Practical Private Computation of Vector Addition-
Based Functions or: Can Privacy be for Free?

John F. Canny
Yitao Duan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-12
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-12.html

February 8, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported by National Science Foundation award #EIA-
0122599 (Title: " ITR/SI:Societal Scale Information Systems: Technologies,
Design, and Applications").

Practical Private Computation of Vector
Addition-Based Functions or:
Can Privacy be for Free? *

John Canny and Yitao Duan

Computer Science Division
University of California, Berkeley
Berkeley, CA 94720, USA
{jfc, duan}@cs.berkeley.edu

Abstract. In this paper we explore private computation built on vec-
tor addition. Vector addition is a surprisingly general tool for computing
private aggregates over many users’ data. Examples including linear algo-
rithms like voting and summation, but also many non-linear algorithms
like SVD, regression, ANOVA and several machine learning algorithms
based on Expectation Maximization (EM). These methods aggregate
user data only in certain steps, such as conjugate gradient, which are
linear in per-user data. In this paper we introduce a new and highly-
efficient private vector addition protocol which is a blend of P2P and
client-server. Secret-shared arithmetic operations are done over small
fields (e.g. 32 or 64 bits), so that private arithmetic operations have the
same cost as normal arithmetic. Verification of user data is required,
which uses large-field public-key arithmetic (1024 bits or more) and ho-
momorphic computation. The main result of this paper is a random
projection method for verification that requries only a logarithmic num-
ber of large-field operations. Overall, the protocol is dominated by the
(linear) time to do small-field operations on user data. Essentially our
solution provides user privacy for free from a server or client’s perspec-
tive. In experiments, addition and verification of a million-element vector
takes approximately three seconds of server time and about five seconds
of client time on state-of-the-art PCs.

1 Introduction

Many kinds of analysis depend on data from a group of users. Examples include
voting, summation, SVD, regression, and ANOVA. The standard algorithms for
these functions use gradient steps which sum vector data from the users. Machine
learning algorithms based on the EM (Expectation Maximization) method are

* This work was supported by National Science Foundation award #EIA-0122599
(Title: “ITR/SI: Societal Scale Information Systems: Technologies, Design, and Ap-
plications”).

another broad class that rely on vector-addition steps. E-commerce recommen-
dations are based on detailed purchase histories of individual users. Location-
based services are a new and fast-growing industry, and they perform best when
user location histories are available. Many hospitals are moving fast to electronic
medical records (EMR), which opens up new possibilities for large-scale studies
of treatments, drug interactions or lifestyle influences on health. Finally, many
new intranet productivity tools attempt to mine user expertise and interest from
the contents of users’ desktops, email and web use.

In all these cases, it is very important to protect user privacy to the maximum
extent possible. At the same time, it is important to provide the same service
with no loss of accuracy (which can mean lost revenue for the provider). Providers
do not benefit directly from privacy technology, so the costs to them must be as
small as possible, and ideally zero. These are the constraints that have guided
the work reported here.

For the tasks considered here, private arithmetic has come closest to pro-
viding a practical solution [1-3]. While both addition and multiplication are
possible in most of these schemes, the practical overhead for multiply is much
higher. As shown in [3], non-trivial and non-linear computation (in that case a
Singular-Value Decomposition) can be done using an iterative algorithm with
vector-addition aggregation steps. Other examples of addition-only calculations
include EM-based collaborative filtering [4], the GaP algorithm for discrete data
mining [5]), link analysis algorithms such as PageRank [6], HITS [7], and a
new online HITS algorithm [8]. While these examples have the same asymptotic
complexity as the standard algorithms for those problems, the constant factors
imposed by public-key operations are prohibitive.

On a typical computer today there is a six order of magnitude difference
between the crypto exponentiations needed for homomorphic computation (order
of milliseconds) and regular arithmetic operations used in secret-sharing (fraction
of a nano-second). Both homomorphic arithmetic [3] and VSS (Verifiable Secret
Sharing) [9] rely on public-key operations for verification. Even fast-track VSS
[2] does not reduce the asymptotic number of crypto operations. In this paper
we present a vector addition protocol that uses a linear number of small-field
operations, and a logarithmic number of crypto operations in the size of the user
data. Thus, private computation is essentially “free” even counting constant
factors. It is orders of magnitude faster than other approaches for moderate or
large datasets. We give experimental results which show that it is extremely fast
for typical data (order of seconds for a million-element vector). We argue that
this moves private computation into the realm of the practical for many Internet
and intranet applications. The major technical contributions of our work can be
summarized as follows:

— We propose a realistic, hybrid architecture between peer-to-peer (P2P) and
the client-server model. This architecture exploits the heterogeneity of the
players and greatly simplifies multi-party computation.

— A very efficient probabilistic data validation protocol that ensures, with high
probability, a malicious user cannot exert large amount of influence on the
computation.

— A scalable probabilistic protocol for verifying the computation. This proto-
col requires only O(logm) large-field operations, and O(m) small-field oper-
ations, where m is the size of user vector.

2 P4P Basics

Our approach is called Peers for Privacy (P4P) for its unique architecture. The
protocol assumes a single computer called the server, which is operated by a
service provider. We also assume a (small) number of designated privacy peers
(PP) who participate in the computation, and support the VSS. In contrast to
previous work, privacy peers are assumed to belong to users in the community.
They are not required to be honest, and the protocol ensures that they cannot
break the privacy of the protocol without the server’s help. In practical P2P
systems such as Gnutella and Napster, a small fraction of the users in the com-
munity provide most of the storage to the others. The existence of such altruistic
users is a pervasive phenomenon in communities. For workplace privacy, the peer
would be a special employee (e.g. a union representative). For e-commerce pri-
vacy, a group of users may choose a well-respected peer. Or the service may be
provided for a fee by a third-party commercial “trust provider”. In certain cases,
it may be feasible to distribute the VSS among service providers. For example,
two hospitals may wish to mine data from hospital records shared among them.
However, we will argue later that the incentives for collusion among servers and
privacy peers are very different, and that in practice the protection offered by
this arrangement is very good compared to multi-server approaches. And eco-
nomically, the P4P approach is superior since it requires no additional resources
on the server side.

Since the privacy peer is not trusted and cannot compromise user data, there
are many options for it. While the “large institutional server” model is more fa-
miliar, the “small individual peer” model has many possibilities. In the latter
model, we assume a much smaller ratio between peer and users. e.g. while a single
server would normally service millions of users, an individual privacy peer would
support a few hundreds to perhaps tens of thousands of users. The asymmetry
between server and privacy peer is an important source of security because they
have different incentives. A service provider will benefit from accessing sensitive
data from many users, but much less so from data from a few users. A privacy
peer on the other hand, may be interested in particular data about a few in-
dividuals, but has little to gain from information from a large number, except
perhaps to sell it to the main service provider (it would be useless to anyone
else). But to be able to gain access to a significant fraction of its users’ data, a
service provider would have to corrupt many privacy peers.

A final disincentive to a server to cheat is the high risk of discovery in P4P.
Compromising privacy requires server and a peer to exchange data, and both

will be aware of the cheating. In a large P4P system, a server would cooperate
with many peers, each peer serving a fraction of the community. For a server
to get data from a significant number of the clients, it would have to conspire
with many privacy peers. Any of these peers may chose to expose the server’s
cheating.

The protocols we describe are 2-way multi-party computations, or compo-
sitions of those. While 2-way MPC might seem intuitively less secure than a
k-way MPC for larger k, such intuition is meaningless without knowledge of the
dependencies between the parties. A k-way MPC among parties with similar
incentives is not necessarily more secure than a 2-way MPC among dissimilar
parties. Service providers in the same business who would be the best candidates
for k-way MPC unfortunately share the same incentives and so their behavior is
highly dependent. In the following we describe our protocols in a 2-way setting,
carried out between a server and a privacy peer who are referred to as talliers.

2.1 Assumptions

We assume all n users have access to secure channels with the server and the pri-
vacy peer(s). Let a; be private user data for user ¢ and A be public information.
Both can be matrices of arbitrary dimensions. The most general form of compu-
tation we support can be expressed as A’ = F(>!_, d;, A), where d; = G(a;, A)
is an m-dimensional data vector for user 2 computed locally, and A’ is a successor
iterate to A. Both functions F' and G are in general non-linear. Most gradient-
based and EM algorithms can be expressed in this form. If d; are computed
locally by each user, our protocol allows calculation of the sum, and thence the
next iterate A’ without disclosing any information about d; or a;.

Let ¢ be a small integer (e.g. 32 or 64 bits). Our goal is to do limited-
range integer (or fixed-point) vector addition. To provide information-hiding via
randomization, we embed this integer range in the additive group of integers
modulo ¢. Since our 2-way VSS protocols involve addition only, there is no
requirement that this group be a field. So ¢ need not be prime, and indeed it
simplifies computation to take ¢ = 232 or 264 i.e. word-length or long integers.!
Since we need signed values, we consider the specific coset representatives of the
integers mod ¢ in the range —|¢/2],..., |¢/2] if ¢ odd, or —|¢/2], ..., |d/2]—
1 if ¢ even. We write Zy for this additive group.

Since all user vectors are hidden, it is necessary to impose checkable bounds
on the user data. Otherwise a single malicious user could corrupt the computa-
tion with values as large as the expected total and not be discovered. For this
purpose, we use a bound on the L2-norm of each user vector. This is both com-
putationally natural for many applications, and also supports a very efficient,
randomized check. The maximum L2-norm for a user vector is defined to be L,

which implies that every component of the user vector must be in the range
[—L, L].

! It is not difficult to generalize our protocols to (p, g)-threshold secret sharing which
requires multiplication and multiplicative inverses. In that case, ¢ should be a prime
so that Zg is a field.

Note that L must be substantially less than ¢. First of all, since n user
vectors are added to reach a final total mod ¢, each component value should be
less than 1/n times ¢/2. Secondly, L should be much smaller than ¢ to ensure
low probability of modular arithmetic anomalies (this is made precise in theorem
1). Security and privacy goals follow those introduced in [3]. Namely:

1. No participants, except user ¢ herself, should gain any information about d;,
except that:

2. User data is almost surely valid, meaning that, with high probability, |d;|s <
L where |d;|2 denote the L2-norm of the vector d; and L is the predefined
bound. Without this step, users could submit values up to [¢/2] and com-
pletely corrupt the computation.

3. The computation should produce the correct sum if the server and privacy
peer are honest.

ADVERSARY MODELS We consider two adversary models. In both mod-
els, an adversary may actively corrupt any number of users, causing them to
deviate arbitrarily from the specified protocol. The titles of the models refer to
adversary’s effect on the tallier.

Passive Adversary In this model, the adversary corrupts any number of users,
and passively corrupts one tallier. That is, the adversary can read data from the
tallier’s memory, but the tallier continues to follow the protocol.

Active Adversary In this model, the adversary actively corrupts users and one
tallier. This tallier may behave arbitrarily.

The first model is similar to the adversary model in [10]. We avoid the im-
possibility results of [10] by considering addition only computation.

These models are intended to model realistic scenarios for malfeasance by
the talliers. The passive adversary models privacy risks due to access to data
files from the server or privacy peer. The active adversary models corruption of
the server or privacy peer software.

3 Related Work

Secure multiparty computation (MPC) problem dates back to Yao [11] and Gol-
dreich et al. [12]. Important works include [13-16] etc. They provide general
solutions for computing any n-ary function among n players while protecting
each player’s private data. Although theoretically powerful, these protocols are
not practical for large scale systems, even for addition only computation. They
make heavy use of public-key cryptosystems or one-way functions, applying ver-
ifications or ZKPs at most steps, and usually operate at bit-level (rather than
on arithmetic values).

In [3], Canny presented a privacy preserving protocol for collaborative filter-
ing based on SVD that is actually feasible to be implemented in a system with

moderate scale. It includes an efficient zero-knowledge proof of user data validity
that restricts the amount of influence a malicious user can exert on the compu-
tation. The techniques (for both data validation and computation), based on
threshold homomorphic encryptions, are applicable to any computation based
on vector addition and have been used in several other applications including
the IR algorithm in [4] and the link analysis algorithm in [8].

Besides homomorphic threshold encryption, VSS is also a widely used primi-
tive in private arithmetic computation (e.g. [2]). VSS makes use of information-
theoretic protection using secret-sharing, and works for fields of any size. In
particular it works for fields of “normal” size (32 or 64 bits). Homomorphic
computation relies on cryptographic protection, and needs large fields of 1024
bits or more.

Privacy-preserving data mining is one of the major target applications of our
protocol. Existing solutions use either randomization (e.g. [17,18]) or crypto-
graphic techniques (e.g. [19-22]) to protect privacy. Besides sacrificing accuracy,
randomization has been shown to provide very little privacy protection in many
cases [23]. Our approach is in the 2nd category and provides cryptographically
strong privacy. We introduce an efficient VSS computation paradigm that is
based on realistic trust assumptions and allows for efficient user data validation
which is generally lacking from all these works. Our protocol can thus be used
as a building block for many practical data mining tasks.

4 Practical Vector Addition-Based VSS

We consider first a passive adversary which may read one tallier’s data, but for
which both talliers follow the protocol.

4.1 Passive Adversary

Let Ty denote the server and T5 one of the privacy peers. Assume Q = {1,...,n}
is the initial set of qualified users. The basic computation is carried out as follows:

1. User i generates a uniformly random vector u; € Zy' and computes v; =
d; — u; mod ¢. She sends u; to T1 and v; to 1.

2. User i gives a ZK proof to both talliers that her input is valid using the
protocol that will be described in Section 4.2. If she fails to do so, both
talliers exclude her from Q.

3. If enough (e.g. more than 80% of all users) inputs are collected and pass
the validation test, 77 computes pu = EZEQ u; mod ¢ and T computes
V= ZieQ v; mod ¢. Ty sends v to Ty, and T sends p to Ts.

4. Ty publishes A’ = F(u+ v mod ¢, A) and updates A.

It is straightforward to see that if both talliers follow the protocol, then the final
result (u + v) is indeed the sum of the user data vectors d mod ¢. This result

will be correct if every user’s vector lies in the specified bounds for L2-norm,
which implies that the sum over the integers is the same as the sum mod ¢.
Appropriate constraints on L will be given in the statement of theorem 1.

In terms of protecting privacy, a simple simulation could generate random
user vectors u; and v; which are indistinguishable from the actual data that the
talliers receive. The final sum is public information, so each tallier gains no other
information, except what they may learn from the verification protocol.

4.2 User Verification Protocol for Passive Adversaries

The verification protocol requires some standard primitives for homomorphic
computation. These have appeared elsewhere, see e.g. [1], [3] and we summarize
only their key properties here. All values used in these primitives lie in the
multiplicative group Zj, or in the additive group of exponents for this group,

where ¢ is a 1024 or 2048-bit number. They rely on El-Gamal, RSA or discrete
log functions for cryptographic protection of information.

Homomorphic commitment Given an integer value a, a homomorphic com-
mitment to a with randomness r is written C(a,r). It is homomorphic in
the sense that C(a,r)C(b,s) = C(a+ b, + s). It is cryptographically hard to
determine a given C(a,r). We say that a prover “opens” the commitment if
they reveal a and r.

ZKP of knowledge A prover who knows a and r (i.e. who knows how to open
A = C(a,r)) can demonstrate that it has this knowledge to a verifier who
knows only the commitment 4. The proof reveals nothing about a or r.

ZKP for equivalence Let A = C(a,r)and B = C(a, s) be two commitments to
the same value a. A prover who knows how to open A and B can demonstrate
to a verifier in zero knowledge that they commit to the same value.

ZKP for product Let A, B and C be commitments to a, b, ¢ respectively,
where ¢ = ab. A prover who knows how to open A, B, C can prove in zero
knowledge to a verifier who has only the commitments, that the relationship
¢ = ab holds among the values they commit to.

Bit commitment Let A = C(a,r) be a commitment to a value a where a €
{0, 1}, which is called a bit commitment. A prover who knows how to open
A can prove in zero knowledge that it commits to either 0 or 1 (but not
which).

ZKP for boundedness Let A = C(a,r) be a commitment to a value a. Using
the above methods, a prover can show that A contains a k-bit integer, i.e.
that it encodes the same value as By_1 - - - By, where each B; encodes 0 or 27,
If the leading “bit” By_; instead encodes 0 or L—2¥~141 where k = |log, L |,
then the ZKP proves that a € [0,. .., L] for any k-bit positive L. Adding an
additional bit which encodes 0 or —L gives a proof of boundedness in the
range [—L,...,L].

The Protocol

Let L be the desired bound on the L2-norm of all user vectors. Let N be an pos-
itive integer which determines the number of challenges, and sets the statistical
precision of the verification. The protocol is carried out between each user and
the two talliers. The execution will be identical for each user so we drop the user
index in the notation.

1. After the user sends her data to all talliers, T} and T5 chose random values rq
and r9 respectively and exchange commitments to them. Then they exchange
71 and 7o, verify the commitments, and compute r = r; 4+ 79 as the random
seed for the challenge vectors cg, for £ = 1,..., N. Each m-dimensional
challenge vector is generated by hashing r, giving ¢, € {—1,0,1}™, with IID
probabilities {1, 1, 1}. The server sends the ¢ to all users.?

2. Each user computes z = cx-u mod ¢, yr = cx-v mod ¢, and s = c-(utv)
mod ¢ for k =1,...,N. Let s = xy + yx + by over the integers, then by is
either zero or £¢. The user computes commitments Xy to xg, Vi to yg, Sk
to sk, By to by and finally a commitment Zj to the squared sum z; = si
(computed over the large field Z,;). These commitments are computed for
every k =1,..., N. The user sends all 5N commitments to 77 and 7T5.

3. Ty and T» exchange these values to confirm they received identical data from
the user. If they do not match, the user’s data is rejected.

4. The user opens X for Ty, and Y, for 15, for k = 1,..., N. Both talliers
confirm that the openings match their data, i.e. 77 confirms that X} is a
commitment to xx and T confirms that) is a commitment to yi. The
talliers communicate the results to each other. If either opening fails or if
the user failed to send a complete response to the challenge vector, this user’s
input is rejected.

5. For each k, the user proves in zero knowledge (to the server) that Sy encodes
the same value as X Vi By. The user then proves in zero knowledge that By
encodes 0 or +¢. Finally the user gives a product ZKP to the server that Zj
encodes the square of the value that Si encodes. If any of these proofs fail,
the user’s input is rejected.

6. The server computes the product Z = Hfj:l Z.. The user then provides a
ZKP that Z encodes a value in the range [0, N L?/2]. If this proof succeeds,
the user’s input is accepted and added to the total.

Field Sizes

The protocol assumes that the size of the cryptographic field Z, used for commit-
ments and ZKPs is much larger than the “small” field Z, used for secret-sharing.
A transition happens when z; is computed from s;. The value of s lies in the
small field, while z; = si is computed in the large field. The sum z = Z?zl 2k

2 If the hash function used to compute ¢ from 7 is public information, r can be sent
directly to users to avoid the communication cost of sending the vectors cy,

should be less than ¢ to avoid modular reduction of z in the large field. This will
almost surely be true. Since ¢ is typically 64 bits or less, z; will have at most
128 bits, while z will be at most 128 + log, n which is much less than 1024.

Theorem 1. Let|d|s denote the L2-norm of user vector d, and L be the specified
bound on this norm. Define § = L?/|d|3. Then if |d|o < L, and further § > 2,
the probability that a user vector is (incorrectly) rejected is at most:

Priz> NI2/2 < (exp(1—)"
If instead |d|a > L, the probability that a user vector is (incorrectly) accepted is
at most:

Prlz < NL?/2] < ((% - 25—45 + %52) exp (%5 — %(52))]\[

Furthermore, these bounds are valid using modular arithmetic as per the above
protocol if L satisfies: L < ¢/ max(56.5v/m,2n), where n is the number of users
and m is the vector dimension.

The first (false rejection) bound is quite steep. A drop-off of 27V is achieved
for § ~ 5.3566. If 6 = 4 (user vector norm is one half of L), then the roll-off is
0.736"V. The second (false acceptance) bound is considerably shallower. In the

limit as § — 0, the bound is %N. For 6 = 0.25 (user vector norm is twice L), the
bound is 0.9265", while for § = 0.5, it is 0.9672%.

4.3 Active Adversary

To deal with some corrupted talliers we must increase the number of talliers
and rely on consensus. Typically this is done with threshold secret sharing.
General threshold secret sharing would require byzantine agreement between
talliers, and a more complex verification protocol. This can in fact be done in the
framework we have described with similar efficiency: By checking computation
on projections of the user data shares using the challenges vectors rather than
the original vectors themselves. But it would lead to a quite complicated protocol
which would be challenging to implement.

However, there is a simpler approach which is much more practical to im-
plement, and which matches better with realistic threat models. We make the
following assumptions:

1. The privacy peer is much more likely to be corrupted than the server. Since
it is a user-owned machine, it runs a high risk of virus corruption or even
corruption by its owner.

2. The server rarely has incentives to distort the tallying, since they typically
benefit from the most accurate tallys. Users on the other hand, may wish to
bias tallys for a variety of reasons (reducing apparent popularity of products
they want to buy to drive prices down, boosting popularity of items in which
they or their friends have a vested interest...)

10

3. A large P4P system will typically involve one server and many privacy peers.
e.g. the server may serve a million users, with each privacy peer serving
between a hundred and ten thousand users.

4. Corruption of several privacy peers is more likely than corruption of the
server and a privacy peer. From our earlier arguments, the incentives for
corruption of privacy peers are very different from those for the server, but
the incentives for corruption of two privacy peers are very similar(internal
corruption). On the other hand, privacy peers are a much easier target for
external corruption than a professionally-managed server.

For this reason, we propose a specialized threshold sharing scheme among
the server and an odd number of privacy peers. If there are 2k — 1 peers, then
the scheme is a (2k, 4k — 2)-threshold secret sharing scheme where the server has
2k — 1 votes. With a threshold of 2k, no user data is exposed unless the server
is corrupted and at least one of the privacy peers. With that same threshold, no
user data is exposed even if all the privacy peers are corrupted.

To achieve this threshold, we simply run the two-way, passive adversary pro-
tocol pairwise with the server as one tallyer and each of the privacy peers as the
other. The same challenges ¢ should be used in all cases.

Consistency checking is then automatic: At steps 3 and 4 in the user verifi-
cation protocol, Z; which is the commitment to the value s, will be the same
among all pairs of talliers. The user should therefore send a single Zj to the
server, and it should satisfy the ZKP in step 5 among all pairs of talliers.

Then we replace each decision by the privacy peer in the passive adversay
protocol with the consensus of the privacy peers. Since the ZKP in step 5 demon-
strates consistency of user shares, all honest talliers will reach the same decision.
If there is an honest majority, the protocol will accept only legal user inputs
(with high probability) and produce a correct tally.

4.4 Simulations of Typical Behavior

The system’s threshold L for accepting user input is public information. The
bounds we derived earlier show that any user vector whose L2-norm is substan-
tially below this value will almost surely be accepted, while any vector that is
substantially above will surely be rejected. In terms of actual behavior however,
the tail bounds we derived may not be very tight. Here we present some sim-
ulations for typical user data to show what behavior would be expected. btw,
simulation could potentially be useful to honest or dishonest users: in either
case, a user with an actual input vector d; can determine through simulation
the probability of that value being accepted by the server. We choose 3 specific
cases:

1. Random uniform values: every component d[j] of the user vector is drawn
from the same uniform distribution.

2. Zipf distribution: component d[j] has value proportional to 1/j.

11

3. Single element: only one value in in the user vector is non-zero.

In all cases, user vectors are normalized so their L2-norm is fixed at some value
Vi. We will vary this value relative to the threshold L and determine the prob-
ability of acceptance.

The first two cases are representative of likely user data, e.g. case 1 could
represent ratings for movies while case 2 could represent word counts in email
or text messages. The third case is representative of a user who wants to bias
the total by using a maximum value for one item.

A second reason for these choices is that cases 1 and 3 represent probable
extremes of distributions of user vectors. All sums s, are sums of 3-valued s[j].
The more terms in this sum and the more similar those terms, the closer will
be the final distribution to a gaussian. The s; produced by case 1 are almost
perfectly gaussian. The s for Zipf distributed data are mixtures of terms with
very different weights, and are “less” gaussian. Finally, the s for single-element
vectors retain a 3-valued distribution and are very far from gaussian. Any dis-
tribution the user can produce will be a sum of such sk [j], and will probably lie
between the extremes of cases 1 and 3.

0.9r
0.8
0.7¢
0.6
0.5r
0.4
0.3f
0.21

0.1p

1.4 16 0.6 0.8 1 12 1.4 16 18 2

Fig. 1. (a) Linear and (b) log plots of probability of user input acceptance as a function
of V4/L for N = 50. (b) also includes probability of rejection. In each case, the steepest
(jagged curve) is the single-value vector (case 3), the middle curve is Zipf vector (case
2) and the shallow curve is uniform vector (case 1)

The simulations used N = 50, m = 100, and were repeated 10° times. Figure
(1) shows probabilities of acceptance or rejection for the 3 cases as a function of
the ratio Vy/L. Increasing N by a factor « should cause the log plots to scale by
« in their y-values. When N = 50, the upper tail bound from theorem 1 has an
asymptotic slope of 25 in log(Pr) vs. log(d) plots. The lower tail bound slope is

significantly shallower because of “saturation” of the probability to %Nas 0 —0.
The x-axes in figure 1 involve |d|/L which is 1/v/5. The expected slopes from

12

the tail bounds would be 12.5 for the rejection probability curve, and less for the
acceptance curve. The actual slope observed for rejection is about 50, while it is
around 35 for acceptance. So the typical threshold behavior for the probabilistic
L2-bound is much sharper than the asymptotic bounds from theorem 1.

4.5 Implementation and Evaluation

The protocols described in this paper are being actively developed and will
be made available as a toolkit to the public shortly.? In the meantime we
have implemented some key components of our protocols and performed some
experiments to evaluate their feasibility. The protocols were implemented in
Java, using a NativeBiglnteger implementation from the I2P anonymous net-
work (http://www.i2p.net/). We implemented all the components for the pas-
sive adversary model, including the ZKPs. We measured their performance on a
2.8GHz Xeon.

All tests were carried out with security parameter 1024 using El-Gamal com-
mitments and ZKPs [1] (i.e. ¢ is a 1024-bit number for the large field Z,). The
number of challenges N was 50, and L was either a 40-, 20- or 10-bit number.
The basic bit commitment ZKP takes 33.7 ms for the verifier and 57.3 ms for the
prover. Figure 2 plots prover (user client) and verifier (server or privacy peer)
times for user data validation as a function of the vector size m. Prover and
verifier times were dominated by cryptographic operations in these experiments,
even at m = 105. Other steps, such as random vector generation, or computa-
tion of all the products ci - d by the prover, took a fraction of a second. We
believe our tool will be extremely valuable for developers building real-world
privacy-preserving applications.

5 Future Work

This paper shows that private vector addition with verification can be done at
extremely low cost. It proposed a new model for secret-sharing called Peers-for-
Privacy that should be practical in many settings. It opens the door to a variety
of applications built on the vector addition primitive. In the near future, we
plan to build some “middle tier” components to support those applications and
add them to the toolkit. We will expand the toolkit to include not only vector
addition primitives, but some common statistical aggregates such as ANOVA,
SVD, correlation, and sparse factor analysis.

References

1. Cramer, R., Damgard, I.: Zero-knowledge proof for finite field arithmetic, or: Can
zero-knowledge be for free? In: CRYPTO ’98. Volume 1642 of Lecture Notes in
Computer Science., Springer-Verlag (1998)

3 For further information and download, please visit
http://www.cs.berkeley.edu/~duan/research/p4p.html.

13

4.4

3.8f

3.6f

4.2¢ 1 757 q

3.4} | ssf]
3.2’J 5%//
3p 1 ast 1
2.8} 1 4’—//
2.6J 35k 1

24
10

10°* 10° 10° 10 10 10 10

Fig. 2. (a) Verifier and (b) prover times in seconds for the validation protocol with
N = 50, where (from top to bottom) L has 40, 20, or 10 bits. The x-axis is the vector
length m.

10.

11.

Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In: PODC ’98: Pro-
ceedings of the seventeenth annual ACM symposium on Principles of distributed
computing, ACM Press (1998) 101-111

Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security
and Privacy, Oakland, CA (2002) 45-57

Canny, J.: Collaborative filtering with privacy via factor analysis. In: Proceedings
of the 25th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Tampere, Finland, ACM Press (2002) 238-245
Canny, J.: Gap: a factor model for discrete data. In: SIGIR ’'04: Proceedings of the
27th annual international conference on Research and development in information
retrieval, ACM Press (2004) 122-129

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5) (1999) 604-632

Duan, Y., Wang, J., Kam, M., Canny, J.: A secure online algorithm for link
analysis on weighted graph. In: Proceedings of the Workshop on Link Analysis,
Counterterrorism and Security at the SIAM Data Mining Conference, 2005. (2005)
71-81

Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: Proceedings of IEEE Founda-
tions of Computer Science. (1985) 383-395

Fitzi, M., Hirt, M., Maurer, U.: General adversaries in unconditional multi-party
computation. In: Advances in Cryptology - ASTACRYPT 99. Volume 1716 of
Lecture Notes in Computer Science., Springer-Verlag (1999) 232-246

Yao, A.C.C.: Protocols for secure computations. In: FOCS ’82, IEEE (1982) 160—
164

14

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a
completeness theorem for protocols with honest majority. In: Proceedings of the
19th ACM Symposium on the Theory of Computing (STOC). (1987) 218-229

13. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, STOC’83, ACM (1988) 1-10

14. Goldreich, O.: Secure multi-party computation. Working Draft (2000)

15. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In:
Proceedings of Advances in Cryptology — CRYPTO ’89. Volume 435 of Lecture
Notes in Computer Science., Springer-Verlag (1989) 589

16. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: Advances in Cryptology — CRYPTO ’90. Volume 537 of
Lecture Notes in Computer Science., Springer-Verlag (1991) 77-93

17. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy
preserving data mining. In: PODS ’03: Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, New
York, NY, USA, ACM Press (2003) 211-222

18. Du, W., Zhan, Z.: Using randomized response techniques for privacy-preserving
data mining. In: KDD ’03, New York, NY, USA, ACM Press (2003) 505-510

19. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of cryptology
15(3) (2002) 177-206

20. Du, W., Han, Y., Chen, S.: Privacy-preserving multivariate statistical analysis:
Linear regression and classification. In: SIAM International Conference on Data
Mining. (2004) 222233

21. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically par-
titioned data. In: KDD ’03, New York, NY, USA, ACM Press (2003) 206215

22. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer
data without loss of accuracy. In: SDM 2005. (2005)

23. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: ICDM ’03, Washington,
DC, USA, IEEE Computer Society (2003) 99

24. Motwani, R., Raghavan., P.: Randomized Algorithms. Cambridge University Press
(1995)

A Proof of Theorem 1

We first present proofs for the tail bounds assuming the total s; on each round
exactly represents the weighted sum of user vectors s = Z;n:l ¢k - d. Because
the sums are actually computed mod ¢, s; may differ by a multiple of ¢ from
the total over the integers. We deal with modular arithmetic effects later in this
section.

Statement Let zj, = s, and z = Z,ivzl zi. Let V = Elz] for k=1,...,N and
§ = (L/|d]2)* = L?/(2V). Then the probability that a user input fails the test
is probability that Pr[z > NL?/2] = Pr[z > NV], and we claim that

Priz>0NV] < ($exp(l — g))N where § > 2

Conversely, with the same definitions and if § < 1, the user will pass the test if
Prlz < NL?/2] = Pr[z < 6NV], which has a bound

15

Priz<dNV] < ((2 - &6+ £26%)exp (16 — %(52))N where 0 < < 1

Proof

Since si is a sum of independent random variables, the pdf of s; typically has
gaussian-decay tails, but the squares zp = si in general are not gaussian and
have simple exponential tails. We can still prove Chernoff-style bounds for the
tails of z that show exponential decrease in the number of trials, but the bounds
have only simple-exponential decrease away from the mean. In all cases, we use
bounds of the moments of z; which are derived later in Lemma 1.

Upper Tail
First, for the upper tail let 6 > 1, and since E[z] = NV, we evaluate

Pr(z > dNV] = Prlexp(tz) > exp(tdNV)]

and applying a Markov bound we obtain

Elexp(tz)]
P ONV| < ————=& 1
rlz > I= exp(ONV) ()
and since the z; are independent for £ = 1,..., N, we can factor the expected

value as the product of Elexp(tzy)]. Since we have all the moments of zj, we can
compute this value as a power series:

Elexp(tz1)] }:tza <Y @vyyiiy/ @) = (tv/2) (?)
i=0 1=0

and since (2;) < 4%, this series will converge so long as 2tV < 1. The series is
then geometric, and has a bound of:

Elexp(tzi)] <

- 1-2tV
and substituting into (1) gives
Pr[z > 0NV] < ! 2)
e = (1= 2tV)N exp(tdNV)

and this bound is optimized by maximizing (1 — 2¢tV') exp(¢t6V'). Taking deriva-
tives and solving gives t = 1/(2V) — 1/(Vd). The bound is valid so long as
0 <t < 1/(2V), which is true if § > 2. Substituting, we obtain:

Priz > 6NV] < ($exp(l — %))N where § > 2 (3)

Lower Tail

16

Now let 6 > 0, E[z] = NV, we evaluate
Pr[z < §NV] = Prlexp(—tz) > exp(—tdNV)]
for ¢t > 0, and applying a Markov bound we obtain

Elexp(—tz)]

Priz < 0NV] < xp(— 13NV} (4)

the expected value factors as before into terms Elexp(—tzx)]. The expansion is
an alternating sum which is difficult to bound, so instead we truncate it using
the inequality exp(—y) < 1 —y + %2/2 which holds for all y > 0. This gives the
bound:

Elexp(—tzy)] < E[1 — tzg +1222/2] = 1 — tV + L E[22] < 1 — tV + 32V2 (5)

where the last step used the moment bounds from Lemma 1. Substituting into
(4) gives
Priz < SNV] < (1 =tV + 322V?) exp(tV5)) " (6)

Minimizing the RHS involves solving a quadratic equation which is a function
of §. The solution can be approximated as t ~ (1/2 —5/12§)/V. We can use this
value as a bound in any case, giving:

Pr(z < 6NV] < ((% — 25—45 + %52) exp(%é — i52))

Dealing with Modular Arithmetic
In order for the secret shares not to leak information about user data, modular
arithmetic is used. We use the notation z[i] for the i*" component of the vector
z. We denote by 5, = >0, cx[j]d[j] the sum over the integers, and by sy, this
sum reduced mod ¢, which is what the protocol actually computes. Then we
have

Sk = S + wo

for some integer w. The modular arithmetic provides additional ways for the
user to cheat. e.g. the user might set some components of her vector to ¢/2. If
an even number of those are included in the checksum, they will be removed
by the modular arithmetic, leading to a small s;. However, we show now that
any such “large” components will cause the protocol to fail almost surely. We
consider the following two cases:

1. All components d[i] of the user’s vector are in the range [—4L,4L)]
2. Some component d[i] has magnitude larger than 4L.
Note that case 1 includes both legal and illegal inputs, since the largest legal

magnitude for any component is L. Case 2 vectors have overall magnitude greater
than L and are strictly illegal.

17

Case 1: If all components of the user vector are in the range [—4L, 4L], then the
maximum variance of this vector is V' = 32mL2. The reduced s; will be equal
to 5y as long as 5 is in the range Zy, i.e. as long as |5;| < ¢/2. By setting ¢ to
the ratio of squared limit over variance § > ¢?/(32mL?), and N = 1 we can use
the upper tail bounds computed earlier to bound a single sj.

Pr(s,] > ¢/2] = Prlzi, > 6V] < (Sexp(1 — 9))

A typical safe value would be § = 100, giving a failure probability of 2.6 x 1029,
The bound L must satisfy L < ¢/v/326m, which for § = 100 becomes L <
¢/ (56.5y/m). This constraint would normally be satisfied in any practical system,
because L must be small enough to allow 5 totals to be computed without
wrapping mod ¢. That is if there are n users, the bound L should be such that
nL < ¢/2, because a legal user input may have a value of L in one element only.
Satifying both constraints gives us the result: L < min(¢/(56.5v/m), ®/(2n)) or
L < ¢/ max(56.51/m, 2n)

Case 2: Some |d[i]| > 4L. Fix this ¢, and let 5_; denote the sum »_ ¢[j]d[j] of all
terms j # ¢ over the integers. Now either 5_; is in some range [—2L, 2L]+ k¢ or it
isnt (we say it is “legal” it is is in such a range). The final total § = c[i|d[i] + 5_;
differs from 5_; by either 0 or d[¢] where 4L < |d[i]| < ¢/2. If 5_; is legal, then
5_;+d[i] must be illegal, which has probability 1/2. If 5_; is illegal to begin with,
then at most both the offsets +d[i] will be legal, which again has probability 1/2.
If p is the probability that s_; is legal at first, the probability that § is legal is
at most 2p+ (1 —p) = 1.

Now let ¢ < N be the number of challenges for which 5; is illegal, i.e. the
number of k for which §; > 2L. For each of these 2z, > 4L? and the total z
will be at least 4gL?. The overall user data verification will (incorrectly) succeed
if z < NL?/2, which can only happen if ¢ < N/8. The probability that this
happens is the tail of a Bernoulli distribution over uniform trials with probability
> % Using standard formulae [24], this probability is bounded by:

Pr[z < NL?*/2] < 0.8173"

This probability is strictly less than the lower tail bound derived above which is
never better than %N = 0.875". So the latter bound dominates, and we do not
separately quote the probability for modular wrap-around error.

A.1 Lemmal

For independent random variables c[j] in {—1,0,1} with probabilities {1, 3, 1}
respectively, and let s = Z;"Zl c[j]d[j], and z = s%. Then all positive moments
of z satisfy:

—

2q)!

q
Bl <

Vi=(1-3-5---(2¢—1))V? < (¢V)*

where V = E[z] = E[s?] as before.

18

Proof
We rewrite the sum for each moment as: E[z7] = E[s*] = E[(3>.1", s[i])?] and
fully expanding the last term gives:

CEED YD

2¢ 1<ii,...ir<2q
(N
r=1 i14-+i,=2q

')E[S[jll“ - s[ge]"r] (8)

11,225+, 0p

where 1 < j; < jo < --- < j» < m. Next we notice that each s[j] is symmetric:
Pr[s[j] = v] = Pr[s[j] = —v]. So every term containing an odd power of some
s[j] has expected value zero. wlog we can assume that every index iy, ...,%, in
the expression above is even.

The expected values in the last formula can be computed directly since the
s; are independent:

Els[ji]* - -+ s[5n]*7] = %d{m% -l

Rewriting (8) using this expansion, and using only even powers gives:

2q 1<ii,...,ir<q
> > 2q oy o .
E[29] = o(=")gl+.12i1 ... 4 T21T,
(2] <L <2i172i2,-..,2ir> (1] [jr] (9)
r=1 1ut-tir=

In order to simplify this last expression, we consider the expansion of (2V)4
which is:

1<iy,...,ir<q

(d[1]? +- -+ d[m]*)? = Z Z (ihiz,q...,ir)d[jl]zil - d[j,] (10)

r=1 ijtetin=q

which contains exactly the same products of d[j]’s. We take the ratio of the
coefficients of d[j1]%* - - - d[j,]?*" in (9) and (10), giving

_ 2q q
R=27T" 11
(2i1,...,2ir>/<i1,...,ir) (11)

We expand this first as

(2(])' 7,1' N Zl' 9-r

¢ (i) (2i)!

and notice that (2%')‘ < 27% /(i;)!. Making these substitutions gives
Bl

2) 1 1, 1
) 27 = (g)°

R<(

- gl 204y! 2irg,| il -4 127

and finally it is easy to show that i1!---4,.!12" > 29, This can be done inductively
by starting with r = ¢, and all i; = 1, and “walking” to any desired partition
i1 + -+ + i, of g, each step merging some ¢; which is = 1 with another. The

19

number of groups r decreases by 1 at each step which reduces 2" by 2, but
some 17; is incremented at the same time, and so ;! is multiplied by at least 2.
Substituting for these expressions in the denominator of R in the last equation
gives:
2q)!
r< 20—
=

Now if we multiply equation (10) by this value, we guarantee that every term in
its expansion is at least as great as the coefficient in equation (9). Or in other

words,

(29)!
q'29

E[] < V= (1-3-5---(2g=1))V? < (¢V)* QED (12)

