
Communication-Ef�cient Tracking of Distributed
Cumulative Triggers

Ling Huang
Minos Garofalakis
Anthony D. Joseph
Nina Taft

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-139

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-139.html

October 30, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Communication-Efficient Tracking of Distributed Cumulative Triggers

Ling Huang∗ Minos Garofalakis† Anthony D. Joseph∗ Nina Taft†
∗UC Berkeley †Intel Research

{hling, adj}@cs.berkeley.edu {minos.garofalakis, nina.taft}@intel.com

Abstract

There has been growing interest in large-scale distributed moni-
toring systems, such as Dynamic Denial of Service attack detec-
tors and sensornet-based environmental monitors. Recent work has
posited that these infrastructures lack a critical component, namely
a distributed-triggering mechanism that fires when an aggregate of
remote-site behavior exceeds some threshold. For several scenarios,
the trigger conditions of interest are naturally cumulative, they con-
tinuously monitor the accumulation of threshold infractions (e.g.,
resource overuse) over time.

In this paper, we develop a novel framework and communication-
efficient protocols to support distributed cumulative triggers. In
sharp contrast to earlier work focusing on instantaneous violations,
we introduce a general model of threshold conditions that enables us
to track distributed cumulative violations over time windows of any
size. In our system, a central coordinator efficiently tracks aggregate
time-series data at remote sites by adaptively informing the sites
how to locally filter their data and when to ship new information.
Our proposed algorithmic framework allows us to: (1) provide guar-
antees on the coordinator’s triggering accuracy; (2) flexibly tradeoff
communication overhead versus accuracy; and, (3) develop an an-
alytic solution for computing local filtering parameters. Our work
is the first to solve the problem of communication-efficient moni-
toring for distributed cumulative trigger conditions using principled
solutions with accuracy guarantees. We evaluate our system using
time-series data generated from SNORT logs on PlanetLab nodes
and demonstrate that our methods yield significant communication
overhead reductions while simultaneously achieving high detection
accuracy, even for highly variable data streams.

1 Introduction

Distributed monitoring systems aggregate and present in-
formation describing the status and performance of large
distributed systems (e.g., server clusters and large Internet
Service Provider (ISP) and enterprise networks). Remote
monitor sites are typically deployed throughout the network
(both at the network edge and inside the internal infras-
tructure) and, thus, their data streams present information
from multiple vantage points. The ensemble of these mon-
itors leads to the creation of numerous, large, and widely-
distributed time-series data streams that are continuously
monitored and analyzed for a variety of purposes. Exam-
ple applications abound. Consider, for instance, a network-
wide anomaly detection system. In a typical enterprise net-
work, many Intrusion Detection Systems (IDSs) are deployed

across geographically-distributed vantage points to monitor
network traffic. These “local” IDS views need to be continu-
ously fused at a central Network Operations Center (NOC) to
enable timely detection and warning for abnormal activities.
As another example, ISP and enterprise NOCs employ dis-
tributed monitoring to continuously track the health of their
infrastructure, identify element failures, and then track the
performance of their failure recovery procedures; they also
monitor load levels for hot spots as a part of capacity plan-
ning. Wireless sensornets for habitat, environmental, and
health monitoring also continuously monitor and correlate
sensor measurements for trend analysis, detecting moving
objects, intrusions, or other adverse events.

We can abstract two key aspects of such large-scale moni-
toring systems. First, monitoring is continuous; that is, to en-
sure timely response to potentially serious problems, we need
real-time tracking of measurements or events, not merely
one-shot responses to sporadic queries. Second, monitoring
is inherently distributed; that is, local data streams (e.g., IP
traffic measurements) observed across several remote mon-
itor sites need to be fused and/or correlated at a coordina-
tor site to allow tracking of interesting phenomena over a
global data stream. For instance, consider a collection of
compromised hosts within an enterprise network launching
a Distributed DoS (DDoS) attack to an outside destination
address. In many cases, tracking the traffic level at each
individual host may not raise any serious alarms (e.g., in-
telligent botnets prevent compromised machines from trans-
mitting at their maximum level to evade detection). On the
other hand, a monitoring system tracking the aggregate of
the compromised host behaviors, can indeed reveal alarming
levels of outgoing traffic to the destination. In a similar vein,
Lakhina et al. [18] propose anomaly-detection methods that
track the top eigenvalues of the global traffic matrix by mon-
itoring all the link-load levels in large IP networks. In both
scenarios, tracking the aggregate behavior over a physically-
distributed monitoring infrastructure is much more revealing
than tracking the local behavior of individual network ele-
ments or hosts.

Communication-efficient distributed monitoring. The dis-
tributed nature of monitor sites also typically implies im-
portant communication constraints owing to either network
overhead restrictions (e.g., large volumes of distributed IP-
monitoring traffic) or power limitations (e.g., sensor battery
life), For instance, large enterprise networks typically do not

1

overprovision their interconnections to remote office sites,
yielding severe communication restrictions for their enter-
prise IDS systems, as such systems typically generate enor-
mous amounts of data that is pulled to a central NOC for
further analysis by so-called “correlation engines” [1] that
look for patterns across the logs of different machines. Such
background management traffic coupled with regular inter-
office traffic can easily saturate inter-site links. Furthermore,
even though ISPs today typically overprovision their back-
bone networks, emerging continuous monitoring applications
may require much finer time and/or data granularities, yield-
ing significant measurement traffic volumes, even by ISP
standards. For example, typical SNMP monitors today col-
lect simple link statistics once every five minutes; however,
for real-time anomaly detection, finer time scales are often
necessary. As our implementation numbers show, simply col-
lecting header information for each new TCP connection over
400 PlanetLab nodes produces a continuous continuous data
stream of about 10Mbps at the collection site. And, of course,
in any realistic large-scale monitoring setting, there could be
tens or hundreds of distinct continuous queries running con-
currently over the network infrastructure. The above scenar-
ios clearly illustrate the need for intelligent, communication-
efficient distributed monitoring, either to limit the burden on
the underlying production network or to simply avoid over-
whelming the centralized coordinator. Naive solutions that
continuously “push” the local data streams directly to a col-
lection site simply will not scale to large distributed systems.

Cumulative triggers. Several recent research proposals sug-
gest architectures for efficient large-scale monitoring sys-
tems [3, 4, 14, 24]. Their vision articulates the need for
distributed tools that monitor overall system activity. Other
recent work [16, 17] argues convincingly that a critical com-
ponent missing from such architectures is that of a flexible
distributed triggering mechanism, that can efficiently detect
when a global condition across a set of distributed machines
exceeds acceptable levels. These early efforts have focused
solely on instantaneous aggregate trigger conditions, where
the goal is to fire the trigger as soon as the aggregate (typ-
ically, SUM) of the up-to-date local observations (e.g., site
CPU utilizations or messages to a given destination) exceeds
a pre-specified threshold. While such instantaneous trig-
gers are undoubtedly a useful tool for several application
scenarios, they also have some important limitations when
it comes to monitoring distributed phenomena that are in-
herently bursty, such as network traffic. Fixing appropriate
instantaneous threshold conditions (e.g., for anomaly detec-
tion) in such settings can be very difficult, and easily lead
to numerous false positives/negatives: Exceeding a thresh-
old for a short period of time could very well be allowed as
natural bursty behavior; on the other hand, even violations
that are small in magnitude could be harmful or malicious
if they are allowed to persist over time. For instance, in
our DDoS example, a clever attacker could try to “fly under
the radar” by ensuring that the instantaneous aggregate vol-

ume of traffic to the victim is not large enough to raise any
alarm signals; capturing the persistence of the aggregate traf-
fic over time is key to detecting the attack. Another example
where temporally-persistent violations can play an important
role is that of “burstable billing” policies employed by ISPs
for large enterprise network customers with multiple connec-
tions to the ISP’s network. Typically, these customers are
allowed to use up to a certain amount of bandwidth across all
the links per month for a fixed fee, with additional charges if
the allotted bandwidth is exceeded. Given the transient bursty
nature of traffic, charging customers literally for each excess
byte over their bandwidth allotment is too restrictive; instead,
a much more flexible and intuitive billing policy is to assess
extra charges only for bandwidth overuse that persists over
time or exceeds the contracted allotment by a truly excessive
amount.

The above scenarios clearly argue for a novel class of cu-
mulative triggers, where the threshold condition is defined in
terms of the accumulated excess area of the aggregate sig-
nal over time: (bytes × time) or (number of connections ×
time). Abstractly, a cumulative trigger condition should fire
when the excess area of the observed aggregate signal over a
time window of any size, exceeds the pre-specified cumula-
tive threshold. Such cumulative triggering conditions intro-
duce a new class of distributed monitoring problems that can-
not be captured using existing SUM-trigger mechanisms based
on instantaneous sums of local values [16, 17]. In a nutshell,
the accumulation of signal area can take a place over a time
window of arbitrary size (not known a priori), whose bound-
ary is defined based on the whole history of the aggregate
signal (e.g., with periods of underutilization compensating
for periods of overuse). This cumulative threshold condition
cannot be expressed in terms of an instantaneous problem.

Our Contributions. In this paper, we introduce and formal-
ize the concept of distributed cumulative triggers, and pro-
pose a novel algorithmic framework for the communication-
efficient tracking of such global triggering conditions in a
networked environment. Our proposed solution is built by
combining in-network processing ideas [5, 8] with new in-
sights based on queueing theory. Briefly, the monitors and
coordinator are each assigned an amount of slack that care-
fully controls the discrepancy in the views of the data avail-
able at the coordinator and the remote monitors. One of our
key insights is that this slack can be viewed as analogous to
queue sizes. By sizing a set of distributed queues correctly,
we can use them to determine when monitors should update
the coordinator, and when the coordinator should fire a cumu-
lative trigger. These queue sizes affect the resulting amount
of communication overhead as well as the resulting false-
alarm and missed-detection (i.e., false negative) rates. We de-
velop an analytical solution for determining the queue sizes
based on user-supplied target error rates for false alarms and
missed detections. In this manner, the user can effectively
control the tradeoff between communication overhead and
alarm detection accuracy. To the best of our knowledge, our

2

work is the first to address the problem of communication-
efficient tracking for distributed cumulative trigger condi-
tions. We believe that, through the introduction of cumulative
triggers, and the incorporation of new analytical and algorith-
mic insights from queueing theory for guaranteed-accuracy
monitoring, our approach significantly broadens the scope of
earlier distributed triggering and query-tracking proposals.

A thorough experimental evaluation over real-life dis-
tributed data streams collected from PlanetLab IDS monitors
demonstrates that our schemes can easily guarantee target ac-
curacy levels of around 98% while typically sending less than
20% of the original time-series data (i.e., a communication
reduction of over 80%).
Prior Work. Database research on continuous distributed
query processing has considered similar environments [2, 5,
8, 15, 19]; however, the focus is on the accurate estimation
of the aggregate signal itself rather than catching a constraint
violation. The database community has also explored cen-
tralized triggering mechanisms [11, 25]; however, the goal of
minimizing communication overhead in widely distributed
environments introduces new challenges. Jain et al. [16],
propose using uniform thresholds across all monitors, and
eventually detect instantaneous threshold violations without
giving any guarantees on the size of the violation; in con-
trast, we place strict bounds on the size of the violation that
our schemes seek to enforce within specified error rates. Dil-
man and Raz [9] propose algorithms for detecting whether
the sum of a set of numeric values from distributed sources
exceeds a user-supplied threshold value. More recently, Ker-
alapura et al. [17], formalized the instantaneous thresholded
counting problem and gave static and adaptive algorithms, as
well as a detailed optimality analysis. Our approach goes fur-
ther by providing both a firm detection guarantee for cumu-
lative trigger conditions, as well as the flexibility for users
to trade off communication overhead with detection accu-
racy. Recent progress in distributed monitoring, profiling
and intrusion detection [18, 20, 26, 27] aims to share infor-
mation and foster collaboration between widely distributed
monitoring boxes to offer improvements over isolated sys-
tems. These systems provide other examples of distributed
monitoring systems for which our triggering tools would be
useful.
Organization. The rest of the paper is organized as follows:
we define the problem and evaluation metrics in Sec. 2; we
discuss our approach in Sec. 3; we present solutions for cu-
mulative triggers in Secs. 4; we evaluate the approach in
Sec. 5; we discuss deployment issues and triggering exten-
sions in Sec. 6; finally, we conclude in Sec. 7.

2 System Model and Problem Statement

As shown in Fig. 1, the distributed triggering system consists
of a set of widely distributed monitoring nodes m1, m2, . . . ,
mn and a coordinator node X . The concept of monitor in
our setting is very general. It can be a monitoring sensor,

Alarm Data Flow

Result

m1

m2

m3 m4

m5

m6

Figure 1: The system setup.

functional software on an end host or firewall, or a software
module embedded in a router. Each monitor continuously
produces time series signals ri(t) on the variable(s) or con-
dition(s) selected for monitoring. A monitor’s output can be
very general, for example, it can be any subset, or any com-
bination of: number of SYN requests per second, number of
DNS transactions per hour, volume of traffic per minute at
port 80, and so on. These time series signals are sent to coor-
dinator X which acts as an aggregation and detection point.
The purpose of the coordinator is to track conditions across
its monitors and to fire a trigger whenever some limitation
on the aggregate behavior of a subset of nodes is violated.
In general, such a coordinator can aggregate and correlate
the incoming time series signals using any typical aggrega-
tion function (such as SUM, AVG, MIN, MAX, etc.) or more
complex correlation functions (such as the top eigenvalues
of the global measurements matrix [18]). We focus primar-
ily on simple linear aggregators, using SUM as our main ex-
ample. We should stress, however, that our system is gen-
eral and can be extended to accommodate domain-specific
knowledge; furthermore, simple SUM aggregates can actually
enable more sophisticated distributed detection tools, as dis-
cussed in [13].

All communication happens only between monitoring
nodes and the coordinator, and no communication happens
among monitoring nodes. If all the monitors sent their time
series signals continuously (and there were no delay and no
loss in the network), then the coordinator would have perfect
knowledge of the signals (i.e., global state) and would fire the
trigger accurately. By “accurately” we mean that the coordi-
nator can make two kinds of mistakes when it has imperfect
knowledge: either a violation among monitors occurs and the
coordinator fails to catch it (we call this a missed detection),
or no violation occurs yet the coordinator thinks that one has
(called a false alarm). Clearly, continuously sending all the
monitored signals is extremely costly in terms of communi-
cation overhead and can overwhelm the coordinator.

Our intent here is to enable the coordinator to fire its trig-

3

gers with high accuracy while using as little communication
as possible. We make use of three avenues for reducing over-
head: (1) when the time series itself does not change “much,”
no updates are sent to the coordinator since the most recent
information sent is still valid; (2) we focus on the accuracy
of firing the trigger and not on estimating the aggregate time
series signal; and, (3) we leverage the coordinator’s global
view by letting it inform each monitor the level of accuracy
that it must report. To simplify the exposition, our discus-
sion assumes that communication with the coordinator are
instantaneous. In the case of non-trivial delays in the under-
lying network, techniques based on time-stamping and mes-
sage serialization can be employed to ensure correctness, as
in [19].

2.1 Types of Threshold Conditions
Let C denote the distributed trigger threshold. Our goal is
to track the trigger condition approximately to within a spec-
ified error tolerance ε, and our tracking algorithms exploit
this error tolerance to minimize communication costs. Since
we are dealing with continuous time series of measurements,
the notion of exceeding a threshold is intimately related to
the length of time over which a violation may occur. Our fo-
cus in this paper is on a new class of persistent, cumulative
threshold violations.

Cumulative Threshold Condition. The basic idea is that,
to capture temporally-persistent phenomena, a violation can
be defined in terms of the accumulation of excess area of the
underlying signal over windows of time. The coordinator can
achieve this by computing a violation penalty that accrues
over time, and fires the trigger condition when the penalty
becomes excessive. During a window with (time-varying)
size τ = τ(t), the penalty at time t accrued over the interval
[t − τ, t] is defined to be

V (t, τ) = max{0,

∫ t

t−τ

n
∑

i=1

ri(w)dw − C · τ}

(We maximize this term with zero to keep the penalty non-
negative.) Our cumulative triggering mechanism does not
depend on any fixed window size τ ; instead, a cumulative
trigger fires at time t if penalty V (t, τ) > ε for any window
size τ ∈ [1, t]. Thus, intuitively, we fire the trigger if there is
some time window that causes the cumulative penalty to ex-
ceed the ε constraint; or, more formally, if maxτ{V (t, τ)} >
ε. One of our key insights in this work is that, by exploiting
an analogy to queuing theory, our system can track cumu-
lative trigger conditions effectively, without having to retain
the entire signal history or check the condition against all
possible τ .

Other Threshold Conditions. Earlier work on distributed
triggers [9, 17] has focused solely on instantaneous threshold
conditions, where the goal is to detect if

∑n
i ri(t) exceeds

a threshold C by more than a given error tolerance at any

0 20 T15

C

104 6

ε
Sum

V2 < ε V3 < ε

V2 + V3 > ε

V1 > ε

ε

Figure 2: Cumulative violations.

time instant t. An easy generalization of the instantaneous
case are fixed-window triggers, where the goal is to detect
the condition V (t, τ) > ε at any time t, for a given, fixed
time window τ . (Since τ is fixed, such triggering conditions
can be easily reduced to the instantaneous case, at least for
simple aggregates like SUM.)

While undoubtedly useful in several settings, instanta-
neous and fixed-window triggers are inherently limited when
it comes to signals where transient bursty behavior is the
norm, such as IP network traffic. Depending on the threshold
value, an instantaneous trigger may easily over-react to natu-
ral, transient phenomena which are very common in practice.
With fixed-window triggers, choosing the right window size
τ can be problematic for several reasons. If we use a small
τ (short window), and the violation lasts for a long time but
is small in magnitude, the system is likely to miss it alto-
gether. For example, in Fig. 2, the persistent (but small) vi-
olation occurring in time slots [10, 20] could go undetected
with a window size of τ = 5 because the penalty (over any
5 time slots) may never grow to exceed ε. If, on the other
hand, the violation were short in duration but large in mag-
nitude, the system would miss it if a large τ (long window)
is used. In our example figure, a short but large violation
occurs during the time period [4, 6]. With a window of size
5 time units, this violation is likely to get averaged out be-
cause the positive penalty in period [4, 6] is canceled out by
the negative contribution in period [3, 4] (or, [6, 7]). However,
in a time-window of size 2, the penalty V1 does exceed ε. In
several application scenarios, it is important to detect both
types of violations regardless of the specific time window in
which they occur. Fig. 2 also illustrates the key difference
between fixed-window and cumulative violation. Consider,
for instance, a fixed window size τ = 5. When the violation
(on average) is small, it will not trigger alarms in time peri-
ods [10, 15] or [15, 20] with total excess violations V1, V2 <
ε. On the other hand, since the violation persists over time
(across the [10, 20] window), assuming V1 +V2 > ε, a cumu-
lative trigger with the same threshold would readily detect the
problem. Thus, by not fixing a window size beforehand, our

4

cumulative triggering mechanism can capture a wide variety
of persistent violation scenarios while avoiding the pitfalls of
fixed time granularities.

2.2 Problem Statement

Based on our earlier definitions, we say a missed detection
occurs if maxτ{V (t, τ)} > ε and the system does not fire
the corresponding trigger. Conversely, a false alarm occurs
whenever maxτ{V (t, τ)} ≤ ε and the system fires a trig-
ger. We define the missed-detection rate β as the fraction
of missed detections over the total number of real violations,
and the false-alarm rate η as the fraction of false alarms over
the total number of triggers fired. Both β and η are system
inputs that can be tuned to achieve a target false-alarm and
missed-detection rate. Allowing these parameters to be in-
puts, creates a flexible system in which different deployments
can be tailored to their own needs. For example, some sys-
tems may consider minimizing false alarms more important
than minimizing missed detections; other systems may take
the opposite view.

The problem we address herein is to design the protocols
resident at the monitors and at the coordinator in order to
guarantee that the distributed trigger check at the coordina-
tor is accurately fired as the local monitor signals evolve over
time. A user can specify the desired error tolerance ε, as
well as the target missed-detection rate β and false-alarm rate
η as inputs to our system — the triple (ε, β, η) essentially
denotes the accuracy level that our tracking schemes target.
Thus, the goal is to guarantee the trigger fires with (ε, β, η)-
accuracy while simultaneously keeping communication over-
heads low. We measure the communication overhead for our
techniques as a fraction of the original time series (i.e., com-
plete signal data) sent to the coordinator; thus, a 10% over-
head indicates that the data transferred between monitors and
coordinator is only 1

10 th of all the measurement data observed
at the monitors. We can now define the cumulative triggering
problem that we address in the remainder of this paper.

•Cumulative Trigger Tracking: Design monitor and coor-
dinator protocols that trigger an alarm if the (global) condi-
tion maxτ{V (t, τ)} > ε holds at any time t, with accuracy
(ε, β, η), while imposing minimal communication overhead
on the network.

3 Our Approach: An Overview

This section discusses several key elements of our novel dis-
tributed trigger tracking approach. Fig. 3 depicts the com-
ponents of our system, where ri(t) denotes the actual time
series observed at monitoring node i, and Ri(t) denotes the
approximate representation of ri(t) that is available at the
coordinator. In general, Ri(t) can be based on any type of
prediction model for site mi that tries to predict the site’s be-
havior over time (e.g., based on the recent past of ri(t)). A

?

C

?

ε

?

η

?

β

?
rn(t)

?
r1(t)

?
r1(t)

Parameters
Adaptive

-

-

-

-

J
J
J

J
J

J
Ĵ

PPPPPq

�
�
�
�
�
�
���

HHHHj

6

�
�

��>

?

Filter/
Predict

Filter/
Predict

Filter/
Predict

δ1

δ2

δn

R1(t)

R2(t)

Rn(t)

Checking
Constraint

Queueing
Aggreg./

AlarmsCoordinator

Distr. Monitors

Symbol Meaning
X Coordinator, coordination and detection center
mi Monitor sites (i = 1, . . . , n)

ri(t) True local time-series signal at mi

Ri(t) Most recent prediction model for ri(t)
C Trigger threshold
ε Error tolerance for threshold violation
δi Local monitor slack parameters
θ Coordinator slack parameter
β Miss detection (i.e., false negative) rate
η False alarm (i.e., false positive) rate

Figure 3: Our distributed trigger tracking framework.

simple model might set Ri(t) to the latest ri(t) value com-
municated from the site, or an average of recent communica-
tion, but more sophisticated prediction models [5, 6] can be
used. Our techniques remain applicable regardless of predic-
tion model specifics.

The key idea is that, at any time t,
∑n

i=1 Ri(t) captures the
the coordinator’s view of the global state, while each monitor
node mi uses its prediction to filter updates to the coordina-
tor by continuously tracking the deviation of its “true” state
ri(t) from the corresponding prediction Ri(t). This filter-
ing is based on local monitor slack parameters δi > 0 that,
intuitively, upper bound the amount of drift between the co-
ordinator’s view of site i’s data stream and the actual ri(t)
signal. As long as the prediction accurately captures the local
stream behavior (i.e., within δi bounds), no communication
is needed. Meanwhile, the coordinator continuously moni-
tors its up-to-date global prediction to ensure that its cumula-
tive penalty across any possible time window stays below the
required trigger threshold and triggers when that condition is
violated.

A Queuing Perspective on Cumulative Distributed Trig-
gers. Our cumulative trigger conditions pose novel algorith-
mic problems that have not been addressed in earlier work
on data streaming. Window-based stream processing [7, 10]
typically focuses only on the case of (time- or arrival-based)
windows of fixed size over the stream; such techniques are
clearly not useful in our case, since the window sizes of the
(potential) trigger violation are not known a priori. Instead,
our key observation is that we can accurately model the mon-
itoring of a cumulative trigger condition (see Sec. 2) using a
simple queuing model (see Fig. 4), as stated by the following
theorem.

5

?

...�

...U

?

r2 rnr1

C

ε

Figure 4: Cumulative violation and queue overflow.

Theorem 1 Consider a queue of size ε with an arrival rate
equal to the actual aggregate signal

∑n
i=1 ri(t) and a drain

(i.e., service) rate equal to the trigger threshold C. A cumu-
lative trigger should fire (i.e., ∃τ s.t. V (t, τ) > ε) if and only
if the above queue overflows.

Essentially, cumulative triggering aims to guarantee that
∑

i ri(t) does not exceed C in the long-term, however, it al-
lows

∑

i ri(t) to be bursty (i.e.,
∑

i ri(t) can be any amount
larger than C in any time window, but the volume of the
burstiness should not exceed ε). Thus, cumulative trigger-
ing does not care about instantaneous sums or averages over
a fixed size window; it cares only whether (across any possi-
ble time scale) the accumulated violation (penalty) exceeds ε
and causes queue overflow.

As an example, the bottom half of Fig. 5 depicts a sample
aggregate time-series signal

∑n
i=1 ri(t), while the top half

shows the occupancy of the above-described queue, Q(t),
over time. Clearly, if the queue overflows at some time t,
then there must be some time ts < t denoting the start of
a busy period [ts, t] (i.e., a period during which the queue
is persistently non-empty; that is, ts = max{x|x ≤ t and
Q(x) = 0}) ending at t with a queue occupancy Q(t) ≥ ε.
Fig. 5 shows two busy periods, [t1, t2] and [t3, t4], the sec-
ond of which results in sufficient queue buildup to fire the
trigger. It is not difficult to see that, by our queuing model,
Q(t) = V (t, t− ts), so that Q(t) > ε (i.e., a queue overflow)
indeed implies that our trigger should fire. Similarly, for any
time window τ ≤ t, V (t, t − ts) ≥ V (t, τ) (i.e., windows
smaller or larger than the latest busy period can only reduce
the cumulative size of the violation). In other words, Q(t) =
V (t, t− ts) = maxτ{V (t, τ)}, implying the cumulative trig-
ger should fire if and only if the queue overflows.

Our algorithms and analyzes for efficiently tracking cu-
mulative distributed triggers depend crucially on the above
equivalence. While the model in Fig. 4 illustrates the concep-
tual equivalence between a cumulative trigger violation and
an overflowing queue, we point out that this is an idealized
centralized model. It is idealized because it assumes the com-
plete accurate signals for ri(t) can feed the queue, and that
there is a single queue. In our distributed environment, ad-
justments are necessary. We extend the queueing idea to the
distributed environment by placing queues at all the monitors
and at the coordinator. Our task is then to design algorithms
to convert the centralized queue with size ε into a coordinator

Q(t)

Empty Busy Empty Busy

t

C

t0

Trigger fired !

Sum

ε

t4t3t2t1

Figure 5: Queuing model for a cumulative trigger.

queue with size θ and a set of local monitor queues with size
δ1, . . . , δn, while still guaranteeing the necessary false alarm
and missed detection rate.

Adaptive Threshold-based Slack Allocation. Besides
maintaining an up-to-date estimate of the global state
∑n

i=1 Ri(t), the job of the coordinator entails two key steps:
(1) simulating a queuing process to check constraint viola-
tions, and (2) adaptively determining slack θ (coordinator
queue size) for itself and individual local slacks δi (moni-
tor queue size) for each monitor. Local slacks can vary over
time and are adaptively recomputed to maximize the effects
of local filtering, and thus, to minimize overall communica-
tion. Our adaptive slack allocation schemes exploit the trig-
ger condition to allow for much “looser” (and thus, more ef-
fective) filters at monitors when the signal stays well below
or above the C threshold. This observation is one of the key
motivations for building adaptivity into our distributed trig-
ger monitoring system.

4 Distributed Cumulative Triggers

The simple queuing model discussed in Sec. 3 is ideal since
it relies on observing the true aggregate

∑

ri(t). However,
in our distributed environment, the global coordinator only
observes approximate predictions Ri(t) of the local signals
(sent in by the monitors). We extend our queueing anomaly
to the distributed environment by placing queues at the co-
ordinator (to catch the violations through an overflow) along
with queues at each of the monitors (to perform filtering).
This distributed queuing model is depicted in Fig. 7.

Extending the queuing analogy to individual monitors, our
model captures the effects of local prediction-based filtering
at mi through a monitor queue of size δi (the local slack)
with an arrival rate of ri(t) (the actual local signal) and a
drain rate of Ri(t) (the local prediction last sent to the co-
ordinator)1. Monitor sites simply track their local queue oc-

1Note that all queues are primarily used as conceptual tools in our de-
velopment to guide our understanding and analysis; our implementation just
simulates these queues through simple counters.

6

0 500 1000 1500 2000 2500 3000 3500 4000
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
um

be
r o

f T
C

P
 re

qu
es

ts

Time

r(t)
R(t)

Figure 6: Local prediction-based filtering.

cupancy and notify the coordinator (also attaching a more
recent prediction) when their local occupancy exceeds their
δi bounds. As an example, Fig. 6 shows the (true) ri(t) and
(smoothed) Ri(t) curves for a real data set (number of TCP
requests in 5-minute intervals over a two-week period on a
PlanetLab node), using a static prediction model (i.e., the pre-
diction used was exactly the last value at the local monitor),
and a queue size of 5,000. Periods where Ri(t) remains con-
stant imply that ri(t) stays consistently within bounds (i.e.,
no communication).

On the other side, the coordinator simulates a queue of
size θ with an arrival rate equal to the (up-to-date) aggregate
prediction

∑n
i=1 Ri(t) and a drain rate equal to the trigger

threshold C; as in Sec. 3, the coordinator fires a trigger viola-
tion if its queue overflows. Intuitively, while the local slacks
δi at the remote monitors aim to filter out local variations
in individual ri(t) signals, the coordinator slack parameter
θ is important for effectively canceling out variations across
monitors (e.g., think of distinct ri(t)’s moving in opposite
directions). Of course, one of the coordinator’s key tasks
is, given the desired trigger threshold ε, miss-detection rate
β, and false-alarm rate η parameters, to determine the local
monitor slacks δi (i = 1, . . . , n) and coordinator slack θ that
optimize the overall communication costs while ensuring the
required trigger-detection guarantees. Our coordinator algo-
rithms compute these slack parameters continuously (based
on available updates from the monitors) to ensure that our
system adapts to changing local monitor characteristics over
time.

In the remainder of this section, we present the details
of our cumulative trigger tracking protocols, as well as the
queuing analysis that drives our parameter settings and the
resulting approximate triggering guarantees; finally, we dis-
cuss how our protocols can naturally adapt to varying moni-
tor characteristics.

4.1 Our Trigger-Tracking Protocols

The Local Monitor Protocol. Given a local slack param-
eter δi (determined by the coordinator), the trigger-tracking

δ1

δ2

δn

-

PPPPPPPPPPPPPPq

�������������*

-

-

-

-
C

r1(t) R1(t)

r2(t) R2(t)

Rn(t)rn

Coordinator

θ

Distr. Monitors

Figure 7: Distributed queuing model: cumulative triggers.

protocol run at each monitor site mi is fairly straightforward.
Let tprev

i denote the time of the last update message from
mi to the coordinator, and let Ri(t) be the most recent pre-
diction model for ri(t) sent to the coordinator. At any time
t, monitor mi continuously tracks the cumulative deviation
of ri(t) from its prediction Ri(t) over the interval [tprev

i , t]

as di(t) =
∫ t

t
prev
i

(ri(x) − Ri(x))dx, and checks the condi-
tion |di(t)| ≤ δi (i.e., the monitor ensures that the absolute
cumulative difference between its actual stream and the co-
ordinator’s corresponding prediction is upper bounded by its
local slack δi. Whenever |di(t)| > δi, the monitor sends an
update message to the coordinator that includes di(t) and an
up-to-date prediction Ri(t), and resets di(t) to zero2.
The Coordinator Protocol. Driven by the up-to-date pre-
dictions and deviations communicated from local monitors,
the coordinator continuously simulates a queue of size equal
to the coordinator slack θ and arrival/drain rates equal to the
total prediction

∑n
i=1 Ri(t) and the trigger threshold C, re-

spectively (Fig. 7). In addition to the continuous “arrivals”
at rate

∑n
i=1 Ri(t) to the coordinator queue, each update

from monitor mi also introduces a chunk of di(t) arrivals
or departures from the queue (depending on whether di(t)
is positive or negative), where di(t) is the observed cumu-
lative deviation of ri(t) from its prediction at mi. The co-
ordinator continuously tracks this complex arrival process at
its local queue and fires the trigger condition whenever the
queue overflows. Finally, either periodically or on each mon-
itor update, the coordinator can recompute the monitor and
coordinator slack parameters in order to adaptively optimize
communication costs for changing monitor characteristics. A
high-level pseudo-code description of both the local-monitor
and coordinator protocols is depicted in Fig. 8.

4.2 Queuing Analysis for Slack Estimation
In this section, we present an analysis of a simplified vari-
ant of our distributed queuing model (Fig. 7), and discuss the
application of our results to estimating effective settings for

2Note that, unlike traditional queuing, local monitor “queue” occupan-
cies are allowed to become negative, if predictions consistently underesti-
mate the true local signals. Such conditions are important to detect and
bring to the coordinator’s attention since they can result in more up-to-date
predictions and enable canceling out of cross-site variations.

7

Procedure Monitor(i, δi)
Input: Monitor index i, local slack parameter δi.
1. while (true) do
2. t := current time; tprev

i := time of last update to coordinator
3. di(t) :=

R t

t
prev
i

(ri(x) − Ri(x))dx

4. if (|di(t)| > δi) then
5. Send update message (i, di(t), Ri(t)) to coordinator
6. Set di(t) := 0
7. if (new slack δ∗i is received from coordinator) then
8. Set δi := δ∗i

Procedure Coordinator(ε, β, η)
Input: Trigger error threshold ε; miss-detection/false-alarm rates (β, η).
1. while (true) do
2. Continuously simulate a virtual queue Q of size θ with arrival rate

P

i Ri(t) and drain rate C
3. for each (monitor update (i, d∗

i (t), R∗
i (t)) received) do

4. Set local prediction Ri(t):= R∗
i (t)

5. Enqueue the d∗i (t) chunk in the virtual coordinator queue Q
6. if (Q overflows) then

fire(“trigger violation”); break
7. Compute new optimal settings for local slacks {δi} and coordinator

slack θ based on (ε, β, η) and maintained statistics (Sec. 4.2)
8. if (adaptive allocation) then disseminate({δi})

Figure 8: Procedures for (a) local monitor update processing, and
(b) distributed trigger tracking at the coordinator.

the monitor and coordinator slack parameters in our system.
Compared with the idealized (centralized) queuing model of
Fig. 4 and Sec. 3, our goal here is to break the idealized cen-
tral queue of size ε into a coordinator queue (of size θ) and
a set of local monitor queues (of sizes δ1, . . . , δn). The exis-
tence of the local δi filters obviously reduces communication
costs by allowing monitors to “absorb” updates with no com-
munication to the coordinator. At the same time, however,
this local filtering also makes the arrival process at the coor-
dinator queue more bursty by introducing bursts of queue ar-
rivals and departures when the filter constraints at local mon-
itors are violated. Thus, abstractly, the role of the coordinator
queue (of size θ) is to allow for such bursts to be effectively
absorbed (or, cancel each other out) as long as the (cumula-
tive) trigger bound is not exceeded.

The system slack parameters (δi’s and θ) interact with each
other as well as the input error threshold ε, miss-detection
rate β, and false-alarm rate η parameters in complex ways.
Intuitively, given an error threshold ε for our trigger monitor,
we would like to maximize the size of the local-monitor filters
δi, as that would obviously minimize the number of monitor
updates to the coordinator. However, larger monitor filters
also imply larger (more bursty) chunks of arrivals/departures
at the coordinator queue (due to monitor updates) which may,
in turn, cause: (1) false alarms when a combination of bursts
causes the queue to overflow even though the true aggregate
signal has not violated the trigger condition; and, (2) miss
detections when the filters absorb enough local update traffic
to mask a real trigger violation. To minimize the false alarm
problem, we would like to have a large coordinator queue

size θ to absorb the monitor bursts — however, the size of
the coordinator slack θ and monitor slacks δ1, . . . , δn are also
clearly constrained by the overall error threshold ε that our
triggering schemes must try to guarantee.

In what follows, we employ queuing theory to analyti-
cally explore the aforementioned tradeoffs (under some sim-
plifying assumptions), and obtain results that provide effec-
tive settings for our system slack parameters for a given in-
put triple (ε, β, η). We make two key assumptions to make
the analysis tractable. First, we assume uniform local slack
parameters, where δi = δ for all i (in Sec. 4.3 we briefly
discuss non-uniform parameters). Second, we assume an
M/M/1 queuing model for the coordinator queue.3. Under
the M/M/1 assumption, let λr and λR denote the mean “ar-
rival rates” for the true signal and predicted signal, respec-
tively (i.e., the estimated averages of

∑

i ri(t) and
∑

i Ri(t)
over time). Similarly, let λe and λd be the mean arrival rates
for enqueue and dequeue chunks (respectively) at the coor-
dinator. Note that, the λR, λe, and λd rates are directly ob-
servable at the coordinator, and can be computed empirically
(e.g., through averaging over a time window of recent queu-
ing activity). Since the overall “mass” of the true aggregate
signal is preserved over time, the coordinator can also accu-
rately estimate λr as λr = λR + (λe − λd) · δ. 4

Now, consider the effect of θ and δ on the miss detection
rate β. It is not difficult to see that having ε ≥ θ + n · δ
always guarantees a miss detection rate β = 0. However,
this condition is simply too conservative and may result in
excessive communication, especially if (a) some β > 0
is acceptable, or (b) the true value of the cumulative vio-
lation maxτ{V (T, τ)} is well below the ε threshold. Es-
sentially, fixing a total slack of ε is an overly conservative,
non-adaptive solution. The following theorem presents a
more versatile, less conservative analytical result relating the
miss-detection rate to ε, θ, and δ, under the assumption of
normally-distributed local “queue” sizes5.

Theorem 2 Assume an M/M/1 model for the coordinator
queue, and that the aggregate occupancy of all local moni-
tor “queues” follows a Normal N(0, σ2) distribution. Then,
setting

∫

∞

x=0

[

1 − F

(

ε − θ

δ
+ x + 1

)]

ρx(1 − ρ)dx = β (1)

guarantees a miss detection rate ≤ β, where F () denotes the
CDF of N(0, σ2), and ρ = λr

C
denotes the average coordi-

nator queue utilization (over time).

The assumption of a zero mean for the aggregate occu-
pancy of all local monitor queues is motivated by the fact
that, over a large enough window of time, the true and pre-
dicted signal rates are approximately equal (i.e., λR ≈ λr).

3In the Appendix, we also provide analyses under other possible queuing
models, such as M/D/1.

4Note that (unlike λr and λR) λe and λd here are in units of chunks (of
size δ).

5Proofs of theorems can be found in the Appendix.

8

Similarly, the normality assumption can be justified under the
assumption of independent updates at local monitors and the
law of large numbers (for large enough n)6. To estimate the
aggregate variance σ2 in our system, each local monitor mi

continuously tracks the up-to-date variance σ2
i of its local oc-

cupancy and ships that information to the coordinator in its
update messages if there is a significant change with respect
to the most recent measurement; the coordinator then esti-
mates the aggregate variance as σ2 =

∑n
i=1 σ2

i . It is also
important to note that the condition in Theorem (1) naturally
adapts to the current true state of the signal and its distance
from the trigger threshold C through its direct dependence
on the ρ = λr

C
ratio.

Now, consider the false alarm rate η. Observe that, in our
distributed queuing model, the arrival and drain rates at the
coordinator queue can be naturally approximated as λR +λe ·
δ and C + λd · δ (respectively), whereas the corresponding
rates for the idealized (centralized) case are simply λr and C.
Based on this observation and our M/M/1 assumption, we
can prove the following result.

Theorem 3 Assume an M/M/1 model for the coordinator
queue. Then, setting:

1 −

(

λr

C

)
ε
δ
+1

/

(

λR + λe · δ

C + λd · δ

)
θ
δ
+1

= η (2)

guarantees a false alarm rate ≤ η.

Given a triple of trigger-tracking requirements (ε, β, η),
our coordinator algorithms use the derived system of two
non-linear equations (Theorems 1 and 2) to solve for the opti-
mal (under our assumptions) coordinator- and monitor-slack
values θ and δ (Step 7 in Fig. 8(b)). The local slacks δ are
then distributed to the monitors for tracking their local pre-
diction deviations.

4.3 Adaptive Slack Allocation
Clearly, at any time instant t, Theorems (1) and (2) can
be used at the coordinator (with the up-to-date estimates of
queue arrival rates and variances) to provide optimal settings
θ(t), δ(t) for our system slack parameters. Thus, our system
can naturally adapt to changing monitor characteristics. It is
important to note, however, that the aggregate statistics em-
ployed in our queuing analysis are likely to be quite stable
(i.e., vary slowly over time). This implies that, in practice,
frequent re-calibration of the θ and δ parameters is not nec-
essary, and, in fact, could cause system instability and ex-
cessive communication. In this section, we discuss two sim-
ple schemes for filtering δ updates at the coordinator; while
such schemes may no longer offer the performance guaran-
tees of Theorems 2 and 3, they also limit the sensitivity of
the system to transient variations and the number of required
δ-slack disseminations from the coordinator to the monitors.

6Experience with several real data sets shows that a Normal model of
aggregate local occupancy is accurate under reasonable time windows.

We also briefly discuss non-uniform allocation of local mon-
itor slacks.

Min-based δ(t) Filtering. Consider a scenario where the co-
ordinator estimates a new δ(t) value that is greater than the
previously disseminated local slack. In this situation, the co-
ordinator may choose not to disseminate the new slack value
to save O(n) messages, at the cost of more conservative fil-
tering (and, thus, maybe more messages) at the local mon-
itors. This choice is correct for a transient change in δ due
to local stream variability; in addition, it can only reduce the
actual miss detection and false alarm rates (albeit at the cost
of extra communication). Our min-based filtering scheme is
based on this intuition: it applies a low-pass filter on the cur-
rent δ(t) value based on a window of h time instants, com-
puting the local slack as δ̄(t) = min{δ(t−h), . . . , δ(t)} and
disseminating new slack values based solely on changes in
δ̄(t). Note that the min function is just one way of trying to
capture the long-term trend for δ and other aggregates (e.g.,
AVG) can also be applied. Unlike min, however, these are
not “safe” and may cause more miss detections and/or false
alarms.

Discretization-based δ(t) Filtering. We can apply the intu-
ition that we really only need to update the local slack value
δ when we see a significant change in its value. As such,
we can quantize the range of slack values into intervals I0,
I1, . . ., and update the monitor slacks only when δ(t) moves
across interval boundaries. Since the available slack is usu-
ally on the order of ε, we can use intervals of size ε

b
, where b

is a quantization parameter (thus, Ik = ((k−1) ε
b
, k ε

b
]). Large

b values yield tighter intervals and more accurate local δ set-
tings, but also imply more sensitivity to transient changes and
increased communication, thus giving rise to interesting ac-
curacy and cost tradeoffs.

Non-Uniform Local-Slack Allocation. To achieve load
balance and further reduce communication overhead, in-
stead of using identical δ(t) for all monitors, the coordinator
can compute and distribute non-uniformly the local monitor
slacks δ1(t), . . . , δn(t). For instance, the coordinator can dis-
tribute slacks in proportion to locally observed variances (i.e.,
δi(t) = σi·nδ

σ
) providing more “cushion” to sites with higher

variability.

5 Evaluation

In this section, we use our protocol implementation and pro-
tocol simulator with a real wide-area network activity dataset,
to evaluate our methods for distributed cumulative triggers.

5.1 Implementation and Data

We implemented our triggering system using Java, and de-
ployed the monitor protocol on 40 PlanetLab nodes along
with the coordinator protocol on a single PlanetLab host.
SNORT sensors were activated on each monitor node and

9

have been continuously running for approximately one year.
In the deployment, our Java module extracts information
from these logs in periodic epochs, the size of which can
ranges from 5 seconds to 10 minutes. These epochs deter-
mine the underlying time unit of the resulting time series
data. For the examples presented herein, we use the time
series of the number of TCP requests per 5 minutes time win-
dow. We have checked our results, especially the reduction
on communication overhead, against results for other time
granularities. Clearly, time series with different underlying
time scales will exhibit different amounts of volatility, which
in turn affect the communication overhead. We observe 85%
to 96% of communication reduction when using time series
with 5 minute time bins, while in time series with 5 second
time windows, we observed 70% to 90% of communication
reduction. We thus believe the data presented herein are rep-
resentative of the general gains possible using our methods.

In addition to our implementation, that confirms proper
functioning of our code, we have also developed a trace-
driven simulator. The simulator emulates our protocols and
is fed with the SNORT time series as input. This simulator
serves many purposes. First, because our Java code was de-
ployed only recently, the simulator allows us to evaluate our
methods on the time series data produced from the SNORT
sensors throughout this last year. Also our code is currently
deployed on 40 machines whereas the SNORT sensors are
deployed on 200 machines. Using the simulator with all 200
SNORT time series allows us to do some scalability assess-
ment. Third, the simulator is also useful for rerunning exper-
iments which is very important for evaluating our protocols
under a wide variety of settings (e.g., target accuracy levels).

In addition to this PlanetLab SNORT dataset, we also con-
ducted some evaluations on two other datasets. One mon-
itors per-connection packet rates from sources spread over
a wide-area network [21], another is a dataset of tempera-
tures from an environmental sensor network. Among these
three datasets, the time series extracted from the SNORT logs
(number of TCP requests/5 min) were the most volatile and
thus the most difficult to handle. Due to lack of space, we
have elected to present the results from the most challeng-
ing data set, namely SNORT data. The results for the other
datasets illustrate the same properties as those presented here,
but achieve even greater communication overhead reduction
due to smoother time series data. In most of the plots below,
we used a time series of length 2 weeks (corresponding to
4000 data points per time series per node).

5.2 Performance Metrics
We examine the performance of our protocol for cumulative
violations. We start with experiments in which the moni-
tors are given uniform slacks δi = δ, and evaluate the effect
of non-uniform slack allocation (i.e., heterogeneous queue
sizes) later on.

In our evaluations, the target performance level is speci-
fied by the usual triplet parameters (ε, β, η). We use these

Desired Achieved
ε β η β∗ η∗

0.2 0.02 0.02 0.008 0.008
0.2 0.02 0.04 0.000 0.023
0.2 0.02 0.06 0.008 0.030
0.2 0.04 0.02 0.000 0.020
0.2 0.04 0.04 0.008 0.031
0.2 0.04 0.06 0.000 0.023
0.4 0.02 0.02 0.010 0.010
0.4 0.02 0.04 0.000 0.018
0.4 0.02 0.06 0.000 0.026
0.4 0.04 0.02 0.028 0.009
0.4 0.04 0.04 0.028 0.036
0.4 0.04 0.06 0.010 0.035

Table 1: Desired vs. achieved detection performance.

values with our models to compute the monitor and coor-
dinator queue sizes (δ, θ) for the simulator, which we then
drive with the PlanetLab TCP request time series data as in-
put. The simulator’s outputs are the false alarm and missed
detection rates actually achieved by our system. The false
alarm rate achieved by our system when run on real data is
computed as follows. If a trigger is fired, but no correspond-
ing real violation occurred within 3 time intervals (1 interval
before, during, and after) of the detected one, then we count
it as a false alarm. The achieved false alarm rate, denoted by
η∗, is then given by the ratio of the number of false alarms
over the total number of triggers fired. For each real viola-
tion, if no trigger is fired within the 3 time intervals around
the real violation, we count this as a missed detection. The
missed detection rate, denoted by β∗, achieved by our system
is given by the ratio of the number of missed detections over
the number of real constraint violations.

For each experiment, we compute the communication
overhead as follows. Let num be the number of messages
exchanged between monitors and the coordinator, including
both the signal updates from monitors to coordinator as well
as the filter updates from the coordinator to the monitors. Let
n be the number of monitors and m the number of values in
each monitor’s time series. Thus m · n indicates the worst-
case communication overhead (giving the coordinator perfect
knowledge). Then communication overhead is calculated as
num/(m · n) which gives the per-node communication cost.

Thus, one single experiment consists of the following. We
feed an input triple (ε, β, η) and the PlanetLab data into our
model, and compute the monitor and coordinator queue sizes
(δ, θ) using Theorems 1 and 3. Recall that the computation
uses the data variability σ, along with the enqueue and de-
queue rates λR, λe and λd. We ran our simulator using each
pair of selected queue sizes, with the actual SNORT traces
as input, for 40 nodes, each of which has 4,000 values in
the time series. This produces a single result for our three
performance metrics (overhead, β∗, η∗). We used hundreds
of triples of (ε, β, η) to generate all the points in the graphs
below.

10

5.3 Model Validation
In Table 1, we give a few examples of the actual false alarm
rate (η∗) and missed detection rate (β∗) that occurred in the
system, along with the corresponding target η and β that was
given as input. We can see that the achieved β∗ and η∗ are
always lower than the target β and η. These results indicate
that our model finds upper bounds on the detection perfor-
mance, and that it is always safe to use our model’s derived
queue size parameters δ and θ; although it also implies that
there is future work to do in identifying further optimizations
that reduce the communication cost.

In our experiments, we observed that the size of the time-
window needed to catch each of the violations varied from
5 to 100 minutes. There is no good single value of a fixed
window size that would have caught all of these events.
This broad range illustrates that indeed the notion of a time-
varying window for violation detection is needed, and this
provides motivation for the idea of cumulative triggers.

5.4 Experiment Configuration
Clearly the reduction in communication overhead is a func-
tion of the time series themselves, and smoother data streams
will yield larger overhead reductions. We now examine two
properties of our data to be sure that the general observations
we make are not artifacts of a particular time series. We also
use these next two plots to help us select the experiments to
run for the remainder of the evaluation.

Our target constraint C is data dependent. The value of
C would typically lie near the extreme behavior of the data
since the triggers are usually designed to detect unhealthy
behavior. In the following experiment we select C to be the
value of the 85th percentile of the distribution of all 4,000
values (time instants) of

∑

ri(t). Similarly, we try the 90th

and 98th percentiles as different values for the threshold C.
In Fig. 9 we plot the communication overhead as a function
of the error tolerance for each of these four values of C. In
all cases, the shapes of the monotonically decreasing curves
are very similar to each another. For any particular value of
ε, the communication reduction is substantial. A communi-
cation overhead in the range of 10-20% means that we only
need 80-90% of the original time series data to fire the trig-
gers with high accuracy (the exact amount depends upon the
target accuracy level). We elect to use C corresponding to
the data value at the 90th percentile of the distribution for the
remainder of our experiments.

The amount of communication bandwidth used between
our monitors and the coordinator will depend upon the data,
and it is intuitive — more volatile data will use more band-
width. In order to see the range of gain we achieve on com-
munication overhead reduction for different sets of time se-
ries, we did the following. Of the 200 PlanetLab SNORT
logs, we selected 40 machines (time series) at a time. We
did this by first computing the variance of each of the 200
time series and then sorting them. We selected three differ-

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

C
om

m
un

ic
at

io
n

ov
er

he
ad

Percentage error tolerance (ε/C)

85 percentile
90 percentile
98 percentile

Figure 9: Impact of constraint violation threshold C.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Percentage error tolerance (/C)ε

C
om

m
un

ic
at

io
n

ov
er

he
ad

High Volatility
Middle Volatility
Low Volatility

Figure 10: Impact of volatility on overhead.

ent sets of 40 machines each: the “high volatility” set are the
nodes with the 40 largest variances, the “low” set used the
40 machines with the lowest variances, while the “middle”
volatility set selected 40 nodes at random. The communica-
tion overhead reduction versus error tolerance for these three
sets of machines is given in Fig. 10. For all experiments (one
for each dot), we used β = η = 0.06. As expected, for a
given value of ε, the communication overhead decreases as
the volatility of the data decreases. The fact that this graph
matches our expectations can be taken to indicate that our
protocol and its implementation are doing what they are sup-
pose to do. We see that even with the most volatile set, we
still achieve efficient communication. In the remainder of our
experiments, we use the middle volatility set.

5.5 Detection Performance vs. Communica-
tion Overhead

We examined the tradeoffs between the false alarm and
missed detection rates with the communication overhead and
the two queue sizes. We use ε = 0.2C for these experi-
ments. Fig. 11(a) shows the communication overhead trade-
off, while (b) and (c) show the monitor queue and coordi-
nator queue sizes used for each achieved performance level
(β∗, η∗). Note that to facilitate viewing of the 3-dimensional

11

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

0

0.05

0.1

0.15

0.2

0.25

False Alarm rate
Miss Detection rate

C
om

m
un

ic
at

io
n

ov
er

he
ad

(a) Communication overhead

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08
0

1000

2000

3000

4000

5000

False Alarm rateMiss Detection rate

M
on

ito
r q

ue
ue

 s
iz

e

(b) Monitor queue size

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08
2.4

2.5

2.6

2.7

2.8

2.9

x 10
4

False Alarm rateMiss Detection rate

C
oo

rd
in

at
or

 Q
ue

ue
 s

iz
e

(c) Coordinator queue size

Figure 11: Parameters design and tradeoff between false alarm, miss detection and communication overhead.

plots, the order of increasing β∗ and η∗ in Fig. 11(a) differs
from that in (b) and (c).

In Fig. 11(a) we see that the communication overhead de-
creases quickly as β and η increase. The basic phenomenon
here is that for any error type (ε, β, and η are different error
types), the communication overhead can be reduced if we can
tolerate higher errors. In this sense, Fig. 11(a) is consistent
with Figs. 9 and 10. What is surprising is that the range of
communication overhead is very limited (4-20%), implying
that even when very low false alarm and missed detection
rates are desired, we can still achieve efficient communica-
tion. For example, when β = η = 0.04, we can filter out
92% of the original signal.

We point out that looking across Figs. 9, 10, and 11(a), we
see that the communication overhead is typically in the range
of 5-20%, even when looking at it from different perspectives
(in terms of volatility, percentage error tolerance, constraint
definition, and target performance levels). While these num-
bers are particular to our dataset, we nonetheless therefore
believe that our methods can regularly achieve significant
data reduction even for low target error rates. Comparing our
system to distributed monitors today that do not support dis-
tributed cumulative triggers, we see that we achieve difficult
monitoring tasks with less than 80% of the monitored data
compared to today’s systems. Moreover today’s prototypes
do not provide any guarantees.

Fig. 11(b) shows that as the tolerable false alarm rate in-
creases, the local queues increase in size because we can do
more filtering at the monitors, which in turn brings down the
overhead. This explains why the overhead decreases with in-
creasing false alarm rate. A similar behavior occurs when the
tolerable missed detection rate is raised.

Looking at both (b) and (c) together, we see that a small
change in (β, η) can lead to sizable change in the local queue,
but relatively small amounts of change in the coordinator
queue. Because the coordinator does not vary much, even
when we change the accuracy requirements, we conclude that
cancellation across the signals of different monitors is indeed
occurring.

40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

M
on

ito
r Q

 s
iz

e

40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

O
ve

rh
ea

d
pe

r m
on

ito
r

40 60 80 100 120 140 160 180 200
0

5

10

15

20

25
C

os
t o

f c
oo

rd
in

at
or

Number of nodes in the system

Figure 12: Communication overhead versus system size.

5.6 System Scalability

We now examine our system’s scalability as the number of
distributed monitors grows. Recall that one of the key rea-
sons for controlling the communications cost is to avoid over-
whelming the coordinator should it receive lots of data from
many monitors. The communications overhead metric we
have been using until now (namely num/n ·m) is an average
value for the overhead per monitor. This therefore captures
how much reduction can be done on each typical time se-
ries. However the communications bandwidth coming into
the coordinator is the sum of all these filtered time series. We
refer to this as the communications cost. This cost with re-
spect to the coordinator can be computed from num/m. This
captures the average number of messages the coordinator re-
ceives in one time slot.

We plot the communications cost as a function of the num-
ber of monitors in Fig. 12. We varied the number of moni-
tors from 40 to 200, and used the target performance triplet
(ε, β, η) = (0.2C, 0.06, 0.06) . For each system size n, we
run 5 rounds of experiments, each of which runs on n ran-
domly picked monitors. In this Figure, as the system size
increases: 1) the communication overhead of each monitor
decreases slightly; and 2) the communication cost of coordi-
nator increases slowly with the slope roughly being 0.1. This

12

0 200 400 600 800 1000 1200
0

5

10

15

20

Fr
eq

ue
nc

y
of

 n
od

es

(a) Homogeneous local queue size

0 200 400 600 800 1000 1200
0

5

10

15

20

Fr
eq

ue
nc

y
of

 n
od

es

(b) Heterogeneous local queue size

Figure 13: Number of messages per node.

result indicates that the communication cost increases sub-
linearly as system size increases, and that our system thus
scales gracefully. The intuition here is that as the number of
monitor nodes increases, when one monitor queue overflows,
it is more likely that there will be an underflowing queue
elsewhere, and this leads to more signal cancellation at the
coordinator. Our algorithm captures this trend and enables
monitors to use larger queue sizes to filter out more updates,
which in turn results in less communication overhead.

We note that the monitor and coordinator queues grow as
the system scales. We point out that this is not related to
scalability because when our solutions are implemented there
is no need to implement actual buffers; instead the queues are
implemented as counters, and the queue sizes correspond to
maximum counter values.

5.7 Non-Uniform Slack Allocation
Finally we consider the case of non-uniform slack alloca-
tion. Recall that this means that the queue sizes the coor-
dinator assigns to each monitor will be heterogeneous. We
run this experiment using a network with 80 nodes over 4000
time slots, in which each node is randomly assign a data
stream. We run this experiment twice, once with homoge-
neous queue sizes and once with heterogeneous queue sizes.
The performance in terms of our three main performance
metrics is nearly identical. The values for (overhead,β∗, η∗)
are (10.7%, 0.030, 0.032) with homogeneous queues and
(10.6%, 0.020, 0.035) for heterogeneous queues.

The difference in these two systems will be in terms of
how much data each monitor sends in these two scenarios.
We measured the volatility of our 80 data streams through
their standard deviation. The distribution of these standard
deviations was a bell shaped curve that ranged from 100 to
2000, indicating that we are indeed using a collection of time
series with a broad range of volatility. One might hypothe-
size that more volatile time series need to send more data than
less volatile ones (or at least that these two time series would
differ; the amount sent clearly depends upon the queue size
as well). Consider the plots in Fig. 13. In (a) we illustrate the

number of messages sent by each monitor for the homoge-
neous queue case. On average around 440 messages are sent
by each node over all time slots. We see that there exists some
“hot-spot” heavy nodes, that send more than 1100 messages
in the experiment, a great deal more than other monitors. In
(b) we provide the same plot as (a) but for the heterogeneous
case. We see that the distribution of per-node messages sent
is concentrated in a smaller region (200-700), and there are
no longer any unusually heavy nodes. Using non-uniform
slack allocation can remove “hot-spot” nodes because it al-
locates more slack to nodes with more volatile data streams.
This show another feature of our system, namely that we can
achieve some kind of load balancing by using non-uniform
slack allocation, without paying any penalty in terms of error
and overhead performance.

6 Discussion

In this section, we discuss two practical issues for a real-
world deployment and a potential extension.

Fault Tolerance. Our system has a single coordinator that is
responsible for triggering. There are several approaches that
can be used to tolerate this single point of failure, including
having monitors multicast data to multiple coordinators, and
using hierarchical aggregation structures [23] or peer-to-peer
topology management [28]. Regardless of the choice of fault-
tolerance mechanism, our distributed trigger scheme offers
benefits and remains applicable.

Hierarchical Structure. Our approach can be extended to
a multi-level tree structure with the following benefits: 1)
reducing the coordinator’s communication and processing
workload because the roots of subtrees can perform partial
aggregation and detection; 2) mapping monitors in differ-
ent administrative or network domains into different subtrees
(one for each domain) to exploit spatial locality.

Complex Triggers. In this paper, we solved a distributed
triggering problem for anomalies defined as a SUM function
exceeding a threshold. Our solution detects threshold viola-
tions with specified accuracy while minimizing communica-
tion overhead, as well as providing the flexibility for users to
trade off communication overhead with detection accuracy.
However, our queuing-based approach can support other gen-
eral anomaly types. For example, in [13], we explore com-
plex triggers that detect network-wide anomalies in a dy-
namic Origin-Destination network traffic flow matrix by: a)
using a Principal Components Analysis (PCA) technique to
decompose network traffic into normal and residual compo-
nents; b) applying a threshold function to detect anomalies
on residual components [18]. We believe that our model of
simple, efficient, and extensible triggers can support a vari-
ety of monitoring tasks and can be composed with existing
query and detection techniques to enhance applications with
sophisticated distributed detection capabilities.

13

7 Conclusion and Future Work

We have presented a novel solution to the problem of efficient
cumulative triggering on an aggregate constraint condition in
a distributed monitoring system. We believe our work is the
first to address constraint detection over a time-varying win-
dow. Our solution relies on a key insight of focusing on accu-
rate triggering, and not ε-accurate aggregate value reporting.
This insight can yield a greater than 80% reduction commu-
nication overhead, while preserving high detection accuracy.

Our contributions include: providing a mathematical def-
inition of cumulative distributed triggering; using a queu-
ing theory-based problem definition, which makes analyti-
cal solutions possible; and performing a detailed evaluation
of our schemes (and representative alternatives) using real
world and trace-based streaming data. Overall, the combi-
nation of our contributions offers users the power to tradeoff
desired detection accuracy and performance with communi-
cation overhead.

We envision several areas for future exploration. One area
is support for more general and complex correlation func-
tions (other than our choice of SUM) by incorporating sketch-
ing techniques and advanced anomaly detection algorithms
into our framework. Another area is the use of a multi-level
tree hierarchy to further reduce the processing and commu-
nication workload at the coordinator.

References
[1] ArcSight. http://www.arcsight.com/.
[2] CHERNIACK, M., BALAKRISHNAN, H., BALAZINSKA, M., CARNEY,

D., ETINTEMEL, U., XING, Y., AND ZDONIK, S. Scalable distributed
stream processing. In CIDR (2003).

[3] CHUN, B., HELLERSTEIN, J., HUEBSCH, R., MANIATIS, P., AND
ROSCOE, T. Design considerations for information planes. In WORLDS
(2004).

[4] CLARK, D., PARTRIDGE, C., RAMMING, J. C., AND WROCLAWSKI,
J. T. A knowledge plane for the internet. In ACM SIGCOMM (2003).

[5] CORMODE, G., AND GAROFALAKIS, M. Sketching streams through
the net: Distributed approximate query tracking. In VLDB (2005).

[6] CORMODE, G., GAROFALAKIS, M., MUTHUKRISHNAN, S., AND
RASTOGI, R. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In ACM SIGMOD (2005).

[7] DATAR, M., GIONIS, A., INDYK, P., AND MOTWANI, R. Maintaining
stream statistics over sliding windows. In ACM-SIAM SODA (2002).

[8] DELIGIANNAKIS, A., KOTIDIS, Y., AND ROUSSOPOULOS, N. Hier-
archical in-network data aggregation with quality guarantees. In EDBT
(2004).

[9] DILMAN, M., AND RAZ, D. Efficient reactive monitoring. In IEEE
INFOCOM (2001).

[10] GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R. Querying and
mining data streams. Tutorial in VLDB (2002).

[11] HANSON, E. N., BODAGALA, S., AND CHADAGA., U. Trigger con-
dition testing and view maintenance using optimized discrimination net-
work. IEEE TKDE, 14(2) (2002).

[12] HUANG, L., GAROFALAKIS, M., JOSEPH, A., AND TAFT, N.
Communication-efficient tracking of distributed triggers. UC Berkeley
Tech. rep., May 2006.

[13] HUANG, L., GAROFALAKIS, M., HELLERSTEIN, J., JOSEPH, A.,
AND TAFT, N. Toward sophisticated detection with distributed triggers.
Under submission, April 2006.

[14] HUEBSCH, R., AND ET AL. Querying the internet with pier. In VLDB
(2003).

[15] JAIN, A., CHANG, E. Y., AND WANG, Y.-F. Adaptive stream re-
source management using kalman filters. In ACM SIGMOD (2004).

[16] JAIN, A., HELLERSTEIN, J. M., RATNASAMY, S., AND WETHER-
ALL, D. A wakeup call for internet monitoring systems: The case for
distributed triggers. In HotNets (2004).

[17] KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM, J.
Communication-efficient distributed monitoring of thresholded counts.
To appear in ACM SIGMOD (2006).

[18] LAKHINA, A., CROVELLA, M., AND DIOT, C. Diagnosing network-
wide traffic anomalies. In ACM SIGCOMM (2004).

[19] OLSTON, C., JIANG, J., AND WIDOM, J. Adaptive filters for contin-
uous queries over distributed data streams. In ACM SIGMOD (2003).

[20] PADMANABHAN, V. N., RAMABHADRAN, S., AND PADHYE, J. Net-
profiler: Profiling wide-area networks using peer cooperation. In IPTPS
(2005).

[21] PAXSON, V., AND FLOYD, S. Wide-area traffic: the failure of poisson
modeling. IEEE/ACM Trans. on Networking, 3(3) (1995).

[22] PITTS, J., AND SCHORMANS, J. Introduction to IP and ATM design
and performance with applications and analysis software. John Wiley
and Sons, 1996.

[23] RENESSE, R. V., BIRMAN, K., AND VOGELS, W. Astrolabe: a robust
and scalable technology for distributed system monitoring, management
and data mining. ACM Trans. on Computer Systems, 21(2) (2003).

[24] SPRING, N., WETHERALL, D., AND ANDERSON, T. Scriptroute: A
facility for distributed internet measurement. In USITS (2003).

[25] WIDOM, J., AND S.CERI. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann, 1996.

[26] XIE, Y., KIM, H.-A., O’HALLARON, D. R., REITER, M. K., AND
ZHANG, H. Seurat: A pointillist approach to anomaly detection. In RAID
(2004).

[27] YEGNESWARAN, V., BARFORD, P., AND JHA, S. Global intrusion
detection in the domino overlay system. In NDSS (2004).

[28] ZHAO, B., HUANG, L., STRIBLING, J., JOSEPH, A., AND KUBIA-
TOWICZ, J. Exploiting Routing Redundancy via Structured Peer-to-Peer
Overlays. In IEEE ICNP (2003).

8 Appendix

8.1 Instantaneous & Fixed-Window Triggers
Our goal for instantaneous triggers is to track an instanta-
neous violation approximately to within the specified error
tolerance ε around threshold C. For example, if the aggrega-
tion function is a SUM function on n nodes, then the trigger
fires for any time instant t where

∑n
i=1 ri(t) > C + ε.

Our work here and the work in [17] independently devel-
oped algorithms for tracking instantaneous triggers. The al-
gorithms for tracking instantaneous trigger violations are sig-
nificantly simpler than those for the cumulative case, and fol-
low along the framework discussed in Sec. 3 (Fig. 3). The
tracking protocol at the coordinator and local monitors is
quite simple and, at a high level, very similar to the solutions
proposed in earlier work for approximate aggregate tracking
(e.g., [15, 19]): The coordinator determines the amount of
global monitor slack ∆ and an allotment of ∆ to individual
local slacks δi such that ∆ =

∑

i δi. Then, for each i, the
δi value is communicated to monitor mi which continuously
tracks the (instantaneous) difference di(t) = ri(t) − Ri(t)
between the true local signal and its (most recent) prediction.
Whenever |di(t)| > δi, mi sends an update message to the
coordinator that includes the up-to-date value of ri(t), along
with an up-to-date prediction Ri(t) that satisfies the local fil-
tering constraint at mi. The coordinator continuously tracks

14

never fires

may fire

definitely fires

t

Value

∑n
i=1 ri(t)

C + ∆

C − ∆

∑n
i=1 ri(t) ≤ C − ∆,

∑n
i=1 ri(t) > C + ∆,

Figure 14: Instantaneous trigger tracking guarantees.

the aggregate predictions across all monitor sites, and fires a
trigger condition violation whenever

∑n
i=1 Ri(t) > C.

Based on the above protocol, it is not difficult to show (see,
e.g., [19]) that the above tracking algorithm always guaran-
tees a ±∆ additive bound for the predictions tracked at the
coordinator; this, in turn, directly implies the following re-
sult.

Theorem 4 The above instantaneous trigger-tracking
scheme is guaranteed to: (1) fire whenever

∑

i ri(t) >
C + ∆; and, (2) never fire whenever

∑

i ri(t) < C − ∆.

In other words, Theorem 4 asserts a “band of uncertainty”
(of size 2∆) around the trigger threshold C, where our sim-
ple tracking algorithm may or may not fire a trigger viola-
tion; an illustration is shown in Fig. 14. A straightforward
application of the above theorem with ∆ = ε (essentially, di-
rectly applying the techniques of [15, 19]) would ensure that
our algorithm tracks the instantaneous distributed trigger to
within ε additive error (as discussed in Sec. 2). Similarly, the
convex optimization algorithms of Olston et al. [19] (based
on the idea of marginal gains) can be used to determine the
optimal allocation of the (fixed) total slack ∆ = ε to local
monitor slacks δi. Clearly, however, such an approach is far
too conservative: Our global slack should be able to adapt to
changing local signals at the monitors based on the required
threshold value (Sec. 3). We now discuss such an adap-
tive, threshold-based approach that provides the required ε-
error guarantees — our experimental results in Sec. 5 clearly
demonstrate the benefits of such adaptivity in practice.

Adaptive Instantaneous Trigger Tracking. The key idea of
our adaptive scheme is quite simple. Unlike [15, 19], we are
not interested in ε-error approximations to the true aggregate
signal

∑

i ri(t), unless its value is close to the trigger thresh-
old C. When

∑

i ri(t) < C, the additional slack should be
exploited to effectively minimize updates from monitors to
the coordinator. Formally, for any time instant t, the coordi-

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4
x 104

(a) C−Σ R(t)

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4
x 104

(b) After min−filtering

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4
x 104

(c) After discretization and min−filtering

Adaptive
Fixed

Adaptive
Fixed

Adaptive
Fixed

Figure 15: Effect of min- and discretization-based filtering.

nator estimates the total amount of available slack as:

∆(t) = C + ε −

n
∑

i=1

Ri(t)

and can distribute that slack to local monitor δi’s (e.g., using
a marginal-gains strategy, as in [19]). (The key idea here is
to allocate slack based on the expected reduction in the num-
ber of monitor messages per unit of slack, as estimated from
the recent update history for each monitor at the coordinator.)
Thus, aggregate signals that are (expected to be) far from the
trigger threshold imply additional slack and, therefore, re-
duced communication for each local monitor.

Compared to the simple instantaneous tracking scheme de-
scribed earlier in this section, the local monitor protocol re-
mains unchanged while the coordinator protocol changes in
order to effectively adapt to changing values of ∆(t). Specifi-
cally, when the coordinator receives a monitor update (at, say,
time t), it recomputes the current global slack ∆(t), based on
which it computes and disseminates new local slacks δi to
individual monitors. The following theorem shows that our
adaptive scheme indeed guarantees ε-approximate instanta-
neous trigger tracking.

Theorem 5 Employing an adaptive global monitor slack
equal to ∆(t) = C + ε−

∑n
i=1 Ri(t), where Ri(t) denotes

the up-to-date prediction from monitor mi (for all i) ensures
that the coordinator check

∑n
i=1 Ri(t) > C: (1) always fires

if
∑

i ri(t) > C + ε; and, (2) never fires if
∑

i ri(t) < C − ε.

Of course, as with our adaptive scheme for cumulative trig-
gers, the key here is to avoid an overly sensitive coordina-
tor that disseminates new δi’s for small, transient changes in
∆(t). Our coordinator algorithms achieve this through min-
based and discretization-based filtering steps on ∆(t), similar
to those described in Sec. 4.3. For instance, Fig. 15 depicts
the the smoothing effect of the two filtering steps on a real-
life aggregate signal.

Obviously, the adaptive global slack ∆(t) can be dis-
tributed across local monitor slack values δi in a non-uniform

15

0 500 1000 1500 2000 2500 3000 3500 4000
3

4

5

6

7

8

9

10
x 104

Time

N
um

be
r o

f T
C

P
 re

qu
es

ts

Input signal
No MD above
No FA below
Real alarms
Detected alarms

Figure 16: Triggering on instantaneous violation.

manner in order to minimize overall communication. As
shown in [8, 19], in the case of a fixed total slack, the opti-
mal allocation point is achieved by equalizing the individual
marginal-gain ratios across all monitors. Similar results can
be shown to hold in the case of adaptive total slack as well,
and our implementation (discussed in Sec. 5) employs such a
marginal-gains-based allocation scheme.

Extension to Fixed-Window Triggers. The tracking algo-
rithms described in this section for the instantaneous trigger
problem are also naturally applicable to the case of fixed-
window triggers. Assuming a (fixed) window size τ , the
idea is, for each monitor mi to maintain its running local
aggregate over the last τ time instants si(t) =

∫ t

t−τ
ri(x)dx

(which is trivial to do assuming O(τ) space). Then, the fixed-
window trigger over the ri(t) signals is essentially trans-
formed into an instantaneous trigger over the si(t) window
aggregates, and all the techniques discussed earlier in this
section are naturally applicable.

8.2 Evaluation of Instantaneous Triggers

The same data and implementation setup for cumulative trig-
gers are used to evaluate instantaneous triggers. Recall that
our assurance for instantaneous triggers is slightly different
from cumulative triggers. Given an error tolerance ε, our al-
gorithms assert a “2ε-zone of uncertainty” around the trigger
threshold C, and have zero false alarm and zero miss detec-
tion outside this band.

We first show in Fig. 16 a sample of aggregate time series
used in experiments and the triggering performance guaran-
teed by Theorem 5. In the graph x-axis is time and y-axis is
signal value. The solid curve denotes the time series signals.
The dotted line denotes the value that no false alarm should
be triggered when signals are below this line, and the dashed
line denotes the value that no miss detection should happen
when signals are above this line. The region between the two
lines are the uncertainty zone. In the experiment, we set trig-
ger threshold C to be the value of the 99th percentile of the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
om

m
un

ic
at

io
n

ov
er

he
ad

Detection error tolerance ε

85 percentile
90 percentile
95 percentile
98 percentile

Figure 17: Impact of target C on communication overhead.

distribution of all values in the time series. Error tolerance
ε = 0.05, so the size of uncertainy zone is 2ε · C = 0.1 · C.
Circles denote the real violations under this setup, and stars
denote triggers fired by our protocol. We can clearly see that
our protocol guarantees the desired performance: detecting
all real violations and only has false alarms inside the uncer-
tainty zone. When aggregate signals are above uncertainty
zone, no trigger is missed, indicated by one star for each cir-
cle; if aggregate signals are below uncertainty zone, no trig-
ger is fired, indicated by no star for signals under the dotted
line. Inside the uncertainty zone, our protocol have one false
alarm, indicated by the second star in the graph.

A set of following results show the tradeoff between the er-
ror tolerance and the communication overhead incurred. We
start with how the value of C and the data volatility impact
the communication overhead under different error tolerance,
followed by the comparison of our work with existing ap-
proaches and the scalability of our system.

Fig. 17 shows the relationship between the communication
overhead and the target threshold C when setting C to be the
85th, 90th, 95th and 98th percentile of the distribution of all
aggregate signals. We first see from the graph that for all dif-
ferent C values, communication overhead decreases quickly
as error tolerance ε increases. More important, for any given
ε, the communication overhead decreases as target thresh-
old C increases. This is expected, when C is large as the
98th percentile, aggregate signals are always far away from
C. So our protocol always keeps a loose eye on signals from
individual monitors, thus paying low cost to achieve the de-
sired detection accuracy; however, when C is small as 85th

percentile, aggregate signals are always close to C, and our
protocol has to keep a close eye on individual signals to see
whether they cause constraint violations, thus paying relative
high cost to achieve the desired detection accuracy. However,
when the error tolerance is big enough, the protocol pays low
cost even when C is small. This demonstrate that our ideal
to let total slack adapt according to aggregate signals is very
effective in reducing communication overhead.

Fig. 18 shows the impact of data volatility on communi-

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Detection error tolerance ε

C
om

m
un

ic
at

io
n

ov
er

he
ad

High Volatility
Middle Volatility
Low Volatility

Figure 18: Impact of volatility on communication overhead.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
un

ic
at

io
n

ov
er

he
ad

Detection error tolerance (ε/C)

Naive
Data Streaming
Uniform Adatpive
MG Adaptive

Figure 19: Comparing our approach to existing approaches.

cation overhead. The experiment setup is similar as that in
Fig. 10. As expected, for every given value of ε, the com-
munication overhead decreases quickly as the volatility of the
data decreases, indicating that our solution is adaptive to data
properties.

We are now comparing our work with previous work. The
only adaptive filtering approach similar to our problem is
that proposed by Olsten et al. in [19] in the context of data
streaming. We also compare our solution with a naive ap-
proach that might be attractive for its simplicity, as the δi are
fixed (non-adaptive) and homogeneous. In any time epoch,
each monitor i sends an update to the coordinator only if its
time series ri(t) > (C+ε)

n
. 7 We consider two versions of our

protocol. In one, called uniform adaptive detection, the δi’s
are homogeneous but adapt due to the adapting total slack ∆.
In the second version, called MG (Marginal Gain) adaptive,
the local slacks are heterogeneous and are computed accord-
ing to their Marginal Gain in reducing communication cost.
The method for computing the MG is given in [19] where the
authors prove that this is optimal for when there is a given
total amount of slack to distribute to the monitors. Both our

7We do not compare with [16] since, unlike our schemes and [19], they
offer no strict error guarantees.

MG adaptive version and the data streaming scheme use the
same approach when doing heterogeneous local slack. The
essential difference is that in the data streaming scheme, the
total slack to be distributed remains constant, whereas in the
MG adaptive scheme the total slack is adaptive and varies
according to how far we are from the triggering constraint.
Recall that we can do this because our goal is to estimate the
trigger accurately, while the data streaming scheme’s goal is
ε-accurate estimation of the aggregate signal.

The results of this comparison are shown in Fig. 19. For
these tests, we set C to be the 98th percentile of the aggregate
signal. As one would intuitively expect, the communication
overhead decreases as error tolerance increases. (Note that
Theorem 5 essentially guarantees no false alarms/missed de-
tections outside the “uncertainty” zone for our instantaneous
triggering scheme.)

We see that our MG adaptive scheme substantially outper-
forms both the naive and data streaming methods, at any error
tolerance level. Our uniform adaptive scheme also outper-
forms data streaming in the lower ranges of error tolerance
(e.g., ε < 0.27 in this case). The strong performance of our
schemes illustrate that adapting the global slack is a power-
ful idea for reducing communication overhead. This implies
that when designing systems for distributed triggering, rather
than signal estimation, a very different level of communica-
tion efficiency is achieved.

We also observe that our MG adaptive scheme outperforms
our uniform adaptive scheme. This implies that allowing het-
erogeneous filters at each monitor can lead to communication
reduction; however the gain resulting from adaptivity of the
total slack is certainly more dramatic than the gain resulting
from allowing heterogeneity of local slack across monitors.

The improvement of our schemes over previous methods
is particularly notable in the low error tolerance region (e.g.,
ε < 0.1). For example, when ε = 0.1, our approach can filter
out more than 90 of the original time series signals while
achieving the desired detection accuracy. with transmission
of only 10 of the original signal. Our scheme results in 3.5
times less communication overhead than the data streaming
technique which sends 35 of the original signal for the same
target accuracy level. For even smaller values of ε, the gains
of our schemes over existing schemes are even greater. Thus,
we conclude that our scheme is well suited for distributed
triggering systems with very low error tolerances.

Fig. 20 shows the scalability of our protocol for instanta-
neous triggers. We measure the communication overhead as
a function of the number of distributed monitors, which vary
from 20 to 200 in the system. The experiment setup is similar
as that shown in Fig. 12. As seen from the result, the (per-
node) communication overhead is relative stable and slightly
decreasing when the system size increases, indicating that
our protocol is scalable to large system.

17

--
C

Qc

ε

λR

(a) The centralized idea model

-

-

-

-

-

-

--

θ · C

C
∑n

i=1 Ri(t)

λe
λd

Qs

(b) The distributed solution model

Figure 21: Queuing model for slack estimation.

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

Number of nodes in the system

C
om

m
un

ic
at

io
n

ov
er

he
ad

Figure 20: Communication overhead versus system size.

9 Appendix

We present here the proofs of theorems in the paper. For the
varying-window trigger, both the centralized ideal model and
the distributed solution model are shown in Figure 21. Let the
coordinator queue be Qc with size ε in the ideal model, and
be Qs with size θ in the solution model.

9.1 Proof of Theorem 2
Miss detections happen if both monitor queues and coordina-
tor queue in the solution model are so large that they absorb
enough update traffic to mask a real trigger violation. Let
the occupancies (in unit of δ) of monitor queues over time be
random variables α1, ..., αn, then we have −δ < αi < δ in
our setting. It is reasonable to assume that each αi follows an
independent Normal N(0, σi) distribution. Then the aggre-
gate occupancy of monitor queues, S =

∑n
i=1 αi, follows

a Normal N(0, σ2) distribution, where σ2 = σ2
1 + ... + σ2

n.
Let F () denotes the CDF of N(0, σ2), then the probability
that monitor queues have aggregate occupancy more than x
is 1 − F (x).

In the centralized model, arrivals of
∑

i ri(t) overflow
queue Qc with probability, which is relative small in real
system because constraint violations are rare events. So
∑

i ri(t) should be less than C on average over time, how-

ever,
∑

i ri(t) is bigger than C in some periods and causes
Qc to overflow. When assuming an M/M/1 model for the
coordinator queue at the granularity of δ, we have follow-
ing approximation for Qc: 1) length of Qc is ε

δ
; 2) enqueue

of
∑

i ri(t) is approximated by a Poisson arrival with (aver-
age) rate λr

δ
; 3) dequeue is approximated by a Poisson arrival

with rate C
δ

. With this setup, the overflow probability of Qc

in centralize model can be determined by [22]

Pr(lr >
ε

δ
) =

(

λ

µ

)
ε
δ
+1

=

(

λr

C

)
ε
δ
+1

= ρ
ε
δ
+1

where ρ = λr

C
is the queue utilization. When Qc is over-

flowed, it is possible that Qc has occupancy (in unit of δ)
lr = ε

δ
+ i, for each i = 1, ...,∞, each of which has proba-

bility:

Pr
(

lr =
ε

δ
+ i|lr ≥

ε

δ
+ 1

)

=
ρ(ε

δ
+i)(1 − ρ)

ρ
ε
δ
+1

= ρi−1(1 − ρ)

A miss detection happens when Qc has occupancy ε
δ

+ i
(which causes constraint violation), but Qs has occupancy
ls ≤ θ

δ
(otherwise, Qs is overflowed and the trigger fires).

This happens because monitor queues hold too much fluid
and have aggregate occupancy more than ε

δ
+i− θ

δ
= ε−θ

δ
+i,

which has probability 1−F
(

ε−θ
δ

+ i
)

. So the miss detection
rate (probability) β can be approximated as

β = Pr(ls ≤
θ

δ
|lr ≥

ε

δ
+ 1)

=

∞
∑

i=0

{[

1 − F

(

ε − θ

δ
+ i + 1

)]

· ρi(1 − ρ)

}

When using i as a continuous variable, we get the integral
version of the equation.

If assuming an M/D/1 model for the coordinator queue,
we can approximately compute its queue length distribution
as [22]

Pr(lr > x) = exp

[

−2x

(

µ − λ

λ

)]

= πx

18

where π = exp
[

−2
(

µ−λ
λ

)]

. With this model, β can be
computed as

β = Pr(ls ≤
θ

δ
|lr ≥

ε

δ
+ 1)

=

∞
∑

i=0

{[

1 − F

(

ε − θ

δ
+ i + 1

)]

· πi(1 − π)

}

9.2 Proof of Theorem 3

False alarms happen when a combination of chunk bursts in
the solution model causes Qs to overflow even though the
true aggregate signals have not caused Qc to overflow in the
centralized model.

On the granularity of δ, we have following approximation
for Qs in the solution model: 1) length of Qs is θ

δ
; 2) en-

queue of
∑

i Ri(t) is approximated by a Poisson arrival with
(average) rate λR

δ
; 3) dequeue is approximated by a Poisson

arrival with rate C
δ

. 4) chunk enqueue from all monitors are
approximated by a Poisson arrival with rate λe, and chunk
dequeue by a Poisson arrival with rate λd. Then, the over-
flow probability of Qs is

Pr(ls >
θ

δ
) =

(

λ

µ

)
θ
δ
+1

=

(

λR + λe · δ

C + λd · δ

)
θ
δ
+1

Apparently, the solution model is more bursty than the cen-
tralized model, and θ

δ
is less than ε

δ
. So Pr(ls > θ

δ
), the

overflow probability in the solution model, is bigger than
Pr(lr > ε

δ
), the overflow probability in the centralized

model. The false alarm rate (probability) η can be simply
approximated by

η =

[

Pr(ls > θ
δ
) − Pr(lr > ε

δ
)
]

Pr(lr > θ
δ
)

= 1 −

(

λr

C

)
ε
δ
+1

/

(

λR + λe · δ

C + λd · δ

)
θ
δ
+1

Using M/D/1 queuing model, the overflow probability
and false alarm rate can be computed as

Pr(lr >
ε

δ
) = exp

[

−
2ε

δ

(

C − λr

λr

)]

Pr(ls >
θ

δ
) = exp

[

−
2θ

δ

(

µ − λ

λ

)]

= exp

[

−
2θ

δ

(

C − λr

λr + λd · δ

)]

η =

[

Pr(ls > θ
δ
) − Pr(lr > ε

δ
)
]

Pr(lr > θ
δ
)

= 1 −
Pr(lr > ε

δ
)

Pr(ls > θ
δ
)

= 1 − exp

[

2θ

δ

(

C − λr

λr + λd · δ

)

−
2ε

δ

(

C − λr

λr

)]

9.3 Proof of Theorem 4
The simple scheme for instantaneous trigger-tracking has the
following guarantee for each monitor mi:

|ri(t) − Ri(t)| ≤ δi

Summing over i on Ri(t) ≥ ri(t)−δi, we get
∑n

i=1 Ri(t) ≥
∑n

i=1 ri(t) − ∆. Whenever
∑n

i=1 ri(t) > (C + ∆), the
coordinator has

n
∑

i=1

Ri(t) > (C + ∆) − ∆ = C

and immediately fires the trigger.
With the same reasoning, the scheme guarantees

∑n
i=1 Ri(t) ≤

∑n
i=1 ri(t) + ∆. When

∑n
i=1 ri(t) < (C −

∆), the coordinator has

n
∑

i=1

Ri(t) < (C − ∆) + ∆ = C

and never fires the trigger.

9.4 Proof of Theorem 5
The detection error of the adaptive scheme for instanta-
neous trigger-tracking is caused by the value discrepancy be-
tween monitors and the coordinator. With ∆(t) = C + ε−
∑n

i=1 Ri(t), the value discrepancy of the scheme can be an-
alyzed as follows.

• When
∑

i Ri(t) ≥ C, we have ∆(t) ≤ ε. The value
discrepancy between monitors and coordinator is up-
bounded by ε. The coordinator always has an ε- approx-
imation of aggregate signals produced by monitors, and
has the desired detection guarantee as that in Theorem 4.

• When
∑

i Ri(t) < C at time t, monitors have
∑

i ri(t)
and coordinator believes monitors have

∑

i Ri(t). This
accrues value discrepancy

∑

i ri(t) −
∑

i Ri(t). Be-
cause the setting of ∆(t), total value discrepancy can be
big up to C+ε−

∑

i Ri(t) at any subsequent time t′ > t.
So, without triggering any value update at monitors, the
change from

∑

i ri(t) to
∑

i ri(t
′) can be at most

DR = (C −
∑

i

Ri(t) + ε) − (
∑

i

ri(t) −
∑

i

Ri(t))

= C −
∑

i

ri(t) + ε

This “no-update”would not cause constraint violation,
because the value of

∑

i ri(t
′) unknown to coordinator

is at most
n

∑

i=1

ri(t
′) ≤

∑

i

ri(t) + C −
∑

i

ri(t) + ε = C + ε

19

