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Abstract

Automated Mapping of Domain Specific Languages to Application Specific

Multiprocessors

by

William Lester Plishker

Doctor of Philosophy in Engineering – Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Kurt Keutzer, Chair

Application specific multiprocessors are capable of high performance implementa-

tions while remaining flexible enough to support a range of applications. Architects

of these systems achieve high performance through domain specific optimizations

such as multiple processing elements, dedicated logic, and specialized memory and

interconnection. However, these features are often introduced at the expense of pro-

gramming productivity. For application-specific programmable systems to succeed,

it is necessary to deliver high performance implementations quickly. Three of the

most important and time-consuming steps to arriving at implementations on these

platforms are (1) to extract parallelism from applications descriptions, (2) to arrive

at a model of the architecture, and (3) to map the parallelized application to the

architectural model. We examine this problem for the networking domain and tar-

get a commercial family of network processors: Intel’s IXP series. We propose and

demonstrate a solution that starts with a domain specific language, which allows

the extraction of parallelism without designer intervention. We show that high level

application information enables optimizations and automated transformations to a

task graph. A task graph is a model of an application that exposes its computation,

data, and communication. The elements of the task graph can be mapped to pro-

cessing elements, memory, and interconnect of the target architecture. We formulate
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the mapping problem as an integer linear programming (ILP) problem. We demon-

strate that this method finds efficient solutions with fast run times on the data plane

of network applications of different scales and complexity including IP forwarding,

differentiated services, network address translation, and web switching. Using this

design flow designers enjoy design times up to 3.5 times shorter than other new pro-

ductive approaches. The resulting implementations are within 17% of hand mapped

approaches. While the demonstration vehicle for this work has been network process-

ing, we believe it will have wider applicability to other application domains that are

starting to employ more single chip multiprocessing.

Professor Kurt Keutzer
Dissertation Committee Chair
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Chapter 1

Introduction

Application specific multiprocessors (ASMPs) represent an enormous potential

boon to electronic system designers. As applications become more complex and more

computationally intensive, ASMPs are capable of providing high-performance imple-

mentations through domain specific architectural optimizations, while retaining flex-

ibility through programmability. However the difficulty of programming these devices

has greatly inhibited their adoption. Long design times and rigid implementations

of programs have eliminated many of the benefits of these architectures. The key to

unlocking the potential of these architectures is a fast, robust tool flow that can take a

natural application description, automate difficult design decisions, and quickly pro-

duce an efficient implementation. The goal of this dissertation is to present a frame-

work which satisfies each of the objectives for a representative application area using

a popular application description language mapped onto commercial ASMPs.



2

1.1 Emerging Trends

The growing proliferation of applications on embedded devices continues to change

how the world works. This explosion of platforms increases what is possible in many

application domains. In networking routers and edge devices are securing and accel-

erating our networks using intrusion detection, denial of service attacks defense, and

packet content based routing. In media new video codecs enable full motion play-

back on handheld devices like cell phones. In the automotive industry drive-by-wire

technologies are creating more robust and responsive car subsystems. In medicine

segmentation and three dimensional rendering allow doctors to more quickly and

accurately diagnose patients.

Electronic system designers have facilitated this explosion by creating the products

that implement these applications. Among their many design decisions, they must

set the platform on which each of the product’s features will be implemented. Elec-

tronic system designers have a variety of options for this including application specific

integrated circuits, general purpose processors, field programmable gate arrays, and

application specific standard parts, allowing them to trade-off efficiency, implementa-

tion time, non-recurring engineering (NRE) cost, and per part cost. The technology

summary and market suitability of each of these options is shown pictorially in Figure

1.1.

Of all the solutions available to an electronic system designer, those based on

application specific integrated circuits (ASICs) achieve the highest performance. An
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Figure 1.1: Market and technology summary of solutions available to system designers
Source: Allan Armstrong from Ryan Hankin Kent (RHK), 2004

ASIC is a custom designed silicon chip specifically created for a single application.

The design flow starts with a hardware description language (HDL). Designers ex-

plicitly define how concurrently executing computational blocks connect and relate

temporally to each other. To arrive at an implementation, automated tools perform

extensive optimizations to improve performance, power, cost, and yield. The result

is an implementation that for any given process generation, is the fastest, smallest,

lowest power solution. However, this result comes at a long design time with an in-

creasingly high NRE, which is up to $25 million for 90nm ASIC [6]. These design costs

are due largely to the increasing cost of development, verification, and masks. While

ASICs offer an attractive solution to designers, their NRE costs make them suitable

for only the highest volume markets. Further, because ASICs are hardware solutions,

they are inflexible to changes in the applications they implement. Any flux in the

application’s behavior will cause a new long design iteration including re-verification

and the purchase of new masks. Consequently, ASICs are increasingly used for only
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high-volume applications.

Field programmable gate arrays (FPGAs) are another general purpose solution

for electronic system designers. With programmable lookup tables for boolean func-

tions and configurable interconnections, programmers can create arbitrary combina-

tional and sequential logic out of this fabric. Like ASICs, the typical design flow for

FPGAs starts with a hardware description language, again used to define computa-

tional blocks and their interconnection. This description facilitates utilization of the

inherently parallel blocks of the fabric. Automated tools perform the typical steps

of hardware design, but specialized for targeting fabric instead of raw silicon. Since

FPGAs are a general purpose off-the-shelf technology, designers can implement their

target application quickly compared to traditional hardware flows. Their field pro-

grammability is also an asset to nascent applications that may need to change after

they are deployed. This fast time-to-market and flexibility comes at a cost. FPGA’s

underlying technology puts them at a severe performance disadvantage to application

specific solutions. Compared to ASICs they require 40 times the area, 10 times the

power, and are 3 times slower than ASICs [42]. Furthermore, while they are an off-

the-shelf solution, their per part costs are generally the highest of the options, making

them suitable for lower volume markets, where NRE costs are not easily overcome.

General purpose processors (GPPs) are another solution not specifically tuned

to an application domain. They provide the easiest path to a low performance im-

plementation of an application. GPPs for embedded applications like ARM, Intel’s
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Pentium M, IBM’s PowerPC are tuned for general purpose computation and each has

robust tool flows and support for multiple operating systems. These devices typically

have large and diverse communities of users ensuring that tools used to arrive at

implementation will be robust for a variety of applications. Regardless of the appli-

cation’s original description language (provided the language has functional support

to execute it), minimal effort is required by the designer to arrive at a functional im-

plementation. Electronic system designers enjoy the benefits of a software solution,

flexibility, fast design times, and low NRE cost, but these come at a heavy price of low

performance, poor power efficiency, and potentially high per post cost. As a result,

designers use this solution only for computationally light or control dominated tasks.

With more design effort, designers can significantly improve performance (be it clock

frequency or power) and lower per part cost.

Application Specific Standard Parts (ASSPs) are off-the-shelf chips that are tai-

lored to a set of applications. ASSPs are capable of achieving higher performance

by incorporating domain specific architectural features such as special purpose hard-

ware, multiple multithreaded processing elements, distributed heterogeneous mem-

ories, and special purpose peripherals. ASSPs have different degrees of flexibility,

ranging from simple parameterization to being completely programmable capable of

running arbitrary programs. For example, NEC’s D/A Converter for Audio System

[55] is a parameterizable ASSP. Designers can configure the device in a few ways in-

cluding its system clock and the data format of its serial input. This flexibility makes
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this ASSP suitable for multimedia terminals, MPEG audio equipment, video CDs,

game machines, and electronic musical instruments. By contrast a network processor,

like Intel’s IXP2800 [35], has fully programmable processing elements which have an

instruction set and a memory architecture tailored for packet processing. These pro-

cessing elements can be programmed for any desired feature, giving the programmer

of the device complete flexibility. Because of their high performance, low NRE costs,

and relatively low per part costs, ASSPs have been making gains in the market place.

Figure 1.2 displays the ASSP trend. ASSP have yet to approach their full market

potential. Impeding adoption and reducing their utility to designers is the fact that

completely programmable ASSPs are difficult to program. The reasons for this is

discussed in depth in Section 1.2.1, but the implication is that while these devices

are capable of implementing high performance, complex applications, they are not

currently used for it. While the market for ASSPs is large and growing, its full po-

tential will only be tapped when electronic system designers are able to use them for

complex, performance intensive applications, even in small, niche markets. ASSPs

will then fuel the continued explosion of new applications across many areas.

1.2 Application Specific Multiprocessors

Application specific standard parts (ASSPs) present electronic system designers

with the potential to service a set of applications with high performance implementa-

tions, fast design times, and low per part costs. Single-chip multiprocessing is becom-
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Figure 1.2: ASIC versus ASSP design starts Source: Handel Jones, IBS 9/23/2002

ing increasingly popular in mainstream computing to conquer power problems, but

it has existed for several years in certain application domains to exploit the highly

parallel nature of a set of applications. Single chip multiprocessing has been suc-

cessfully deployed in embedded computing markets including graphics, digital signal

processing, and networking.

Narrowly focused ASSPs such as a D/A converter do not employ fully pro-

grammable processing elements and consequently have limited flexibility. An ASSP

based on multiple processing elements, such as Intel’s IXP2xxx series, has flexibility

limited only to the programs which can compile to it. In practice for the IXP2xxx,

the set of applications which can be efficiently supported by the architecture includes

a variety of network applications [49] [14] [53] along with other applications that hap-

pen to map well to the architecture [70]. High performance is achieved on these kinds
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of platforms through multiple processing elements, distributed memory, specialized

hardware, and a customized interconnect topology. We call a platform which uti-

lizes these features to deliver implementations an application specific multiprocessor

(ASMP). Once an electronic system designer has selected an ASMP to implement an

application, programmers must be able to produce high quality software quickly in

order to tap into the potential of the device.

1.2.1 Programming Application Specific Multiprocessors

The ability to buy these high performance solutions off-the-shelf makes ASMPs an

attractive option to electronic system designers. Once chosen, the task of harnessing

the power of the platform and implementing the features needed falls to a programmer.

Programmers would like to utilize these devices by:

• Producing efficient implementations that exploit the power of the architecture

• Programming productively such that they may arrive at implementations quickly

• Having portable application descriptions that can target multiple devices

• Creating a verifiably correct implementation

While all of these are desired properties of a programming environment, the time

it takes to arrive at an implementation and its resulting efficiency are the two critical

features which determine the success or failure of it. The programming environments

for a given ASMP will largely determine its success in the marketplace.
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Domain Specific Languages

Domain Specific Languages (DSLs) provide programmers with a natural way of de-

scribing applications. Developed by domain experts, DSLs match their mental model

of an application domain. DSLs enable higher productivity by providing component

libraries, communication and computation semantics, visualization tools, and test

suites tailored to a given application domain. In digital signal processing, MATLAB

[46] uses simple syntax for vectors and an extensive library of digital signal processing

kernels to enable natural design capture. Simulink [47] is an actor oriented approach

for capturing dataflow style or control applications. The built-in simulator and vi-

sualization tools create an environment where application designers can describe and

iterate on an application design quickly and accurately. LabVIEW [54] is another

modular, dataflow-like language specialized for testing instruments. For networking,

a popular DSL is Click [39], which is an actor oriented language customized for packet

processing and packet flow visualization.

Programming Environments

While domain specific languages are commonly employed for application explo-

ration, the programming environments for ASMPs tend to force programmers to code

at a much lower level. On the whole, programming environments for these devices

have opted for exposing much of the architecture to the programmer. The ability to

arrive at high performance solutions is given the highest priority and the programmer
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manages all of the features of the architecture. Most of these devices initially ship

with only assemblers, giving programmers the ability to tighten their kernels at the

instruction level.

The perceived ability to arrive at efficient implementations comes at a heavy price.

To enable the use of special purpose hardware and exposed memories, vendors of these

ASMPs often extend popular sequential models. Programmers end up overwhelmed

with details of these idiosyncratic devices. Utilizing memories, balancing computa-

tion, and coordinating communication are daunting tasks when handled in low level

programming environments that are built on Assembly or C. Even mundane tasks

such as communicating with special purpose hardware can be a serious time sink.

Saddled with the task of negotiating all of the architectural detail and programming

at a low level, programmers require long design cycles to arrive at reasonable imple-

mentations.

Implementation gap

The task of describing the functionality of an application and the process of imple-

menting that application is separated by a wide chasm that we call the implementation

gap as shown graphically in Figure 1.3. Regardless of the application domain and

the target ASMP, many obstacles are necessary to overcome to arrive at efficient

implementation.

Besides the mundane but real annoyances of application design for these devices,
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Figure 1.3: Implementation Gap

there exist three fundamental problems to effectively traversing the implementation

gap shown pictorially in Figure 1.4.

• Creating an architectural model capturing the performance salient features.

• Constructing an application representation that exposes enough information to

be efficiently implemented.

• Mapping this representation of the application to the architecture.

The paradigm of manually writing programs for each of thread of each process-

ing elements creates many difficult design decisions for programmers. Programmers

must balance the computation across processing elements to ensure that there is no

single computational bottleneck on any processing element. If the architecture has
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Figure 1.4: Keys to crossing the Implementation Gap

exposed distributed memories, programmers must take care to locate program data in

appropriate memories. Small frequently accessed data should generally be located in

memory local to a processing element, while larger infrequently accessed data should

be located in off-chip memory. Multiprocessing complicates these rules of thumb by

forcing the designer to account for how data is connected to programs on different

processing elements. For example, a piece of data simultaneously shared between two

programs on different processing elements cannot be mapped to the local memory

of one processing element if the memory is not accessible to the other processing

element. More generally, set of architectural restrictions describing which processing

elements may directly communicate to which memories and other processing elements

is referred to as an architecture’s topology. Topology must be respected by the de-
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signer to ensure that an application’s communication patterns may be mapped to

the interconnect resources in the architecture. Because of the architectural details,

the problem space for the mapping problem is large and irregular. Since evaluating

a design point requires a significant amount of time due to writing, debugging, and

testing, a model of the architecture is needed for fast design space exploration. The

model must be constructed with care capturing those features that have the greatest

impact on performance while hiding those which needlessly complicate the model and

increase the evaluation time.

This model is used by programmers or tools to make mapping decisions about

how the application is to be distributed onto the architecture. Exacerbating the

problem is the fact that each of these design decisions (allocating computational

tasks to processing elements, laying out data in memory, and assigning application

communication to architectural interconnect) are interrelated. A programmer can be

easily overwhelmed by this large, irregular design space. As the number of processing

elements and distributed memories increases and the topology gets more complicated

with every generation, the problem becomes increasingly difficult.

To make these mapping decisions, the designer must have a description of the ap-

plication that these difficult design decisions can be applied to. Often the application

description is devoid of the information needed to do this. For example, a whiteboard

or prose description of an application may not have state information for the compu-

tational tasks, so a feasible solution could not be made that included memories. A
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model of the application must be constructed that exposes the critical features of the

application.

While architects have been spending much effort maximizing the performance of

their devices, the real key to ensuring the success of an ASMP is enabling the efficient

and productive traversal of the implementation gap shown in Figure 1.3. Providing

programmers the ability to harvest most of the performance of the architecture is

more important than its raw performance.

1.2.2 Existing Common Design Flow

While the key to unlocking the potential of these devices lies in the ability to

cross the implementation gap effectively, the design flow that commonly exists in

industry is woefully flawed. While it varies from industry to industry and company

to company, the typical design flow for one of these application descriptions is shown

in Figure 1.5.

First an application team makes the application level choices about what features

to implement, the basic algorithms for the kernels needed, and based on their esti-

mates, the target platform to be used. Describing the application can be as informal

as a whiteboard sketch or English prose, but it often takes the form of a functional de-

scription. This is commonly done in a popular sequential programming language, but

for larger application domains, domain specific languages are growing in popularity.

While capturing the functionality of an application can be done quickly, the job of
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Figure 1.5: Existing design flow to cross implementation gap

implementing it on ASMPs is notoriously difficult. Driven by performance pressures,

system designers perceive that to reap the benefits of using an ASMP, they often start

implementation entry at the lowest level. Typically this task is done by one or more

individuals who are experts of the target platform, called the implementation team.

The implementation team is by and large required to overcome each of the funda-

mental obstacles of crossing the implementation gap. Their model of the architecture

is usually implicit and based on their own experiences. Mapping decisions are made

manually based on intuition. Arriving at an implementable form of the application is

done by writing code in the target environment. Programmers must write multiple,

often multithreaded, sequential assembler or C programs according to this mapping.

Humans manage to persevere despite the difficulty presented by these environ-
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ments and settle on a mapping of the application. Programmers eventually create

a functional design, but arriving at a working implementation is not enough, as the

raison d’être of these devices is to deliver high performance solutions. Simplicities

of the model and biases of the programmers invariably leads to a solution with an

unforeseen bottleneck. Programmers must utilize information at this fully evaluated

design point to refine the solution by rewriting kernels, redistributing the computa-

tional load, or relocating data in memories. These changes to the application require

additional testing and design time, but fortunately they are feedback loops contained

within the implementation team. The dependencies and feedback loops of this design

process is given more rigorous consideration using a Design Structure Matrix [64] in

Appendix B. Figure B.2 indicates that teams are well grouped for this design flow,

but that significant intergroup dependencies and feedback exist.

The advantage of using an ASMP is its ability to provide high performance with

short design time. The software path to implementation should afford short design

times with fast changes. However, a flawed design flow to cross the implementation

gap mitigates each of these. Unfortunately, this current design methodology leads to

long design times and to being locked into a particular system mapping.

1.3 Objectives of Research

The work presented here seeks to provide a framework with supporting algorithms

and tools to make the job of crossing the implementation gap more productive, while
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still producing implementations comparable to hand crafted designs. Specifically, it

focuses on the fundamental problems of crossing the implementation gap between

an application described in a domain specific languages to ASMPs: architectural

model creation, application representation construction, and application to architec-

ture mapping this representation of the application to the architecture.

To study this throughly and practically, this work focuses on one particular ap-

plication domain. While there are many potential areas to choose from to study

this domain, networking is well suited to the task for reasons that are discussed

in the following chapter. We select a representative domain specific language and

common, high performance commercial network processors, and then we construct a

framework. It is with these two endpoints the fundamental problems of crossing the

implementation gap have been examined.

1.4 Organization of this Dissertation

This dissertation is organized in the following manner. Chapter 2 gives an overview

of the field of networking, including the representative applications that will test this

approach. Chapter 3 describes our overall approach to crossing the implementation

gap along with some related work. To efficiently target these devices, programmers

must first capture what are the salient features of the architecture, while abstract-

ing away those details that are not important. Chapter 4 presents these features for

network processors, based on my own experience with common commercial architec-
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tures. We present a mathematical model of these features so that it is amenable

to automated design space exploration. There are optimizations and transformations

that are enabled by starting with a more abstract, domain restricted representation of

the application. Chapter 5 discusses techniques that we have arrived at that produce

the task graph automatically and provide significant performance improvements. To

demonstrate this approach, Chapter 6 presents results of this approach by mapping

the data plane of representative network applications onto high performance com-

mercial network processors. Chapter 7 summarizes and concludes this work, while

presenting some possible future directions.
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Chapter 2

Network Processing

For an in depth examination of the problem of an application specific implemen-

tation gap, we focus on the field of networking. The networking domain continues to

create more functionality in the network through new applications running within the

network. Performance pressure coupled with changing functionality has prompted the

rise of network processors. Indicative of the wider application specific multiprocessor

trend, network processors achieve high performance through architectures customized

to exploit parallelism inherent in the networking domain. While many programming

approaches have appeared for these powerful devices, their focus on performance has

lead to difficult design cycles. Domain specific languages in networking provide an

ideal alternative to describing applications using packet abstractions and the common

communication style of networking applications. The implementation gap between

networking domain specific languages and existing network processor programming
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environments is wide.

2.1 Motivation for Networking Focus

The field of networking has been a plentiful area of research and innovation. Years

of study have produced a variety of applications across different parts of the network

and different layers of the protocol stack. Besides being interesting from a research

standpoint, networking is a huge market. According to the the Telecommunication

Industry Association, telecommunication industry spending reached $856.9 billion in

2005 and is projected to keep growing at around 9% annual growth rate [26]. Growth

was lead by network equipment and new applications on the network such as voice

over IP, web conferencing, and video conferencing. These trends are indicative of a

field which has maturity and size, but is still growing and evolving based on new

applications.

These new applications drive not only new features in the network, but continue

to drive the Internet’s growth in bandwidth. In fact, data traffic on the Internet is

doubling every 12 months [20], outpacing Moore’s Law. The desire for new features

along with performance pressures driven by increasing traffic demands precipitated

the rise of high performance programmable solutions: network processors. These

application specific multiprocessors are tailored to packet processing and provide the

potential of high performance software solutions to networking’s most demanding

problems.
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The networking area is large but still evolving. The interest in new applications

has fueled the creation of domain specific languages. The sheer size of the domain

supports a large community of users with a common set of rules or design philosophies.

The size and continuing interest in new applications in networking have made it a

fertile area for domain specific languages. The independent creation of domain specific

languages and application specific multiprocessors makes networking an ideal niche

for exploring the key problems of crossing the implementation gap.

The extensive study of how to utilize parallelism on single chip multiprocessors

makes networking of particular interest to mainstream computing. The diversity of

architectures, application, and programming methodologies can provide useful guid-

ance to the general purpose community. Existing solutions to general purpose parallel

programming will suffice for a small number of processors, thanks to the parallelism

of independent jobs. But as the general purpose cores increase and multiproces-

sor parallelism must be exploited directly by applications, the key problems of the

implementation gap exhibited in networking may manifest in the general purpose pro-

cessing. A careful examination of the challenges and potential solutions in networking

could hold broad insights for the mainstream multiprocessor world of the future.

2.2 Network Applications

Network applications are primarily defined by their location in the network. The

edge of a network is the boundary between one managed network and another. An
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Figure 2.1: OSI and TCP stacks

edge network device may serve as the gateway for a handful of hosts to the Internet

or a high bandwidth device that connects two Internet Service Providers. Within

the boundaries of a managed network is the core. Core networking devices provide

the services of the network. In the Internet core routers provide high bandwidth

routing with best effort. A corporate network that merges data and voice traffic

has core devices which provide quality of service guarantees along with basic routing

functionality.

Besides location in the network, applications can also be classified by where they

exist in the Open Systems Interconnection (OSI) model [11]. Layers of the OSI stack

represent various levels of abstraction of communication from bits to packets to flows

to application data shown in Figure 2.1. Much of the innovation on network de-
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vices occurs at the Network and Transport layer. The Network layer covers routing

packets, segmentation/reassembly, and sending error packets. The Transport layer

ensures packets are reliably delivered in-order and manages flow control and con-

gestion. In practice these correspond to the Internet Protocol (IP) for the Network

layer and Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)

for the Transport layer. The separation of layers allows designers to design network

applications with a particular abstraction of packets and packet flow.

Thanks to its long history, many traditional network benchmarks have defined

the area to measure the performance of the devices. However a longstanding uniform

test-bench has been elusive because the demands on the application change rapidly

from generation to generation. For example, Internet protocol (IP) packet routing has

been a basic application for decades, but each generation of equipment has different

port bandwidths, physical protocols, routing table sizes, and number of ports.

Along with the canonical networking benchmarks, new applications have appeared

in different parts of the network. These have added new features to networks to service

applications that need more than the best effort routing of most networks. Another

driving force for new applications in the network is the desire to distributed more

of the computational workload to the network. This steady trend of exporting more

functionality out of the end hosts onto the network includes intrusion detection, qual-

ity of service guarantees, protocol translation, and routing based on packet content.

The following section gives examples of common networking benchmarks along with
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new ones that are driving the networks of the future.

2.2.1 IP Forwarding

Internet Protocol version 4 (IPv4) packet forwarding [9] is a common kernel of

many network applications. The Network layer application forms the foundation of

packet processing in the core of networks including the Internet. It provides the

functionality needed to provide end-to-end delivery of packets. IP forwarding enables

global connectivity with lossy, best effort routing of packets. There are no guaran-

tees on bandwidth, latency, or in-order delivery of the packets. This limited feature

requirements allows designers to deliver the highest performing implementations so

that core routers of the Internet are able to achieve the highest possible throughput.

For the base case of IP forwarding, a packet is first received by the router. Being

a Network layer application, the computation is confined to the IP header of the

packet. Many implementations separate packet headers from the packet payload

to limit the amount of memory passed between processing elements. The packet

header is checked its validity by ensuring various fields are consistent with the IP

fields including checksum, header length, and IP version. The egress port of the

packet is determined by a performing a longest prefix match route table lookup of

the destination address. The time-to-live (TTL) field which indicates the maximum

number of hops a packet can traverse is decremented. Finally the packet header is

recombined with the payload and transmitted on the appropriate port.
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2.2.2 Network Address Translation

Network address translation (NAT) [63] is a widely used edge application that

enables communication between networks with conflicting address spaces. A tradi-

tional configuration is shown in Figure 2.2. On one side of the router with NAT

functionality is a local area network (LAN) while on the other is a wide area network.

As with many local networks, the address space used by the LAN is not coherent

with respect to the larger WAN. This can happen for a variety of reasons including

a shortage of WAN addresses or a legacy address allocation. A NAT device allows a

single WAN address or a set of WAN addresses to be used among hosts on the LAN.

This conserves address of the WAN and decouples the LAN infrastructure from the

WAN.

To allow these two networks to communicate, a NAT router rewrites the packets

that it forwards between these two networks. Hosts on the LAN with data requests

or responses to hosts on the WAN have their packets forwarded to the NAT router.

These packets’ addresses are rewritten to use the address or addresses reserved to

the NAT router in the WAN’s address space. In order to keep address rewriting

consistent and to forward responses from the WAN back to the appropriate hosts in

the LAN, NAT routers keep a record of which packet flows are active between the

LAN and WAN. Packet flows are often classified by a flow identifier (flow ID) which

is a unique identifier of a network session. With TCP/IP packets, this four-tuple is

typically: (source IP address, source TCP port, destination IP address, destination



26

Figure 2.2: Block diagram of a NAT router

TCP port).

A typical scenario is depicted in Figure 2.2 in which a single WAN IP address is

used for an entire LAN. A host on the LAN sends a request packet with a destination

on the WAN. The packet is forwarded to the NAT router, where it searches its table

of flow IDs for an existing connection. If one is found, it rewrites the packet’s source

address and port to match the entry in its table. If it is not found, the NAT router

reserves a new port for the flow and adds it to the flow ID table. The packet header is

rewritten and forwarded on to the WAN. A response packet from the WAN undergoes

similar processing except that the destination address and port are rewritten instead

of the source address. Connections are eventually removed from the table based on a

time-out or a packet signaling the end of the session.
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2.2.3 Differentiated Services

The basic functionality provided by the Internet’s infrastructure is that of connec-

tivity. Routers forward packets with best effort in an attempt to deliver as much data

as fast as possible to their destinations. While this is sufficient for many applications

which run on the network, others require more than just delivery to destinations.

For example, people having a voice conversation over the network are sensitive to

latency. Conversely for most web page data throughput is more important than la-

tency. To provide bandwidth, latency, or jitter guarantees to packet flows, network

administrators employ Quality of Service (QoS) architectures.

One type of QoS architecture is Differentiated Services (DiffServ) [12]. It is a

provisioned model in which network administrators design the network infrastructure

with broad categories of traffic. Interior nodes of the network apply different per hop

behaviors (PHBs) to various classes of traffic. The classes of PHBs recommended by

IETF include:

• Best Effort - no guarantees of packet loss, latency, or jitter

• Assured Forwarding - 4 classes of traffic, each with varying degrees of packet

loss, latency and jitter

• Expedited Forwarding - low packet loss, latency and jitter

Routers are augmented with special schedulers, queue sized specifically for each type

of packet class, and with bandwidth rating mechanisms to police the number of pack-
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ets annotated in each flow. End applications bin their packets into each of these flows

to indicate which data require which guarantees.

2.2.4 Web Switch

Much of the performance growth in the Internet can be explained by an increase

in network functionality. By locating more of the computation in the network, end

hosts are able to scale more with demand. A web switch is the offloading of one such

application. A web switch uses the content of a packet to route it. For web requests,

this could include the directory of the URL requested, the type of file, or the cookie

of the client. With this Application layer information, a web switch can intelligently

distribute traffic across a set of heterogeneous servers. Like NAT, it is transparent to

both client and server.

Figure 2.3 shows an example of a configuration with a web switch which classifies

HTTP requests into regular page requests, secure page requests, and image requests.

This allows a single website to be hosted by multiple servers without a single host

bottleneck. Other options for load balancing requests across multiple servers include

random selection of a server, selection based on the least loaded server, and selection

based on hashing. Each strategy can make use of a web switch by offloading the

distribution computation to it.

Since even simple requests can involve exchanging multiple packets between client

and server, session state is often stored in the web switch to ensure coherence between
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Figure 2.3: Web Switch Functionality

client and server. Such session state is part of the Transport layer which keeps track

of states such as connection setup, packet ordering, and connection tear down. To

ensure that the web switch is transparent to both client and server, web switches often

employ “connection splicing” in which the router handles the initial setup connection

with the client before the request flows are sent to the appropriate server. This allows

the webswitch to see the first real packet of application data so that it can use that

information to select the correct server.

2.3 Network Processors

The variety and complexity of networking applications is a natural fit for a pro-

grammable solution. This fact coupled with the increasing performance demands of

these parallel applications has feuled the rise of network processors which is repre-
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sentative of the larger trend toward application specific multiprocessors. Complex

applications with varied feature sets that may change over time necessitated the use

of a programmable solution, while application performance requirements demanded

application specific optimizations to the platforms. A variety of network processors

have come into existence in the past decade. They are distinguished by where they

are deployed in the network and the principles the architects believed would bring

the highest performance for the intended applications. A recent survey of network

processors identified the key features and the major architectural axes of network pro-

cessor designs [4]. These include number and type of processing elements, issue width,

pipeline depth, memory structure, hardware accelerators, and on-chip topology.

To retain high performance, architects have employed a variety of techniques.

These include customizing instruction sets to packet processing, using multiple pro-

cessing elements and multithreading to exploit the inherent parallelism between pack-

ets and packet flows, tailoring memory architectures to packet header and payload

movement, and specialized hardware for compute intensive packet operations such as

hash engines and cryptography engines. The architectural details create a wide diver-

sity of network processors. Differences include the instruction set used, the number of

processing elements, how they are connected, and the size and number of distributed

memories used. The following sections examines a few representative network proces-

sors to highlight some of the commonalities and differences between network processor

architectures.
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2.3.1 Intel IXP1200

The IXP1200 [32] is one of Intel’s network processors based on their Internet

Exchange Architecture. It has six identical RISC processors, called microengines

(MEs), plus a StrongARM processor as shown in Figure 2.4. The StrongARM is

used mostly to handle control and management plane operations. The microengines

are geared for data plane processing and each has hardware support for four threads

that share an instruction store of 1K-2K instruction words. Fast context swapping is

enabled by a hardware thread scheduler that takes only a few cycles to swap in ready

thread. The IXP series uses cooperative multithreading, meaning threads swap out

voluntarily and are not preempted by other threads. The register file itself is split

logically into individual areas for each thread, so a thread’s state does not have to be

pushed to memory. There is also a shared region which threads can used for sharing

data between threads.

To cope with small size of the instruction store, each of the threads on a processing

element may share instruction memory. Register addressing within an instruction may

operate in different modes: Context relative addressing is addressing a registers in the

region local to a thread and Absolute addressing is the registers in the shared pool

that are common to all threads. In context relative addressing and instruction adds

an offset such that the register in the appropriate pool is addressed by any thread

that enters that context.

The memory architecture is divided into several regions: large off-chip SDRAM,
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Figure 2.4: Block Diagram of the Intel IXP1200

faster external SRAM, internal scratchpad, and local register files for each micro-

engine. Each region is under the direct control of the user and there is no hardware

support for caching data from slower memory into smaller, faster memory (except for

the small cache accessible only to the StrongARM). The interconnection of the mem-

ories and processors to peripherals is customized for packet movement. A dedicated

bus between DRAM and the ingress and egress buffers is intended for movement of

the packet payload to and from memory without impeding the progress of existing

computation. Interconnection also exists between microengines and the ingress and

egress buffers too allowing designers to move packet headers directly to the register

files so that they may be immediately operated on.
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2.3.2 Intel IXP2xxx

The IXP2xxx is Intel’s most powerful family of network processors to date, capa-

ble of up to 23.1 GIPs [33] [35]. Each member of the family has an XScale processor

that is intended for control and management plane operations. Like the IXP1200,

there are multiple RISC processors with instruction sets tuned for packet processing

called microengines (MEs). With instruction set architectures geared towards data

plane processing, each microengine has hardware support for eight threads with a

shared instruction store. To permit fast context swapping, each also has a hardware

thread scheduler monitoring the readiness of each thread. To keep these cores busy,

the memory architecture is divided into several regions: large off-chip DRAM, faster

external SRAM, internal scratchpad, next neighbor registers (NNs), and local mem-

ories (LMs) and register files for each microengine. Each region is under the direct

control of the user, and there is no built-in cache structure for the microengines. Next

neighbor registers allow producer-consumer relationships between neighboring micro-

engines to avoid communicating through slower, globally shared memory. Shown in

Figure 2.5, the IXP2400 is a midrange performer member of the IXP2xxx family with

8 microengines running up to 600 MHz, each with 8 hardware supported threads.

2.3.3 EZChip NP-2

EZChip’s third generation family of network processors is NP-2 [22]. Geared

for 10Gbps of packet processing, the NP-2 integrates multiple processing elements,
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Figure 2.5: Block Diagram of the Intel IXP2400

traffic managers, classification engines, and Gigabit MACs onto a single die. To

achieve performance on certain network applications, EZChip employs heterogeneous

processing elements called task optimized processors (TOPs). They have customized

data paths and instruction set tuned for a certain functionality. There are four types

of TOPs each tuned for a particular stage of packet processing: parsing the packet,

lookup and classification, forwarding the packet and making decisions on quality of

service, and modifying the packet. The TOPs are connected by a “super-scalar”

architecture so that many may operate in parallel. TOPs are not tied to a particular

port allowing them to service any packets ready for processing. Hardware dynamically

manages scheduling packets to a particular TOP and ensures that packets remain in-

order for each port.
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2.3.4 Cisco SSP

The highest performing network processor to date is found in the Carrier Routing

System (CRS-1) from Cisco. CRS-1 is a high performance router capable of processing

92 Terabits per second. This core router is based on a network processor called

the Silicon Packet Processor (SSP) [68], which was developed jointly with IBM and

Tensilica. The SSP is capable of 40Gbps of throughput and uses 188 Xtensa processing

elements, which is by far the most processing elements for a network processor to

date. Extra processors are also on-chip to improve the yield of fabrication. The

programmability is utilized to instantiate different feature sets, so the SSP can be used

across a many product lines and in different parts of the network. Significant chip

real estate is spent on hardware managers for controlling peripherals and distributing

packets to the processing elements.

2.4 Commercial Programming Environments for

Network Processors

Network processors represent an enormous performance potential by delivering

many processing elements, customized memory hierarchy, special purpose hardware,

and a topology geared toward efficient packet movement. Tapping into the potential of

these devices requires addressing each of the key challenges outlined in Section 1.2.1.

This burden falls to either dynamic management, offline tool chains, or programmers.
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Several commercial approaches have risen to facilitate programming these devices.

While they have chosen to distribute the burden differently, each approach is a general

purpose, performance oriented design entry environment.

The philosophies for the how to program these devices have tended towards two

extremes: burdening the programmer and burdening the hardware. The first is to

completely expose the programmability of the architecture to the application designer.

With no intermediate abstraction layers, programmers are expected to arrive at an

efficient mapping and implementation themselves. The second is to hide the details of

the underlying architecture through hardware managers. This approach takes control

out of the hands of developers and offline tools so custom mappings are not possible.

Such a hardware runtime approaches introduces either overhead which attempts to

solve the mapping problem suboptimally or restricts the possible mappings to more

trivial solutions. In either case, the result of the difficult implementation process is

an unportable application description. Underutilized in these commercial approaches

are the use of tools and automation and software runtime systems. The following

section covers programming approaches that exist commercially today.

2.4.1 Assembler

As many of these architectures are based on programmable RISC cores with in-

struction sets tailored to packet processing, the easiest programming environment to

ship with such a device is an assembler. Programmers write each instruction to be
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executed on the platform and select the specialized instructions that can be used

to accelerate their algorithms. On architectures with exposed distributed memory,

programmers explicitly manage the data in those memories. Shared resources such as

hardware acceleration units are also handled directly by the programmer. To properly

interact with some peripherals, programmers must write code to explicitly interface

with state machines that control them.

Using assembly for design entry gives the programmer complete control over the

architecture. For highly exposed architectures this allows the programmer to directly

utilize the platform specific features of the hardware. With non-preemptable process-

ing elements, like the microengines on the IXP, critical sections and race conditions

can be managed temporally with cycle counts. Programmers control when threads

swap on and off the processing element, so designers can build critical sections by not

having any thread swaps in the region. Programmers are not forced to use locking

variables to ensure the fidelity of a critical section, which saves memory space and

instructions, but makes the program unportable to network processors with preempt-

able cores.

Some network processors limit the programmers control of the architecture through

hardware. For the NP-2 programmers write a single sequential program. This creates

an image with no parallel programming or multithreading expressed. The allocation

of the TOPs to processing elements to incoming frames, passing messages between

the TOPs as well as maintaining the ordering of frames is performed in hardware
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transparently to the programmer. Assembly still allows the designers to maximize

the architecture, but the interface to the architecture is more restrictive and has

significant hardware overhead.

If the programs to be run on these processing elements are small and the number of

different programs to run are few, this model works well. Difficulties in using assembly

can be handled when applications require few instructions and homogeneity in the

application limits the parallel complexity for the programmer. As soon as designers

need to implement a large or complex application, using assembly as a description

language becomes problematic. Along with all of the other difficulties of crossing

the networking implementation gap, designers must deal with all of the architectural

features with little or no tool support. Furthermore, resulting applications are tied

to the particular architecture.

2.4.2 C-variants

While many of the network processor processing elements have special instruc-

tions, they are still typically RISC cores that are somewhat amenable to compilation.

Looping constructs, branching, dead code elimination, and register allocation are

all productivity enhancing features of using C over assembly. Architecture specific

features are captured by using intrinsics which are function that represent special

instructions not targeted well by compilation. Exposed memory regions are exported

with specific data types. For example, the microengine C compiler contains typing
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constructs that indicate which memory the variable resides in. With such constructs

in the language, these network processor C variants have additional features which

must be learned.

Architectural restrictions may also remove constructs from C. For example, the

IXP series has no intrinsics for pushing the entire variable set for a function. This

means for liveness and register allocation, the program must be statically analyzable.

Therefore Microengine C [34] disallows recursion and function pointers. Algorithms

already designed in C may have to be rewritten to respect these restrictions imposed

by the architecture.

The productivity benefit of using a C over assembly is relatively minor as this still

leaves a huge programming task to the designer. Programmers must manually arrive

at an assignment of those computational tasks to processing elements along with

layout of data to memory and intertask communication to physical communication

links. These intertwined design decisions result in a large, irregular design space that

has a large impact on the implementation’s final performance. As vendors add more

cores and more memory, this programming challenge becomes more difficult with each

generation.

2.4.3 TejaNP

TejaNP [65] is commercial product which provides a robust interface for program-

ming a diverse set of platforms, one of which is the IXP2xxx series. The general
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approach for describing and implementing applications focuses on portability, perfor-

mance, and ease of use. The basic design flow for targeting the IXP2xxx is described

in Figure 2.6. Programmers start by customizing library elements that are to be used

in their application. These elements include state machines, data structures, queues,

mutual exclusion constructs, and device IO. State machines are used to organize the

computation, and programmers describe the operations performed by writing C like

code for each edge of the state machine. The application model is general in that

describing computation and organizing it with state machines is not domain specific.

These components including the state machines are stitched together to completely

describe the functionality of the application. The data and control plane of an IP

forwarder represented in this connected form is shown in Figure 2.7. The green boxes

represent computation described by the state-machines, orange boxes are shared data

structures, and the blue cylinders are communication channels. Present in the envi-

ronment is an analogous architectural representation made up of processing elements

and memories hooked together by buses or point-to-point links. After the applica-

tion is completely described, programmers manually map each of these application

components to their corresponding architectural one. State-machines are mapped

to threads of processing elements, data structures to memories, and communication

channels to hardware links.
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Figure 2.6: Design flow of TejaNP

Figure 2.7: Application representation in TejaNP
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2.4.4 Microblocks

The difficulty of using C-variants or assembler was recognized by designers early

on. Intel released the Microblocks framework originally with the IXP1200 [31] and

now exists for the IXP2xxx [36]. It institutes some design methodology along with

a library of elements optimized for performance. Built on top of existing tools for

the IXP family, Microblocks organizes code in blocks of computation that may be

connected together to describe an application. Each element is highly configurable as

there are no invariants it must strictly adhere to. Programmers manually assign each

of the computational blocks, their corresponding data, the their interconnection to

the appropriate architectural resources. Furthermore, programmers must write the

corresponding glue code for each of these assignments. For example, if computational

block needs to be moved to another Microengine, the programmer must manually

relocate the code and rewrite the code that connects it to the rest of the application.

Since design space exploration is difficult in this system, Intel has provided an

architectural tool for the fast performance estimation of a mapping on the architec-

ture. It derives its estimates quickly from an analytic model or more slowly and

accurately from a transaction simulation, neither of which are cycle accurate. These

assist the design space exploration in that new designs need not be implemented for

performance evaluation.
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2.5 Domain Specific Languages

Commercial approaches for programming network processors are used by a small

community of users, tightly tied to the target platform, and require many difficult

design decisions to arrive at an implementation. Designers have an immense amount

of freedom when programming, but this lack of restriction leads to the creation of

unportable, unstructured code.

Domain specific languages in networking provide an attractive alternative to de-

sign entry by making useful restrictions to design entry along with using communica-

tion and computation semantics natural to the application domain. These are based

on a few of the fundamental networking principles discussed in Section 2.2. First

is the isolation of the layers of the networking stack. This allows designers to use

a particular abstraction of the data. Second, domain specific languages utilize the

OSI Network layer principle of packet independence. For those applications which

use Transport layer semantics, the independence of packet flows is captured. Finally,

the methods for invoking execution in a network application are through requests

and responses. Requests correspond to available resources to send or process pack-

ets or periodic events to schedule computation. Conversely, responses involve data

that appears in the network ready to move through the computational paths of the

application.

The following section summaries how a representative group of domain specific

languages realize these concepts.
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Figure 2.8: A Simple Click 2 Port Forwarder

2.5.1 Click

Click [39] is an environment designed for describing networking applications. A

Click description of an application is functionally complete, such that a programmer

may test and refine his application using freely available tools on a general purpose

platform. Based on a set of principles tailored for the networking community, Click

has been used to described a variety of network applications [40] [59]. Applications are

built by composing computational elements, which correspond to common networking

operations like classification, route table lookup, and header verification. Prior work

has shown that the parallelism can be extracted and utilized for general purpose

multiprocessor platforms [18]. Figure 2.8 shows a Click diagram of a simple 2 port

packet forwarder, in which packets ingress through FromDevice, have their next hops

determined by LookupIPRoute, are queued, and finally then egress through ToDevice.

Elements have input and output ports that define communication with other el-

ements. Connections between ports represent packet flow between elements. Ports

have two types of communication: push and pull. Push communication is initiated by

the source element and effectively models the arrival of packets into the system. Pull
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communication is initiated by the sink that can model space available in hardware

resources for transmitting packets. Each actor has push or pull ports that may be

composed with other elements to form paths of push elements, and paths of pull ele-

ments, called push chains and pull chains, respectively. Note that these push chains

and pull chains form independent computational paths through the graph, indicating

parallelism inherent in the Click description.

Figure 2.8 shows a Click diagram of a simple 2 port packet forwarder. The boxes

are elements and the small triangles and rectangles within elements represent input

and output ports, respectively. Black ports are push ports, while white ports are pull

ports. The arrows between ports represent packet flow. The FromDevice element

abstracts an ingress port. As a packet enters the system, it is received by FromDevice,

which then passes the packet to LookupIPRoute. LookupIPRoute contains a table that

maps destination IP addresses to output ports. After LookupIPRoute determines the

packet’s output port, it is enqueued. When there is free capacity in the MAC port

buffer, ToDevice dequeues a packet and sends it to the appropriate MAC port.

Click is implemented on Linux and uses C++ classes to define element behavior.

Element communication is implemented with virtual function calls to neighboring

elements. The sources of push paths and the sinks of pull paths are called schedulable

elements. Firing the schedulable element of a path will execute all elements on that

path in sequence. Each of the computational paths formed by these sequences can

operate independently, while packets on a particular chain stay in the same order as
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they arrived at the beginning of the chain.

2.5.2 NesC

NesC [25] is programming language designed for embedded networking applica-

tions on a small scale. Used in conjunction with TinyOS [29] it is used to deploy

applications on many small, wireless nodes. Like Click, NesC is actor oriented lan-

guage in which programmers build their application out of components. Designers

first write these components in a C-like language and then “wire” them together.

Component ports are typed as either events or commands. This typing of ports al-

lows for a split-mode operation in which long latency events may be decoupled from

an execution. Commands correspond to the request of an activity (e.g. start a timer)

and events represent the mechanism for response (e.g. a timing event has a occurred).

Modules contain events and tasks, which are used to model concurrency. Link

in TinyOS, tasks run to completion and are not preemptable by other tasks. When

tasks are ready to be run, they are sent to the scheduler and executed when there

are idle cycles on the processor. Conversely events may interrupt tasks and events.

They are used to model hardware interrupts from peripherals. In this way they

are somewhat analogous to the push and pull of Click, where push events often

correspond to schedulable elements with rated execution, while pull events represent

a peripherals ability to control the execution of the application. To handle shared

state, users can declare sections of code atomic. These constructs permit the static
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analysis of the application description. Code that is only reachable from tasks is run

completely synchronously while that which is reachable from an event is considered

asynchronous. With this information offline tool can find potential race conditions

involving shared variables.

2.5.3 Baker

Baker is a domain specific language developed by Intel. It is the entry language

for the Shangri-La design flow [27] which is summarized later in Section 3.3.3. Like

other networking DSLs, it too is actor oriented with the basic block of computation

being a packet processing functions (PPFs). A PPF can have local data, be the source

and sink of packet processing, and describe a packet operation. These are connected

together via communication channels which permit static analysis of the application

description. These channels are asynchronous, directional queues that connect input

and output endpoints of PPFs. Packets flow along these communications to create

a self-described data flow graph known as packet flow graphs. Like fromDevice and

toDevice, the PPFs that correspond to packet reception and transmission abstract

away the details of the actual hardware devices.
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2.6 Networking Implementation Gap

Like the situation discussed in Section 1.2.1, network application designers are

faced with the problem of crossing the networking version of the implementation gap

as shown in Figure 2.9. A networking domain specific language description of an

application enables natural design capture. They do this by providing libraries of

basic packet operations and primitives for packet access. As in the general case, these

natural descriptions of the applications are quite different from programming envi-

ronments commercially used with network processors Their emphasis on performance

rather than productivity has given rise to general purpose, low level programming

environments that expose much of the features of the architectures. Like the flow

described in Section 1.2.2, they suffer from long design times and produce rigid im-

plementations.

The networking implementation gap exhibits each of the three keys to be solved

for producing efficient implementations. Application designers must extract the con-

currency enabled by packet and/or flow independence. Designers must internalize or

explicitly create a model of the network processor which captures performance critical

features such as multithreading, next neighbor registers, and chained interconnection

topology. Finally, they must exploit the parallelism of the architecture by mapping

the application to the architecture.
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Figure 2.9: Networking implementation gap
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Chapter 3

Crossing the Networking

Implementation Gap

An ideal solution to crossing the networking implementation gap permits natural

application capture, utilizes the architectural resources of the target network proces-

sor, and arrives at solutions quickly that can be verified for correctness. Our so-

lution achieves many of these objectives by implementing a novel design framework

that utilizes automation to arrive at efficient implementations quickly. In the design

framework, programmers start by describing the application to be implemented with

a domain specific language. Application level optimizations can be made on this ap-

plication description. Using a target specific library of computational elements, the

application transformed into to an application model which has an analogous archi-

tectural model. The mapping problem is formulated as a integer linear programming
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problem. Optimal solutions to the mapping problem are found using a powerful gen-

eral purpose solver. Based on these assignments, code is generated for compilation on

individual processing elements. The solution presented in this thesis moves the body of

research focused on crossing the implementation gap closer to an ideal domain specific

solution.

3.1 Properties of an Ideal Solution

While the starting and end points of the network implementation gap have de-

veloped, the ability to bridge between them remains a difficult problem to electronic

system designers. An ideal solution to the networking implementation gap would

have a few key properties. Application entry would ideally be in something akin to

a domain specific language to facilitate productive design capture. The application

description would be portable to other network processors. Second, a design flow

would take this application description and produce efficient implementations. Effi-

cient implementations on application specific multiprocessors implies that the ideal

solution would load balance computation and assign data into distributed memories

in such a way that performance is maximized.

These implementations would be produced quickly. Performance oriented net-

working applications invariably benefit from designer insights and successive refine-

ment of the application based on performance results. Faster time to implementation

enables more design feedback cycles and therefore a higher quality solution. The
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ideal solution would be able to incorporate arbitrary user guidance without effecting

the rest of the design flow. It is often the case in high performance systems that

certain design restrictions or legacy code force a part of the application to a certain

part of the architecture. An ideal design flow would be able to use such information

seamlessly when generating software to be run on multiple processing elements.

3.2 Proposed Approach

The divide between applications described in domain specific languages and their

implementation platform is wide. Our proposed framework for traversing this chasm

is described in Figure 3.1. A designer describes the application in a DSL, while ide-

ally not being concerned with the final implementation platform. Having an abstract

description of the application provides the unique opportunity for high level opti-

mizations. After optimizations the application is transformed into a model that is

mappable to the target architecture. To be mappable the application model includes

information needed to arriving at an efficient implementation on the target architec-

ture. In addition to the computation described in the application, this information

could include packet distribution, data size and scoping, communication bandwidths

between communication blocks. Much of this information comes

This abstract representation of the application is optimized to produce a task

graph suited for high performance systems. The task graph is made up of compu-

tational elements written specifically for the target architecture. Performance and
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resource usage parameters of these elements along with a model of the target archi-

tecture are used by the mapping stage. This stage includes the allocation of compu-

tational tasks to processing elements, the layout of data in memory, the assignment

of communication to interconnect, and the scheduling of tasks. Based on the de-

rived mapping, the task graph is divided into the individual programs to be run the

processing elements. A compiler specific to each processor finishes the flow to imple-

mentation by producing executables from the individual programs. Since prior stages

use approximations of tasks properties, a profile of the resulting executable feedbacks

to the high level optimization stage and the mapping stage. Consequently, feedback

helps guide both the DSL to task graph transformation and the mapping of the task

graph. After a sufficient number of iterations, the final result of the entire flow is a

program optimized for performance within resource constraints. The following sec-

tions covers each of these steps, while certain key steps will be discussed in detail

later chapters.

3.2.1 Domain Specific Language Application Representation

The ideal method for describing an application productively is to use a domain

specific language which are discussed in Section 2.5. A domain specific language like

Click (Section 2.5.1) has gained popularity in the networking community because of its

ease of use. A programmer can describe an application in a few lines and immediately

have a functional implementation. There is no overt performance benefit to utilizing
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Figure 3.1: Proposed flow to cross implementation gap
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this approach as Click is built on top of C++. For a designer to use it, the primary

motivation is to arrive at an implementation more quickly.

General purpose languages suffer from being so expressive that it becomes in-

tractable to extract much task level parallelism. Besides productivity benefits, DSLs

offer a unique opportunity for the extraction of parallelism inherent in the applica-

tion model. Previous implementations of Click on parallel machines found that it is

amenable to exposing the parallelism in networking [18]. The structural description of

the application is amenable to automated extraction of parallelism. Furthermore, the

high-level representation of the application with domain specific restrictions makes

DSLs a good starting point for optimizations and transformations to an explicitly

parallel description to a mappable application model.

3.2.2 Application Level Transformations and Optimizations

With an application described at an abstract level, many application level trans-

formations are possible. A low-level representation of the application like C or assem-

bly obscures this structure. Interprocedural optimizations or the altering of thread

boundaries are traditionally difficult to do with sequential code stitched together with

shared state and communication channels. However, such optimizations are readily

possible with an application description that limits what is expressible. A DSL pro-

vides invariants useful to an optimizing tool.

This framework employs these invariants in multiple ways. Replication of certain
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computational blocks can be done safely thanks to the communication and concur-

rency semantics of Click. Since blocks of code must expose shared data, replicating

tasks can be attached to the appropriate shared data and replicating any local data.

With data elements revealed, inter-element merging of data can also occur along with

the elimination of redundant initialization code.

The structural nature of networking domain specific languages coupled with their

restricted communication semantics enables the pipelining or retiming the application.

By inserting queues, execution paths can be made shorter and overall performance

can be increased. These optimizations are covered in Section 5.4. The structure also

makes it possible to transform to a representation of the application that may be

mapped to the target architecture: a task graph.

3.2.3 Application Model

Our application model is called a task graph. It is a representation of the applica-

tion which contains information needed to arrive at an efficient implementation. The

construction of the task graph is specific to a pairing of an application domain and

an architecture. It is a balance of two competing goals:

• Including information - By providing more visibility into the application re-

quirements, the mapping engine has more opportunities to arrive at an efficient

mapping.

• Creating a simple model of the application - Constructing a model of
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the application that contains only the salient information to make the mapping

problem easier

While the structure of the task graph is specific to an application domain and

architecture pairing, mapping network applications to network processors can be de-

scribed by an interactivity graph of the application graph. Interactivity graphs expose

the blocks of computation that may be run in parallel, the data that is connected

to them, and the communication links. These components of the task graph are

the application representation of the key problems of mapping the application to the

architecture. Furthermore, the interactivity graphs produced by this flow represent

the “steady state” of an application, in which tasks dependencies are decoupled by

queues. At steady state most queues are assumed to have some elements so that each

computational blocks has the inputs in needs to fire. In other words there are no

links to indicate dependent execution between tasks.

Certain properties of the components of the task graph are necessary for arriving

at a good mapping from network application to a network processor. For tasks these

annotations include execution time, rate of execution, instruction store footprint, and

time spent in long latency events. Data is annotated with size, number of accesses,

and the kind of access. Connections between tasks and data include information

regarding the rate of data transferred over it and the directionality of the link. Section

4.4 describes formally the task graph.
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3.2.4 Architectural model

The architectural model is analogous to the application model. It is constructed

with the same balance between exposing features and abstracting away complicat-

ing details. Leveraging our own experience with the architecture to identify its key

features, we model the architecture as a directed graph of architectural components.

Nodes in the graphs are processing elements and memories which are connected by

interconnect. Each of these components of the architecture model are annotated with

features of the architecture. Processing elements provide compute cycles at certain

rate, memories house data with a certain access time, and interconnections connect

processing elements and memories together at a certain access time. Section 4.5

describes the architectural model in detail.

3.2.5 Mapping

The architectural model and application model are constructed specifically so

that one maps onto the other directly. We formulate the mapping problem as a set

of constraints using these two models. Using a boolean selection matrix and a set of

linear constraints, we utilize a powerful general purpose integer linear program (ILP)

solver to find an assignment of the components of the task graph to the appropriate

architectural components. The solutions are optimal or, to reduce the solve time,

within a guaranteed bound of the optimal. Such a framework satisfies the designers

desire to be able to arrive at efficient solutions quickly. Designer feedback can be
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incorporated into the mapping engine by including custom constraints. The details

of this formulation are covered in Section 4.6. These assignments are used by the

code generation and compilation phase of the framework.

3.2.6 Code Generation and Compilation

Based on the mapping assignments determined and the code contained in the el-

ement specific library, blocks of sequential code are generated that can be used by

processing element specific compilers. The target specific elements are written as

stylized C code. Besides adhering to the communication standards of the domain

specific language, the code describing the application includes tags to indicate where

variables are to be annotated with their memory locations. Like static linking, these

memory declarations sections are rewritten based on the derived assignment. The

way to connect elements is contained in the structural information of the domain

specific languages. The connections are similarly generated by rewriting the calls to

downstream or upstream elements. Task allocation is realized by the synthesis of

drivers for each of the processing elements. Tasks allocated to a processing elements

have their associated schedulable element called inside of the appropriate main func-

tion. The result of each of these static rewriting is a set of sequential programs which

can be tackled by traditional compilation.
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3.2.7 Feedback

This design flow requires either estimates or profiled cycle counts. The number of

execution cycles consumed and latency cycles can be determined by running the li-

brary elements on processing elements with typical or worst case inputs. Memory and

communications access times need also to be profiled for accurate memory assignment

costs. Sizing of data can also be memory dependent. For example a one byte datum

on a 4 byte word machine may consume an entire word, especially if the compiler is

unable to consolidate smaller variables into a single word. Instruction store footprint

size is highly dependent on the instruction set architecture of the processing element.

Design flows for performance oriented systems benefit from feedback cycles. By re-

fining profile and estimation metrics, optimizations and transformations can be incre-

mentally improved. Besides raw performance refinement, designers often gain insight

into the best implementation from observing implementations on various workloads.

3.3 Other solutions to crossing the implementa-

tion gap

Other solutions exist in networking to cross the implementation gap to a multi-

processor platform. Here we examine solutions in which design entry is done in a

language natural to the application domain. Many of these solutions use C or assem-

bly at some part of the design flow, but they do not begin with them. They target
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a variety of multiprocessor platforms. Specifically noted with each of the solutions

are how the solutions tackle the three keys to crossing the implementation gap as

described in Section 2.6. For some, architectural features are abstracted away, while

others put certain features under the control of the programmer. Determining how

the application is to be distributed across the device is left to the programmer, au-

tomated tools, a software runtime system, hardware mangers, or some combination

therein. Extracting the parallelism from the architecture is done through automated

tools or exposed by the programmer. For each of these solutions bridging across

the implementation gap requires a decision on each of these critical features, which

determines. The following section covers a set of such approaches.

3.3.1 SMP Click

A natural extension of Click is to port it to multiprocessor architecture to take

advantage of the inherent parallelism in processing packet flows. Push chains and

pull chains capture this parallelism. While there are some shared resources between

chains, each is computationally independent. A multithreaded version of Click that

targets a Linux implementation [18] takes advantage of this fact. To get Click to

execute in parallel on a symmetric multiprocessor (SMP) platform, the authors modify

the original Click scheduler and securing shared memory with critical sections. The

execution chains within an application expose parallelism that is readily exploited by

the SMP platform. Data and instruction memory are cache coherent so a waiting



62

task can safely be run on any processor.

Such freedom allows the authors to experiment with the different load balancing

techniques. They try a dynamic load balancing scheme which assigns a single thread

to each processing element. Each thread keeps a list of the schedulable elements it is

in charge of executing. Imbalances between processing elements are evened through

adaptive load balancing. The authors found that statically scheduling some of the

tasks can provide a specific performance benefit. Imbalances in computation may

lead to a better mapping for elements which are communicating directly. By being

mapped onto the same processing element, they share an L1 cache for communication,

lowering the execution time for each. Scheduling algorithms are considered in detail

in [13]

3.3.2 PacLang

PacLang [21] is a research effort to divorce application description form the archi-

tecture. This tenet lead the authors to the design flow described in Figure 3.2. First

applications are described in a linear typed language. By linear typing packets, tools

can statically assert that a packet is never accessed simultaneously by two different

threads. Threads do not need to use locking mechanisms to modify packet contents.

Furthermore, compilers can optimize the program by safely moving packets between

physical chips and create local copies of packet data for faster access. These linear

typed blocks are then connected to each other through queues.
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Figure 3.2: Design flow using PacLang

This application description is mapped to the architecture through an architecture

mapping script (AMS). The script can direct the assignment of tasks but also guide

optimization. Such optimizations can include clustering or retiming the application.

3.3.3 Shangri-La

Shangri-La [27] targets Intel’s IXP2xxx series of network processors and is the

closest relate work to this approach. The central tenets are to start from a DSL

(Baker described in Section 2.5.3), to target independent building blocks, and to

utilize run time reconfigurability. The proposed flow is shown in Figure 3.3. The

programmer describes their algorithm in Baker. Programmers must write the appli-

cation in such away the any block of computation may be replicated an arbitrary

number of times. A functional profile of the code is made which is annotated on

the intermediate representation of the application. A pipeline compiler groups these
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code segments in to larger groups called aggregates. The pipeline compiler assigns

the data to memory and aggregates to processing elements based on the functional

profile. The aggregates are compiled by the aggregate compiler producing binaries for

the appropriate processing elements. These tasks are then managed using a runtime

compiler. It uses the previous annotations as guides to the assignment of aggregates

to processing elements and then adapts those assignments based on traffic load.

Shangri-La uses an architectural model which exposes processing elements and

memories. The performance metrics are based on longest chain annotations. Mapping

the application to the architecture is a combination of offline automated and manual

annotations along with runtime support for reconfiguration. To exploit the parallelism

of the architecture, the programmer must specify this application code that exposes

thread level parallelism. While at design entry they may not be burdened with the

choice of how many threads to allocate to particular segment of code, they must write

the code such that these choices may be made later.

The choice of relying on a hardware system to dynamically manage the mapping

has a number of implications. Since the application may be fine tuned at runtime, the

mapping burden on the application designer is lighter. However a dynamic runtime

system on an architecture with little hardware support (such as the targeted IXP

family of network processors) implies significant overhead for reconfiguring the system.

For example, if computation section in a pipeline of packet processing is to be moved

to another processing element, the computation’s instructions must be moved along
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Figure 3.3: Shangri-La flow

with any active state. To ensure correctness the original block must be halted to move

the internal state as well as the packets in flight to it. If many packets are in a queue

waiting to be processed, many cycles will be spent moving the data from one memory

to another. Meanwhile the packet pipeline is stalled waiting for this reconfiguration

to complete. The granularity and periodicity of reconfiguration is limited by the

architecture, and may not permit fine grain optimization of computational elements.

Furthermore, a centralized manager of computation and data mapping is not likely

to scale to many processing elements.
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3.3.4 NP-Click

Our initial attempt at closing the implementation gap, is NP-Click, a programming

model for the Intel IXP1200 [61]. (The “NP” indicates that this model is for network

processors.) Rather than promote a new style and syntax of programming, we based

our model on Click. Like Click, NP-Click builds applications by composing elements

that communicate using push and pull. In NP-Click, we implement the elements in

Microengine C to leverage the existing IXP1200 compiler. To improve implementation

efficiency, NP-Click complements the abstraction of Click with features that provide

visibility into salient architectural details. Specifically, NPClick enables programmers

to

• control thread boundaries to effectively manage processor and thread

• map data to different memories

• separate design concerns of arbitration of shared resources and functionality.

Our experience with programming hardware multithreaded architectures shows that

arriving at the correct allocation of elements to threads is a key aspect to achiev-

ing high performance. Thus, we enable the programmer to easily explore different

mappings of elements to threads. We outfit NP-Click with a similar mechanism to

SMP Click, in which schedulable elements are the entry point int parallel blocks of

computation. To implement the latter, we synthesize a scheduler that fires each path

within that thread.
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The amount of parallelism present in the target architecture places pressure on

shared resources. For example, the IXP1200 has 24 threads that can each simultane-

ously query a control status register. This can lead to bus saturation, which in turn

can cause lengthy delays in requests. Such situations lead to potential hazards that

necessitate arbitration schemes for sharing resources. To recognize the importance of

sharing common resources, we separate arbitration schemes from computation and

present them as interfaces to the elements. The two main resources that require

arbitration on the IXP1200 are control status registers and the transmit FIFO.

There are two main usage modes of NP-Click: implementing elements and imple-

menting the application. If the elements required for an application are not in the

library, the user must implement them. Although we implement NP-Click elements

in IXP-C, they are much simpler to write. In most cases, implementing an element

is easy because the inputs and outputs are defined, access to shared resources is

via interfaces, and the assignment of data to memory is deferred. This focuses the

programmers effort and attention on writing the code that implements an elements

function.

After writing all the elements required for the application, the programmer now

focuses on assembling the elements to describe the application functionality. He can

then provide additional information on mapping to the architecture. This decomposes

the architectural model into two: one is highly visible for writing the small sequential

blocks in Microengine C, while the other abstracts away features so that the mapping
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problem can be effectively considered. There is still a significant burden on the

programmer to manually map the application, but the burden is lighter and more

focused on the key features of the architectures than low-level commercial approaches.

It was from these insights that we developed the framework presented in this thesis.

3.3.5 Differences to this approach

The approach presented in this work fills a void left by the existing solutions

in this space. First, it leverages a popular platform independent domain specific

language (Click) as its starting point. Click has gained popularity with only general

purpose platforms as its implementation vehicle. With a vast set of tools available for

networking designers on general purpose platforms, Click’s popularity implies that it

has intrinsic appeal to application designers. Second, it uses our own experience with a

set of popular commercial network processors to develop application and architectural

models that are accurate and yet amenable to automated mapping. The NP-Click

work gave us insight into the value of having a library of elements that is written

specifically for the target processing elements. The mapping problem itself is built on

a general purpose constraint based framework which can produce optimal results. It

may be tuned to trade-off solution time and how close to optimal it is guaranteed to be.

Finally, application concurrency extraction may be done directly and automatically

from a domain specific description of the application. The structural information

coupled with communication and concurrency semantics inherent in a domain specific
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language such as Click exposes a good deal of parallelism. It is with these differences

in mind that mapping and application level transformations are considered in detail

in the following chapters.

3.4 Summary

Sequential languages (like C, C++, Pascal, Fortran, Java, etc.) have served as

a valuable role of being the de facto program entry environment for most applica-

tions. While many other programmable tools have assisted the process of program-

ming (make files, UML, compiler optimizations), the vast majority of a sequential

programmer’s time is spent writing and debugging code in the common sequential

language. With the rise in single chip multiprocessors and the issues of parallelism,

this domination is waning. In addition to sequential set of criteria, programming

environments must also be considered for their ability to utilize parallelism produc-

tively. In this section we cover parameters of programming approaches that defines

how designers will utilize parallelism in their application and on the architecture.

While parallelism extraction, architectural modeling, and mapping the application

to the architecture are the most important features to crossing the implementation

gap, choosing a programming environment for implementing a particular application

on a network processor will involve a variety of other considerations which are sum-

marized in Table 3.1. The programming environments emphasize either productivity,

efficiency, portability, or correctness as discussed in Section 1.2.1. Traditionally, net-
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Table 3.1: Design environment characterization

Concurrency Parti- Sched- Retarget- Guar-

Approach Emphasis Model tioning uling ability antees

Assembler Performance Explicit Manual Manual None None
C Variants Performance Explicit Manual Manual None None
SMP Click Productivity Push/Pull Implicit Dynamic Linux SMPs None
(Dynamic) Portability
SMP Click Productivity Push/Pull Implicit Manual Linux SMPs None

(Static) Performance
TejaNP Productivity State Manual Manual NPs, FPGAs None

Machine
PacLang Productivity Abstracted Manual Manual IXP2400 only None

Shangri-La Productivity Dataflow- Automated Semi- IXP2xxx None
Perfomance like Automated

Our Productivity Push/Pull Automated Automated IXP1200 Mapping
Approach Performance IXP2xxx Optimality

work applications have valued performance above all other features, so many of the

early network environments have emphasized that. With more complex applications

and the scale of the problem increasing, design environments have started to focus

on productivity.

Exposing concurrency as a construct to designers will determine much of the en-

vironments performance and productivity trade-off. Environments that require the

designer to manage the parallelism of the architecture directly when expressing the

application are capable of high performance since there is no restriction on the final

implementation. But managing the concurrency is then a large part of the design

process, increasing the time to implementation. At the other extreme environments

which have no concurrency constructs rely on tools or runtime systems to exploit

any parallelism in the target. The programming task is much easier as it reverts to

the traditional, well known, sequential programming problem, but increasing perfor-

mance is much harder. Programmers have little control over exposing or exploiting
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more parallelism. A happy medium is to use an abstraction for concurrency which

structures the kind of parallelism that the programmer can express. A concurrency

abstraction can range from an API like OpenMPI [24] or OpenMP [2] to model of com-

putation [44] like synchronous dataflow [45] or Kahn Process Networks [38]. Driven

by the approach’s emphasis, earlier, performance oriented environments required ex-

plicit management of the parallelism without structure, while recent approaches have

employed various kinds of abstractions to achieve performance without placing an

undue burden on the designer.

Another prominent feature of a design approach is the ability to provide guarantees

regarding the final implementation. This could include temporal assertions to assure

the designer that deadlines will be met or guarantees regarding deadlock or livelock.

Providing guarantees typically comes at the cost of expressiveness or design time while

not influencing performance. Consequently, little effort has been made to incorporate

such features into network processor programming environments.

Essential to the design flow is what it can target. The ability to target multiple

platforms gives designers flexibility to change the platform. Some environments tar-

get a purely theoretical architecture and not have a path to a real implementation.

Most typical with network processors is to targets a particular commercial product

or product family such as Microengine C. A step from this is targeting a set homoge-

neous architectures such as those that support OpenMPI. The most ideal would be

the ability to target any heterogeneous multiprocessor architecture.
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Table 3.2: Summary of how existing solutions solve the keys to crossing the imple-
mentation gap

Concurrency

Approach Architectural Model Mapping Extraction

Assembler Completely visibility Manual Manual

C Variants Completely visibility besides Manual Manual
some instructions

SMP Click Completely abstracted Dynamic Automated
(Dynamic)

SMP Click Multiple processing elements Manual Automated
(Static) cache performance

TejaNP Processors, memory, interconnect Manual Manual

PacLang Processors Scripted Manual

Shangri-La Processors, memory Automated Semi-Automated

Our Approach Processors, memory, interconnect Automated Automated

The most important and pertinent to this work is the treatment of the three keys

to crossing the implementation gap. Table 3.2 summaries how each of the related

approaches handle the key problems to crossing the implementation gap: the model

of the architecture used, how mapping is performed, and how concurrency needed

by the architecture is extracted from the original application description. Besides

the work presented here, only the Shangri-La framework utilizes tools to assist the

designer with difficult decisions. Our work presents a flexible, powerful design flow

which uses powerful solvers to arrive at optimal solutions to accurate models that we

have constructed from our own experience.

Table 3.3 summaries the comparison with related work. Those approaches that

start with a domain specific language and target an application specific multiproces-

sors are the most similar to this work. They tackle the same implementation gap.

Some mapping approaches in the supercomputing realm have provably optimal or
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Table 3.3: Related Work Summary

DSL Starting Application Automated Optimality
Point specific target mapping Guarantee

Assembly Most NPs

C Variants Some NPs

Microblocks IXP

SMP Click Click Dynamic

TejaNP Various

PacLang PacLang IXP2400

NP-Click Click IXP1200

Shangri-La Baker IXP2xxx Semi-Automated

Our Approach Click IXP Automated X

close to optimal solutions, but such solutions have yet to port to the application

specific multiprocessor world. ASMPs have unique architectural features that must

be accounted for when modeling the architecture that complicate the mapping algo-

rithms designed for supercomputing clusters. The work presented here incorporates

these features and can provide optimal solutions to the mapping problem with respect

to these models.
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Chapter 4

Automated Mapping

Mapping an application to an architecture is a critical step in crossing the im-

plementation gap. The problem space is large and irregular prompting a variety of

solutions to the problem. We solve this problem by using a model of the architecture

and application that exposes the information needed to arrive at an efficient mapping

while abstracting away details of only minor utility. We formulate the mapping prob-

lem between these two models as an integer linear programming (ILP) problem. ILP

is an ideal vehicle for a solution as it is flexible and can leverage powerful general

purpose solvers. Platform specific and user constraints can be readily incorporated

into a core framework. The mapping problem proves to be an NP-complete problem.
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4.1 Motivation

Based on our own experience with application specific multiprocessors and cor-

roborated by data collected for this work summarized in Section 6.4, the most per-

formance critical mapping decisions are:

• allocating tasks to processing elements

• laying out data in memories

• assigning communication links to interconnect

As with traditional multiprocessor platforms, balancing the load of computation

across processing elements has an impact on performance. As shown later in Sec-

tion 6.3.2, applying a greedy method to resource constrained load balancing for a

relatively small task graph targeting can result in a 19% worse solution to the op-

timal with respect to the model. With memory exposed architectures such as the

IXP2xxx series, the choice of where to locate a particular piece of data also has an

impact on performance. Locating a highly accessed piece of data in a faster, smaller

memory can improve performance. Our results show that for loosely coupled task

graphs (those in which most of the data that is shared between tasks are queues),

memory aware task placement improves memory unaware task placement by 5% to

7%. The communication between tasks and data needs to also be mapped to inter-

connection architectural components. For example the IXP2xxx series, microengines

are connected via next neighbor registers which enable low latency, high bandwidth
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communication between adjacent microengines. Utilizing this architectural feature is

a boon to the tasks communicating and also alleviates some of the contention on the

shared memory that would also be used.

Each of these mapping decisions potential impacts the other. Task placement will

decide whether a certain memory can be used for a shared datum. Conversely if a next

neighbor register is tapped for a particular communication channel, the tasks writing

to it or reading from it are restricted to certain processing elements. As all of these

decisions are critical for performance, an integrated mapping approach is needed that

can consider these axes simultaneously. These intertwined design decisions makes for

a large and irregular design space. Automation is the key to traversing the space

effectively.

4.2 Mapping Framework

There are many possible approaches to solving the mapping problem. The ideal

mapping engine is fast and accurate. A static mapping framework should account for

worst case traffic loads without sacrificing the overall performance. It is capable of

arriving quickly at mappings that are efficient. In practice determining a good static

mapping will inevitably require a significant amount of design space exploration.

The mapping engine should allow the designer to tune how much of the design space

needs to be explored. In other words, the designers should be able to direct the

tool to spend more time to find a solution closer to the optimal one. Flexibility is
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another important feature of a mapping framework. The ability to incorporate new

application requirements, designer feedback, and even new architectural features is

part of a ideal mapping solutions. This will permit the mapping engine to be applied

to a variety applications and platforms while still incorporating designer insight.

The mapping framework should be based on an optimization engine capable of

many of these features. As the mapping problem is generally an NP-complete problem

(which we shown in Section 4.7), most tools do not solve it exactly. Heuristics are often

employed to exploit the structure of the problem to arrive at good solutions quickly

in practice. The strongest of these are “approximation algorithms” which arrive at

a solution that is provably close to an optimal one [19]. Randomized algorithms

attempt to traverse the design space by incorporating randomness in the search. For

example simulated annealing samples the design space and picks the most promising

regions to search more extensively. As regions are successively narrowed, a random

variable determines if the algorithm backtracks and tries a different region. Genetic

algorithms produce a set of feasible solutions to the mapping problem. It selects the

best candidates and randomly switches parts of their solution in an effort to create

better ones. Some of the mapping approaches based on these are covered in Section

4.3.

These solutions have been used in various contexts successfully, but lack the flexi-

bility and the efficiency guarantees of an ideal mapping solution. We base our mapping

approach on integer linear programming (ILP). ILP is a flexible method for describing
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a design space and the cost function to optimize for. Decades of research have gone

into powerful engines that can either solve these problems optimally, or provide a

guarantee that a given solution is within a percentage of the optimal. The following

section overviews the basic ideas of ILP and the common solution techniques.

4.2.1 Integer Linear Programming

Linear programming is a constraint based method of describing optimization prob-

lems. The feasible region of the solution is defined by a set of variables of real numbers

and the intersection of constraints which are linear with respect to these variables.

Since each constraint must be linear, the feasible region forms a convex polytope (i.e.

a convex, n-dimensional polygon). The objective function of a linear programming

problem describes the cost function to optimize inside of the feasible region. Linear

programs have the desirable property that if a optimal solution exists, it is on one of

the edges or points of the polytope. Finding the optimal point is then a matter of

traversing the surface of the polytope until the optimal point is found. This problem

can be solved in polynomial time.

Integer linear programming (ILP) problems are linear programming problems

where the range of the variables is restricted to the integer domain. While this

reduces the number of feasible solutions, it significantly complicates the problem by

making points not on the surface of polytope potential optimal solutions. The de-

cision problem of this optimization is NP-complete. Exact solvers typically employ
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branch and bound methodology to arrive at a solution. To bound the solution space,

consider that the bounds of the feasible solution are by linear constraints. If we con-

sider integer variables as having a range of real numbers, the resulting problem is the

LP-Relaxation of the ILP. If the optimal solution of LP-relaxation problem happens

to be integer, this is optimal solution of the original ILP problem. If not, it is a

bound on what is the best possible integer solution. Such a bound is still no indi-

cation of where the optimal solution exists in the polytope. To examine the interior

of the polytope, the region is divided along one of the variables. If there is a single

division, the solution must exist in one of the these two regions. These subproblems

are solved recursively until an optimal integer solution is found on the subproblem.

The best integer solution is recorded and used to prune other subproblems. By using

the bounds generated by solving the LP relaxation, branches of subproblems can be

eliminated without finding integer solutions.

Many software solutions exist that are geared to solve large instances of ILP

problems quickly [8]. They employ a variety of solution techniques for deciding what

variables to branch on, how to decompose the problem for solving smaller subprob-

lems, and learning based on previous results. These are employed in solvers such as

Mosek [5], CPLEX [1], and Xpress-NP [3].
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4.2.2 Pseudo-Boolean Problems

Pseudo-boolean problems (or 0-1 integer linear programming problems) impose a

further restriction on the range of the variables. Solvers are specialized to efficiently

traverse a design space defined by 0-1 variables. The similarity of these problems

to boolean satisfiable (SAT) makes them amenable to utilizing well engineered SAT

solvers. While pseudo-boolean problems still have linear constraints, SAT problems

are described using only boolean reasoning. In other words, a SAT problem is de-

scribed using only boolean ANDs, ORs or NOTs. Without addition or subtraction or

multiplication by constants, SAT is unable to efficiently capture problems described

by linear constraints. Recently, SAT solvers have been extended to handle such con-

straints [23] [15]. These solvers can rival the performance of general purpose ILP

solvers on these classes of problems.

4.3 Prior Mapping Work

Existing related automated mapping approaches are in somewhat overlapping

classes. The first are existing frameworks for arriving at mappings that target mul-

tiprocessor platforms. These employ a variety of the methodologies discussed in

Section 4.2. The second class of related work are those ILP approaches that solve

similar problems to the one tackled in this work. The following section touches on

many of these approaches and discusses the differences to this work.
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4.3.1 Existing Multiprocessor Mapping Approaches

Mapping applications to multiprocessors has been examined before in the field

of networking. Shangri-La [27] proposes an alternate flow from a DSL called Baker

to the IXP2xxx series. Applications are partitioned and annotated with mapping

information which is used by a runtime system to assign them to processing elements.

To ensure packet delay guarantees are met, Kokku, et al. present an algorithm can be

used for allocating processors to computational stages [41]. Scheduling mechanisms

have also been examined specifically for SMP Click [18] [13]. Static assignment in an

SMP system increases performance by increasing the amount of shared data locality

on a given processor. Srinivasan et al. consider the scheduling problem for the Intel

IXP1200 and present a theoretical framework in order to provide service guarantees

to applications [62]. However, they do not consider practical resource constraints

of the target architecture, nor do they test their methodology with real network

applications. In contrast, our approach provides an efficient solution to the mapping

problem, explicitly taking into account resource constraints of the multiprocessor.

Looking more broadly, the problem of task allocation and scheduling has be con-

sidered for decades by the scientific computing and supercomputing community [58]

and general multiprocessor models [17][60]. With careful consideration of the problem

structure, they created a variety of heuristics and approximations schemes that yield

high-performance solutions when mapping to specific platforms. These solutions came

at the expense of portability to other domains including application specific multi-
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processors. The unique resource constraints of the embedded multiprocessing world

limits the applicability of these approaches. However, there are many lessons to be

learned from this community. For example, programming at the task level tends to

lead to portability issues and makes race conditions difficult to handle. Conversely,

parallel languages tend to remove programmer too far from task level considering

multiprocessors are motivated by performance.

4.3.2 Existing Integer Linear Programming Approaches

ILP has proven to be a robust solution method to tackling mapping applications to

embedded multiprocessors. The advantage of ILP is the natural flexibility to express

diverse constraints and its potential to compute optimal solutions with reference to

the problem model. Yang et al. have developed an ILP framework to minimize the

use architectural resources considering computation allocation, targeting the IXP2400

[43]. In work done here at Berkeley, Jin, et al. consider the mapping problem of tasks

to a soft multiprocessor instantiated on an FPGA [37]. Eisenring, et al. present a

CoFrame, a modular and flexible framework for exploring architectural design spaces

as well as mapping by using task graphs consisting of communication and compu-

tation [50]. Bender develop an ILP formulation [10] for task allocation schemes for

heterogeneous multiprocessor platforms. The formulation arrives at a mapping of

application tasks to hardware resources that optimizes a trade-off function between

execution time, processor and communication costs. Wehmeyer, et al. also employ
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ILP in a uniprocessor setup to optimize for memory placement of instructions and

data across multiple exposed memories [69]. Methods for resource aware a compiler

are presented by Palsberg and Naik, focusing on instruction scheduling and register

allocation [56]. Hwang, et al. [30] presented an ILP model for resource-constrained

scheduling and developed techniques to reduce the complexity of the constraint sys-

tem.

We utilize ideas from many of these approaches when constructing our own frame-

work. We use a similar set of applications as Yang [43] which also uses a task graph

style of representing the application profiled with completion times. Their approach

targets the IXP using an ILP framework, but does not consider the data to memory

or topology of the architecture. Like Bender [10], we use an architectural model con-

sisting of processing elements, memories, and interconnect. In a collaborative effort

here at Berkeley with an ILP formulation targeting FPGA soft multiprocessors [37].

We developed core set of architectural constraints that are applicable across these

two targets.

Missing from these works is an integrated consideration of task allocation and data

layout onto multithreaded processing elements with a diverse memory hierarchy. This

is the key design problem when traversing the implementation gap for an application

specific multiprocessor. Our work examines this problem in the context of a complete

design flow for ASMPs, not an incremental improvement to an existing one. Domain

specific knowledge contains useful assumptions to construct models which can be
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mapped quickly while still producing efficient implementations.

4.4 Application Model

For our application model we use a task graph that can be directly mapped to the

architectural model. We define a task graph as a graph with nodes of computational

blocks called tasks and the states which are read or written by them called data.

A simple task graph depicting a two port forwarder is shown in Figure 4.1. Tasks

are shown as white ovals while data are gray boxes. These nodes are connected via

edges that represent communication links with directionality indicating reads and/or

writes between nodes. A task graph may be mapped onto a corresponding archi-

tectural graph by covering tasks with processing elements, data with memories, and

links with interconnect. For simplicity we require that connections occur only between

tasks and data, not between data and data or between tasks and tasks. Any commu-

nication that is not rendezvous style communication between tasks will require some

memory resource. As rendezvous is not a dominant form of communication in net-

working applications, a communication channel between two tasks in the application

is modeled as datum with edges between the two tasks.

The restriction on communication leads to the following assumption: dependencies

between tasks are assumed to be decoupled. In networking applications, communi-

cation between tasks is principally packets through queues. After a network device

is well past its initialization, it is in “steady state”. In a well balanced network ap-
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Figure 4.1: Task graph as an application model

plication that highly utilizes the platform, steady state implies most queues having

some packets and every task running or ready to run. If the implementation is in

steady state and tasks are waiting for packets to execute, then there are other bottle-

necks which are limiting the performance of the system, not scheduling dependencies.

We model steady state as periods of identical task invocations. Figure 4.2 shows an

example of a system period visually. When running on hardware, tasks are usually

allowed to run whenever the processor is idle, which would make Figure 4.2 have tasks

running in during prior stage. Conversely, a task may occasionally have a longer ex-

ecution time causing it to borrow from the next system period. Such effects can play

a role in tuning the implementation for more performance, but they are difficult to

capture using models used by automated tools. These second order effects are left to
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Figure 4.2: System period

the designer to express the implications to the mapping engine.

When considering the mapping of a task graph to an architecture, model of how

much many resources it consumes and how often it consumes them is needed. For

example from Figure 4.1, let the header processing1 task take 10 cycles to process

a packet and header processing2 task take 5 cycles. Also, let 4 times as many

packets ingress through port 2 than through port 1. header processing2 consumes

more execution time in the implementation than the seemingly heavier weight task

header processing2. A model should factor in both rates of execution along with

cycle times. To this end our execution model normalizes all task annotations to

a single system execution period. In the preceding scenario if the system period

was set to the arrival rate of packet to port one, the execution cycles consumed for

header processing1 is 10 cycles and for header processing2 is 20 cycles.

The following section details the components of the task graph. The notation used
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for describing the ILP problem will be slowly introduced in this section, but the full

condensed description of the notation can be found in Section 4.6. The construction

of the task graph from the application description is discussed in Section 5.3.

4.4.1 Tasks

In our application model, tasks represent loci of computation that may execute in

parallel with respect to other tasks. The set of tasks T is all of the tasks present in

a given application. Outgoing and incoming arcs denote communication with other

parts of the application. Currently, the tasks do not have unique ports, but the model

could be extended to incorporate them. The granularity of tasks is not fixed. An

application may choose to represent computation in a finer or coarser granularity as

need be.

In general a variety of proprieties may characterize a task. Typically the most

important is the time needed to complete during one system period. This may be

captured in a few ways. The most common are worst case execution time and av-

erage case execution time. For more accuracy on tasks with variable execution, the

distribution of execution times can be captured and include variance, type of distri-

bution, median value, etc. Patterns of execution time can also be useful. If every

other invocation of a task takes half the time, designers may be able to utilize that

when scheduling it. Patterns reflect changes in internal state given regular input,

while a data dependent execution profile reflects how different data size, type, or
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value affects the execution time. Execution time can be broken down into the cycles

spent actively executing instructions and the cycles spent waiting for a long latency

event (like a read from DRAM) to return. This breakdown can be especially useful

for multithreaded processing elements common to many network processors that can

swap in ready threads for waiting ones with little or no time overhead. Tasks may

also be either preemptable or run to completion. Such a property has implications

on how the code in task is written and how it is treated for performance.

For our modeling, we annotate a task t ∈ T with the average execution cycles

consumed et and the average time spent waiting for long latency events lt given worst

case input. Exposing the cycles consumed by active execution and the cycles spent

waiting for latency events creates the potential to utilize hardware multithreading, a

common application specific performance enhancement. The choice of focusing on the

average case is motivated by the fact that worst case execution time in practice can

be an order of magnitude greater than the average. Hosts on a network are resilient

to the occasional corrupt or dropped packet, so a missed deadline that leads to a

dropped packet is tolerable if it means higher total throughput for the majority of

packets. Programmers design around this principle, optimizing for the average case

and improving the worst case traffic profiles for their application.
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Target Specific Modeling

Certain tasks characteristics can be exposed specifically fora particular target. For

example, applications targeting the IXP1200 often benefit from the consideration of

multiple implementations. The functionality of a task may be implemented in differ-

ent ways. For example a lookup table task may be implemented with a larger route

table to reduce the number of memory accesses. Considering multiple implementa-

tions proves to an important decision in the IXP1200. For all tasks T , there is a set

of available implementations H . Since any given task t ∈ T may only be able to use

some h ∈ H , the viable implementation classes are described by the set B ⊆ T ×H .

With this construction an implementation class h defines the execution cycles con-

sumed eh instead of a task. A task’s et depends on the selection of an implementation

class.

4.4.2 Data

Data nodes D in the task graph represent state that is needed for the execution of

tasks. Data can be read from and written to, but does not perform any computation.

Like tasks, data can be characterized in a variety of ways that is somewhat dependent

on the architecture. The size of a datum can be measured in bits, bytes, or words.

The actual space it will consume in the platform may depend on the tools ability

to pack smaller variables into larger words. Otherwise one bit of state may use

an entire word of space in memory. The other major characteristic of a datum is
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the way it is accessed. A datum may be accessed by reading and/or writing it.

The number of times of each during a given system period can be measured as the

average or as the worst case. It can be modeled as different statistical functions (e.g.

uniform or Gaussian) and be profiled for variance. As with execution time for tasks,

accesses may exhibit patterns that can be exploited when mapping, including input

dependent number of accesses between a task and a datum. Contention for a shared

datum is another characteristic to model for data. Data with multiple writers must

be protected with critical sections when modification requires more than a single

atomic operation. A datum with many writers may leave many tasks often waiting

for access, severely affecting system performance. These are often modeled with

exponential growing cost with respect to the number of writers.

We model a datum d ∈ D in terms of its size sd measured in words as most

compilers for network processors are unable consolidate smaller data into words. For

a read from a datum d ∈ D to a task t ∈ T , we capture the average number of read

accesses given a worst case input load for a system period as a weight wR
t,d. This can be

visualized as a weight on the arch between the tasks and data. The average number

of access under worst case load is appropriate for the same reasons that a task’s

execution time is well modeled as an average under worst case input. Conversely, a

write from t ∈ T to a datum d ∈ D is modeled by a weight wW
t,d on a write arc between

those two nodes. Read-modify-write access of data which cannot be described by a

single atomic instruction are labeled in each task. These are inserted into the graph
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as weighted read and write arcs with an extra weighting penalty. This construction

is covered in detail later in Section 5.3.

4.4.3 Communication

Communication between tasks and data is represented as arcs in the task graph.

Application communication can be principally characterized by bandwidth, direction-

ality, and connectivity. Bandwidth is the amount data that is transfered in a certain

amount of time. As with execution time and data access profiling, the bandwidth

of a link can be characterized by average case or worst case. It may be modeled by

a statistical function, a pattern, or data dependent profile. The communication is

built using some protocol in the tasks, although it may be simple. The definition

of the protocol can make the communication robust to data loss or to latency. The

sensitivity to latency is protocol dependent. Many network applications will trade-off

latency for throughput, but others like VOIP are sensitive to moderate network la-

tency. Network designers in that case would opt for implementations with a facility to

route low latency packets at the cost of throughput. Directionality and connectivity

of a communication channel describe which application elements are communicating

and in what direction.

We capture the directionality and the connectivity of communication links with

edges between tasks and data in the task graph. The dominant form of communi-

cation between tasks within a networking application is with packets. Most network
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protocols are robust to packet loss, so these links may be lossy. The actual sizing of

the buffer for the communication link is application dependent since bigger buffers

may result in fewer packets dropped, but also higher latency experienced. Therefore,

we leave this issue to the application designer. From the application description, each

communication link is modeled as an appropriately connected and sized datum in the

task graph.

4.5 Architectural Model

Our architectural model is based on our own experience ASMPs in the networking

area. We capture the architecture by modeling the platform as a directed graph

in which the vertices represent processing elements and memories, and the edges

represent available interconnect. Each processing element provides compute cycles

while each memory has certain capacity for holding data and an average access time

to write or read from it. To capture how computational blocks run on multithreaded

cores, the model distinguishes between cycles used for execution and those spent

with the processing element idle during long latency events such as memory accesses.

Each local memory is connected solely to one microengine, while SRAM, DRAM, and

scratchpad are connected to every microengine. This model maybe parameterized for

each of the members in IXP2xxx network processor family by specifying number

of cores and average access time and capacity of memories. The following section

elucidates our model of each of these architectural components.
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4.5.1 Processing elements

The set of processing elements P in our architectural graph are those nodes which

support computation. Processing elements can differ in instruction sets, clock fre-

quency, issue width, pipeline depth, etc. These factors coupled with the features of

the compiler affect how fast a task can be executed and how much data memory it

may consume. The time to access instruction memory and instruction store type

(instruction cache vs. instruction store) are also key parameters to consider when

mapping tasks to processing elements. Instruction store present programmers with

hard limits as to the number of instructions and therefore the size of the tasks that

can be mapped to an architecture.

The architectures focused on in this work have a uniform set of processing ele-

ments for data plane processing. Therefore, we assume uniformity in frequency and

instruction set. Consideration for heterogeneous computing should be a straightfor-

ward extension to this approach. Execution time on a processing element is broken

down into the number of cycles spent actively executing and the cycles waiting for

long latency events to complete. To this end, we profile each task t ∈ T on one of

these uniform processing elements. We profile a task t for execution cycles consumed,

et, and the idle cycles from latency events that cannot be altered by the mapping

stage, known as fixed latency cycles, lt. Tasks also experience latency accessing data

assigned to memories by the mapping stage, called variable latency cycles, vt. The

completion time of a task t is then et + lt + vt.
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Hardware multithreading allows for fast thread swaps that enables processing

elements to stay utilized during a long latency events by swapping out the waiting

task and swapping in a ready one. To model how tasks run on a multithreaded core,

we consider a processing element to be in one of two modes:

• Compute Bound - Latency events are effectively masked by useful execution

done by other tasks and task completion is limited by the speed of execution.

• Latency Bound - There are not enough execution cycles to mask latency

events, so task completion is limited by the speed of the longest task.

To determine which of these two modes a given processing element is operating in, we

calculate number of cycles needed to finish all the tasks on a processing element as the

maximum of the sum of the execution cycles from all tasks assigned to that processing

element and the total number of cycles needed to finish longest task, which is the sum

of the execution cycles, fixed latency cycles, and the variable latency cycles. Consider

the mapping of one task connected to two memory elements and one special purpose

unit, shown in Figure 4.3. An average execution of task t involves a few blocks

of sequential instructions interleaved with memory and special purpose hardware

accesses, which we then model as et, lt, and vt as shown below the execution trace.

Note that vt will change if either d1 or d2 is assigned to a memory with a different

access time.

Once tasks are allocated to processing elements, the total execution cycles con-
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Figure 4.3: Our model of hardware multithreading

sumed and latency can be calculated. When a thread is actively running, it has exclu-

sive control of the processing element. For a processing element p ∈ P the total execu-

tion cycles consumed is
∑

t∈πp

et, where πp = {t ∈ T |task t is assigned to processor p}.

Conversely, during long latency events, other tasks are able to actively run or wait for

their own long latency events to complete. The total execution time needed to com-

plete the tasks assigned to a processing element is at least max
t∈πp

(et + lt +vt). The total

time needed to complete the execution of tasks is the maximum of the value of these

two calculations. If the execution cycles higher, the processing element is acting in a

compute bound mode. If there exists a task t such that et + lt + vt is greater than the

total execution time, the processing element is in a latency bound mode. An example
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Figure 4.4: Our combining tasks on a multithreaded processing element

of how tasks are combined tasks is shown in Figure 4.4 where three tasks have been

assigned to a single processing element. In this case, the execution cycles consumed

sum is found to be greater than the completion time of any one task. Therefore the

completion time is the former and is compute bound.

Processing elements in the network processor community often employ hardware

multithreading which can provide significant performance benefits. An implementa-

tion class with state can only share instructions across the number of hardware threads

n present on the processing element. Instructions for n sharing contexts using context

relative addressing (see Section 2.3.1) can automatically distinguish between shared
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states. Multiple tasks can share the ih footprint. However task n + 1 assigned to a

single processing element cannot make use of this mechanism. It requires duplication

of the instructions that refer to state to prevent improper state sharing. The instruc-

tions that are shareable only up to n+1 contexts are quasi-shareable instructions qh.

When 2n+ 1 contexts are assigned, the instruction store must be tripled, and so on.

4.5.2 Memory

The set of memories M in the task graph are the nodes of the graph that can house

data. Memory can be characterized by its capacity, which is the amount of data it

can hold at any one time. The word size of a memory defines how densely data may

be packed and what the minimum access size of the memory is. The access time itself

is often measured to determined the cost of reading or writing data. Access time

can be effected by the burst modes available which can offer performance advantages

by accessing sequential memory locations. Access time can also be effected by the

number of requesters. Contention models can be used for memories to capture the

cost of accessing highly contented memories. Bandwidth of memory can also be a

metric to consider when mapping data to it. Within a memory structure, designers

often account for where data is located among memory banks. Bank accesses may be

interleaved for higher utilization.

The architectures focused on in this work utilize custom distributed memories

extensively. For a memory m ∈ M , we capture the capacity in words cm. Since we
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statically map an application to the architecture, all of the memory assigned to it must

be less than cm. We assume there is no mechanism for dynamically bringing data into

and out of memory that is transparent to the mapping engine (i.e. memory cache). To

access data housed in memory m ∈M these latency access km. Both writes and reads

are modeled as symmetric access. The latency access cost is modeled as independent

of the size of data. For shared memories, the number of cycles required to send the

request for access and navigate the memory controller are the major contributors to

a latency of a memory event, not the actual transfer of data.

For the IXP1200, memory resources are shared and have symmetric access from

each of the microengines except for small register files. The register files are used

for state for sequential blocks which leaves little room for communication variables.

These variables instead must be located in globally shared memory. While the data

placement in memory is still important, it can be considered separately from task

allocation. The mapping problem can be visualized as the packing of separate tasks

into unconnected processing element bins.

4.5.3 Interconnection

Topology of an architecture is defined by the interconnection of its architectural

resources. Interconnection is the mechanism by with data is transmitted between

these elements. Like memory, it is characterized by access time, which can be ef-

fected by features like bursting, contention, and connection protocol used. For our
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model, interconnection is captured by topology. Access time penalties for intercon-

nection are incorporated into memory latency costs (km) or fixed latency of a task

(lt). This is because for typical network processors there is little choice about the

interconnection mechanism to be used when accessing a resource. Bursting and con-

tention are considered second order effects and would significantly complicate the

model if incorporated.

For the IXP1200, the topology of the architecture is somewhat trivial. The only

memory local to a processing element is its register file. All other memory is global

and has symmetric access latency from any processing element. Data placement in

memory is still important, but can now be considered separately from task allocation.

4.6 Mapping Formulation

The following section formulates the mapping problem using the models described

above. It can broken out into two sections: a core formulation, which uses a general

model of network processors and a platform specific section, which incorporates those

features of the architecture that are custom to it.

4.6.1 Core Formulation

To maximize for performance in the mapping step, we attempt to solve the follow-

ing optimization problem: given a task graph and an architectural graph as previously
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described, find a feasible mapping of tasks to processing elements, data to memories,

and communication links to interconnect such that the maximum cycles needed by

any processing element during an average period of tasks, called the makespan, is

minimized. A summary of the constants are:

et execution cycles consumed by task t

lt fixed latency cycles of task t

km latency incurred by access memory m

sd space in memory consumed by data d in words

cm capacity of memory m in words

wR
t,d access weight of read from data d to task t

wW
t,d access weight of write from task t to data d

np number of hardware threads processing element p

Variables in the formulation are in the form of a selection matrix, in which a one

represents that an architectural element is covering an application element. More

formally they are:

Xt,p ∈ {0, 1} ∀ t ∈ T, ∀ p ∈ P

task t assigned to processor p

Yd,m ∈ {0, 1} ∀ d ∈ D, ∀m ∈M

data d assigned to memory m
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ZR
t,p,d,m ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ D, ∀ p ∈ P, ∀m ∈M

task t on processor p reads

from data d in memory m

ZW
t,p,d,m ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ D, ∀ p ∈ P, ∀m ∈M

task t on processor p writes

to data d in memory m

Ecycle ≥ 0 max execution time over

all processors (i.e. makespan)

These variables represent the universe of all possible mappings allowed by our

model. We use the following constraints to confine the space to feasible solutions.

∑

p∈P

Xt,p = 1 ∀ t ∈ T (4.1)

∑

m∈M

Yd,m = 1 ∀ d ∈ D (4.2)

∑

p∈P

∑

m∈M

ZR
t,p,d,m = 1 ∀ d ∈ D, t ∈ T s.t. wR

t,d > 0 (4.3)

∑

p∈P

∑

m∈M

ZW
t,p,d,m = 1q ∀ d ∈ D, t ∈ T s.t. wW

t,d > 0 (4.4)

∑

d∈D

sd · Yd,m ≤ cm ∀m ∈ M (4.5)
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∑

t∈T

et ·Xt,p ≤ Ecycle ∀ p ∈ P (4.6)

(et + lt) ·Xt,p +
∑

m∈M

∑

d∈D

(wR
t,dZ

R
t,p,d,m + wW

t,dZ
W
t,p,d,m)km (4.7)

≤ Ecycle ∀ p ∈ P, ∀ t ∈ T

Constraints (4.1) and (4.2) ensures that each task and datum are covered by ex-

actly one processor or memory, respectively. Constraints (4.3) and (4.4) enforces that

each communication link in the task graph is covered by exactly one communication

resource. Capacity constraints for each memory is described by constraint (4.5). The

makespan by definition must be greater than or equal to the number of cycles con-

sumed on each microengine in a given period, which is enforced by constraint (4.6).

Constraint (4.7) forces the makespan to be greater than the completion time of any

task. Note that the summation in this constraint captures the variable latency cy-

cles vt for task t. After we are constrained to feasible mappings, we minimize for

makespan, Ecycle.

4.6.2 IXP1200 Specific Constraints

The biggest difference of the IXP1200 formulation from the core formulation is the

omission of data and communication constraints. Since the architecture does not have

a meaningful graph structure (see Sections 4.5.2 and 4.5.3)), capturing the application
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as a graph and incorporating it into the mapping adds little value. Application model

is better visualized as a set of unconnected tasks without dependencies or data.

If consideration of multiple implementations B of particular task t is important,

this must be exploited in the mapping formulation. Since a task’s execution and

latency vary by implementation, a class H defines execution cycles consumed eh and

latency lh. The set of implementations in an application is the product of classes and

tasks or B ⊆ T × H . B is the set of all (h, t) such that a class h ∈ H exists as a

potential option for implementation for a task t ∈ T .

A summary of the IXP1200 specific constants are:

eh execution cycles consumed by an implementation of class h

ih shareable instruction store footprint of an implementation of class h

qh quasi-shareable instruction store footprint of an implementation of class h

jlimit instruction limit for each processor

For the consideration of multiple possible implementations we add the following

variables to our core formulation. As with the other variables they are in the form of

boolean selection matrices.

Gh,t ∈ {0, 1} ∀h ∈ H, ∀ t ∈ T

task t is using an implementation of class h
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Ah,p,k ∈ {0, 1} ∀h ∈ H, ∀ p ∈ P, ∀ k ∈ {1, 1 + n, 1 + 2n, · · · 1 + n ·

⌈

|T | − n

n

⌉

},

at least k tasks using an implementation of class h on processor p

The following constraints that must be added to model the instruction store lim-

itations of the IXP1200 architecture. A few of the core constraints must be modified

slightly to account for consideration of multiple implementations of tasks.

∑

h s.t. (h,t)∈B

Gh,t = 1 ∀ t ∈ T (4.8)

∑

t∈T

∑

h s.t. (h,t)∈B

eh ·Xt,p ·Gh,t ≤ Ecycle ∀ p ∈ P (4.9)

Ah,p,k = 1⇔
∑

t s.t. (h,t)∈B

Gh,t ·Xt,p ≤ k ∀h ∈ H, (4.10)

∀ p ∈ P, ∀ k ∈ {1, 1 + np, 1 + 2np, · · · 1 + np ·

⌈

|T | − np

np

⌉

}

∑

h∈H

∑

t s.t. (h,t)∈B

∑

k∈{1,1+n,1+2n, ··· 1+n·⌈ |T |−n

n ⌉}

qh · Ah,p,k+ (4.11)

∑

h∈H

∑

t s.t. (h,t)∈B

ih · Ah,p,1 ≤ jlimit ∀ p ∈ P

In addition to assigning tasks to processing elements, an implementation must

be selected for each tasks. Constraint (4.8) ensures that exactly one implementation

is selected for each task. Since tasks execution time varies by implementation, core
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constraint (4.6) must be modified slightly to include implementation selection as

shown in constraint (4.9). Examples regarding how these constraints are applied are

covered in the evaluation section including IP Forwarding in Section 6.3.1 and Diffserv

in Section 6.3.2.

4.6.3 IXP2xxx Specific Constraints

Any feasible mapping should have the application’s communication links covered

by architectural communication resources. The following constraints describe the

restrictions imposed by the topology of the IXP2xxx series. Microengine number j

is denoted by MEj , while its corresponding local memory is LMj. The next neighbor

register that Microengine j reads from is represented as NNj−1 while it writes to NNj .

ZR

t,MEj ,d,LMk
= 0 ∀d ∈ D, ∀t ∈ T, (4.12)

∀ j ∈ {1..|P |}, ∀ k ∈ {1..|P |}where j 6= k

ZW

t,MEj ,d,LMk
= 0 ∀d ∈ D, ∀t ∈ T, (4.13)

∀ j ∈ {1..|P |}, ∀ k ∈ {1..|P |}where j 6= k

ZR

t,MEj ,d,NNk
= 0 ∀d ∈ D, ∀t ∈ T, (4.14)

∀ j ∈ {2..|P |}, ∀ k ∈ {1..|P | − 1}where j 6= k + 1

ZW

t,MEj ,d,NNk
= 0 ∀d ∈ D, ∀t ∈ T, (4.15)

∀ j ∈ {1..|P | − 1}, ∀ k ∈ {1..|P | − 1}where j 6= k
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∑

t∈T

Xt,p ≤ n ∀ p ∈ P (4.16)

Constraints (4.12) and (4.13) force data linked to a particular task to not be

associated with a local memory not on the same microengine. Constraints (4.14) and

(4.15) ensures that data being used as a producer-consumer link may only be assigned

to a next neighbor register if the associated tasks exist on microengines before and

after the register, respectively. Finally, we restrict the solver to finding solutions that

do not require multiple tasks to be implemented by a single thread as described by

constraint (4.16). Since an architecture like the IXP2800 has 128 hardware threads,

most applications are not limited by the number of tasks. In fact in the construction

of the task graphs, duplication of computational chains in the Click graph will be

done to create more tasks to take advantage of extra thread. To utilize the hardware

thread scheduler for swapping between tasks.

These constraints capture the basic features of the IXP2xxx necessary to arrive

at high performance implementations, but we acknowledge that certain applications

will require guidance from a designer to arrive at efficient or even feasible mappings.

Such guidance could include binding a particular task to a certain microengine or

ensure certain tasks appear on the same microengine together. As benefit of using

ILP, this formulation can accommodate these or many other conditions like it without

modification to the original constraints.
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4.6.4 User Constraints

As with any model, some details which affect performance are inevitably omitted.

While an ideal model exposes the important features of the general problem, certain

instances of the problem may be greatly effected by detail not modeled. Designer

insight has always been the key to solving this problem, and it must be harnessed for

any performance oriented framework to succeed.

ILP is particularly adept at incorporating designer guidance, as the underlying

engine assumes nothing about the structure of the problem. To guide the tool, a

designer need only add a constraint with the rest of the problem indicating a partial

solution or simply a restriction in the design space. The designer’s only restriction to

guiding the tool is that the constraint must be linear. This still permits a expressible

facility for incorporating guidance. For example, if a designer had decided on t1 and

t2 are to be assigned to processing element p1, he adds the constraints:

Xt1,p1
= 1 (4.17)

Xt2,p1
= 1 (4.18)

Other constraints become trivially true and certain variables have become constants,

but these do not conflict with the original set of constraints in anyway. For a more

complex example, consider the case where a designer wants a task t1 to be assigned

to a processing element with at most 1 additional task to it. Let N be a sufficiently
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large number:

N ·Xt1,p +
∑

t∈T\{t1}

Xt,p ≤ N + 2 ∀ p ∈ P (4.19)

4.7 Complexity Analysis

As discussed in Section 4.2 ILP provides enough expressiveness to capture archi-

tectural features such as multithreading, next neighbor registers, and quasi-sharable

instructions, but is still able to solve the mapping problem exactly. In this section we

show that the decision version of problem is in the complexity class of NP-complete.

To this end we must prove two things: first that the problem is in NP and second

that an NP-complete problem is polynomial-time reducible to this one.

Definition Let TASK-GRAPH-MAPPING as the problem formulated in Section

4.6. A task graph Gtg is given with nodes of tasks T and data D with directed edges

that represent communication between the two. A architecture graph Garch is also

given with nodes of processing elements P and memories M with edges defining their

interconnection. A solution to the mapping problem is finding a covering such that

all t ∈ T is covered by exactly one p ∈ P and that all d ∈ D is covered by exactly one

m ∈ M where the makespan Ecycle captured by equation (4.6) is not greater than a

given number N . Furthermore, the constraints C in Section 4.6.1 must be satisfied

for a feasible mapping.

Theorem 4.7.1 TASK-GRAPH-MAPPING is NP-complete.
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Proof We must show that TASK-GRAPH-MAPPING is in NP and that an NP-

complete problem is polynomial-time reducible to TASK-GRAPH-MAPPING.

Lemma 4.7.2 TASK-GRAPH-MAPPING is in NP.

Proof Given the inputs to the problem are the graphs Gtg and Garch and the con-

straints C, a solution can be checked by evaluating each of the constraints once. The

makespan Ecycle can be directly calculated from the properties of the graphs and

the solution in question. This requires only O(|Gtg| + |Garch| + |C|) time which is

polynomial in the size of the input.

We use bin packing as our known NP-complete problem that can be polynomial-

time reduced to TASK-GRAPH-MAPPING.

Definition Let BIN-PACKING be the NP-complete bin packing decision problem.

Given a set of items I and a set of bins B each with a capacity L, each item i ∈ I

must be placed in exactly one bin, where it will consume li units of capacity in the

bin. The decision is whether all the items I can fit in the bins B.

Lemma 4.7.3 BIN-PACKING is polynomial-time reducible to

TASK-GRAPH-MAPPING.

Proof We must find a reduction function f where a solution Sbp to a BIN-PACKING

problem BP is valid if and only if f(Sbp) is a valid solution to a TASK-GRAPH-

MAPPING problem TGM. We define f to evaluate Sbp using the following construc-

tion of TGM. A processing element p ∈ P is created for each bin b ∈ B (i.e. P is
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isomorphic to B). A task t ∈ T is constructed for each i ∈ I where execution cycles

consumed et is set to the value of il. The makespan bound N is set to the same value

as L. Every t ∈ T has no fixed latency cycles (i.e. lt = 0). There is no data (D = {})

and no memory (M = {}). There are no edges in either Gtg or Garch.

By this constructions bins are processing elements and items are tasks. Since there

is no data and no fixed latency on any task, every processing element is operating in

a compute bound mode. Therefore the makespan is determined by the sum of the ets

of the tasks assigned to it. Furthermore since no data or communication requirements

exist in the task graph, most of the rest of the constraints C are vacuously satisfied.

If a set of items can fit into a set of bins in BP, then the same arrangement of tasks

to processing elements must necessarily fit under a makespan of N . Conversely if

a set of items has no way of fitting into the bins, there is no arrangement of tasks

to processing elements that fits under a makespan of N . Thus BIN-PACKING is

polynomial-time reducible to TASK-GRAPH-MAPPING.

Since Lemmas 4.7.3 and 4.7.2 hold, TASK-GRAPH-MAPPING must be an NP-

complete problem
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Chapter 5

Application Transformations

Domain specific languages enable natural application capture but are also struc-

tural with uniform computation and communication semantics. These domain specific

constructs can be leveraged to transform the original application description to a task

graph representation. The application designer must augment the original applica-

tion description and supply a library of elements annotated with profile information.

With this augmented application description the task graph needed by the mapping

engine can be created automatically using polynomial time algorithms. Higher per-

forming implementations can be achieved by managing local data used across multiple

Click elements. More throughput can also be achieved by exposing more of the appli-

cation parallelism through retiming and replication of tasks. Manual techniques and

heuristics may be used on the original application description to expose this additional

parallelism.
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5.1 Motivation

To facilitate an efficient mapping, a task graph exposes the computation, data,

and communication of an application while abstracting away all other details. While

this is effective representation for solving the mapping problem, the task graph is

not the most natural way of capturing an application. To describe an application

as a task graph, designers must consider their mental model of the application and

extract the parallelism into concurrent tasks. The application semantics must be

mapped faithfully to task graph semantics and the task graph annotated with profiling

information. Designers must also take care to arrive at the appropriate granularity:

one that will give freedom to the mapping engine while not burdening it with an

unnecessarily large design space. Poor choices on any of these design decisions can

mitigate the benefits of using a task graph and the architectural model proposed

by this work. Describing an application at this level is better than at the low level

languages that ship with many of these devices, but is still significantly removed from

our ideal application entry environment.

By using domain specific languages application, designers enjoy high productivity

through natural application capture. The structural nature of the description and re-

stricted semantics also enables automatic task graph generation and application level

optimizations. The semantics, granularity, and graph differ between the application

representations, but algorithms and heuristics can traverse this remaining piece of

the implementation gap. The following section covers first what must be added to
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the original domain specific language description of the application to facilitate this

automated translation. It describes the algorithms which consume this augmented de-

scription of the application and produce a task graph that may be efficiently mapped

using the approach described in the previous chapter. We end this chapter with the

manual techniques and heuristics used to find application level optimizations that are

difficult to detect or perform with a low level application description.

5.2 Domain Specific Language Additions

While a domain specific language like Click is a great starting point for producing

a structured, parallel representation of the application, a Click description of an

application lacks information necessary to produce an efficient implementation. As

the Click description is used to build the task graph (and later generate code), we

make additions that mirror the constructs of the task graph. For example, Click

elements are profiled for average execution cycles consumed and idle cycles during

long latency events under worst case input load. This section covers the information

added to the original application description which enables the transformation to

task graphs. As an illustrative example for this section, we recall our simple two port

forwarder shown in Figure 5.1.
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Figure 5.1: Simple two port forwarder

5.2.1 Packet Distribution

The percentage of packets that flow along each arch under a reasonable worst

case load should be specified to accurately construct task graph edge weights and

task profiles. Since only packets flow over arcs, each is annotated with the number

of packets produced on a single execution or firing of its controlling element, which

is the element connected to it that initiates the communication (for a push arc,

the immediately upstream element and for a pull arc the immediately downstream

element). The weight is relative to the controlling element and is independent of other

arc percentages or element firing rates. Figure 5.2 shows an example annotation of

the simple two port forwarder. The controlling element of the arc annotated with

0.75
packets
firing

is LookupIP. Input packets cause LookupIP to fire and 75% of them

are forwarded along that arc. As with the task graph edges, we ignore temporary

imbalances of packets between ports and elements with the assumption that the

queues are sized to absorb such effects. By annotating the arcs of the Click graph,

we attempt to capture the long-term packet distribution through the Click graph.

It is on the onus of the application designer to specify a packet distribution that is
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Figure 5.2: Simple 2 port forwarder described in Click

balanced.

Schedulable elements may operate at different rates with respect to a single system

period. A designer fixes the logical duration of a system period and normalizes the

firing rate of each schedulable element to it. In our example in Figure 5.2, the

schedulable elements are the two FromDevices and the two ToDevices. The designer

has chosen to normalize them to the rate at which packets are received on an ingressing

port. By specifying that ToDevice(0) has a rate of 1.5, he expects it to transmit

packets 50% faster than the input ports. Likewise port 1 transmits at half the rate

of the ingressing packets.

5.2.2 Writing Library Elements

Programming in a domain specific language is the primary mechanism by which

the programmer describes the application. However, there will always be new ap-

plications that will need elements of packet processing not contained in the existing

library of Click elements. An application or library designer must specify the com-
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putation of each of these elements. To promote uniformity and ease of programming,

a template is used to describe an element. As with Click, the core packet processing

is described in the SimpleAction function while a Push function captures the func-

tionality if the element is a pushed a packet. As an example, we implement a static

lookup element called LookupIP shown in Figure 5.3. LookupIP consumes a packet

and performs a longest prefix match for the outgoing port of the packet. The packet

is pushed to the element on the corresponding outgoing port of LookupIP. The lookup

functionality of the element is in LookupIPSimpleAction while the push action is cap-

tured by LookupIPPush. Note that many local functions are omitted here for brevity.

Keywords in this description will be used to construct the task graph and later to

generate the code for the final implementation. The following section discusses the

concepts and semantics of the keywords in this description.

The execution cycles consumed and the fixed latency cycles spent waiting for

events should be specified with each implementation of an element. In LookupIP,

they are specified in the first lines of LookupIPSimpleAction. To match their eventual

use in a task graph, these two numerical values are found from running the element on

an unloaded processing element using worst case traffic as input. Note that variable

latency events are not included in this calculation, so LookupIP ’s fixed latency does

not include the access to the trie table since LookupTable may be placed according

to the mapper.

Capturing the scope of variables is needed to properly create the data in the task
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Function LookIPSimpleAction

Data: Packet descriptor p
Result: Returns next hop port number
; /* Setup execution and latency meta data */

ExecutionCycles = 100
LatencyCycles = 0
; /* Describe computation */

int NextHop
declaration (name=Header, type=PacketHeaderStruct, scope=local, size=12)
declaration (name=LookupTable, type=PacketHeaderStruct, scope=regional,
size=10000)
load {ExecutionCycles = 0, LatencyCycles = 60} begin

Header ← LoadHeader(p)
end

read (name=LookupTable, Number of times = 4)
read (name=Header, Number of times = 5)
write (name=Header, Number of times = 2)
NextHop ← TrieTableLookup(Header.DestinationIPAddress, LookupTable)
return NextHop;

Function LookupIPPush

Data: Packet descriptor p
Result: Passes packet descriptor to another function created by the code

generator
int NextHop
NextHop ← LookupIPSimpleAction(p)
switch NextHop do

generateOutputCase

end

Figure 5.3: LookupIP Element Description
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Figure 5.4: Examples of data scoping

graph. With typical parallel programming languages, variables exist in two types:

local (can only be accessed by one thread) or shared (can be accessed by any thread).

While the mechanisms for creating and sharing the variables varies widely, these

two types are ubiquitous. Programmers are expected to map the topology of their

application to these two types, forcing variables that are shared in a very restricted

way to the same shared construct as a variable shared by all execution contexts.

In our experience, networking applications have other kinds of scoping that data

employ. We create the following constructs to be used in the target specific library

element descriptions for the different kinds of scoping used in networking:

• Local – Local variables are local to a particular instance of an element. These

are usually temporary variables created for each new packet. LookupIP expects

exclusive access to this copy of the header of the packet it is processing. When

instantiated in the simple forwarder, a new header datum is constructed for
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each instance of LookupIP as shown in Figure 5.4.

• Regional – Regional variables are shared between multiple instances of a single

element. The computation of an elements may be duplicated by virtue of the

fact that packets from different ports may be processed independently in any

order. Regional data is common to all of these duplicated instances, but is still

separate from other elements in the original application graph. LookupIP has a

LookupTable datum which is shared among all instances of LookupIP as shown

in Figure 5.4.

• Global – Global variables are shared among all elements of a certain type.

This shared state allows for a set of elements of a single type to synchronize

and share information. In our forwarder example, the ToDevices need a variable

to coordinate their access to the shared buffer used for transmitting packets.

As shown in Figure 5.4, the TBUF datum is a global variable to be used by all

of the elements of the ToDevice type.

• Universal – Universal variables may be used by any element in the application.

This special class of data can include packet buffers so that any element can

create or destroy a packet.

After deciding on the scope of each of the variables in an element, the element

writer places tags into the code of the element. These tags expose the memory

accesses, sizes, and scope of each data to be seen by the mapper. The specific location
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of certain tags also guides the code generator so that it may relate the result of the

mapping assignment to the sequential compiler. Tags for variables are as followed:

• Declaration – Declarations of variables must be visible to create the appropri-

ate data in the task graph. These tags include the variable’s name, scope, and

size as shown in Figure 5.3 for Header and LookupTable. The code generator

also uses these tags to indicate the mapping assignments to the compiler.

• Read – A read tag indicates that the data is being read. This adds a read link

entry into the library element or adds to the weight of an existing one.

• Write – Indicates that the data is being written. This adds a write link entry

into the library element or adds to the weight of an existing one.

• Load – Certain variables must be initialized before they can be used. Such

initialization is usually associated with local variables which must be reloaded

or reinitialized with each new packet processed by the element. Loads are

annotated with latency and execution cycles which add to the fixed latency and

execution of the tasks that cover them. Header is a local variable that loads

the words of a packet associated with the IP header from main memory. In a

naive set up, this tag is not needed but it useful when optimizing local variables

across elements which is discussed later in Section 5.4.1.

• Save – If variables that have load tags are modified during the execution of

an element, it is usually appropriate to write that information back. Saves are
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annotated with latency and execution cycles as well.

• Exclusive – While capturing all types of critical sections and synchronization

mechanisms is impractical, it is beneficial to capture a commonly used type

in networking. Exclusive access to a variable is used often in networking to

coordinate concurrently executing tasks. By surrounding a body of code with

an exclusive label for a variable, the code generator can insert a critical section

which grants it exclusive access. The cost of accessing such a variable is best

modeled by an exponential cost with respect to the number of simultaneous

accessors. However in ILP contention modeling with exponentials (even with

a coarse piecewise linear model) greatly hinders the performance of the solver.

We choose instead to add edges with an additional fixed cost to the weight of an

edge. This captures the simple observation that such accesses are more costly

than non-exclusive reads and writes without forbidding variables from being

shared in slower, global memory.

5.3 Task Graph Generation

Even with the additions to the domain specific language discussed in the previous

section, an application description in Click is still not a application model that can

be mapped to the architecture. The push-pull communication semantics of Click

are more complex than that of the task graph’s decoupled communication. Click
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communication implies dependence between the execution of elements. Modeling

this dependence would complicate the mapping formulation and increase the time to

solution. Besides a communication semantic mismatch, the computation semantics of

Click do not match with task graph semantics. In certain situations, multiple packets

may be simultaneously processed in a single Click element while tasks typically process

a single packet per system period. The granularity of the Click graph can also be

problematic as designs often have many small elements. Therefore a transformation

from an augmented Click graph should construct a task graph that respects the

original computation and communication semantics while extracting parallelism that

may be exploited by the architecture.

More specifically, Click provides the following construction for concurrency (first

described in Section 2.5.1):

• Packets on different execution contexts may operate in parallel. Packets along

different paths may be processed in any order or in parallel, provided the exe-

cution contexts running fire at the appropriate rate. Even a single element may

process multiple packets in parallel, if they originate from different schedulable

elements.

• Packets on a single execution context are guaranteed to stay in-order. On any

given path of the Click graph, a packet is guaranteed not to pass or to be

passed by another packet on the same path. This can be particularly important

in protocols sensitive to ordering like TCP, in which many out of order packets
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cause retransmissions and lower effective bandwidth.

We use these two assertions of Click to structure our task graph generation. First, par-

allelism is readily extracted by creating a tasks for each push chain or pull chain that

begins with a schedulable element (see Section 2.5.1 for further explanation). Non-

schedulable elements on the push or pull chains that originate from the schedulable

element may be covered by more than one task, which replicates the computation of

the element. To ensure that the in-order guarantee is met, each schedulable element

path (i.e. each task) is executed by a single execution context. It cannot begin pro-

cessing a new packet until it finishes with the current one. The execution contexts are

free to operate concurrently thus exploiting this parallelism inherent in the structure

of Click. Each task is constructed such that it is bounded by queues. We assume that

in average operating conditions, internal queues will be non-empty, effectively decou-

pling any dependences between connected tasks. In an average system period, each

task is able to fire and produces output such that all tasks my fire on the subsequent

round as well. This construction is able to transform the push/pull semantics of Click

to homogeneous dataflow of task graphs. It also transforms the in-order, path based

parallelism to concurrent independent tasks.

In our simple forwarder, this construction creates four tasks shown in Figure 5.5.

Each of the four schedulable elements (FromDevice(0), FromDevice(1), ToDevice(0),

ToDevice(1)) becomes a task. Since LookupIP is shared among two schedulable ele-

ment push chains, this computation is duplicated across two tasks. All of the push
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Figure 5.5: Covering Click elements with tasks

Figure 5.6: Task graph generated from a simple forwarder

and pull chains are implemented by tasks that may execute concurrently.

We glean data scope and size information for each of these tasks from the target

specific library entries for Click elements covered by the task. Applying this method-

ology to our simple forwarder including the memory structures described in Figure

5.4, the result is shown in Figure 5.6.

Task parameters are calculated by starting with the firing rate of the covered

schedulable element to determine how many times in a single system period a chain
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executes. Since profiling is done on a per invocation basis for each Click element, this

information must be normalized to account for different firing rates and imbalanced

packet distribution. The execution cycles consumed by each element in a task is

the product of the per invocation execution cycles consumed by the element, the

relative edge weights of the path(s) leading to it, and the firing rate of the schedulable

element. The execution cycles consumed by the task is then the sum of the elements

it covers. The actual calculation is covered in detail in Section 5.3.3. This technique

of accounting for different execution rates and unbalanced packet distribution is also

applied to the fixed latency of a task, its outgoing and incoming edge weights, and

its memory accesses.

Figure 5.6 shows the absolute edge weights calculated for each link in the task

graph using this technique. The system period has been chosen to match the rate of

the FromDevice elements. Each FromDevice is invoked once per system period and

each copy of LookupIPRoute is also invoked once. The memory attached to them is

accessed the same number of times by the tasks as by the original library entries.

ToDevice(0) is invoked 1.5 times on average during a system period. This execution

rate is multiplied by the relative arc weight of 1
packets
firing

to result in a task graph edge

of weight 1.5. Similarly the library entry indicating a single read and a single write

to the TBUF Pointer is modified by the firing rate giving a task graph edge weight

of 1.5 reads and 1.5 writes.

Further parallelism maybe realized by pipelining a design with additional queues
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between elements; however this may result in unintended latency through the appli-

cation. We defer the discussions on optimizing Click graphs to later in this chapter.

The following subsections build up the notation for an augmented Click graph and

the generated task graph. The algorithms and their run times are then discussed.

5.3.1 Click Graph Notation

Before describing the algorithms which performs these applications, we must first

define notation for describing the augmented Click graphs which will be the input to

these algorithms. Consider the following definitions:

• Γclick is the set of types as defined by the Click library such as FromDevice or

DecIPTTL.

• Tuple Gclick = (Vcg, Ecg) defines a Click graph.

• {Vcg, Ecg} is a weighted directed graph with vertex set Vcg and edges Ecg.

• A vertex v ∈ Vcg represents one instance of a Click element. An element v ∈ Vcg

is a tuple of parameters which define the element. v is defined by the tuple

(vi, vτ , vs, vr, ve, vl) ∈ V where V ⊆ Z×Γclick×{schedulable, non-schedulable}×

R+ × R+ × R+. vi is a unique identifier, vτ is the type of element, vs indicates

whether it is a schedulable element, if it is schedulable vr indicates its rate of

execution, and ve and vl refer to its execution cycles consumed and fixed latency.

Consider each of the components separately:
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• vi ∈ Z is the component of v that uniquely identifies v in the application.

• vτ ∈ Γclick component of v is the Click type of v such as FromDevice or Dec-

IPTTL.

• vs ∈ {schedulable, non-schedulable} is the component of v that indicates whether

an element is schedulable or not. Schedulable elements can initiate packet

transfers without external invocation. This property is determined by the Click

library.

• vr ∈ R+ is the component of v that represents the execution rate of v. vr

indicates the number of times v executes in a system period. This rate is only

applicable to schedulable elements as non-schedulable elements execution rates

are determined by the schedulable elements that share a push chain or pull chain

with them. For static scheduling, we again assume that dynamic effects may

be reasonably modeled as a constant periodic invocation. For non-schedulable

elements v, vr is zero (∀v ∈ {v′|v′ ∈ Vcg, v
′
s = non-schedulable}.vr = 0).

• The edges e ∈ Ecg model the dominant communication between the Click

element instances. Only packets are transferred along the edges. e is a tuple

(esrc, edst, ei, ep, ew) ∈ E where E ⊆ Vcg × Vcg × Z × {push, pull} × R+. e is

a directed edge, so esrc is the source node of e, edst is the sink node, ei is the

unique identifier, ep indicates whether it is a push or pull edge, and ew is the

weight assigned to the edge.
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• ei ∈ Z uniquely identifies the edge e in the application.

• ep ∈ {push, pull} indicates whether the packet transfer along the edge

e = (v, v′, ei, ep, ew) is initiated from the sending element v (push) or from the

receiving element v′ (pull). From this property, we can define an active edge:

The edge e = (v, v′, ei, ep, ew) is an active edge of vertex v if it is a push edge

and it is an active edge of v′ if it is a pull edge.

• ew ∈ R+ is the edge weight which represents the communication frequency for

the edge e. This value represents the number of packets that traverse the link

on average per invocation of the edge’s active element. For a push edge this is

the source node, while for a pull edge this is the destination node.

For each Click graph an activity graph Gactivity = {Vcg, E
a} can be constructed

by inverting the direction of pull edges:

Let − e = (esrc, vdst, ei, ep, ew) ∀ e = (esrc, vdst, ei, ep, ew)

Ea = {−e|e ∈ Ecg, ep = pull} ∪ {e|e ∈ Ecg, ep = push}

Figure 5.7 shows the activity graph for the simple forwarder. Schedulable elements

are always the sources of this directed graph while queues are always the sinks.

5.3.2 Task Graph Notation

For the purposes of describing the algorithms of task graph generation, we con-

dense and slightly modify the task graph notation from its original formulation in
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Figure 5.7: Activity graph of the simple forwarder

Section 4.6. Note that while the notation changes slightly, the task graph in the ILP

formulation is directly derivable from this form as the following notation only adds

information. First we introduce two new sets to aid the transformation to a task

graph:

• Γdata is the set of types for data elements. Types of task graph data include

Header, LookupTable, and TBUF Pointer and are not to be confused with the

traditional computer science definition of data types.

• Sdata is the set of data scopes discussed in Section 5.2.2.

Sdata = {LOCAL, REGIONAL, GLOBAL, UNIVERSAL}.

As stated earlier, a task graphGtg is a weighted directed graph. It can be captured

by the tuple (Ttg, Dtg, Etg). The components of this tuple are:
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• Ttg is the set of tasks in the task graph. Each task t ∈ Ttg is captured by the

tuple (ti, te, tl) ∈ Z×R+×R+, where ti is the task identifier, te is the execution

cycles consumed, and tl is the fixed latency in cycles.

• Dtg – the set of data. Data is described by the tuple (di, ds, dz, dτ ) ∈ Dtg where

Dtg ⊆ Z × Sdata × Z × Γdata. di is the datum’s unique identifier, ds is the

scope, dz is the size, and dτ is the type.

• Etg – the set of edges between these two sets. We define an edge as either a read

tuple (ed, et, ew) ∈ Dtg×Ttg×R+ or a write tuple (et, ed, ew) ∈ Ttg×Dtg×R+

(i.e. Etg ⊆ Ttg×Dtg×R+ ∪ Dtg×Ttg×R+. Therefore tasks can only connect

to data and data can only connect to tasks. This eliminates situations such as

two data communicating which is not well defined or two task communicating

without a buffer between them.

5.3.3 Algorithms

A few key algorithms are utilized to transform the domain specific language de-

scription to a task graph. The following section covers these algorithms using the

notation from above.

Partial Execution Rate Calculation

The goal of the transformation algorithms is to cover all Click elements by at

least one task. The transformation must instantiate data as indicated by the target
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specific library of elements and convert the per invocation profiling information to

absolute (with respect to cycles) task parameters. To solve this, we first calculate the

invocation rates of each Click element with respect to a schedulable element. We call

this value the partial execution rate (ψv
v′) of an element v′ with respect to a schedulable

element v. Our algorithm is presented in Figure 5.8 which takes a Click graph and

one schedulable element as input and returns the set of partial execution rates with

respect to that schedulable element. After initializing the set of returned values, the

activity graph of the input Click graph is constructed and then topologically sorted.

This gives a complete ordering of the elements such that all elements upstream to a

given element appear before it in the sorted array. Each element of the Click graph is

then processed in this order. The partial execution rate of an element is the sum of the

partial execution rates (ψv) of its activity graph direct predecessors (V dp) multiplied

by the number of packets sent across the edge that connects them (ew).

The partial execution rates algorithm relies on a topological sort of the directed

application graph. In Click it is perfectly legal to have a cycle and in some cases it is

quite useful. Consider the example shown in Figure 5.9. For those ingressing packets

that have their time-to-live decremented to zero (i.e. those packets that have routed

across more than their prescribed number of hops), an Internet Control Message

Protocol (ICMP) [57] error packet is created with a “Time Exceeded Message”. There

is no unbound processing loop here as the ICMP error packet created by ICMPError

will not fail the time-to-live test. This creates a problem if each of these arcs in this
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Data: Click graph Gclick = {Vcg, Ecg} and the schedulable element vin

Result: The set of partial execution rates Ψvin

calculated with respect to
schedulable element vin

/* Initialize partial execution rates */

foreach v ∈ Vcg do

if vi = vin
i then Ψvin

v ←v
in
r

else Ψvin

v ←0
end

/* Construct activity graph */

Ea←{(esrc, edst, ei, ep, ew)|(edst, esrc, ei, ep, ew) ∈ Ecg, ep =
pull} ∪ {(esrc, edst, ei, ep, ew)|(esrc, edst, ei, ep, ew) ∈ Ecg, ep = push}
Gactivity←{Vcg, E

a}

/* Sort elements in activity graph */

VArray ← TopologicalSort(Gactivity)

for j←1 to |VArray| do
v←VArray[j]
V dp←{v′ ∈ Vcg|(v

′, v, ei, ep, ew) ∈ Ea}

ψvin

v ←
∑

v′∈V dp

ψvin

v′ · ew where ei is the component of (v′, v, ei, ep, ew) ∈ Ea

end

Figure 5.8: Compute Partial Execution Rates Algorithm
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loop has a non-zero weight. The semantics of this would be that some packets would

continue around the loop infinitely. If the product of all the arcs is less than one, this is

a diminishing percentage of the packets, but still creates a problem for the topological

sorting employed by the clustering algorithm. Therefore we require that any loop in

the original Click graph must contain at least one zero weighted edge which the

topological sorter considers absent. In practice this is a reasonable restriction as such

situations usually involve error packets. They are critical for correction functionality,

but can be ignored when optimizing the fast path of a network application. If the

Click loop has a non-negligible impact on performance, manual adjustment of the

task may be required, which would be part of one of the first feedback iterations (see

Section 3.2.7) in the overall design flow.

Constructing the activity graph requires traversing each edge and node of the

original Click graph or O(|V | + |E|). The non-zero weighted edges form a directed

acyclic graph (DAG) which topological sorting has known runtime of O(|V | + |E|).

Each element is then visited once using the order of the sorted array. The calculation

per element involves visiting each of input edge for its edge weight and the partial

execution rate of the source node. Since each edge is only visited once by its sink node,

the runtime is again O(|V |+ |E|). The runtime of the total algorithm is consequently

O(|V |+ |E|).
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Figure 5.9: Example of a cyclic Click graph

Clustering Algorithm

Figure 5.10 describes the clustering algorithm. The algorithm traverses the Click

graph several times to produce a task graph. The outer loop steps through each of

the schedulable elements and creates a task that corresponds to it. This creates a

one-to-one correspondence between tasks and schedulable elements. For each schedu-

lable element, the partial execution rate of each element is calculated with respect

to it. Elements are on the push or pull chain connected to the schedulable element

if they have a non-zero partial execution rate. Each of these elements are stepped

through, first associating it with the current task. Its implementation is then looked

up in the target specific library using LibraryLookupElement. This function takes a

Click element as input and based on the type returns a Click element with its profiling

information included. Implicitly the architectural target is also an input to this func-

tion such that it produces profiling information of element implementations specific
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to the target. The profiled execution cycles consumed and latency cycles are mul-

tiplied by the partial execution rate and added into the existing totals for the task.

To add data to the task graph, the library is checked again for the data elements

associated with the current element using LibraryLookupData. Since data elements

may be shared among other tasks, the graph is first searched for an existing instance

of it based on the type and the scoping rules of the element. This is implemented by

the function FindData which is covered shortly. If a matching data element is not

found, the data is created based on the library data returned by LibraryLookupData.

The current task is connected to the existing or new datum as described by its library

entry profile as returned by LibraryLookupLink.

As an example of how the algorithm works, consider how the algorithm takes the

simple forwarder from Figure 5.1 and creates the task graph in Figure 5.6. Each

schedulable element (both ToDevices and both FromDevices are iterated through in

the outer loop. Starting with FromDevice(0) (abbreviated fd0), the elements’ partial

execution rates are calculated (ψfd0
fd0 = 1, ψfd0

lu = 1, ψfd0
q0 = 0.5, ψfd0

q1 = 0.5, all others

are zero). Note that partial execution rate propagation does not traverse across

queues because they are the sinks of the activity graph. The new task covers the non-

zero elements (FromDevice(0), LookupIP, and the two queues). The LookupTable

and Header data is read from the LookupIP library entry and added to the task

graph. The task graph edges are added between these and the queue data added

according to the weights in the library entry and the partial execution rates. The
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Data: Click graph Gclick = (Vcg, Ecg)
Result: Task graph Gtg = (Ttg, Dtg, Etg, wtg)

/* initialize various elements of Gclick */

Ttg←∅

Dtg←∅

Etg←∅

/* loop through each schedulable element */

foreach v ∈ {v′′ ∈ Vcg|v
′′
s = schedulable} do

T←T∪ a new t

Ψv← CalculatePartialExecutionRates(Gclick, v) //see Figure 5.8

foreach v′ ∈ {v′′ ∈ Vcg|ψ
v
v′′ 6= 0} do

associate v′ with t
vlib← LibraryLookupElement(v′)

te←te + vlib
e · ψ

v
v′

tl←tl + vlib
l · ψ

v
v′

Dlib← LibraryLookupData(v′)

foreach dlib ∈ Dlib do

d′← FindData(Gtg, d
lib) //see Figure 5.11

if d′ is not NULL then d←d′

else

create a new d based on dlib

D←D ∪ d
end

/* Add links based on library entry */

foreach elib ∈ LibraryLookupLinks(vlib, dlib) do

create new task graph edge e based on elib

we←e
lib
w · ψv

v′

Etg←Etg ∪ e

end

end

end

end

Figure 5.10: Clustering Algorithm
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other elements proceed similarly. When LookupIP is processed during FromDevice(1)

task, the FindData function returns the LookupTable datum as it is regional and it

already exists in the graph.

CalculatePartialExecutionRates is an O(|V |+ |E|) algorithm which is called with

every schedulable element. The none-zero partial execution rate elements are iterated

over which is O(|V |). And for each of these the algorithm checks a constant number

of data elements and searches the graph for them. There are O(|V |) data elements

which must be checked by FindData. The final complexity of the clustering algorithm

is O(|V ||E| + |V |3). In practice this run time is negligible with respect to the time

spent in the mapping problem.

Find Data Algorithm

Finding the data in a task graph is not just a simple graph traversal because of

memory scoping. When searching for a matching datum, the match should be found

no further than the scope of the input datum. The FindData algorithm implements

this functionality as shown in Figure 5.11. Along with the datum itself, the current

element being added to the task is an input so that the scope of the element can

be evaluated. It returns either the matching datum from the task graph or a NULL

indicating that the matching data does not exist. For local scoped data, the function

immediately returns as local data is not shared with any other element. For data

of other scopes, each task that has already been added to the task graph is stepped
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Data: The partially completed task graph Gtg = (Ttg, Dtg, Etg,Wtg) and

the datum to be found din and the element vin ∈ Vcg to which the data
is associated

Result: Either the matching datum from the original Click graph dout or
NULL if there is no matching data

/* Local variables are new for each element */

if din
s = LOCAL then return NULL

/* Otherwise search through other tasks already created */

foreach t ∈ Ttg do

Dt←{d|d ∈ Dtg, (t, d, ew) ∈ E or (d, t, ew) ∈ E}

foreach d′ ∈ Dt do

if d′τ = din
τ then

let v be the element in the Click graph using d′

if (din
s = REGIONAL) and (vin

i = vi) then
return dtg

end

if (din
s = GLOBAL) and (vin

τ = vτ ) then
return dtg

end

if din
s = UNIVERSAL then
return dtg

end

end

end

end

return NULL

Figure 5.11: Find Data Algorithm

through. Each datum of each constructed task is examined the for a type match

with the input datum. If it matches, the scope of the input data and the relationship

between the input Click element and the Click element using the existing datum.

Regional data match requires the Click element instances match, global data matches

if the Click element types match, and universal data matches for any datum type

match.
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5.4 Optimizations

Domain specific languages provide structural information about the application

that is difficult to glean from the set of sequential code eventually generated. This

provides this design flow the opportunity for high level optimizations. Exposure of

data with scoping information along with the semantics of the application domain

known permits the software management of data. By combining local data used as

working copy of data in global memory, software managed interprocedural caching

can be accomplished. By eliminating memory accesses, there are fewer latency events

in the resulting task graph and consequently better performing design. Replication of

tasks and breaking up existing tasks makes the granularity of the application finer. A

finer grained application provides more opportunities for the mapping engine to find a

good implementation, but increases the size of the design space. Clustering provides

a useful way of grouping tasks to reduce the design space intelligently, but this coarse

description of the application can be intelligently refined for more performance.

Software caching can be handled automatically using the structural information

of the application and meta-data in the target specific library. We have handled the

replication and retiming of tasks manually but we have also found that it can be

automated as well using heuristics. The following section discusses these techniques

and the heuristics.
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5.4.1 Software Caching

Software caching is a software technique for locating copies of data in global mem-

ory in local resources. Caching for multiprocessors can be handled with hardware,

but for a large number of processors this proves difficult cite. Hardware schemes

retain the transparency of uniprocessor computing, but incur overhead due in large

part to cache coherence protocols which adds significant logic to on-chip real estate

and increases power consumption. Cache miss rates and on-chip buses needed for

cache coherence can account for a significant percentage of the power consumption

on chip [52]. Hardware support for cache coherency can be beneficial, but utilizing

the structure of software is a boon for large scale multiprocessors [28] [7].

Domain specific languages impose structure onto the application designer that can

be exploited at compile time. As with conventional programming languages, data

size and scope is known statically. Using Click with our target specific library, inter-

element (i.e. interprocedural) access to memory can be reasoned about explicitly. A

common scenario in a network application is that a data is explicitly loaded from

main memory into local memory and if modified it is explicitly saved back. This is

the case with many elements in the Click library. For example, Figure 5.12 shows the

data indicated by library elements overlaid on a Click application. CheckIPHeader,

IPMirror, DecIPTTL each load the header for different purposes. CheckIPHeader

verifies the checksum and various flags of the packet header, IPMirror swaps the

source and destination IP addresses, and DecIPTTL decrements the time to live.
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Figure 5.12: Example of a memory access pattern for a local variable

The local variable Header for each of these elements represents the local copy of the

words of the packet in main memory that are the header. The initialization routine

for each element loads the packet from main memory. IPMirror and DecIPTTL both

modify Header so they each save their copy back to main memory.

Local data such as Header has the property that it is scoped to a single context of

execution for one element. During the execution of a push or pull chain of elements

(i.e. a task), each element has exclusive control with respect to that chain over data.

Therefore local data may be safely shared among elements within a task. Such sharing

can reduce the amount of memory needed for a task or eliminate redundant code. As

the application tasks are eventually generated into a set of sequential programs (see

Section 3.2.6), it may be possible for a traditional compiler to find and exploit this

optimization. However, it is difficult to reason about these variables inside and across

the functions. In practice, we have found that compilers for these systems are unable

to find or make such optimizations.

Considering that the elements in Figure 5.12 are implemented on the same con-
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Figure 5.13: Example of optimization of a local variable

text of execution, there is obvious redundancy. Header needs to be loaded only once

at the beginning of the chain and saved back only once at the end. The elements

themselves can share the same local copy by virtue of the fact that they are covered

by the same task and therefore implemented on a single context of execution. The op-

timized memory access pattern is shown pictorially in Figure 5.13. Note by contrast,

if elements are mapped used pipelining instead of clustering, each element could be

operating concurrently with elements in its chain. In this scenario, it is not possible

to share local variables with other elements since it may incur race conditions on data

or they may be working on different packets.

The algorithm for finding the loaders of a particular datum is described by re-

cursive function in Figure 5.14. It is initially called with inputs of the original Click

graph, the schedulable element that defines the push/pull chain (i.e. task), and the

datum to be used as the software managed cache. Also the set of elements that will

do the load is passed by reference initially as the empty set. The function operates by

first recursively checking if the upstream pull elements have already done the loading
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for the datum for all paths leading to this element. If any path does not load the

datum, the current element is searched for a connection to it. By restricting loads and

saves to be the responsibility of elements that use the datum, elements do not need

to contain load and save directives for data they would otherwise have no knowledge

of. Furthermore, locating the loads and saves in elements that touch the data should

minimize the number of unnecessary loads and saves. If a load was missing on some

entry path to this element and the element failed to load the datum, the elements

active output edges (output push edges) are exercised with the same function. This

ensures that an element using the datum downstream loads it before using it.

Software caching requires additions to the element descriptions that employ local

variables. Previously those elements which did not modify the variable could safely

throw away their stored copy. But with software caching, elements upstream may

have modified a local datum but not yet written it back because it is used later in

the context of execution. The elements that did not modify the datum may now have

to write back the result. In the LookupIP simple action, this requires the additional

save code at the end of LookupIPSimpleAction as shown in Figure 5.16.

Software caching for memory exposed multiprocessors is not new. Hot Pages [51]

is a software solution for the Raw Machine [67]. It is a compile time approach that

utilizes knowledge of the state of virtual pages to remove cache-tag lookups. The

lookups are replaced with register comparisons with previously loaded virtual pages.

The target has multi-banked memory whose structure is considered directly. By
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Function GetLoaders(Gclick, v
in, din, V loaders

cg )

Data: Original Click graph Gclick = (Vcg, Ecg), an element vin ∈ Vcg, and a
datum din

Result: The function returns a boolean value indicating whether a load has
covered all upstream paths. Also if the current element should load
the datum din, the function adds the it to the set of Click elements

V loaders
cg , which is passed by reference

static isLoaded ← true //initialize each node to not be a loader

static visited ← false //static variable to prevent path explosion

if visited then return isLoaded
visited ←1
/* Check direct predecessor elements for previously done loads */

V dp←{v′|v′ ∈ Vcg, (v
′, v, ei, ep, ew) ∈ E ep = pull}

if
∧

v′∈V dp

GetLoaders(Gclick, v
′, din, V loaders

cg ) then isLoaded ← true

else

/* Check if the datum is used by element */

foreach dlib ∈ LibraryLookupData(v′) do

if din is based on dlib then

V loaders
cg ←V loaders

cg ∪ v′

isLoaded ← true
end

end

end

/* Call the function on direct successors if the element (or all

paths upstream) failed to load it */

if isLoaded = false then

V ds←{v′|v′ ∈ Vcg, (v, v
′, ei, ep, ew) ∈ E, ep = push}

foreach v′ ∈ V ds do

GetLoaders(Gclick, v
′, din, V loaders

cg )

end

end

return isLoaded

Figure 5.14: Function for determining loaders for software caching
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Function GetSavers(Gclick, v
in, din, V savers

cg )

Data: Original Click graph Gclick = (Vcg, Ecg), an element vin ∈ Vcg, and a
datum din

Result: The function returns a boolean value indicating whether a save has
covered all downstream paths. Also if the current element should save
the datum din, the function adds the it to the set of Click elements
V savers
cg , which is passed by reference

static isSaved ← true //initialize each node to not be a saver

static visited ← false //static variable to prevent path explosion

if visited then return isSaved
visited ←1
/* Check direct successor elements for previously done saves */

V ds←{v′|v′ ∈ Vcg(v, v′, ei, ep, ew) ∈ E, ep = push}

if
∧

v′∈V dp

GetSavers(Gclick, v
′, din, V savers

cg ) then isSaved ← true

else

/* Check if the datum is used by the current element */

foreach dlib ∈ LibraryLookupData(v′) do

if din is based on dlib then

V savers
cg ←V savers

cg ∪ v′

isSaved ← true
end

end

end

/* Call the function on direct predecessors if the element (or

all paths downstream) failed to save it */

if isSaved = false then

V dp←{v′ ∈ Vcg|(v, v
′, ei, ep, ew) ∈ E, ep = pull}

foreach v′ ∈ V dp do

GetSavers(Gclick, v
′, din, V savers

cg )

end

end

return isSaved

Figure 5.15: Function for determining savers for software caching
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Function LookIPSimpleAction

Data: Packet descriptor p
Result: Returns next hop port number
; /* Setup execution and latency meta data */

ExecutionCycles = 100
LatencyCycles = 0
; /* Describe computation */

int NextHop
declaration (name=Header, type=PacketHeaderStruct, scope=local, size=12)
declaration (name=LookupTable, type=PacketHeaderStruct, scope=regional,
size=10000)
load {ExecutionCycles = 0, LatencyCycles = 60} begin

Header ← LoadHeader(p)
end

read (name=LookupTable, Number of times = 4)
NextHop ← TrieTableLookup(Header.DestinationIPAddress, LookupTable)
save {ExecutionCycles = 0, LatencyCycles = 60} begin

SaveHeader(p, Header)
end

return NextHop;

Figure 5.16: Element description adjusted to support software caching
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allocating data across banks, the memory bandwidth of the Raw architecture can be

maximized.

5.4.2 Retiming

Application tasks can be split temporally to expose more parallelism. While

the mapping engine has no knowledge of such internal task boundaries, the domain

specific language describes the application at a finer granularity and includes the

communication semantics. At this application level, designers may safely change the

application description to expose more temporal parallelism to the mapping engine. If

a set of Click elements are connected in a non-branching chain (i.e. there is no element

with a fanout of more than 1), these elements may operate on different packets in

parallel that are moving down the chain. By pipelining the application, each stage

may run concurrently increase the ability to utilize parallel platform. In a system

period, a single task that is pipelined may be broken into multiple pieces. This does

not reduce the amount of execution in one period as each piece must still process one

packet, but it gives the mapping engine more freedom to spread the computation over

multiple processing elements. In networking pipelining can be especially useful when

there is a long chain of computation naturally attached to a given port. We employ

pipelining in each of the IXP2xxx forwarding as discussed in Section 6.3 to decouple

the receiving functionality from header processing.

Pipelining in Click can be accomplished by modifying the application description.
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Figure 5.17: Simple forwarder with pipelining

Figure 5.18: Tasks generated from a pipelined simple forwarder

By interrupting a chain of elements with a Queue and Unqueue pair, a single chain

may be split into two. The new Unqueue element serves as the schedulable element

driving the new chain. If the pipelined Click edge is a push edge, the pair is inserted

as Queue first then Unqueue. This pipeline stage has a push input and a push output

and therefore does not require a change to any of the other elements. Conversely

a pull chain pipeline is inserted as first an Unqueue and then a Queue so that the

pipeline has both a pull input and a pull output. Figure 5.17 shows a possible retiming

of the simple forwarder. When transformed to a task graph, two additional tasks are

created as shown in Figure 5.18. The resulting task graph has the same functionality

but with more tasks, exposes more temporal parallelism.

Pipelining is not always beneficial. First, network designers carefully size buffers
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to absorb the burstiness of network traffic while ensuring there is not undue delay in

routing the packets. Designers also take care to size buffers such that they may be

efficiently supported by the memory target. This carefully sizing and placement in the

application can be upset by the introduction of more queues. Adding pipelining either

increases the memory consumption of the application or changes buffer distribution

consequently altering the applications behavior to bursty traffic. Second, introducing

new pipeline stages adds a new enqueue and dequeue to each packet. Latency bound

stages may not benefit from the offloading of computation if it comes at the cost of an

even greater number of latency cycles. Finally, pipelining disrupts software caching

described in Section 5.4.1. Elements on a push chain that would otherwise be able to

share a local datum when split by a pipeline stage must do multiple loads and saves.

While retiming gives more freedom to the mapping engine, it comes at the cost of

additional latency.

5.4.3 Replication

Application tasks can be split spatially. By allowing a task to process multiple

packets concurrently, allows multiple instances of the same task to run within a

system period. If there are two instances of a task, they can each process one packet

per system period. After normalizing the invocation rates to other other tasks in the

system, they can also be modeled as two tasks processing a packet every other system

period or half a packet each system period. The execution cycles consumed and the
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latency cycles spent by the task are rated accordingly. By exposing spatial parallelism,

a single task can be considered as multiple smaller tasks giving the mapping engine

more freedom to find a good design.

As with retiming, the task graph itself does not contain enough information to

safely replicate a task. A replication algorithm that operates on a task graph would

not be able to determine when to connect to existing data and when to create new

ones. The domain specific language description coupled with the target specific li-

brary contains scoping information thus enabling safe replication. To implement

replication at the application level, the designer or heuristic need only added more

schedulable elements with the same connections as the schedulable element assigned

to the task to be replicated. The computational chain of non-schedulable elements

will be automatically replicated by the clustering algorithm during transformation.

Local variables are created by the same algorithm while the non-local variables are

connected to the new task automatically. An example of replication of a Click graph

and the subsequent task extraction of the retimed simple forwarder is shown in Fig-

ure 5.19. Each schedulable element of the retimed simple forwarder is duplicated,

consequently doubling the number of tasks. Note that the new tasks necessarily have

exactly the same input and output queues. Thanks to packet independence, replica-

tion is an extremely useful technique which most of the applications for evaluation

employ. As discussed in Section 6.4, we have found replication can garner 59% to

122% performance improvement.
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Figure 5.19: Simple forwarder with replication

Replication of network applications has certain limitations. To exploit spatial

parallelism, the target must be able to swap between multiple concurrent replications

of the same task or run them on different processing elements. For architectures

with a fixed number of hardware threads, there is an upper-bound on the amount

of replication that may occur. Furthermore, with each replication more local data

is created that must be accommodated. Since all tasks may be running at the same

time, all of the new local data must be accommodated with more memory. Replication

may also lead to the violation of the in-order packet processing assumption. Since

many protocols are sensitive to packet reordering in the network, routers must avoid

allowing packets on the same flow to overtake each other. Fortunately many common

basic units of packet processing have relatively consistent processing rates on packets

within the same flow. For example, LookupIP has an unknown number of lookups

through the trie table structure for any given packet. But packets within the same

flow have the same destination address, and will consequently exercise the trie table
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in the same way. Such processing regularity and the fact packets are serialized at

each queue (replicated tasks share the same input and output queues) leads to a wide

applicability of replication.

5.4.4 Automated Optimizations

Prior sections described the an automated cache management and manual opti-

mization using retiming and replication technique. As discussed in the prior section,

retiming and replication can have adverse effects on the implementation. In a col-

laborative effort here at Berkeley, a heuristic approach were developed to retime and

replicate the original application description [66]. By adding pipeline stages and repli-

cation to those tasks that are the bottlenecks, the original unpipelined design can be

improved upon automatically. This heuristic approach relies on a fast feedback to

iterate over many possible replications and retimings. As the exact mapping engine

can take minutes to a single instance, we use a bin-packing heuristic in which tasks are

items with sizes equal to the execution cycles consumed and processing elements are

bins. The heuristic that arrives at an allocation of tasks to processing elements. Such

heuristics arrive at sub-optimal results, but perform well enough on loosely coupled

designs to explore the replication space.

However these heuristics perform poorly when replicating a task results in two

tasks accessing a regional datum. As the bin packing algorithm does not group

items before allocating them to processing elements, the replicated tasks are often
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Table 5.1: Heuristic solution for retiming and replication

Application Click Graph Solver Makespan Runtime

IPv4 Original WFD 967 0.2s
IPv4 Original Exact 907 18.9s
IPv4 Replicated Exact 291 738s
IPv4 Original Proposed 290 4s

Heuristic
NAT Original WFD 1645 0.2s
NAT Original Exact 1505 1.3s
NAT Replicated Exact 543 755s
NAT Original Proposed 289 5s

Heuristic

placed on different processing elements. Consequently the datum must be placed in a

memory shared between multiple processing elements which usually has a significantly

higher access latency. A solution to this problem is to introduce a different style of

replication. It differs from the manual replication steps mentioned above in that

all replicated instances of the task are grouped as a single item in the bin packing

problem which is referred to as single item replication. A task using single item

replication has all of its instances placed on a single processing element enabling the

use of local memory for shared data. Replicating a task and representing all instances

with a single item does not change the total size of the item, but lowers the latency

contribution to the makespan. It also changes the resource requirements of an item

regarding the architectural constraints. It increases the number of threads consumed

by an item when allocating it to a bin (processing element).

Initial results for this approach have been promising, producing replicated ver-

sions of the applications that rival the manually replicated and retimed applications
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as shown in 5.1. Like the greedy heuristic applied to DiffServ in Section 6.3.2, ex-

act solutions are almost 10% better than the worst fit decreasing (WFD) heuristic.

Applying replication to bottlenecks while keeping replicated tasks grouped through

single item replication creates improved makespan at a orders of magnitude less time

spent on the problem. The NAT implementation is even better than the manually

replicated implementation. However this is in model only as over replicating the task

which reads and writes to a regional data in globally shared memory creates more

latency than is captured by the model. As the mapping framework relies on a good

starting point from the designer, this approach requires more investigation for the

heuristics appropriate to optimize network applications.
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Chapter 6

Evaluation

Using a commercial network processor and the tools presented in the previous

chapter, we demonstrate that this automated design flow is a productive alternate to

producing efficient implementations. We also show that memory aware mapping in-

creases overall application performance compared to memory unaware mappings. To

this end, we implement a set of representative applications using our design flow se-

lecting applications that range in size and complexity. When possible we hand mapped

or hand coded implementations in alternative programming environments for com-

parisons. We also perform replication of the task graph to increase performance to

within 17% of hand mapped designs. We find that memory aware mapping improves

on memory unaware mapping by 5% to 7% and that it is necessary for reaping benefits

from replication. Replication can improve on the original designs by 59% to 122%.
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6.1 Metrics

Performance of network processing is measured by the rate at which it processes

packets or data. Packet processing is measured in packets per second (pps) while data

processing is measured in megabits per second (Mbps). For a given traffic load, this

is measured in two different ways: throughput which is the maximum ingress rate at

which the router operates without dropping packets and forwarding rate which is the

maximum rate at which packets egress from the device. Throughput can measured

by increasing the ingress rate until the application begins to drop packets. The last

drop free ingress rate is the throughput. Forwarding rate is measured by applying

line rate (the maximum rate of packets for a given port type and packet size) to the

input and measuring the egressing bandwidth. These measurements are based on a

particular traffic load applied to the application. The traffic loads applied vary by

size and processing type as appropriate for the application and are meant to reflect

real world.

6.2 Test Benches

6.2.1 Simulators

We use cycle accurate simulators to exercise our tool flow. For the IXP1200 and

the IXP2xxx series simulation environment that ships with these products. While

the two environments are separate products, they have many similar features: cycle
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accurate execution of instructions on processing elements, memory access, and inter-

connect latencies. The simulator models media access channels (MACs) of various

kinds of ports. The environment also features a test infrastructure that allows users

to build packets from a variety of protocols and to specify parameters such as size,

rate, packet header fields, and the packet’s payload. The packets created are valid

packets that resemble real traffic.

6.2.2 Profiling

To obtain average execution cycles per task, the application was tested with worst

case input traffic. An instance of each task class and implementation was run on a PE

by itself in a functionally correct configuration so that it could be profiled with the

appropriate traffic. We note that different configurations may cause a task to perform

differently, but those effects have not yet been substantial. For shareable and quasi-

shareable instructions, the application was complied with varying task configurations.

Data size was determined by examining each of the elements when assigned to memory

by the compiler. We have seen at most a 15% change in execution cycles consumed

between tasks compiled alone and in the presence of other tasks.

6.2.3 Solvers

To solve the formulations we have tried randomized rounding, pseudo-boolean

solvers, and general purpose ILP solvers. With the IXP1200 target, we have the most
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success with the pseudo-boolean solver, Galena [16] and Ampl/CPLEX 10.1 [1]. The

solvers were run on a Linux desktop with 2GHz AMD Athlon with 512KB of cache

and 1.5 GB of memory. For Ampl/CPLEX we utilize the concept of an optimality gap

to trade off solution time for provably better results. Typically, the closer the solver

gets to the optimal solution (or proving that it has the optimal solution), the more

time it takes for a unit of change in the upper and lower boundaries. Quite often the

solver may find the optimal solution relatively quickly but spends longer proving that

it is. The optimality gap represents the difference between the best known solution

and the bound on what the best solution could be. By setting the optimality gap to

5% for the IXP2400 designs presented in this chapter, the large amount of time spent

on achieving a small potential improvement is removed.

6.3 Applications

Unfortunately there does not exist a set of universally accepted benchmarks for

network processors, much less a set written in a domain specific language. We selected

a representative set of networking applications and built them in our design flow and

when possible alternative design environments. They offer a range of complexity and

scale. IPv4 forwarding is a high performance, low complexity application while the

webswitch is a feature rich application difficult to implement on a network processor

due to its complexity.
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Figure 6.1: Click description of the dataplane of the IP forwarding

6.3.1 IP Forwarding

IP forwarding is a common application benchmark for networking that is discussed

in Section 2.2.1. While relatively simple, the dataplane of the application is readily

comparable with other frameworks and implementations. Figure 6.1 displays the Click

description of the application pictorially. Packets move from left to right through the

diagram. They ingress through FromDevice and are immediately queued. Packets

are dequeued and continue through a header verification process, a next hop lookup

based on a 4 level trie table, and then have their time-to-live counters decremented.

Finally they are queued and then egress through ToDevice.

Implementation on IXP1200

We implemented a 16 port Fast Ethernet (16x100Mbps) IPv4 router based on

a 16 port version of the application shown in consisting of 16 receive tasks and 16
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Table 6.1: IPv4 forwarding task characteristics

Number Execution Shareable Quasi-shareable
Class of Tasks Cycles Instructions instructions

Receive 16 337 801 0
Transmit (Impl 1) 16 160 348 0
Transmit (Impl 2) 16 140 5 285

transmit tasks with characteristics shown in Table 6.1. A transmit task has local state

that may be can be coded to access that data in two ways. The task can use either

shareable instructions or quasi-shareable instructions to reference its shared variables

(see Section 2.3.1 for an explanation on shareable versus quasi-shareable instructions).

For this application, we target a version of the IXP1200 with an instruction store of

1K words per microengine.

The instruction store constraints preclude the two task classes from coexisting

on any PE. The problem then degenerates into bin packing, the only wrinkle being

that Transmit class tasks may exist in either implementation. Implementation 2 is

preferred for all Transmit tasks since it is faster of the two and fits within instruc-

tion store limits. The resulting configuration shown in Table 6.2 (RX=Receive and

TX=Transmit). The automatically mapped implementation is exactly the same par-

tition that was arrived at from hand tuning. We compare the automatically generated

design to a hand coded design written in Microengine C as shown in Figure 6.2. The

modularity of the framework of the automated design incurs some overhead, making

the header process take longer than the microengine C. As packets get larger, they

both become transmit limited.
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Table 6.2: IPv4 mapping to the IXP1200

Application PE1 PE2 PE3 PE4 PE5 PE6
IPv4 - Auto 4 RX 4 RX 4 RX 4 RX 8 TX 8 TX
IPv4 - Hand 4 RX 4 RX 4 RX 4 RX 8 TX 8 TX

Figure 6.2: IXP1200 IPv4 forwarding rates vs. different packet sizes for each approach
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Figure 6.3: Retimed IP forwarder for the IXP2400

Implementation IXP2400

The same basic functionality is in the IXP2400 implementation. Instead of re-

ceiving and transmitting to many 100Mbps Fast Ethernet ports, the IXP2400 design

implemented uses 4 Gigabit Ethernet ports. The 4 port version of the Click graph

implemented on the IXP2400 reveals a receive bottleneck as more packets stream in

through fewer ports. Since Receive tasks do not share any local data with down-

stream, pipelining the design by inserting a Queue/Unqueue pair is an effective way

of increasing the forwarding rate as shown in Figure 6.3. There are three task classes

as the Process Header tasks have been separated from the FromDevices.

Since the IXP2400 has an exposed memory architecture that may influence the

placement of data along with the task, the tool generates the task graph shown in

Figure 6.4. Ovals represents tasks while boxes are data. The receive tasks are at the

top of the graph, one for each port which feed to process header tasks in the middle.

The transmit tasks are located at the bottom. The task execution and latency weights
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Figure 6.4: 4 port IP forwarder task graph

Table 6.3: 4 port forwarder task characteristics

Execution Fixed
Element Number Cycles Latency
Receive 4 143 353
Process Header 4 267 220
Transmit 4 148 402

shown in Figure 6.3 are computed from the profiled library of elements. The mapping

engine uses this information to produce the set of assignments indicated by Figure

6.5. The white boxes enclosing ovals represent processing elements covering tasks and

filled boxes encompassing gray rectangles as memories covering data. Note the use of

two next neighbor registers for queues.

This implementation can be improved upon by exposing more of the application

level parallelism. In this case, we can create more tasks to run in a system period.

By creating four copies of the schedulable elements, new computational paths form

through the Click graph, the tool constructs more tasks to allow for more threads and

microengines to be working on that stage in parallel sketched in Figure 6.6. Some

of the memory resources are shared differently based on their use in the application.



164

uEngine 6 uEngine 7

uEngine 0

uEngine 1

uEngine 2

uEngine 3

uEngine 4

uEngine 5

Local 

 Mem 5

Next

Neighbor

Reg 1->2 SRAM

Local 

 Mem 6

Local 

 Mem 7

Next

Neighbor

Reg 3->4

Scratch

Local 

 Mem 0

Local 

 Mem 1

Local 

 Mem 2

Local 

 Mem 3

Local 

 Mem 4

fd1

currPacketLocinitPacketLocdescLocport0

fd2

currPacketLoc1initPacketLoc1descLoc1port1

fd3

currPacketLoc2initPacketLoc2 descLoc2port2

fd4

currPacketLoc3initPacketLoc3 descLoc3port3

uq1

header q0q1 q2 q3

uq2

header

uq3

header

uq4

header

td1

toDevice_currPacketSizepacket_desctfifo

td2

toDevice_currPacketSize1 packet_desc1tfifo1

td3

toDevice_currPacketSize2packet_desc2tfifo2

td4

toDevice_currPacketSize3packet_desc3tfifo3

lookuptable

Figure 6.5: 4 port IP forwarder mapped to the IXP2400

For example, the state corresponding to receiving a packet from a single port must

be shared among all receive tasks bound to that port. This results in a set of highly

connected receive tasks for each port. The memory aware mapping clusters these

highly connected tasks as shown in Figure 6.7, successfully exploiting the exposure of

more parallelism. The only data to be located in non-local memories are LookupTable

and queues.

To assess the utility of considering memory simultaneously with task allocation,

both approaches are mapped with a memory unaware mapping formulation. The

constraints are the same except for the objective function which no longer considers

the cost of accessing data in memory. Data must be assigned to a feasible memory, but

the formulation is unaware of the memory’s contribution to the makespan. To improve

trivial solutions where all data is assigned to large global memory like DRAM, we run

a second phase of optimization over each datum. If there is room in a fast memory

that is appropriately scoped for the current task allocation, the datum is moved there.
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Figure 6.6: 4 port IP forwarder task graph with replication
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Figure 6.7: 4 port IP forwarder mapped to the IXP2400
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Figure 6.8: 4 port IP forwarder mapped to the IXP2400 without considering memory

The memory unaware mapping of the unreplicated IP forwarder is shown in Figure

6.8. Special memory structures are underutilized in this configuration as tasks are

not placed to make use of them. We applied the memory unaware optimization to

the replicated IP forwarder too. Since the memory unaware formulation ignored the

tightly connected nature of these tasks, the resulting implementation is worse than

the original non-replicated version. Commonly used data that were located in local

memory are forced into slower global memory. The performance benefit of increased

threads cannot make up for the slow down of using slower memory. This design would

thus never be a solution considered viable by a designer.

Each of the IP forwarding implementations was tested using a variety of packet

sizes each of which exercised all levels of the trie table (a worst case lookup). The

forwarding rates of each are given in Figure 6.9 including an implementation hand as-

sembled from Microblocks (see Section 2.4.4). For the packet size the application was

tuned for (64B) memory aware mapping outperformed the memory unaware mapping

by 7%. However as the packet sized moved away from that which was profiled, the

memory aware mapping no longer outperformed the unaware. The change in the ratio
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Figure 6.9: IPv4 forwarding rates vs. different packet sizes for each approach

of execution times was immediately significant as the near doubling of the execution

cycles and latency of the receive and transmit tasks relative to process header tasks

made 64B tuned mapping suboptimal. This happens on the seemingly incrementally

change to 65B packets because the minimum packet chunk that can be moved from

the MAC to the IXP is 64B (in this configuration). So one additional byte in the

packet results in nearly twice the work for receive and transmit. The manually repli-

cated design performs within 17% of the hand mapped design from the performance

oriented framework of Microblocks.
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Table 6.4: DiffServ task characteristics

Number Execution Shareable
Class of Tasks Cycles Instructions

Receive 4 99 462
Lookups 4 134 218
DSBlock 4 320 1800
Transmit 4 296 985

6.3.2 Diffserv

Differentiated services is a quality of service application discussed in Section 2.2.3.

After attempting different numbers of ports implementations, we implement a 4 port

version of an interior node. We implement it on the 2K instruction store version of the

IXP1200 with the Click diagram shown in Figure 6.10. Packets are processed in the

same fashion as with the forwarder with the addition of the DiffServ element. This

element classifies each packet based on a field in the packet header indicating its class.

Each class is uniquely shaped through bandwidth rating and random early detection

(RED) queue management. If the Assured Forwarding 2 class exceeds a certain

bandwidth, packets from the flow are demoted to Assured Forwarding 3. These flows

are then prioritized for egress on a particular port by the DeficitRoundRobin element.

Each flow is allocated a certain percentage of the egress bandwidth except Best Effort

which is only scheduled if no other packet it ready.

The corresponding task properties are presented in Table 6.4. Since there are

only 4 tasks in each class and the IXP1200 has 4 hardware threads per PE, the quasi-

shareable instructions are omitted and all instruction store used is represented by
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Figure 6.10: DiffServ Click graph
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the sharable component. Even targeting an architecture where task mapping may be

considered independently of data assignment, this relatively small application ben-

efits from using an exact solution method over a general heuristic. One effective

method on similar problems is a greedy heuristic (called worst fit decreasing (WFD))

in which tasks are ordered by their weight and then assigned in that order to pro-

cessing element. Each task is mapped to the least weighted microengine at that time.

While this works provably well for an ordinary item to bin minimization problem, the

instruction store constraints on microengines reduces its utility.

Consider the mapping produced by the greedy algorithm shown in Figure 6.11.

The DSBlock are the first tasks to be placed as they are the heaviest weighted. The

microengines are empty at the time of their assignment so they are each assigned

one. Instruction store consumed by DSBlock prevents receive or transmit tasks to be

assigned to any of those four microengines. All eight of those tasks are confined to

the two remaining microengines, pushing the makespan up to 790 cycles. With our

formulation, the mapping engine returns the optimal mapping with respect to the

model shown in Figure 6.12. By using an exact method the makespan improves to

640 cycles, a 19% improvement.

The mapping found by hand and by the automated tool flow are shown in Table

6.5. On a representative mix of 64 byte packet classes, the hand map design slightly

outperforms the automated design as shown in Figure 6.13. The ingressing band-

width of each traffic flow is held constant. The Assured Forwarding classes ingress
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Figure 6.11: DiffServ mapped with a greedy heuristic

Figure 6.12: DiffServ mapped optimally
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Table 6.5: DiffServ mapped to the IXP1200

Application PE1 PE2 PE3 PE4 PE5 PE6
DiffServ - Hand 4 RX 4 LU 2 DS 2 DS 2 TX 2 TX

1 RX 1 RX 1 RX 1 RX
DiffServ - Auto 1 LU 1 LU 2 DS 2 DS 1 LU 1 LU

1 TX 1 TX 1 TX 1 TX

rates sum to 50% of the line rate and the Best Effort class is 10%. The Expedited

Forwarding packet class is varied from from 0 Mbps to 160 Mbps (or 0-40%). Expe-

dited Forwarding is the highest priority traffic flow but it is metered to not consume

more than 100 Mbps of the egressing bandwidth. Ideally, the Expedited Forwarding

egress rate increases linearly with the increase ingress rate until it is 100 Mbps. After

that point the egress bandwidth is ideally flat at 100 Mbps. Regardless of the ingress

bandwidth of Expedited Forwarding, the ideal router would hold the other traffic

flows at the same egress rate since they are maintaining the same ingress rate. If

packets must be dropped, they should first be dropped from the Best Effort traffic

class which is the lowest priority class.

Both the hand mapped and the automatically generated design approximate this

behavior as shown in Figure 6.13. Furthermore, the egress bandwidth of each packet

class is held close to its ideal behavior. The automatically generated design is within

2% the egress bandwidth of the hand-tuned design for each packet class except for Best

Effort. At points Best Effort transmits at only one-third the data-rate of the hand-

tuned. This is because there is a strict priority scheduler between Best Effort traffic

and all other traffic. To account for the discrepancies consider again the two mappings
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Figure 6.13: DiffServ results comparisons

shown in Table 6.5. The two implementations have the same primary makespan which

is determined by the DiffServ Block but profiling them reveals the completion times

of Transmit tasks are longer in the automated mapping. In the average case, the

DiffServ Block is the bottleneck of the system. But since its execution is dependent

on the class of the packet being processed, there may be many system periods in a row

where the transmit task is the bottleneck. As Best Effort packets are strictly lower

priority, they are not serviced until all backlogged packets from other packet classes

are egressed. In this way, the mis-characterization of the Transmit tasks completion

times is reflected directly in the Best Effort packets dropped.

The reason Transmit has been mis-characterized is because computation cycles

consumed by polling events are ignored in the model. In the automatically gener-
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ated mapping, the mapping engine evenly distributes computation after the DiffServ

Blocks are placed. This is optimal with respect to the model, but fails to account

for the fact that Transmit, the second most compute intensive element, is paired

with two elements which spend much of their time polling for new packets. Pairing

Transmit with two light weight tasks which poll frequently is worse for its completion

time than simply pairing with one other heavy weight task (namely another transmit

task). Overall the automated partition is within 5% of the hand mapped aggregate

bandwidth for all data points, and was generated in less than a second while the

hand-tuned design took days to arrive at.

An astute designer would realize that the model does not incorporate execution

cycles from polling. To guide the tool to a better solution, he could constrain the

design space to not allow more than one task to exist on the same microengine. To

accomplish this the designer inserts an instance of the following constraint for each

Transmit task to the mapping engine. With this assistance the tool arrives at the

same implementation as the hand mapped solution.

N ·Xtransmit,p
+

∑

t∈T\{transmit}

Xt,p ≤ N + 2 ∀ p ∈ P (6.1)

6.3.3 Network Address Translation

Network address translation is a different functional extension to forwarding de-

scribed in Section 2.2.2 which we implement on the IXP2400. A Click description
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Figure 6.14: NAT Click graph

of a NAT router is in Figure 6.14. Like the forwarder, packets ingress from the left

and egress to the right. In addition to the forwarding elements, NAT functionality is

incorporate through a Classifier and an IPRewriter. Ports are divided into two net-

works: the first two ports are bound to the LAN while the last port is bound to the

WAN. Hosts on the LAN share a single WAN address. For those packets that arrive

from the LAN, Classifier determines the packets staying within the LAN and those

going outside it. For a packet destine for a host on the WAN, IPRewriter rewrites the

source address to the shared WAN address and the source port to a unique port on the

NAT router. IPRewriter contains a hash table of the state of all active connections.

Figure 6.15 shows the task graph generated from the NAT Click description. It

has a similar structure to the forwarder with additions for global data for the hash

table and local data for examining the packet header more extensively along with extra

execution cycles consumed and latency. The additional computation is reflected in the

calculated execution and latency cycles as indicated in Figure 6.6, which is calculated

based on the elements profiled using 64 byte packets part of existing flows. The two
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Figure 6.15: NAT task graph

Table 6.6: NAT task characteristics

Execution Fixed
Element Number Cycles Latency
Receive 3 143 353
Process Header (LAN) 2 475 387
Process Header (WAN) 1 685 359
Transmit 3 148 402

profiles of the process header task represent the average computation seen by packets

originating from the LAN and those from the WAN.

This NAT description was targeted for the IXP2400. Again, it can be seen that

task placement done such that non-global memories are utilized for communication

channels as shown in Figure 6.16. We also replicated each of the tasks in this ap-

plication to improve the performance of the implementation. The task graph that

results from the manual replication is shown in Figure 6.17. As with IP forwarding,

the memory unaware mapping is worse than the original because of data relocated to
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Figure 6.16: NAT task graph

global memory. The memory aware mapping is shown in Figure 6.18.

As with the forwarder we compared with a memory unaware mapping engine

shown in Figure 6.19. As with the forwarder, local memories and next neighbor

registers are not exploited. Tasks are placed such that when the data are pulled

closer to the processing elements, they are unable to use these structures due to a

mismatch of application and architecture connections. The results in Figure 6.20 are

similar to that of IP forwarding. For the tuned packet, the memory aware mapping

has a 7% higher forwarding rate than the unaware. As with IP forwarding, mapping

the application without memory consideration creates a design worse than the original

unreplicated design. The application must be mapped with memory awareness for

the replication to achieve a 122% increase in forwarding rate.
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Figure 6.17: NAT task graph with replication
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Figure 6.18: NAT forwarder with replication mapped
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Figure 6.19: NAT forwarder mapped to the IXP2400 without considering memory

Figure 6.20: NAT forwarding rates vs. different packet sizes for each approach
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Comparison to other models

To get a more unbiased comparison to other productive approaches to crossing

the implementation, three graduate students used three productivity oriented envi-

ronments to implement a new application. They reimplemented NAT in TejaNP,

PacLang, and the approach present in this work. As with other functionally rich

applications, it was not practical in terms of time to implement the application in

performance oriented frameworks. Even with Microblocks, a relatively modular ap-

proach, the design time would have dominated by adding and modifying library el-

ements. After normalizing out commercial versus research robustness of tools, they

arrived at the results shown in Table 6.7. Our approach was able to arrive a more

efficient solution in less time. From the estimated breakdown of design time, the

biggest differential was spent in the design and implementation phase. Producing an

implementation requires designers add functionality to the existing library of elements

and map the application to the architecture. Each approach required debugging the

synthesized code and each defined the element bodies with C like languages. The

time saving comes from the techniques for mapping. In TejaNP programmers must

assign each of the tasks and data to architectural resources manually. PacLang allows

the user to script of the mapping the application of the architecture, but only our

approach provides an automated solution to implementation. Designers can focus

their efforts on writing new elements and incorporating feedback into the application

description or into guiding the mapping engine.
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Table 6.7: NAT implementation comparison of programming environments

TejaNP PacLang Our approach
General Software Architecture 7 hours 0 hours 0 hours

Implementation and Debugging 18 hours 12 hours 5 hours
Optimizing 10 hours 6 hours 5 hours

Total design time 35 hours 18 hours 10 hours
Forwarding rate 1100 Mbps 670 Mbps 1400 Mbps

6.3.4 Web Switch

Web Switching (see Section 2.2.4) is the most complex application attempted in

this framework. It uses the widest variety of Click elements and those used are more

complicated than any of the other examples. The common processing for a packet

from a web client is to first ingress from the WAN. If it is a syn packet indicating it

is the start of a new flow, it is duplicated by the Tee element. One copy is forwarded

to the layer 7 lookup element to be held until the first data packet arrives. The

other copy is rewritten into an ack packet to continue the TCP handshake without

involving the web server. Subsequent packets contain application data the first of

which is scanned for a particular string to determine the appropriate web server.

This checks the packet body for a substring in the URL of the packet. It determines

which server will be establishing a connection with that packet. TCPRewriter keeps

the state of the connection, rewriting the packet for a session with a computer behind

the web switch. TCPRewriter is similar to the IPRewriter element except that it

rewrites the fields of the TCP header and remaps the sequence numbers for each side

of the connection. By managing the TCP handshake and keeping more information
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Figure 6.21: Web switch Click graph

about the connection state, the web switch implements even more of the transport

layer of the network stack.

The number of elements covered by a single task and the relative complexity of

each of the elements leads to a task graph shown in Figure 6.22 that has heavily

weighted tasks and many data. When mapped using a memory aware placement

the result is shown in Figure 6.23, while an unaware mapping is shown in 6.24. The

transformations automatically add the data from the connection state shared between

Layer 7 Lookup and TCPRewriter and for the TCP header memory. The memory

aware mapper utilizes a next neighbor register to decrease the completion time of the

task with Layer 7 Lookup which is the bottleneck in the system.

By avoiding the of data to global memory has, the memory aware mapping im-

proves on the unaware by 7% on the packet size it was tuned for (64 byte) as shown

in Figure 6.25. For this benchmark, the memory aware mapping retains its advantage

for more packet sizes, as the header processing tasks remain the bottleneck until much
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Figure 6.22: Web switch task graph
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Figure 6.23: Memory aware mapping of the web switch
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Figure 6.24: Memory unaware mapping of the web switch
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Figure 6.25: Forwarding rate of the web switch

larger packet sizes.

6.4 Summary

The results of this section show that for multiple platforms and representative

applications that this design flow is a productive alternative to producing efficient

implementations for a commercial application specific multiprocessor. First we found

that less time was needed to arrive at an implementation using our design flow than

others. While we estimate that using a domain specific language is an order of mag-

nitude more productive than using low-level approaches, we also compared favorably

to state of the art approaches that emphasize productivity. Based on the implemen-

tation time of network address translation and IP forwarding, application designers

are 1.80-3.5x faster at arriving at an implementation for network address transla-
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Table 6.8: Runtime summary

Appli- Number Number Number Solve Opt.
cation Target of Ports of Tasks of Data time (s) Gap (%)
IPv4 IXP1200 16 32 0 < 1 0

DiffServ IXP1200 4 16 0 < 1 0
IPv4 IXP2400 4 12 37 18.9 4.9

IPv4 MR IXP2400 4 48 49 738 4.12
NAT IXP2400 3 9 32 4.79 1.3

NAT MR IXP2400 3 27 44 557 4.3
Web Switch IXP2400 3 9 37 3.05 3.9

tion. Across benchmarks our approach was within 17% of hand mapped designs one

of which was developed from a performance oriented commercial framework. Fur-

thermore our design flow enabled the construction of a web switch which would not

practical to implement efficiently in the other design flows given time constraints.

While the automation framework takes time to find a solution provably close to opti-

mal, large examples take only 10 minutes to solve with a 5% optimality gap. Table

6.8 summaries the run-times of the benchmarks. MR indicates an application that

we have manually replicated.

The results also indicate exact task mapping in the presence of resource constraints

even for small applications such as a 4 port DiffServ can provide a 7-19% reduction of

makespan over greedy heuristics. Considering memory placement and topology when

allocating tasks to processors proved indispensable for applications with tightly con-

nected tasks. If IPv4 forwarding and NAT replication to achieve higher performance,

the benefits are lost without memory aware mapping. Applications with loosely cou-

pled tasks benefit by 5-7% increases in forwarding rate. We found the advantage of
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memory aware mapping was tied to the packet size that the profiling was performed

on. A change in packet size creates different ratios in completion times altering their

contribution to the makespan. In particular receive and transmit tasks demand more

computational cycles per packet, while header processing remains the same.

Designer guidance aids the DiffServ implementation, allowing the mapping engine

to overcome its limitations and find the hand mapped solution. Application level

optimizations are important in increasing the forwarding rate of these designs. Soft-

ware caching is employed in each of these designs and retiming is used to decouple

receiving from header processing. Replication is the primary mechanism by which we

increased performance of an application. When memory aware mapping is employed,

performance increased by 59-122% over the original unreplicated design.
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Chapter 7

Conclusions

Application specific multiprocessors are flexible, high performance platforms whose

adoption has been inhibited by programming difficulties. Designers have assumed that

to properly utilize these devices that they must be programmed at the lowest level.

However, the approach described in this work shows that the potential of application

specific multiprocessors can be tapped into using a more natural and productive pro-

gramming approach. By starting from a domain specific language and automatically

producing efficient implementations, these platforms can be used for more complex

applications by a larger set of application designers. It has positive implications for

teams that would use it, but does not radically restructure the design process. We

believe the framework proposed is applicable across other application domains. Future

work includes adding dynamic support, applying new application level heuristics, and

improving the mapping engine time to a solution.
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7.1 A Powerful New Design Flow Can Be Achieved

Application specific multiprocessors are capable of achieving high performance

implementations by incorporating custom silicon that can utilized by the target ap-

plication domain. Through special purpose hardware, multiple often multithreaded

processing elements, distributed heterogeneous memories, and custom peripherals,

applications can be efficiently implemented on these devices. While ASMPs provide

a significant performance advantage over general purpose approaches, architects use

programmable cores to retain flexibility to accommodate many applications. These

advantages should make ASMPs the preferred option for electronic system designers

implementing high performance applications, but their adoption has been hindered

by the challenge of programming them.

Ideally, programmers would be able to describe their applications in a natural

way such as a domain specific language. Describing an application in a domain

specific language can be an orders of magnitude more productive than traditional

low level approaches such as C or assembly. This productivity boost is a product of

component libraries, communication and computation semantics, visualization tools,

and test suites tailored to a given application domain. Using lines of code as a proxy

for productivity, the largest designs in this work are no more than 200 lines of DSL

code, but their C representations are typically around 5,000 lines of code. Despite this

distinct productivity advantage, many electronic system designers and programmers

assume that to exploit the unique features of ASMPs, they must program at the
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lowest level. This work has sought to test this assumption.

We theorized that a productive design flow could be constructed that starts from a

domain specific language and efficiently targets an application specific multiprocessor.

To this end, we structured our reasoning based on key problems we identified that

must be solved to cross the implementation gap as discussed in Section 1.2.1. Prior

approaches have improved on low level programming techniques, but have been unable

to solve these key problems and provide a complete solution to crossing the implemen-

tation gap. To show that a productive, efficient design flow can be constructed, we

demonstrate that the following subproblems can be solved with techniques presented

in this work.

Extract parallelism from a natural application description

Parallelism must be captured from an application such that it can be exploited

on the architecture. All of the approaches examined in this work that target ASMPs

start from a design entry point that exposes the parallelism of the application ex-

plicitly such that it can be used directly for the remaining design flow. The basic

form of this is describing the application in a low level C variant, in which the ap-

plication parallelism is already broken out into multiple sequential C programs. But

even productivity oriented approaches create custom design entry languages to ensure

that application parallelism can be found directly. The application entry language

for Shangri-La (Section 3.3.3), Baker, is written specifically to get the designer to ex-
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pose parallelism useful to the remaining flow. TejaNP (Section 2.4.3), designers must

describe applications based on state machines. By avoiding existing DSLs for appli-

cation entry, these design flows implicitly assume that DSL descriptions not tailored

for parallelism extraction will produce inferior results.

We test this theory by starting with Click (Section 2.5.1), a popular domain

specific language, designed for expressibility and extensibility and not for targeting

ASMPs. Instead of using the application description directly to provide the paral-

lelism for the design flow, we use an intermediate representation called a task graph

(see Section 4.4) which decouples the expression of the application’s functionality and

the application’s parallelism to be exploited by the target. A task graph is a model of

the application which exposes the parallelism that may be directly exploited by the

architecture. For network processing, a task graph is analogous to the architectural

model, exposing the computation, the data, and the communication features of the

application. These features may be directly mapped to the corresponding architec-

tural model of processing elements, memories, and the topology. Unlike the custom

built design entry languages, task graphs allow for a domain specific language to be

platform independent, while still allowing for effective parallelism representation.

Transforming an Click description to a task graph requires only polynomial time

algorithms as discussed in Section 5.3. Furthermore we find the utility of starting with

a domain specific language representation of the application provides opportunities

for optimization difficult to capture at lower levels. In Section 5.4, we described
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methods for improving the performance of applications through manual and heuristic

techniques. The most beneficial of these produces a task graph capable of performing

up to 122% better than the original.

Construct an effective model of the architecture

Network processors have a variety of architectural features to improve the per-

formance of network applications as discussed in Section 2.3. To accelerate applica-

tions, programmers may consider a host of architectural details including the speed

and instruction sets of the processing elements, the topology of the architecture, the

memory structure including size and access time, word sizes, instruction store limits,

special purpose hardware, thread scheduling, bus protocols, etc. Prior approaches

have tended to one of two extremes. Either the approach exposes all of these features

burdening designers with the task of managing them as with low level C variants as

discussed in Section 2.4.2. Or the approach abstracts away too many details to utilize

these systems effectively, relying on operating systems or hardware to manage these

issues. Such transparent management techniques have yet to succeed on network pro-

cessors as the demands of managing exposed memories, many processing elements,

and special purpose hardware have so far proven too great. SMP-Click covered in

Section 3.3.1 relies on an SMP Linux platform to manage issues such as load balanc-

ing and data location. This makes the approach inapplicable to network processors

which have unique topologies, exposed memories, multithreaded processing elements,
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and no operating systems running on the dataplane processing elements.

In this research we have built upon prior approaches and tested architectural

models formulated mathematically such that they may be mapped to automatically.

They are based on our own experience with these architectures and empirical tests

of efficiency and automated mapping speed. Instead of relying on programmers or

operating systems to manage all of the details, we show that a balanced architectural

model does exist that can produce efficient mappings quickly. Presented in this work

is an architectural model that allows designers to arrive at solutions within 17% of

hand mapped performance oriented designs automatically.

Efficiently map the application to the architecture

After applications have been extracted for parallelism and architectural models

constructed, designers must map their applications to these architectures. The map-

ping should utilize the specific features of the architectures by evenly distributing

computation across processing elements. If the architecture has exposed distributed

memories, the mapper must take care to locate program data in appropriate memo-

ries. Since data placement is often effected by task allocation, the ideal solver should

consider each of these problems simultaneously taking care to account for commu-

nication bandwidth and special resource constraints. Each of these are performance

critical design decisions that may need to be explored extensively in this large irregu-

lar design space to arrive at a good solution. While there has been a significant body



193

of work examining more general problems of application to architecture mapping (see

Section 4.3), there was not a solution appropriate for ASMPs. Performance criti-

cal architectural constructs such as multithreading and distributed memories are not

easily accommodated in existing frameworks. Probably for this reason, existing solu-

tions for network processors rely heavily on designers to derive the mapping. TejaNP

requires manual mapping of each task and data. PacLang requires scripting and even

Shangri-La espouses a semi-automated approach to finding mapping annotations.

To see if an automated mapping engine could be built to incorporate ASMP ar-

chitectural constructs along with designer guidance while still having fast runtimes,

we used the flexible framework of integer linear programming. We found ILP to be an

excellent vehicle for experimenting with different mapping formulations, architectural

models, or application models. It was just expressive enough to capture the salient

features of the architecture as described in Section 4.5, while still being producing

mappings fast. Our final mapping formulation produces efficient results in seconds

for most examples and takes only minutes for the largest applications tried. Integer

linear programming can capture a variety of specific architectural features. We have

used it for quasi-sharable instructions, next neighbor registers, and multithreading,

all which are critical to arrive at feasible, high performance solutions. As designers

we incorporated feedback directly, pruning the design space explored by introduc-

ing custom constraints along side those described in the formulation. Based on the

derived mapping, the task graph is divided into the individual programs to be run



194

the processing elements. A compiler specific to each processor finally produces the

executable.

By creating a design flow that focuses on solving the fundamental problems to

crossing the implementation gap, we succeed in improving on existing productivity

oriented approaches for programming network processors. For a functional rich ap-

plication we show that the proposed framework takes less time to arrive at and has

a higher forwarding rate. The overhead of modularity of this framework also proves

to minimal as designs produced perform within 17% of hand mapped designs. As

architectures continue to increase the amount of memory with limited scope to archi-

tectures, we believe the approach will increase in utility. While other approaches have

tackled aspects of improving these design decisions, the work presented here considers

the entire flow from an natural description of an application to an implementation on

an ASMP.

The proposed design approach improves on the existing design flow described in

Section 1.2.2 by automating the manual step of traversing of the implementation

gap. Designers will be able to produce implementations faster, increase the number

of feedback cycles to the application design, and have fewer errors in the generated

implementation. The use of this approach is not likely to change the team structure

as there are still many design tasks that justify two separate teams. This is examined

in more detail in Appendix B.
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7.2 The Design Flow Can Be Applied to a Wider

Range of Applications

This work has focused on network processing as it is a mature field with parallel

applications and multiprocessor architectures. As performance improvement through

frequency scaling continues to diminish, more domains will adopt single chip multipro-

cessors. New applications will arrive to take advantage of the increased computational

power, creating new instances of the implementation gap to cross. We believe the key

problems for each application domain will still center around

• extracting parallelism from the application,

• developing a model of the architecture,

• and formulating the mapping problem so that it is fast and produces efficient

solutions.

Different applications domains will likely change how each of these are approached.

They will have alternative styles of concurrency, different architectural features to

model, and different performance requirements. But while some changes in the stages

of the proposed framework will be necessary for new application domains, we believe

that the framework’s structure will be generally applicable to many domains. By

creating stages for each of the key problems to crossing the implementation gap, the

framework should be applicable to other application areas.
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7.3 Future Work is Needed to Extend this Ap-

proach to Larger Problems and Other Domains

While this work has demonstrated that more productive paths to implementations

exist for ASMPs, deficiencies of this approach have been revealed during the course

of this research. Static consideration of applications proves to somewhat limiting in

networking. For data dependent execution, considering a single value for task com-

pletion time is restrictive. Changes in the traffic profile on a large enough time scale

will cause the carefully mapped design to perform suboptimally. A static approach

such as the one presented here will not be able to accommodate this. A dynamically

adapting system incorporating along with lighter weight techniques for arriving at a

new mapping should be more robust for implementations subject to varying loads.

Integer linear programming has been an excellent platform for trying different

models, for utilizing guidance, and quickly finding solutions for the examples tried

in this thesis. However, its runtime will be an issue scaling to larger designs. As we

have experimented with finer granularity and consequently more tasks in the course

of this work, runtimes have become prohibitively high. While we have spent time

improving the encoding of the formulation, a longer term solution to the mapping

problem will involve a more customized mapping engine. The models, constraint

based programming, and branch and bound techniques create a solid framework for

building this solution, but as long as a general purpose ILP engine is the core mapping
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engine, the scale of the problem size will be limited. We believe the time needed to

arrive at an efficient solution can be reduced through intelligent heuristics and tuning

the general purpose solver used for this problem. Decompositions techniques, variable

ordering, and improved lower and upper bounds should allow the ILP engine to scale

to larger problems. Scaling to huge instances of applications will likely require some

hierarchical solution.

This framework on should also be applied on other application areas as they will

present new challenges to crossing the implementation gap. More application level

optimizations are possible to further aid the application development process. For

instance, if the designer has profiles of traffic or information about the variance in

completion time for elements, queue placement and sizing may be more automated.

Application level optimizations can further improve the productivity of application

designers while improving performance through domain specific knowledge. However,

the underlying compiler technology for the specialized cores often employed in ASMPs

must also improve so that application level optimizations may be reaped.
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Appendix A

Acronyms

ASIC - Application Specific Integrated Circuit - Silicon customized for an applica-

tion or application domain that is designed and fabricated for a particular

company. that may implement arbitrary logic.

ASMP - Application Specific Multiprocessor - A single chip multiprocessor customized

for an application domain. A subset of ASSPs

ASSP - Application Specific Standard Part - Silicon customized for an application or

application domain that is sold as an off-the-shelf part.

DSL - Domain Specific Language - A design language tailored to an application

domain.

FPGA - Field Programmable Gate Array - Off-the-shelf reconfigurable silicon that is

based on interconnected lookup tables

ILP - Integer Linear Programming - A constraint based method for describing a design
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space with a set of linear inequalities over variables confined to the integer

domain.

IPv4 - Internet Protocol version 4 - The common protocol for network layer packet

communication.

LAN - Local Area Network - A small network of computers that would typically

service an home or an office.

NAT - Network Address Translation - An edge application that enable communication

between networks with conflicting address spaces.

NRE - Non-recurring Engineering - The one time cost of designing a new product.

OSI - Open Systems Interconnection - A standard which describes a typical network

stack.

PHB - Per Hop Behavior - The operations performed in the interior of a network to

a packet.

TCP - Transmission Control Protocol - A network protocol that gaurantees in order,

lossless delivery.

UDP - User Datagram Protocol - A lossy network protocol

WAN - Wide Area Network - A large network that can support many hosts.
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Appendix B

Design Structure Matrix

Design Structure Matrices (DSMs) are a structural way of laying out a design

process for analysis [64]. Design tasks are placed on the edges of a two dimensional

matrix and an entry in the matrix represents dependency or communication between

tasks. The information in the DSM includes the dependencies and the concurrencies

of the design process such that they can be observed directly. Figure B.1 shows

examples of the various relationships that can be expressed by a DSM. A and B

represent two tasks in a design process. If there are no tick marks in the boxes

common to the rows or columns of each task, then there is no dependency between

the two tasks, so they may execute in parallel. A tick mark in the lower left half of

the matrix indicates that B is dependent on A and cannot begin until A completes.

A tick mark in the upper right part of the matrix represents a feedback relationship

meaning that an iteration will occur from B to A. The presence of two tick marks
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Figure B.1: An introduction to design structure matrices

indicates the tasks are coupled. They feedback to each other to produce the desired

result.

DSMs can be used to derive a good team structure for a design process [48]. Small

teams are effective at completing tightly coupled tasks as the amount of coordination

overhead for a small team is low. Large teams are able to complete more tasks, but

they require more coordination overhead between the team members and therefore

operate less efficiently than a small team. When determining team structure to

implement a set of design tasks, the goal is to create small teams with little overlap.

We apply this idea to the design process discussed in Section 1.2.2. Based on our

experience with such design processes, to arrive at an implementation using the design

flow in Figure 1.5 the following tasks must be done:

• Define inputs and outputs of the application. This describes the type of data

that will be received and what form the output will take.
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• Define functionality of the application. Designers must decide on behavior of

the application on any given set of valid inputs.

• Sketch kernels. If the application has performance sensitive computation, de-

signers should specify how that computation should be performed.

• Set performance goals. Based on estimates from the kernels and the demands

of the application domain, designers have performance expectations for the

application.

• Generate test vectors. When the implementation is complete, a set of inputs

and what the outputs should be when the inputs are applied are supplied by

the application designers for validation.

• Choose target. The platform that will implement this application that will

satisfy performance needs at the lowest cost must be decided on.

• Create testbench. Technical infrastructure with the chosen platform must be

designed to inject the test vectors into the target platform and validate the

results.

• Map application onto target. For application specific multiprocessors designers

must settle on a mapping of the application to it.

• Code application on target. Using the programming environment programmers
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must implement the functionality of the application based on the mapping as-

signments.

• Profile implementation. Using the testbench and the implementation designers

can evaluate the performance of the application with the current implementa-

tion. This information is fed back to various parts of the process to improve or

refine the result.

These tasks and their dependencies are captured in a DSM in Figure B.2 along with

the common team structure used to perform them as described earlier. While the

team coverage is well suited to the tasks, there are many feed-forward and feedback

points between the two teams. This inter-team communication is indicative of the

long process of converting the original application description to a form that may be

implemented on the target.

By employing our proposed approach, we believe the design flow would change by

removing the “Code application on target” and “Map application onto target” steps.

These would be replaced by:

• Generate Implementation. The mapping step is automated so that the al-

gorithm team may generate mappings with or without the assistance of the

implementation team.

• Code new elements. The entire application is not coded monolithically. Instead

programmers need only write library elements that do not exist for the current
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Figure B.2: The design structure matrix of the existing design flow
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application.

• Refine Mapping. The implementation team will have insights into the platform

that the tool will not, so this step allows for that designer guidance.

By removing the two of the original design tasks, the inter-team communication

has been reduced. Using a domain specific language with our tool flow enables the ap-

plication team to generate implementations and make immediate adjustments based

on profiling. The net result is a faster design flow less encumbered by inter-team com-

munication as shown in Figure B.3. However, introducing the proposed tool to the

process does not eliminate the need for two teams. There are enough other activities

that are tightly coupled to merit a two team structure instead of one large team to

do the entire implementation. For that to happen, the process of creating new target

specific library elements and new test benches must also be automatically generated.

Also profiling would need some way of backward annotating into the original appli-

cation description to guide application changes. Each of these represents a difficult

set of challenges to a fully integrated design flow.
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Figure B.3: The design structure matrix of the design flow enabled by this work
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