotheses in Di+1 match the messages up
to mi+1, so

F
Di+1 also matches all messages up

to mi+1. di+1 is the most specific hypothesis that
matches all messages up to mi+1 by construction,
so di+1 vD

F
Di+1.

2. According to the induction assumption, di =F
Di, so ∀d ∈ Di.d vD di vD di+1. For any

d′ ∈ Di+1, because the algorithm generalize d′

only as much as necessary from a d in Di, and
both d′ and di+1 match all messages up to mi+1,
then d′ vD di+1. Because this is true for any
d′ ∈ Di+1,

F
Di+1 vD di+1.

Because of 1 and 2, di+1 =
F

Di+1 holds after the algo-
rithm processes mi+1. Therefore, d∗ =

F
D∗ after the

algorithm processes all the messages in the trace. �

Theorem 4 (Convergence). If the algorithm converges to
one hypothesis d∗1 , regardless of whether the bound is set or
what the bound is, and if the algorithm returns d∗2 with the
bound set to 1, then d∗1 = d∗2 .
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Proof. As a result of the above lemma, if the algo-
rithm returns a set with a single hypothesis {d∗1}, then
d∗2 =

F
{d∗1}= d∗1 . �

Due to the convergence theorem, if we knew that the
trace allows the algorithm to converge with a unique, most-
specific dependency function, we only need to set the algo-
rithm’s bound of hypotheses to 1. If, because of the sched-
uler’s properties that are not intended in the original design,
or because of insufficiency of the trace, the algorithm can-
not converge, then the bound affects the result’s optimality.

The algorithm without heuristics is exponential in both
the number of tasks and the largest number of messages in
a period. We also show that no polynomial algorithm exists
to compute the optimal solution by proving this problem
to be NP-hard. Heuristics is then necessary to make the
algorithm feasible. With heuristics, we give the complexity
of the algorithm without proof, which is O(mb2 + mbt2),
where m is the number of messages in the whole trace, t is
the number of tasks, and b is the user-specified bound.

5. Conclusion

We designed and implemented an algorithm that con-
structs a dependency graph from execution traces using ma-
chine learning techniques based on generalization of hy-
potheses. The algorithm without heuristics is correct and
optimal. With additional heuristics, the algorithm converges
in polynomial time (in the number of messages and the
bound).

Though the motivation behind this paper originated from
an automotive application, the algorithm could be extended
to other applications as well. This algorithm could also be
extended to version space techniques if negative instances
were provided in the execution traces.
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