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CONTINUATION OF INVARIANT SUBSPACES FOR LARGE
BIFURCATION PROBLEMS

DAVID BINDEL ∗, JAMES DEMMEL † , AND MARK FRIEDMAN ‡

Abstract. We summarize an algorithm developed in [17] for computing a smooth orthonormal
basis for an invariant subspace of a parameter-dependent matrix, and describe how to extend it
for numerical bifurcation analysis. We adapt the continued subspace to track behavior relevant to
bifurcations, and use projection methods to deal with large problems. To test our ideas, we have
integrated our code into Matcont, a program for numerical continuation and bifurcation analysis.

1. Introduction. Parameter-dependent Jacobian matrices provide important
information about dynamical systems

du

dt
= f(u, α), where u ∈ Rn, α ∈ R, f(u, α) ∈ Rn. (1.1)

For example, to analyze stability at branches (u(s), α(s)) of steady states

f(u, α) = 0, (1.2)

we look at the linearization A(s) = Duf(u(s), α(s)). If the system comes from a
spatial discretization of a partial differential equation, then A(s) will typically be large
and sparse. In this case, an invariant subspaceR(s) corresponding to a few eigenvalues
near the imaginary axis provides information about stability and bifurcations.

Recently, we developed with collaborators the CIS algorithm for the continuation
of invariant subspaces of a parameter-dependent matrix [17, 20, 25, 26, 7]. In this
report, we extend the CIS algorithm to make it more suitable to numerical bifurcation
analysis. Our goal is to extend numerical bifurcation techniques developed for small
systems to larger systems. We also wish to ensure that bifurcations are detected
reliably; this goal becomes especially relevant for non-normal matrices, where a small
perturbation of a matrix may result in a large change to its eigenvalues [40, 41]. To
this end, we make the following contributions to the development of the method: we
derive new sufficient conditions for the existence of a continuously-defined invariant
subspace; we introduce logic to adapt or reinitialize the subspace during continuation
so that it is always well-defined and always includes information relevant to bifurcation
analysis; we extend the algorithm to use Galerkin projection methods when n is large
and direct methods are expensive; and we integrate our method into the MATCONT
bifurcation analysis tool [18].

The CIS algorithm consists of a predictor based on first derivative information,
and a corrector based on iterative refinement of an approximate invariant subspace
(see [38], [16] and references therein). The algorithm evaluates a smoothly varying
orthonormal basis for R(s) at sample points s0 < s1 < . . . < sN−1 < sN . This basis
approximately minimizes arclength over all orthonormal bases for R(s), in a sense
we will make precise in Section 2.1. The step size is adapted so that hi = si − si−1

decreases when R(s) changes fast and increases when R(s) changes slowly. When
the eigenvalues corresponding to R(s) come too near the rest of the spectrum, the
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Script capitals (Z) Subspaces of Rm

San-serif capitals (S) Operators on matrix spaces (e.g. Sylvester operators)
Standard roman capitals (Z) Matrices and bases
Grass(n,m) The Grassmann manifold of m-dimensional subspaces of Rn

Stief(n,m) The Stiefel manifold of orthogonal bases of elements of Grass(n,m)
O(n) Orthogonal matrices in Rn×n

f(u, α) Right-hand side in a dynamical system du
dt = f(u, α)

(u(s), α(s)) A branch of equilibria of du
dt = f(u, α)

A(s) A parameter-dependent matrix (A : R → Rn×n).
Typically, A(s) = Duf(u(s), α(s)).

A[s0, s1] = A(s0)−A(s1)
s0−s1

Newton divided difference of A
R(s) A continuous maximal invariant subspace of A(s)
Q(s) =

[
Q1(s) Q2(s)

]
A continuous basis for R such that R(s) = span(Q1(s))

T (s) =
[
T11(s) T12(s)

0 T21(s)

]
A continuous block Schur factor: A(s)Q(s) = Q(s)T (s)

Y (s) = Q2(s0)TQ1(s) Riccati equation unknown

Q̄1(s) = Q(s0)
[
I

Y (s)

]
Alternately normalized basis for R(s)

T̂ (s) =
[
T̂11 T̂12

Ê11 T̂21

]
Approximate Schur form at s near s0: T̂ (s) = Q(s0)TA(s)Q(s0)

Λ(s) = {λi}n
i=1 The spectrum of A(s)

Λ1(s) = {λi}m
i=1 The spectrum of A(s)|R(s)

Λ2(s) = {λi}n
i=m+1 The spectrum of A(s)|R(s)⊥

P (s) A (skew) eigenprojector associated with R(s)
SY = Y A11 −A22Y Sylvester operator associated with A (Aij = QT

i AQj)
sep(B,C) The smallest singular value of the Sylvester map X → BX −XC
V A projection space for Galerkin approximation
V An orthonormal basis for V

Fig. 0.1. Table of notation

continuation procedure breaks down. In this case, the size of the continued subspace
is adapted, and continuation proceeds with a larger or smaller subspace.

The rest of the paper is organized as follows. After discussing related work in
the remainder of this section, we turn to the theory of existence and uniqueness of
continuously-defined invariant subspaces and prove our new result on sufficient con-
ditions for existence in Section 2. In Section 3, we describe the CIS algorithm and
our new algorithms for initializing and updating the invariant subspace during the
continuation process. In Section 4, we describe how to modify the CIS algorithm to
use projection methods; and in Section 5, we illustrate the usefulness of the mod-
ified algorithm in bifurcation analysis through the solution of a model problem in
MATCONT. We conclude and present our plans for future work in Section 6.

1.1. Related work. The local behavior of eigendecompositions and other ma-
trix factorizations when viewed as matrix functions is of long-standing interest, and
is treated in detail in the book by Stewart and Sun [39], as well as in the authorita-
tive tome of Kato [32]. The local behavior of invariant subspaces can be analyzed by
representing the subspaces near some reference subspace in terms of an orthogonal
departure from that reference space; such analysis leads directly to an algebraic Ric-
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cati equation. In [16], this Riccati equation was used as the basis for a unified analyis
of several algorithms for refining approximate invariant subspaces; and in more recent
work [9], new algorithms for invariant subspace approximation are proposed which
combine a Galerkin approximate solution to an algebraic Riccati equation with the
subspace construction ideas of the Jacobi-Davidson algorithm. In [24], Edelman and
his colleagues proposed a more global approach to the analysis of linear algebra algo-
rithms based on Grassmann manifolds and Stiefel manifolds (manifolds of subspaces
and of orthonormal subspace bases, respectively); this approach has inspired several
new methods for invariant subspace refinement, four of which are summarized and
analyzed in [1].

No algorithm can produce globally continuous eigendecompositions, even for the
set of diagonalizable matrices. However, one can smoothly define an invariant sub-
space basis along a path through matrix space, assuming the path crosses no singu-
larities that would render the subspace discontinuous. In [19], a variety of continu-
ous eigendecompositions for one-parameter matrix functions are described, including
continuous Schur and block Schur decompositions. In a paper by Govarets, Gucken-
heimer, and Khibnik [31] which motivated our work on invariant subspace continua-
tion, a low-dimensional invariant subspace of the Jacobian matrix, corresponding to
the eigenvalues with largest real parts, was computed at each point along a continu-
ation path and used to detect Hopf bifurcations via the bialternate matrix product.
The authors concluded that subspace reduction can be combined with complicated
bifurcation computations and should be tried for large problems.

The CIS algorithm was presented and analyzed in [17] and further studied in
[20], [25], with additional practical developments in [26] and [7]. The algorithm of
[20] constructs a smooth block 2-by-2 Schur decomposition; in [22], the approach is
extended to the case of more blocks, and a new method is proposed to compute a
smooth similarity reduction to block bidiagonal form. In [21], the approach described
in [17] for using subspace continuation to compute connecting orbits between equilibria
was extended to compute connecting orbits between periodic orbits. To continue low-
dimensional invariant subspaces of sparse matrices, the authors of [6] use a bordered
Bartels-Stewart algorithm to solve each corrector iteration; in [8], this approach is
combined with ideas from [20, 25]. Though [6] and [8] deal with methods for sparse
matrices, they differ from our current work in that they use different predictors and
correctors, and they do not analyze and update the subspace during continuation to
ensure it retains all information relevant to bifurcations.

Numerical continuation for large nonlinear systems arising from ODEs and dis-
cretized PDEs is an active area of research, and the idea of subspace projection is
common in many methods being developed. The continuation algorithms are typ-
ically based on Krylov subspaces, or on recursive projection methods which use a
time integrator instead of a Jacobian multiplication as a black box to identify the
low-dimensional invariant subspace where interesting dynamics take place; see e.g.
[3, 37, 29, 11, 30, 23, 27, 10, 13], and references there.

2. Continuous invariant subspaces. Let A ∈ Ck([0, 1], Rn×n) be a k-times
continuously differentiable parameter-dependent matrix. We can write the spectrum
Λ(s) of A(s) as n continuous functions λ1(s), . . . , λn(s) [32]. At parameter values
where λi(s) is a multiple eigenvalue, λi(s) may not be differentiable, and it may be
impossible to define a continuous right eigenvector. However, λi(s) is a Ck func-
tion with a Ck right eigenvector as long as λi(s) has algebraic multiplicity 1. More
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generally, define

Λ1(s) := {λi(s)}m
i=1

Λ2(s) := {λi(s)}n
i=m+1

Λ(s) := Λ1(s) ∪ Λ2(s)
. (2.1)

While Λ1(s) and Λ2(s) remain disjoint, there is a well-defined maximal right invariant
subspace R(s) corresponding to Λ1(s), and R(s) is Ck. There are several ways to
prove this fact, which we review in sections 2.2, 2.3, and 2.4.

In what follows, we will primarily use the Frobenius matrix norm: ‖A‖F =√
tr(ATA). We also assume that complex conjugate pairs are not split between Λ1

and Λ2.

2.1. The geometry of subspaces. We begin with a brief review of the geom-
etry of subspaces and orthonormal bases (see [24] for a more complete treatment).
The Stiefel manifold Stief(n,m) is the set of matrices with orthonormal columns:

Stief(n,m) := {Z ∈ Rn×m : ZTZ = I} (2.2)

where m ≤ n. We can also write

Stief(n,m) = {QIn,m : Q ∈ O(n), In,m = leading m columns of In} (2.3)

Well-known examples of Stiefel manifolds are the unit sphere (for m = 1) and the
orthogonal group O(n) (for m = n).

The Grassmann manifold Grass(n,m) is the set of all m-dimensional subspaces
of Rn. We represent elements of Grass(n,m) by equivalence classes of members of
Stief(n,m) spanning the same space. That is,

Grass(n,m) = Stief(n,m)/ [Z ∼ ZU, U ∈ O(m)] . (2.4)

The tangent directions to the orthogonal group O(n) at Q0 are translations of
the skew symmetric matrices. For any Q ∈ O(n) near Q0,

Q = Q0 +Q0H + higher order terms, where H = −HT . (2.5)

The tangents to Stief(n,m) have a related structure. If Z0 = Q0In,m ∈ Stief(n,m)
for Q0 ∈ O(n), then for any nearby Z ∈ Stief(n,m),

Z = Z0 +Q0HIn,m + higher order terms, where H = −HT (2.6)

In block form, these tangent directions look like Q0

[
H11

H21

]
, where H11 ∈ Rm×m is

skew-symmetric and H21 ∈ R(n−m)×m is arbitrary.
The tangent space at Z0 ∈ Stief(n,m) is a direct sum of two orthogonal spaces:

the vertical space and the horizontal space (Figure 2.1). The vertical space is

{∆Z ∈ Rn×m : ∆Z = Z0H11 and H11 ∈ Rm×m is skew}, (2.7)

and the horizontal space is

{∆Z ∈ Rn×m : ZT
0 ∆Z = 0}. (2.8)
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 0 0
0 0
−θy 0

 0 0
0 0
0 θx

  0 θz

−θz 0
0 0


Fig. 2.1. Two horizontal tangents (left) and one vertical tangent (right) at [e1, e2] ∈ Stief(3, 2)

The set of matrices in Stief(n,m) spanning the same space as Z0 is {Z ∈ Stief(n,m) :
Z = Z0U, U ∈ O(m)}. The vertical directions are exactly the tangents to this set.
So vertical motion “spins” vectors without changing the subspace, while horizontal
motion changes the subspace spanned.

We define the differentiable structure of Grass(n,m) in terms of the structure
of Stief(n,m): a path Z(s) in Grass(n,m) is Ck if there is a Ck basis Z : [0, 1] →
Stief(n,m) such that Z(s) = span(Z(s)). This basis is not unique; however, given a
basis Z0 ∈ Stief(n,m) for Z(0), there is a unique Ck basis starting from Z0 which
moves only horizontally. We describe the basis in the following lemma.

Lemma 2.1. Let Z : [0, 1] → Grass(n,m) be a Ck parameter-dependent space
(k > 0). Then for any Z0 ∈ Stief(n,m) such that Z(0) = span(Z0), there is a unique
Ck basis Z : [0, 1] → Stief(n,m) for Z(s) such that Z(0) = Z0 and

Z(s)TZ ′(s) = 0. (2.9)

This basis minimizes the Euclidean arclength

l(Z) =
∫ 1

0

‖Z ′(s)‖F ds (2.10)

over all Ck orthonormal bases for Z(s).
Proof.
Let Ẑ : [0, 1] → Stief(n,m) be one Ck orthonormal basis for Z. Any other Ck

orthonormal basis for Z can be written Z = ẐU for some Ck function U : [0, 1] →
O(m). By the Pythagorean theorem,

‖(ẐU)′‖2F = ‖(I − ẐẐT )(ẐU)′‖2F + ‖ẐẐT (ẐU)′‖2F (2.11)

where the first term corresponds to horizontal motion, and the second term to vertical
motion. Since the Frobenius norm is invariant under unitary transformations, we can
show the first term depends only on Z, and not on the particular choice of basis:

‖(I − ẐẐT )(ẐU)′‖F = ‖(I − ẐẐT )(Ẑ ′U + ẐU ′)‖F (2.12)
= ‖(I − ẐẐT )Ẑ ′U‖F (2.13)
= ‖(I − ẐẐT )Ẑ ′‖F . (2.14)

By again using unitary invariance of the norm, we rewrite the second term as

‖ẐẐT (ẐU)′‖F = ‖ẐT (ẐU)′‖F = ‖(ẐU)T (ẐU)′‖F . (2.15)
5



Z(si)
Z̄(si+1)

Z(si+1)

Fig. 2.2. Discrete approximation to Z(s)T Z′(s) = 0 for m = 1

�λ3(s0)

Γ

� λ1(s0)

� λ2(s0)

� λ5(s0)

� λ4(s0)

Fig. 2.3. Contour Γ in C enclosing Λ1 ⊂ Λ

Therefore, the minimum attainable arclength should occur when

0 = (ẐU)T (ẐU)′ = UT (ẐT Ẑ ′U + U ′) (2.16)

or equivalently,

U ′ = −ẐẐ ′U. (2.17)

By the standard theory for linear ODEs, there is a unique U which satisfies (2.17)
together with the initial condition Ẑ(0)U(0) = Z0. Therefore, there is a unique
orthonormal basis Z = ẐU which satisfies (2.9) and Z(0) = Z0. Furthermore, Z has
minimal arclength.

For computation, we can approximate the equation Z(s)TZ ′(s) = 0 by the con-
dition

Z(si)T (Z̄(si+1)− Z(si)) = 0. (2.18)

As long as no vectors in Z(si) are normal to Z(si+1), such a Z̄(si+1) ∈ Rn×m exists.
Then we let the computed Z(si+1) be the element of Stief(n,m) nearest Z̄(si+1) that
spans the same space (Figure 2.2). The problem of finding the nearest element of
Stief(n,m) to a given full-rank matrix in Rn×m is called the orthogonal Procrustes
problem [28, p. 582], and we will return to it later.

2.2. Complex-analytic characterization. In [32], Kato characterizes conti-
nuity of invariant subspaces in terms of the associated eigenprojections. If Γ is a
union of disjoint positively-oriented simple closed contours in C with Λ1(s0) inside Γ
and Λ2(s0) outside Γ (see Figure 2.3), then

P (s) := − 1
2πi

∫
Γ

(A(s)− ξI)−1
dξ (2.19)

is well-defined for any s near s0. The matrix P (s) is a projection with range R(s).
6



Suppose X0 ∈ Rn×m is a basis for R(s0). Then we use P (s) to locally produce a
continuous basis X(s) for R(s):

X(s) := P (s)X0. (2.20)

Because X(s0) = X0 is full rank, and the full rank matrices form an open subset of
Rn×m, by continuity X(s) will have full rank for all s sufficiently near s0.

2.3. Differential equation characterization. We can also prove the existence
of a Ck invariant subspace by writing a differential equation for a Schur factorization.
This is the approach used in [19], [17], and [20]; we summarize their result in the
following theorem.

Theorem 2.2. ([19, 17, 20]) Suppose Λ1(s) and Λ2(s) are disjoint for all s ∈
[0, 1]. Then there is an orthogonal matrix Q and block upper triangular matrix T ,
each with Ck dependence on s, so that

A(s) = Q(s)T (s)Q(s)T (2.21)

=
[
Q1(s) Q2(s)

] [
T11(s) T12(s)

0 T22(s)

] [
Q1(s) Q2(s)

]T
. (2.22)

where Q1(s) ∈ Rn×m is a basis for the subspace R(s) corresponding to Λ1(s), and
Q2(s) ∈ Rn×(n−m) is a basis for R(s)⊥.

Proof. The proof is written in detail in the cited references, so we only sketch the
main ideas here. We differentiate the relation A = QTQT to get

A′ = Q′TQT +QTQ′T +QT ′QT . (2.23)

Because Q is orthogonal, H = QTQ′ must be skew; by multiplying by QT and Q on
the left and right, respectively, we have

QTA′Q = HT − TH + T ′. (2.24)

Since T21 = T ′21 = 0, H21 satisfies

QT
2 A

′Q1 = H21T11 − T22H21 (2.25)

The spectra of T11 and T22 (Λ1 and Λ2 respectively) remain disjoint by hypothesis,
so there is a unique solution H21 for equation (2.25). We specify that H11(s) =
Q1(s)TQ′1(s) = 0 and H22(s) = Q2(s)TQ′2(s) = 0 to get a unique solution for equa-
tion (2.23) given an initial factorization A(0) = Q(0)T (0)Q(0)T . Because we have
constrained Q1 and Q2 to move only horizontally, Q1 is a minimal arclength basis for
R and Q2 is a minimal arclength basis for R⊥.

2.4. Algebraic characterization.

2.4.1. A Riccati equation. Suppose A ∈ Ck([0, 1],Rn×n) and at some s0 ∈
[0, 1], Λ1(s0) and Λ2(s0) are disjoint. Then by the results in previous sections, there
is a (non-unique) continuous block Schur decomposition for s near s0, which at s0 is

A(s0) =
[
Q1(s0) Q2(s0)

] [
T11(s0) T12(s0)

0 T22(s0)

] [
Q1(s0) Q2(s0)

]T (2.26)

where the the spectrum of Tii(s0) is Λi(s0). Sufficiently near s0, continuity demands
that no nonzero vector in R(s) be orthogonal to R(s0), so we may write

R(s) = span
(
Q(s0)

[
I

Y (s)

])
(2.27)
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for some continuous Y with Y (s0) = 0. The function Y (s) must satisfy an algebraic
Riccati equation, which we describe in the following lemma.

Lemma 2.3. ([17, 20]) Let A ∈ Ck([0, 1],Rn×n) have a block Schur decomposition
at s0 as in (2.26), where the diagonal blocks of T (s0) have disjoint spectra. Define

T̂ (s) =

[
T̂11(s) T̂12(s)
E21(s) T̂22(s)

]
:= Q(s0)TA(s)Q(s0). (2.28)

Then for s near s0, there is a unique, continuous, minimum-norm solution Y (s) ∈
R(n−m)×m to the Riccati equation

F (Y ) := T̂22(s)Y − Y T̂11(s) + E21(s)− Y T̂12(s)Y = 0 (2.29)

and there is a continuous block Schur decomposition

A(s) = Q(s)T (s)Q(s)T (2.30)

where

Q(s) = Q̄(s)
(
Q̄(s)T Q̄(s)

)−1/2
(2.31)

Q̄(s) = Q(s0)
[
I −Y (s)T

Y (s) I

]
. (2.32)

This theorem is stated in [17] and [20], and extends results proved by Demmel
[16], Stewart [38], and Stewart and Sun [39, section V.2]. For completeness, we repeat
the proof here.

Proof. We want the matrix Q̄1(s), which is exactly the matrix used in (2.27), to
be a basis for R(s). To span an invariant subspace, Q̄1(s) must satisfy the equation

A(s)Q̄1(s) = Q̄1(s)T̄11(s) (2.33)

for some matrix T̄11(s). As we saw in Section 2.1, (2.33) has a continuous set of
solutions. To specify a unique solution, we add a normalizing equation:

Q1(s0)T Q̄1(s) = I, (2.34)

which implies

Q̄1(s) = Q(s0)
[
I

Y (s)

]
. (2.35)

In order to have Q̄1(s0) = Q1(s0), we require Y (s0) = 0.
If we multiply (2.33) on the left by Q(s0)T and substitute (2.35) for Q̄1(s) we

have

Q(s0)TA(s)Q(s0)
[
I

Y (s)

]
=

[
I

Y (s)

]
T̄11(s). (2.36)

Now we rewrite Q(s0)TA(s)Q(s0) using (2.28):[
T̂11(s) T̂12(s)
E21(s) T̂22(s)

] [
I

Y (s)

]
=

[
I

Y (s)

]
T̄11(s). (2.37)
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The first row of (2.37) gives us an expression for T̄11(s):

T̄11(s) = T̂11(s) + T̂12(s)Y (s). (2.38)

We substitute into the second row to get

E21(s) + T̂22(s)Y (s) = Y (s)
(
T̂11(s) + T̂12(s)Y (s)

)
(2.39)

and rearrange terms to get (2.29).
Note that the computed Q(s) is an orthogonal matrix, and is designed so that

the leading columns span R(s).

2.4.2. A constructive existence proof. Lemma 2.3 says that near s0 we can
write R(s) in terms of a continuous solution to an algebraic Riccati equation, but
it says nothing about the size of the neighborhood or the magnitude of the Riccati
solution. To get more detailed information about Y (s), we extend a theorem due to
Stewart [38], [39, section V.2].

Theorem 2.4.
Define Ω := C([a, b],R(n−m)×m). For Y ∈ Ω, we will suppress the argument s to

write ‖Y ‖ for the function s 7→ ‖Y (s)‖. The norm ‖ · ‖ may be any consistent norm.
We use |||Y ||| = maxs∈[a,b] ‖Y (s)‖ to denote the norm on Ω.

Let Y0 ∈ Ω be given. Define a Sylvester operator S : Ω → Ω and a bilinear
function φ : Ω× Ω → Ω by

SZ := Z(T̂11 + T̂12Y0)− (T̂22 − Y0T̂12)Z (2.40)
φ(X,Y ) := S−1(XT̂12Y ). (2.41)

Suppose S is invertible on [a, b]. Then we can define continuous functions α, β :
[a, b] → R by

α := ‖S−1(F (Y0))‖ (2.42)
β := max

‖X‖=‖Y ‖=1
‖φ(X,Y )‖. (2.43)

Suppose also that 4αβ < 1 on [a, b], and define

ξ∗ :=
2α

1 +
√

1− 4αβ
. (2.44)

Then there is a unique continuous solution Y∗ to the Riccati equation (2.29) such that
‖Y∗ − Y0‖ ≤ ξ∗.

Proof.
Let Z := Y − Y0. Then we rewrite (2.29) as

0 = F (Y0 + Z) = F (Y0)− S(Z + φ(Z,Z)), (2.45)

which we can rearrange to get

Z = S−1 (F (Y0))− φ(Z,Z). (2.46)

So the map ψ : Ω → Ω given by

ψ(Z) := S−1(F (Y0))− φ(Z,Z) (2.47)

has fixed points where (2.29) has solutions. Now define Ω0 = {Z ∈ Ω : ‖Z‖ ≤ ξ∗}.
We will show that ψ(Ω0) ⊆ Ω0 and ψ is contractive on Ω0, so by the contraction
mapping theorem the iteration Zi+1 = ψ(Zi) will converge to a unique fixed point
Z∗ ∈ Ω0 starting from any Z1 ∈ Ω0.
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1. ψ(Ω0) ⊆ Ω0:
By the definition of α and β,

‖ψ(Z)‖ ≤ α+ β‖Z‖2

Define τ(ξ) = α+βξ2. The quadratic equation ξ = τ(ξ) has two real solutions
when 4αβ < 1; the smaller solution is

ξ∗ =
1−

√
1− 4αβ
2β

=
2α

1 +
√

1− 4αβ

Because β ≥ 0, τ is monotonically nondecreasing for positive arguments. So
for 0 ≤ ‖Z‖ ≤ ξ∗,

0 ≤ ‖ψ(Z)‖ ≤ τ(‖Z‖) ≤ τ(ξ∗) = ξ∗

So ψ(Ω0) ⊂ Ω0. Therefore all the iterates Zi remain in Ω0.
2. ψ is contractive on Ω0:

For any X,Y ∈ Ω0,

‖ψ(X)− ψ(Y )‖ = ‖φ(X,X)− φ(Y, Y )‖
= ‖φ(X,X − Y ) + φ(X − Y, Y )‖
≤ β (‖X‖‖X − Y ‖+ ‖X − Y ‖‖Y ‖)
≤ 2βξ∗‖X − Y ‖

=
4αβ

1 +
√

1− 4αβ
‖X − Y ‖

< 4αβ‖X − Y ‖

Let γ := maxs∈[a,b] 4αβ; by hypothesis, γ < 1. Then we have

|||ψ(X)− ψ(Y )||| < γ |||X − Y ||| .

Therefore, ψ has a unique fixed point Z∗ in Ω0; and there is a unique continuous
solution Y∗ = Y0 + Z∗ to the Riccati equation (2.29) such that ‖Y∗ − Y0‖ ≤ ξ∗.

The separation of matrices B and C is the smallest singular value of the Sylvester
operator A(X) = BX −XC:

sep(B,C) := σmin(A) = min
‖X‖F =1

‖BX −XC‖F =
1

‖A−1‖2
. (2.48)

sep(B,C) is zero when B and C have a common eigenvalue, and it is small if a small
perturbation makes them share an eigenvalue. If B and C are normal, sep(B,C) is
the distance between their spectra, but in general sep(B,C) may be much smaller,
since a small change to a non-normal matrix can cause a relatively large change to the
spectrum [40, 41]. By manipulating norm inequalities and using the notion of matrix
separation, we can bound the quantities α and β defined in Theorem 2.4.

Lemma 2.5. Let α and β be defined as in Theorem 2.4. Then the following
inequalities hold pointwise for s ∈ [a, b]:

‖S‖−1
2 ‖F (Y0)‖F ≤ α ≤ ‖S−1‖2‖F (Y0)‖F (2.49)
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and

1√
(n−m)m

‖S−1‖2‖T̂12‖2 ≤ β ≤ ‖S−1‖2‖T̂12‖2, (2.50)

where

‖S−1‖2 =
1

sep(T̂11 + T̂12Y0, T̂22 − Y0T̂12)
. (2.51)

Proof. Equation (2.51) is simply the definition of sep, while (2.49) follows from
the basic properties of an operator two-norm. To see the upper bound in (2.50),
observe that

‖φ(X,Y )‖F = ‖XT̂12Y ‖F ≤ ‖T̂12‖2‖X‖F ‖Y ‖F .

To see the lower bound in (2.50), let X = eiu
T and Y = veT

j , where u and v are
left and right singular vectors for σmax(T̂12) and i and j are chosen to maximize
‖S−1(eie

T
j )‖. Then ‖X‖F = ‖Y ‖F = 1, and

β ≥ ‖S−1
(
(eiu

T )T̂12(vej)
)
‖F (2.52)

= ‖T̂12‖2‖S−1(eie
T
j )‖F (2.53)

≥ 1√
(n−m)m

‖S−1‖2‖T̂12‖2 (2.54)

We can see the last inequality by viewing S−1(eiej)T as the column of greatest norm
from S−1 when S−1 is viewed in Kronecker product form as an (n−m)m-by-(n−m)m
matrix.

The bounds (2.49) and (2.50) together with Theorem 2.4 yield the following the-
orem.

Theorem 2.6. ([17, 20]) Let Y0 : [a, b] → R(n−m)×m be continuous, and define

κ(T̂ ) :=
‖T̂12‖2 ‖F (Y0)‖F

sep2(T̂11 + T̂12Y0, T̂22 − Y0T̂12)
(2.55)

In any neighborhood in which κ(T̂ ) < 1/4, the Riccati equation (2.29) has a unique
continuous solution Y∗(s) such that

‖Y∗‖F <
2‖F (Y0)‖F

sep(T̂11 + T̂12Y0, T̂22 − Y0T̂12)
. (2.56)

In any neighborhood where κ(T̂ ) < 1/12, Newton’s method on the Riccati equation
(2.29) will converge quadratically pointwise to Y∗ starting from Y0.

Proof.
To prove the existence statement, substitute (2.49) and (2.50) into Theorem 2.4.
In [16], Demmel proved the quadratic convergence of Newton’s iteration for

κ(T̂ ) < 1/12. To extend to the case of a parameter-dependent matrix, we simply
apply Demmel’s theorem pointwise.
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2.5. Connecting subspaces. Suppose we are given bases for invariant sub-
spaces of A(s) at s = 0 and s = h. How can we check that the two end points are
connected by a continuously defined invariant subspace basis on [0, h]? This question
has practical significance for our continuation algorithm, since we would like to avoid
branch-jumping behavior when two subspaces come close to each other, and we would
like to detect when a continued invariant subspace ceases to be continuously defined.

Theorem 2.6 partially answers the question of how to check for a continuous
connecting invariant subspace. But to apply the theorem, we need to bound κ(T̂ )
on the interval [0, h]. In the remainder of this section, we describe how to construct
bounds which incorporate information from both s = 0 and s = h using interpolation.
Our ultimate goal is Theorem 2.12, but first we need some technical lemmas.

We first turn to the problem of bounding ‖B−1‖2, where B ∈ C1([0, h],Rp×p) is
some parameterized operator on a Euclidean space. Since S is also a linear operator
on a Euclidean space (R(n−m)×m with the Frobenius inner product), all our results
apply directly to S as well. We begin by reviewing a simple result about matrix
interpolation.

Lemma 2.7. Suppose B ∈ C1([0, h],Rp×p) and B′ is Lipschitz with constant M .
Then

B(s) = B(0) +B[0, h]s+B[0, h, s]s(s− h) (2.57)

where B[0, h] and B[0, h, s] are first and second Newton divided differences and

‖B[0, h]‖2 ≤ max
ξ∈[0,h]

‖B′(ξ)‖2

‖B[0, h, s]‖2 ≤M.

Proof.
For any u, v ∈ Rp and any distinct a, b ∈ [0, h], a < b, the mean value theorem

applied to the scalar function uTB(s)v implies

uTB[a, b]v = uTB(ξ)v (2.58)

for some ξ ∈ [a, b]. Therefore, ‖B[a, b]‖2 ≤ maxξ∈[a,b] ‖B(ξ)‖2.
Now we compute

uTB[0, h, s]v = (uTB[0, s]v − uTB[h, s]v)/h (2.59)
= (uTB′(ξ1)v − uTB′(ξ2)v)/h (2.60)

≤ ‖B′(ξ1)−B′(ξ2)‖2
h

‖u‖2‖v‖2 (2.61)

≤M‖u‖2‖v‖2. (2.62)

So ‖B[0, h, s]‖2 ≤M .

We can now show a very simple bound on the minimal singular value of B.
Lemma 2.8. Suppose B ∈ C1([0, h],Rp×p) and B′ is Lipschitz with constant M .

Then

σmin(B(s)) ≥ σmin(B(0))− ‖B[0, h]‖2s−Ms(h− s) (2.63)
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Proof. By the previous lemma,

‖B(s)−B(0)‖2 = ‖B[0, h]s+B[0, h, s]s(s− h)‖ ≤ ‖B[0, h]‖2s+Ms(s− h).

To complete the proof, recall (e.g. from [28]) that

|σmin(B(s))− σmin(B(0))| ≤ ‖B(s)−B(0)‖2.

Lemma 2.8 uses only the norm of B(s)−B(0); we can refine the bound by using
the direction as well as the magnitude.

Lemma 2.9. Suppose B ∈ C1([0, h],Rp×p) and B′ is Lipschitz with constant M .
Then

σmin(B(s)) ≥ σmin(B(0))(1− ‖B(0)−1B[0, h]‖2s)−Ms(h− s) (2.64)

Proof. Let E(s) = B[0, h]s. If ‖B(0)−1E(s)‖2 ≥ 1, then the lemma is trivial.
Otherwise, I +B(0)−1E(s) is invertible, and

(B(0) + E(s))−1 =
(
I +B(0)−1E(s)

)−1
B(0)−1 (2.65)

=
∞∑

k=0

(
−B(0)−1E(s)

)k
B(0)−1 (2.66)

so ∥∥∥(B(0) + E(s))−1
∥∥∥

2
≤ ‖B(0)−1‖2

1− ‖B(0)−1E(s)‖2
. (2.67)

Taking inverses on both sides, we have

σmin(B(0) + E(s)) ≥ σmin(B(0))(1− ‖B(0)−1E(s)‖). (2.68)

Therefore

σmin(B(s)) = σmin(B(0) +B[0, s]s+B[0, h, s]s(s− h)) (2.69)
≥ σmin(B(0) +B[0, s]s)−Ms(h− s) (2.70)
≥ σmin(B(0))(1− ‖B(0)−1B[0, h]‖2s)−Ms(h− s) (2.71)

We now turn to the problem of bounding ‖F (Y0)‖F in ( 2.29) for a specific choice

of Y0. Suppose
[
I
hZ

]
is a basis for a given invariant subspace of T̂ (h) (see( 2.28));

then we linearly interpolate Y0(s) = sZ, so that the residual F (Y0) is zero at both
s = 0 and s = h.

Lemma 2.10. Suppose T̂ ∈ C1 and T̂ ′ has Lipschitz constant M . Also suppose[
I
hZ

]
spans an invariant subspace of T̂ (h), and define

G(s) := T̂22[0, h]Z − ZT̂11[0, h]− Z
(
T̂12(0) + (s+ h)T̂12[0, h]

)
Z. (2.72)
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Then for Y0(s) = sZ, and for any s ∈ [0, h],

‖F (Y0)‖F ≤ h2

2
{
max(‖G(0)‖F , ‖G(h)‖F ) +

√
mM(1 + h‖Z‖2)2

}
(2.73)

Proof.
We write F (Y0(s)) as the product

F (Y0(s)) =
[
−Y0(s) I

]
T̂ (s)

[
I

Y0(s)

]
. =

[
−sZ I

]
T̂ (s)

[
I
sZ

]
. (2.74)

Using the Newton form of the interpolant,

T̂ (s) = T̂ (0) + T̂ [0, h]s+ T̂ [0, h, s]s(s− h); (2.75)

we can therefore write F (Y0(s)) as

F (Y0(s)) = F1(Y0(s)) + F2(Y0(s)) (2.76)

F1(Y0(s)) =
[
−sZ I

] (
T̂ (0) + T̂ [0, h]s

) [
I
sZ

]
(2.77)

F2(Y0(s)) =
[
−sZ I

] (
T̂ [0, h, s]s(s− h)

) [
I
sZ

]
. (2.78)

We now bound the norms of F1(Y0(s)) and F2(Y0(s)) independently.
To bound F1(Y0(s)), we expand and collect terms at each order in s:

F1(Y0(s)) = E21(0) (2.79)

+s
(
T̂22(0)Z − ZT̂11(0) + E21[0, h]

)
+s2

(
T̂22[0, h]Z − ZT̂11[0, h]− ZT̂12(0)Z

)
+s3

(
−ZT̂12[0, h]Z

)
(2.80)

Since F (Y0(s))|s=0 = 0, we know E21(0) = 0. Similarly, since F (Y0(s))|s=h = 0, we
know

T̂22(0)Z − ZT̂11(0) + E21[0, h]

= −h
(
T̂22[0, h]Z − ZT̂11[0, h]− ZT̂12(0)Z

)
−h2

(
−ZT̂12[0, h]Z

)
. (2.81)

Substituting (2.81) into (2.80), we have

F1(Y0(s)) = (s2 − sh)
(
T̂22[0, h]Z − ZT̂11[0, h]− ZT̂12(0)Z

)
+

(s3 − sh2)
(
−ZT̂12[0, h]Z

)
. (2.82)

Factoring out s(s− h) from both terms, we have

F1(Y0(s)) = s(s− h)G(s). (2.83)
14



Note that G(s) is linear, so by convexity of norms,

‖G(s)‖F ≤ max (‖G(0)‖F , ‖G(h)‖F ) for s ∈ [0, h]. (2.84)

Therefore

‖F1(Y0(s))‖F ≤ h2

2
max (‖G(0)‖F , ‖G(h)‖F ) for s ∈ [0, h]. (2.85)

We use a cruder bound for F2(Y0(s)). Since F2(Y0(s)) ∈ R(n−m)×m, ‖F2(Y0(s))‖F ≤
√
m‖F2(Y0(s))‖2. Both

[
−sZ I

]
and

[
I
hZ

]
are bounded in 2-norm by 1 + h‖Z‖2;

and by 2.7, ‖T̂ [0, h, s]‖ ≤M . Therefore

‖F2(Y0(s))‖2 ≤
∥∥[
−sZ I

]∥∥
2

∥∥∥T̂ [0, h, s]
∥∥∥

2

∥∥∥∥[
I
sZ

]∥∥∥∥
2

s(s− h) (2.86)

≤ h2

2
M(1 + h‖Z‖2)2. (2.87)

Substituting the above bounds into ‖F (Y0(s))‖F ≤ ‖F1(Y0(s))‖F + ‖F2(Y0(s))‖F

concludes the proof.

Now we bound ‖T̂12(s)‖2 on [0, h].
Lemma 2.11. Suppose T̂ ∈ C1 and T̂ ′ has Lipschitz constant M . Then for

s ∈ [0, h],

‖T̂12(s)‖2 ≤ max
(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
+

1
2
Ms(h− s) (2.88)

Proof. By Lemma 2.7,

‖T12(s)‖2 = ‖T12(0) + T12[0, h]s+ T12[0, h, s]s(s− h)‖2 (2.89)
≤ ‖T12(0) + T12[0, h]s‖2 +Ms(h− s), (2.90)

and because norms are convex functions,

‖T12(0) + T12[0, h]s‖2 ≤ max (‖T12(0)‖2, ‖T12(h)‖2) . (2.91)

Putting together the preceding bounds, we have the following theorem.
Theorem 2.12. Suppose T̂ (s) is C2 and T̂ ′ is Lipschitz with constant M . Sup-

pose
[
I
0

]
and

[
I
hZ

]
span invariant subspaces at 0 and h respectively. Let S be defined

as in (2.40). Then if

σmin(S(0))(1− h‖S(0)−1S[0, h]‖2)−
1
2
Mh2 > 0 (2.92)

the operator S is invertible for all s ∈ [0, h]. Further, the constants α and β defined
15



in (2.42) and (2.43) are bounded for all s ∈ [0, h] by

α ≤ h2

2
max (‖G(0)‖F , ‖G(h)‖F ) +

√
mM(1 + h‖Z‖2)2

σmin(S(0))(1− h‖S(0)−1S[0, h]‖2)− 1
2Mh2

(2.93)

=
h2

2
max (‖G(0)‖F , ‖G(h)‖F ) +

√
mM

σmin(S(0))
+O(h3) (2.94)

β ≤
max

(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
+ 1

2Mh2

σmin(S(0))(1− h‖S(0)−1S[0, h]‖2)− 1
2Mh2

(2.95)

=
max

(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
σmin(S(0))

+O(h) (2.96)

where

G(s) = T̂22[0, h]Z − ZT̂11[0, h]− Z
(
T̂12(0) + (s+ h)T̂12[0, h]

)
Z.

Therefore, by Theorem 2.4, if the resulting upper bound on 4αβ is bounded below one,

there is a continuous connecting invariant subspace between
[
I
0

]
at s = 0 and

[
I
hZ

]
at s = h.

Dropping higher-order terms, we have

α ≤ h2

2
max (‖G(0)‖F , ‖G(h)‖F ) +

√
mM

σmin(S(0))
+O(h3) (2.97)

β ≤
max

(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
σmin(S(0))

+O(h) (2.98)

Besides sep(T̂11(0), T̂22(0)) = σmin(S(0)) and ‖S(0)−1S[0, h]‖2, the quantities in the
bounds of the above theorem are cheap and simple to compute.

3. The CIS algorithm: direct methods. We now describe the CIS algorithm
in the case when we can use direct solvers. Much of this work is described in [17],
[20], [25], and [26]. Here, we emphasize parts of the computation that we perform
differently, or which are particularly relevant to the sparse case.

At the highest level, our algorithm is as follows:
1. Choose an initial invariant subspace.
2. Compute a continuation step.
3. Normalize the solution.
4. Adapt the space and step size to improve convergence and resolve features of

interest.
We can continue either Q1(s) and T11(s) or the full Q(s) and T (s) matrices. Cur-

rently, our dense code computes the full Schur factors at each step. When we continue
only the first part of the decomposition, as we do in the sparse case, we also compute
a few extra eigenvalues from Λ2(s). We use these eigenvalues to decide whether the
algorithm should be reinitialized with a different partitioning of the spectrum.

3.1. Initialization. To initialize the algorithm at s0, we compute a Schur de-
composition of A(s0) and use standard LAPACK routines [2] to sort the decomposi-
tion so selected eigenvalues appear in T11(s0). For bifurcation problems, we assume
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Fig. 3.1. Selected eigenvalues during initialization

that only a small part of the spectrum is unstable; therefore, we include in our m-
dimensional subspace vectors corresponding to all the unstable eigenvalues as well as
a few stable eigenvalues nearest the imaginary axis (see Figure 3.1).

We require that Λ1(s0) contains any unstable eigenvalues and some specified
number of stable eigenvalues; but we may include additional eigenvalues in order
to simplify the subsequent continuation process. For example, we include an extra
eigenvalue in order to avoid splitting a complex conjugate pair of eigenvalues between
Λ1(s0) and Λ2(s0). More generally, we would like to choose Λ1(s0) so that the gap
between the real parts of the leftmost eigenvalue in Λ1(s0) and the rightmost eigen-
value in Λ2(s0) are greater than some threshold. In this way, we hope to keep track
of all eigenvalues that might cross the imaginary axis.

In the dense case, the same LAPACK routine used to sort the Schur form also
estimates the sensitivity of the selected subspace, and so we may choose a larger
subspace if the smallest feasible subspace is very sensitive. Though the cost of the
computations at a single point increases as we increase the size of our subspace,
continuing a less sensitive subspace will allow us to take larger steps.

We summarize the initialization procedure in Algorithm 1.

3.2. Choosing a subspace. We have considered three strategies for computing
R(s1) starting from R(s0):

• As in the construction of Theorem 2.6, apply a predictor and then use a
Newton corrector.

• Choose a subspace which minimizes the distance between eigenvalues in the
computed Λ(s1) and eigenvalues in Λ(s0).

• Choose a subspace by finding the m eigenvectors of A(s1) which most nearly
lie in R(s0), or which most nearly lie in a predicted subspace.

We currently use an approximate Euler predictor and a Newton corrector. We
use the convergence of the corrector to govern our step size: if it converges slowly or
fails to converge, we reduce the step size, or reinitialize the continuation process with
a larger or smaller subspace. If the corrector converges quickly, we increase the step
size.
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Algorithm 1 Choose an initial subspace
Input: A(s0),

nmin, nmax, {bounds on subspace size}
nstableref , {number of stable reference eigenvalues}
εgap, {minimum gap between Λ1(s0) and Λ2(s0)}

Output: Q1(s0) and T11(s0)

Compute a Schur decomposition A(s0) = QTQT

t := real parts of converged eigenvalues sorted in descending order

Find smallest m so that

 nmin ≤ m ≤ nmax

m ≥ (# unstable eigenvalues) + nstableref

t(m)− t(m+ 1) > εgap

if no such m exists then
error “Spectrum too tightly clustered”

else
Sort subspace for rightmost m eigenvalues to the front of Q, T
Return Q1 = Q(:, 1 : m), T11 = T (1 : m, 1 : m)

end if

Q1(s0)Q̄1(s−1)

Q1(s−1)

Q̄pred
1 (s)

Qpred
1 (s)

Q̄1(s)

Q1(s)

Fig. 3.2. Choosing a consistent normalization for secant prediction

3.2.1. Subspace predictors. We build an Euler predictor for R(s1) by differ-
entiating the Schur factorization as in (2.23) and substituting finite difference ap-
proximations for Q′ and T ′. Alternatively, we could differentiate the Riccati equation
(2.29) and substitute a finite difference approximation for Y ′. Either way, this gives
us the equation

T22(s0)Y0(s1)− Y0(s1)T11(s0) = −(s1 − s0)E′21(s1) (3.1)

If derivatives of A are unavailable, we can substitute a finite difference approximation
for E′21(s) to get the approximate Euler predictor equation

T22(s0)Y0(s1)− Y0(s1)T11(s0) = −E21(s1). (3.2)

We can also build a secant predictor; but to do so, we must consider how consecu-
tive steps are normalized. In a single predictor-corrector step, we normalize the basis
for a space X by requiring that Q(s0)TX = I; however, this normalization changes
with each step. If R(s−1) is the invariant subspace from a previous continuation step,
we must choose a basis Q̄1(s−1) for R(s−1) which is consistent with the current nor-
malization (see Figure 3.2). Because Q̄1(s−1) spans the same space as Q1(s−1), there
must be some invertible B(s−1) ∈ Rm×m such that

Q̄1(s−1) = Q1(s−1)B(s−1), (3.3)
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and the normalizing condition is

I = Q1(s0)T Q̄1(s−1) = Q1(s0)TQ1(s−1)B(s−1). (3.4)

Therefore

B(s−1) =
(
Q1(s0)TQ1(s−1)

)−1
(3.5)

Q̄1(s−1) = Q1(s−1)
(
Q1(s0)TQ1(s−1)

)−1
. (3.6)

By linear extrapolation, the secant predictor for Q̄1(s1) is

Q̄pred
1 (s1) = Q1(s0) +

s1 − s0
s0 − s−1

(
Q1(s0)− Q̄1(s−1)

)
(3.7)

The Riccati unknown has the form Y (s) = Q2(s0)T Q̄1(s) with Y (s0) = 0, so we can
rewrite the predictor (3.7) as

Y0(s1) = − s1 − s0
s0 − s−1

Y (s−1), (3.8)

where

Y (s−1) = Q2(s0)T Q̄1(s−1). (3.9)

We similarly write higher-order polynomial predictors by choosing a consistent
normalization for several steps and using polynomial extrapolation.

3.2.2. Direct Newton corrector iterations. One way to find Q̄1(s) is to
simultaneously solve residual equations for the the eigensystem and the normalization:

R =
[
A(s)Q̄1(s1)− Q̄1(s1)T̄11(s1)

Q1(s0)T Q̄1(s1)− I

]
= 0 (3.10)

We can compute a Newton step for (3.10) using a bordered Bartels-Stewart algo-
rithm [6]. Alternately, we can eliminate T̄11(s1) and perform Newton iteration on the
Riccati equation (2.29). A Newton step for the Riccati equation can be solved using
an ordinary Bartels-Stewart algorithm [28, p. 367].

Newton iterations on the reduced and unreduced systems are equivalent in ex-
act arithmetic, assuming that the initial iterate in the unreduced case satisfies the
normalization condition Q1(s0)T Q̄pred

1 (s1) = I. However, while reducing (3.10) to a
Riccati equation reduces the problem size by a modest amount, the reduced system
will usually be dense, even if (3.10) is sparse. For small problems, we use dense meth-
ods, and the loss of sparsity matters little; for large problems, we sidestep the issue
by using projection methods, as described in Section 4. For medium-sized problems,
it may be better to use sparse direct solvers to take Newton steps on the unreduced
system of equations.

3.3. Normalizing the solution. After we compute a basis Q̄1(s1) for R(s1),
we normalize to find another basis Q1(s1) which is as near as possible to Q1(s0). This
normalization approximates the minimal arclength condition described in Section 2.1.
We describe several ways to write the normalization in the following lemma.

Lemma 3.1. Let Q̄1(s1) be a basis for R(s1) with Q1(s0)T Q̄1(s1) = I. Let
Q̄1(s1) = UΣV T be a singular value decomposition with U ∈ Rn×m and Σ, V ∈ Rm×m,
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and let Y (s1) = Q2(s0)Q̄1(s1). Then the orthonormal basis Q1(s1) ∈ Stief(n,m) for
R(s1) which minimizes ‖Q1(s1)−Q1(s0)‖F can be written in the following ways:

Q1(s1) = UV T (3.11)

Q1(s1) = Q̄1(s1)
(
Q̄1(s1)T Q̄1(s1)

)−1/2
(3.12)

Q1(s1) = Q1(s0)
[

I
Y (s1)

] (
I + Y (s1)TY (s1)

)−1/2
. (3.13)

Proof. If Q̄1(s1) = UΣV T , then one orthonormal basis for R(s1) is UV T . We can
write any other orthonormal basis for R(s1) as UV TW for some orthogonal matrix
W ∈ O(m).

Now we solve an orthogonal Procrustes problem ([28, p. 582]) to find W corre-
sponding to the orthonormal basis nearest Q0. Choose W to minimize

‖Q1(s0)− UV TW‖2F . (3.14)

Because the Frobenius norm is invariant under unitary transformations, we have∥∥Q1(s0)− UV TW
∥∥2

F

=
∥∥∥∥Q(s0)

([
Im
0

]
−

[
Q1(s0)TUV TW
Q2(s0)TUV TW

])∥∥∥∥2

F

=
∥∥∥∥[
Im −Q1(s0)TUV TW
−Q2(s0)TUV TW

]∥∥∥∥2

F

and by the Pythagorean theorem,∥∥Q1(s0)− UV TW
∥∥2

F
=

∥∥Im −Q1(s0)TUV TW
∥∥2

F
+∥∥−Q2(s0)TUV TW

∥∥2

F
.

The second term of the sum does not depend on W , since W is orthogonal. Therefore,
we minimize

∥∥Q1(s0)− UV TW
∥∥2

F
by minimizing∥∥Im −Q1(s0)TUV TW

∥∥2

F
(3.15)

By hypothesis,

I = Q1(s0)T Q̄1(s0) = Q1(s0)TUΣV T . (3.16)

If we substitute (3.16) into (3.15) and use the unitary invariance of the Frobenius
norm yet again, we have∥∥Im −Q1(s0)TUV TW

∥∥2

F
=

∥∥Q1(s0)TU
(
Σ− V TWV

)
V T

∥∥2

F

=
∥∥Σ− V TWV

∥∥2

F

The matrix V TWV is orthogonal, and the closest orthogonal matrix to the positive
diagonal matrix Σ is the identity. Therefore, (3.15) is minimized when V TWV = I.
Thus ‖Q1(s0) − UV TW‖2F is minimized for W = I, and so Q1(s1) = UV T . This
proves (3.11).
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Fig. 3.3. Examples of overlap and bifurcation. In the top example (overlap), one of the eigen-
values from Λ1(s) (open circles) changes position with one of the eigenvalues of Λ2(s). In the bottom
example, an eigenvalue crosses over the imaginary axis (a bifurcation), so that Λ1(s) contains fewer
stable eigenvalues.

To show (3.12), we write

Q̄1(s1)
(
Q̄1(s1)T Q̄1(s1)

)−1/2
= UΣV T

(
V ΣUTUΣV T

)−1/2

= UΣV T
(
V Σ2V T

)−1/2

= UΣV TV
(
Σ2

)−1/2
V T

= UV T

= Q1(s1)

If we write

Q̄1(s1) = Q(s0)
[

I
Y (s1)

]
, (3.17)

then

Q̄1(s1)T Q̄1(s) =
[

I
Y (s1)

]T

Q(s0)TQ(s0)
[

I
Y (s1)

]
=

(
I + Y (s1)TY (s1)

)
(3.18)

Now substitute (3.17) and (3.18) into (3.12) to get (3.13).

3.4. Subspace analysis and adaptation.

3.4.1. Bifurcations and overlaps. When the CIS algorithm is initialized, the
set Λ1(s0) contains all the unstable eigenvalues of A(s0) and a few of the stable
eigenvalues nearest the imaginary axis. The set Λ2(s0) lies strictly left of Λ1(s0)
in the complex plane. During continuation, eigenvalues from Λ1(s) may cross the
imaginary axis (a bifurcation), or Λ2(s) may cease to lie strictly to the left of Λ1(s)
(an overlap). These situations are illustrated in Figure 3.3. When bifurcation or
overlap occurs, we reinitialize the continuation procedure.
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Fig. 3.4. Generic overlap situations. On the left, two real eigenvalues collide and produce
a complex pair (top), and the real parts of two complex conjugate eigenvalue pairs change order
(bottom). On the right, a complex conjugate pair and a real eigenvalue change places in two ways.

A generic overlap or bifurcation is one which persists when the function A(s) is
perturbed. For steady-state continuation problems, the only generic bifurcations are
fold bifurcations, in which an isolated real eigenvalue crosses the imaginary axis; and
Hopf bifurcations, in which an isolated complex conjugate pair of eigenvalues crosses
the imaginary axis. There are four generic types of overlap (see Figure 3.4). In three
cases, a single real eigenvalue or complex conjugate pair from Λ2(s) moves right of
some element of Λ1(s). In the fourth case, a single eigenvalue from Λ2(s) collides with
an eigenvalue from Λ1(s) to form a complex conjugate pair. Q1(s) corresponding to
Λ1(s) will cease to be continuously defined, and we expect that the Newton iteration
will not converge. Complex conjugate eigenvalues in the spectrum may also generically
collide and become real eigenvalues, but because we do not allow complex conjugate
pairs to be split between Λ1(s) and Λ2(s), this behavior does not result in an overlap.

3.4.2. Step size and subspace adaptation. Standard bifurcation analysis
algorithms [30] involve computing functions of A(s). We adapt these methods to large
problems by computing the same functions of the much smaller T11(s). Therefore,
we try to ensure that only eigenvalues from Λ1(s) can cross the imaginary axis, so
that T11(s) will provide all the relevant information about bifurcations. To prevent
eigenvalues from Λ2(s) from crossing the imaginary axis, we adapt the step size and
the size of the Λ1(s) so that overlaps and bifurcations are not allowed in the same
step. We summarize the step size and subspace adaptation logic in Algorithm 2.

When an overlap occurs because two real eigenvalues collide to form a conjugate
pair, the Newton iteration will fail to converge. To detect other types of overlap at s,
we compute the overlap set:

{(λi(s), λj(s)) ∈ Λ1(s)× Λ2(s) : Re(λi(s)) < Re(λj(s))} .

If this set is non-empty, then an overlap has occurred. To decide whether multiple
overlaps have occurred, we count the number of (λi(s), λj(s)) pairs in the overlap set.
To avoid double-counting overlaps involving complex conjugate pairs, we only count
the pairs such that Im(λi(s)) ≤ 0 and Im(λj(s)) ≤ 0.

Only one overlap is allowed in a step. If we detect multiple overlaps, we retry with
a smaller step size until only one overlap is left. If we reach the minimum step size and
still have multiple overlaps when continuing from si, we reinitialize the continuation
process at si so that the overlap set from the failed step belongs entirely to Λ1(si) or
entirely to Λ2(si).

We detect bifurcations by counting the unstable eigenvalues. If the total number
of unstable eigenvalues at si+1 differs from the total number of unstable eigenvalues at
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si, then a bifurcation occurred during the step. If this total number changed by more
than one real eigenvalue or one complex conjugate eigenpair, we assume that multiple
bifurcations have occurred, and we try to resolve them by decreasing the step size. If
we cannot resolve the behavior with the minimum step size, then the algorithm fails
with a diagnostic message. Unless we fail or a bifurcation and an overlap both occur
during the step, we assume that Λ1(s) contains all information about bifurcations.

If an overlap or bifurcation occurs in an accepted step from si to si+1, we will
reinitialize the computation at si+1 before attempting another step. This way, the
new spectral sets will not overlap, and the new Λ1(si+1) will include no more or fewer
eigenvalues than necessary after a bifurcation.

Algorithm 2 Continue and adapt invariant subspace of A(s)

Input: A(s) {matrix-valued function}
s0, {starting parameter}
hinitial, {starting step size}
hmin, hmax {bounds on the step size}

Output: Q(s) and T (s)

Compute initial point Q(s0), T (s0) using Algorithm 1.
s := s0, h := hinitial

while not done do
Compute a candidate step and candidate step size ĥ
Test for bifurcation and overlap
if subspace did not converge then

Reinitialize at s using Algorithm 1
Reset step size to hinitial

else if multiple overlap, multiple bifurcation, or overlap and bifurcation then
if h > hmin then

Decrease h
else if multiple bifurcation then

error “Could not resolve nongeneric bifurcation”
else

Reinitialize at s using Algorithm 1
end if

else
Record the decomposition and diagnostic information
s := s+ h, h := min(hmax, ĥ)
if bifurcation or overlap occurred in accepted step then

Reinitialize at s using Algorithm 1
h := hinitial

end if
end if

end while

4. The CIS algorithm: projection methods. We now turn to the case when
the dimension n of A(s) is large and we are interested in a space R(s) of dimension
m � n. In this case, direct methods are expensive; however, if we can multiply by
A(s) quickly, we can use projection methods.

23



4.1. Choosing a projection space. In the direct case, we consider two spectral
sets: Λ1(s), which contains the unstable eigenvalues and a few of the rightmost stable
eigenvalues; and Λ2(s), which contains the remaining eigenvalues. In the projection
case, we consider three spectral sets: Λ1(s), a set of m elements which contains the
unstable eigenvalues and a few of the rightmost stable eigenvalues; Λ2(s), a set of
p −m elements which contains a few of the rightmost eigenvalues not in Λ1(s); and
Λ3(s), a set of n − p elements which contains the remainder of the spectrum. Our
basic strategy in the projected CIS algorithm is to build a projection space V of
dimension p, where m < p � n, so that the restriction of A(s) to V provides good
approximations to Λ1(s) and Λ2(s).

4.2. Initialization. During initialization, we may not know how large V must
be to find all the unstable eigenvalues plus a few stable eigenvalues. Therefore, the
projected version of the initialization routine calls Algorithm 1 in a loop. While not
enough stable eigenvalues converge or there are no sufficiently large gaps between
stable eigenvalues in the converged part spectrum, more eigenvalues are requested. If
a suitable subspace cannot be found when a specified maximum number of eigenvalues
are requested, the code exits with a diagnostic message.

4.3. Projected normalization and residual equations. Suppose V ∈ Rp×n

is an orthonormal basis for a projection space V. Recall the n-by-m residual equation
(2.33)

A(s)Q̄1(s)− Q̄1(s)T̄11(s) = 0.

We approximate the equation by assuming that Q̄1(s) ≈ Q̄h
1 (s) := V Q̂1(s) and choos-

ing Q̄h
1 (s) to satisfy the Galerkin condition

0 = V T
(
A(s)Q̄h

1 (s)− Q̄h
1 (s)T̄h

11(s)
)

(4.1)

= V TA(s)V Q̂1(s)− Q̂1(s)T̄h
11(s) (4.2)

We assume the same normalizing condition we used before:

Q1(s0)T Q̄h
1 (s) =

(
V TQ1(s0)

)T
Q̂1(s) = I (4.3)

Once Q̄h
1 (s) has been computed, we can use Lemma 3.1 to compute the orthonormal

basis Qh
1 (s) for the same space which is closest to Q1(s0) in the Frobenius norm. We

will let Qh
2 (s) ∈ Rn×(p−m) be an orthonormal basis for the orthogonal complement of

span(Qh
1 (s)) in V. Though we require continuity of Qh

1 (s), it will not be important
for our purposes to continuously define Qh

2 (s).
We typically will use a projection space V which is itself an approximate maximal

invariant subspace computed by an Arnoldi method. Suppose that A(s1)V ⊂ V, and
let V ⊥ ∈ Rn×(n−p) be an orthonormal basis for V⊥. Then at s1, solutions to the
Galerkin equation (4.2) span invariant subspaces of A(s1).

If V is a p-dimensional maximal invariant subspace corresponding to the rightmost
part of the spectrum of A(s1), then we compute the leading two-by-two part of a
three-by-three block Schur form

A(s1) =
[
Qh

1 (s1) Qh
2 (s1) V ⊥

]Th
11(s1) Th

12(s1) Th
13(s1)

0 Th
22(s1) Th

23(s1)
0 0 Th

33(s1)


[
Qh

1 (s1) Qh
2 (s1) V ⊥

]T
.
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Fig. 4.1. Eigenvalue sets in the projected CIS algorithm. In practice, Λ3 will contain many
more eigenvalues than Λ1 and Λ2.

The spectrum of the Th
11(s) block is the continued set of eigenvalues Λ1(s). The Th

22(s)
block has a few of the rightmost remaining eigenvalues, which we use to diagnose
overlap. The eigenvalues of the uncomputed block Th

33(s) are part of the spectrum
which lies further from the imaginary axis. Figure 4.1 illustrates the three spectral sets
corresponding to Th

11(s), T
h
22(s), and Th

33(s) in the case when no overlap has occurred.
As in the dense case, we can eliminate T̄h

11(s) from equation (4.2); we summarize
this calculation in the following lemma.

Lemma 4.1. Let V TQ1(s0) have the singular value decomposition

V TQ1(s0) = U

[
Σ
0

]
RT =

[
U1 U2

] [
Σ
0

]
RT (4.4)

where U ∈ Rp×p, Σ ∈ Rm×m, and R ∈ Rm×m. Let

T̂h(s) =

[
T̂h

11(s) T̂h
12(s)

Eh
21(s) T̂h

22(s)

]
:=

[
Σ 0
0 I

]
UTV TA(s)V U

[
Σ−1 0
0 I

]
. (4.5)

Then any solution to the Galerkin equation (4.2) and normalizing condition (4.3) can
be written as

Q̂1(s) = U

[
Σ−1

Ŷ h(s)

]
RT (4.6)

where Ŷ h(s) ∈ R(p−m)×m is a solution to the Riccati equation

Fh(Y h(s)) := T̂h
22(s)Y

h(s)− Y h(s)T̂h
11(s) + Eh

21(s)− Y h(s)T̂h
12(s)Y

h(s) = 0. (4.7)

Proof. Let B(s) = UT Q̂h
1 (s)R. Substituting the SVD (4.4) into (4.3), we have

I = R
[
Σ 0

]
UT Q̂1(s) (4.8)

= R
[
Σ 0

]
B(s)RT (4.9)
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If we multiply on the left by RT and on the right by R, we have

I =
[
Σ 0

]
B(s). (4.10)

Therefore, for some Y h(s) ∈ R(p−m)×m, B(s) can be written as

B(s) =
[

Σ−1

Y h(s)

]
=

[
Σ−1 0
0 I

] [
I

Y h(s)

]
. (4.11)

Now we substitute Q̂h
1 (s) = UB(s)RT into the projected residual equation (4.2):

V TA(s)V U
[
Σ−1 0
0 I

] [
I

Y h(s)

]
RT − U

[
Σ−1 0
0 I

] [
I

Y h(s)

]
RT T̄h

11(s) = 0. (4.12)

If we multiply by
[
Σ 0
0 I

]
UT on the left and by R on the right, we have

T̂h(s)
[

I
Y h(s)

]
=

[
I

Y h(s)

] (
RT T̄h

11(s)R
)
. (4.13)

The first row of (4.13) gives an expression for RT T̄h
11(s)R, which we can substitute

into the second row to get the Riccati equation (4.7):

RT T̄h
11(s)R = T̂h

11(s) + T̂h
12(s)Y

h(s)

Eh
21(s) + T̂h

22(s)Y
h(s) = Y h(s)

(
RT T̄h

11(s)R
)

= Y h(s)T̂h
11(s) + Y h(s)T̂h

12(s)Y
h(s).

In Theorem 2.3, we saw that for s sufficiently near s0, the normalized basis for
R(s) corresponded to the minimum norm solution for the Riccati equation (2.29).
The norm of the Riccati unknown Y (s) is equal to the distance ‖Q̄1(s) − Q1(s0)‖F .
We now show that ‖Y h(s)‖F is similarly related to ‖Q̄h

1 (s)−Q1(s0)‖F .
Lemma 4.2. In the previous lemma, the distance from Q̄h

1 to Q1(s0) is

‖Q̄h
1 (s)−Q1(s0)‖2F = ‖Y h‖2F + ‖Σ−1‖2F −m. (4.14)

Proof.
We decompose Q1(s0) and Q̄h

1 (s) into components in three orthogonal spaces
spanned by V ⊥, V U1, and V U2:

Q1(s0) = V ⊥(V ⊥)TQ1(s0) + V U1ΣRT (4.15)
Qh

1 (s) = V U1Σ−1RT + V U2Y
h(s)RT (4.16)

where the first equation is a consequence of (4.4) and the second equation follows
from (4.6). The difference is

Q1(s0)−Qh
1 (s) =

 V ⊥(V ⊥)TQ1(s0)+
V U1(Σ− Σ−1)RT +
V U2Yh(s)RT

 . (4.17)
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Because the three components are orthogonal, the squared Frobenius norm is the sum
of the squares of the Frobenius norms; that is

‖Q1(s0)−Qh
1 (s)‖2F =

 ‖V ⊥(V ⊥)TQ1(s0)‖2F +
‖V U1(Σ− Σ−1)RT ‖2F +
‖V U2Yh(s)RT ‖2F

 . (4.18)

Because multiplication by an orthonormal matrix does not change the Frobenius norm,
we can write

‖Q1(s0)−Qh
1 (s)‖2F =

 ‖(V ⊥)TQ1(s0)‖2F +
‖Σ− Σ−1‖2F +
‖Yh(s)‖2F

 (4.19)

=

 ‖(V ⊥)TQ1(s0)‖2F +
(‖Σ‖2F + ‖Σ−1|2F − 2m)+
‖Yh(s)‖2F

 . (4.20)

Note that

m = ‖Q1(s0)‖2F = ‖(V ⊥)TQ1(s0)‖2F + ‖V TQ1(s0)‖2F (4.21)
= ‖(V ⊥)TQ1(s0)‖2F + ‖Σ‖2F . (4.22)

Now substitute

‖(V ⊥)TQ1(s0)‖2F = m− ‖Σ‖2F (4.23)

into (4.20) to obtain the desired result.

Therefore, if s1 is sufficiently near s0 and V is itself an invariant subspace of A(s1)
such that R(s1) ⊂ V, the minimal norm solution to the projected Riccati equation
(4.7) corresponds exactly to the minimal norm solution to the Riccati equation (2.29).

4.4. Projected predictors and correctors. The Euler predictor (3.1) and
the finite difference version of the Euler predictor (3.2) are subtly different in the
projected case. A projection subspace V which is an invariant subspace for A(s1) will
generally not contain R(s0); consequently, Q1(s0) will not correspond to a solution
to the projected Riccati equation (4.7) at s = s0. Worse, Eh

21(s0) will usually be
nonzero. If we naively differentiate the relation Fh(Y h(s)) = 0 and use the resulting
differential equation to form an Euler-like approximation Y h

0 (s1) starting from a value
of 0 for Y h(s0), then to first order Fh(Y h

0 (s1)) will be E21(s0).
We can remedy this problem by requiring R(s0) ⊂ V. However, a more straight-

forward alternative is to compute a secant prediction Q̄pred
1 (s1) using (3.7), and then

project

Q̄h,pred
1 (s1) = V V T Q̄pred

1 (s1). (4.24)

The corresponding projected Riccati predictor is then

Y h
0 (s1) = UT

2 V
T Q̄pred

1 (s1)R (4.25)

In the current code, we use the trivial predictor Y h
0 (s1) = 0.

Once we have a predicted value Y h
0 (s1), we solve the projected Riccati equation

with a Newton iteration, just as we did in the direct methods. We note that the
projected matrix V TA(s)V will usually be dense, and so there seems to be little
benefit to solving the unreduced equations. Just as in the direct case, alternate
subspace selection methods based on eigenvalues and eigenvectors are possible.
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5. Integrating the CIS algorithm into MATCONT. In the introduction,
we described how invariant subspace continuation can be used to adapt bifurcation
analysis methods for small problems in order to analyze much larger systems. In this
section, we discuss one example of our work to use the CIS algorithm in this way to
extend the bifurcation analysis code MATCONT [18]: using projected test functions
to detect and locate Hopf bifurcations.

5.1. Detecting and locating Hopf bifurcations. Let x(s) = (u(s), α(s)) ∈
Rn × R be a smooth local parameterization of a solution branch of the stationary
problem (1.2):

f(x(s)) = f(u(s), α(s)) = 0.

We write the Jacobian matrix along this path as A(s) := fu(x(s)). A solution point
x(s0) is a bifurcation point if Reλi(s0) = 0 for at least one eigenvalue λi(s0) of A(s0).
The point x(s0) is a simple Hopf bifurcation if the simple eigenvalue λi(s0) is a pure
imaginary number and Re

(
dλi

ds (s0)
)
6= 0.

A test function ψ(x(s)) is a (typically) smooth scalar function that has a regular
zero at a bifurcation point. A bifurcation point between consecutive continuation
points x(sk) and x(sk+1) is detected when

ψ(x(sk))ψ(x(sk+1)) < 0. (5.1)

Once a bifurcation point has been detected, it can be located by solving a system of
the form {

f(x) = 0,
g(x) = 0 (5.2)

where g may be ψ or may be some other function which has a regular zero at the
bifurcation point.

To detect Hopf points, MATCONT uses the test function

ψ(x(s)) := det [2A(s)� In] =
∏
i<j

(λi(s) + λj(s)) , (5.3)

where � is the bialternate product [30]. Using the projection computed from the CIS
algorithm, we introduce the analogous test function

ψ̂(x(s)) := det [2T11(s)� Im] =
∏

i<j≤m

(λi(s) + λj(s)) . (5.4)

Clearly, ψ(x(s)) and ψ̂(x(s)) are zero if A(s) has a pure imaginary pair of eigenvalues
(±iκ), and so ψ and ψ̂ can be used to test for Hopf bifurcations. However, these
functions may also be zero because of a pair of real eigenvalues which sum to zero.
Therefore, we also introduce a parity function which counts the number of unstable
complex conjugate pairs:

χ(x(s)) = (−1)#{λi(s):Re λi(s)≥0 and Im λi(s)>0}. (5.5)

We detect a Hopf bifurcation when

ψ̂(x(sk))ψ̂(x(sk+1)) < 0 and χ(x(sk))χ(x(sk+1)) < 0. (5.6)
28



A well-known method to locate a Hopf point (see e.g. e.g. [33, 30, 5]) is to solve
the system  f(x) = 0,

fu(x)r − iωr = 0,
r∗r0 − 1 = 0

(5.7)

where x ∈ Rn+1, r ∈ Cn, and ω ∈ R. The reference vector r0 ∈ Cn is given. Usually,
the system (5.7) is converted to a system of 3n+ 2 real unknowns. Based on the CIS
algorithm, we replace (5.7) with the system f(x) = 0,

T11(x)r − iωr = 0,
r∗r0 − 1 = 0

(5.8)

where r and r0 are now vectors in Cm. In contrast to (5.7), the system (5.8) involves
n+ 2m+ 2 real unknowns.

5.2. The one-dimensional Brusselator. The 1D Brusselator [34] is a well
known model system for autocatalytic chemical reactions with diffusion. The problem
is defined on Ω = (0, 1) by coupled differential equations for unknowns u and v

d1

l2
u′′ − (b+ 1)u+ u2v + a = 0

d2

l2
v′′ + bu− u2v = 0

with boundary conditions

u(0) = u(1) = a and v(0) = v(1) =
b

a
. (5.9)

This problem exhibits a rich bifurcation scenario and has been used in the literature
as a standard model for bifurcation analysis [36, 14, 15, 4, 12, 35]. Utilizing a second-
order finite difference discretization

f ′′ ≈ 1
h2

(fi−1 − 2fi + fi+1)

with h = (N + 1)−1, the resulting discrete problem can be written in the form (1.2).
This discretization of the Brusselator is used in a MATCONT example [18].

In order to verify the accuracy of locating a Hopf point, we continue a constant
solution branch: u(x) = a, v(x) = b

a , with respect to b. In this case the values of
b where Hopf bifurcation occurs are known analytically as a function of N , see e.g.
[12, Eq. (24)]. Using MATLAB 7.0 on a 1.67 GHz G4, we located this bifurcation
to at least eight correct digits for problems with N = 1024 to N = 8192 grid points;
since there are two unknowns per grid point, the total size is n = 2N . Because these
problems have only one-dimensional connectivity, the Jacobian may be reordered into
a very narrowly banded form, and so the size to solve a linear system involving the
Jacobian scales linearly with N . For each problem size, about 65% of the time was
spent on spectrally transformed Arnoldi iterations using ARPACK; 12% of the time
was spent on solving bordered systems for the corrector during continuation and for
the Newton steps; and 7% of the time was spent on forming the Jacobian matrix. The
cost of one Newton step for locating the bifurcation was approximately the same as
the cost of one Newton step during the continuation, and to locate each bifurcation
took three Newton steps. At N = 8192, the total time for fifteen steps of continuation
and for locating one Hopf bifurcation was 158 seconds.
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6. Conclusions and Future Work. In this paper, we have discussed the CIS
algorithm for computing a smooth orthonormal basis for an invariant subspace of a
parameter-dependent matrix, and we have extended it to make it more suitable for
numerical bifurcation analysis. In particular, we have made the following contribu-
tions:

1. We have derived new sufficient conditions for the existence of a continuous
invariant subspace connecting invariant subspaces of matrices at the end of a
parameterized matrix curve.

2. We have extended the original CIS algorithm for dense problems with logic for
adapting the continued subspace in order to ensure that it always includes
information relevant to bifurcation analysis. Such adaptation is necessary
when an bifurcation occurs or when there is an overlap: that is, when the
real parts of eigenvalues change order.

3. We have extended our algorithm to work efficiently on large sparse matrices
by exploiting Galerkin projection methods. The original CIS algorithm used
direct methods for dense matrices, and so cost O(n3) work at each step.

4. We have incorporated the projection-based CIS algorithm into the MAT-
CONT bifurcation analysis package, and we have applied the combined code
to the Brusselator model problem.

Future work includes the following topics. We are still actively investigating
how the information can most effectively be used for finding bifurcations from non-
static equilibria, and how to best use the CIS algorithm in detecting and computing
codimension-2 bifurcations along branches of Hopf and limit points. We are also
involved in using of the CIS algorithm in order to study the dependence of resonant
frequencies of mechanical devices as design parameters are varied.
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