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Abstract. A stochastic graph game is played by two players on a game
graph with probabilistic transitions. We consider stochastic graph games
with ω-regular winning conditions specified as parity objectives, and
mean-payoff (or long-run average) objectives. These games lie in NP
∩ coNP. We present a polynomial time Turing reduction of stochastic
parity games to stochastic mean-payoff games.

1 Introduction

Graph games. A stochastic graph game [Con92] is played on a directed graph
with three kinds of states: player-1, player-2, and probabilistic states. At player-1
states, player 1 chooses a successor state; at player-2 states, player 2 chooses a
successor state; at probabilistic states, a successor state is chosen according to
a given probability distribution. The outcome of playing the game forever is an
infinite path through the graph. If there are no probabilistic states, we refer to
the game as a 2-player graph game; otherwise, as a 21/2-player graph game.

Parity objectives. The theory of graph games with ω-regular winning con-
ditions is the foundation for modeling and synthesizing reactive processes with
fairness constraints. In the case of 21/2-player graph games, the two players
represent a reactive system and its environment, and the probabilistic states
represent uncertainty. The parity objectives provide an adequate model, as the
fairness constraints of reactive processes are ω-regular, and every ω-regular win-
ning condition can be specified as a parity objective [Tho97]. The solution prob-
lem for a 21/2-player game with parity objective Φ asks for each state s, for the
maximal probability with which player 1 can ensure the satisfaction of Φ if the
game is started from s (this probability is called the value of the game at s).
An optimal strategy for player 1 is a strategy that enables player 1 to win with
that maximal probability. The existence of pure memoryless optimal strategies
for 21/2-player games with parity objectives was established in [CJH04] (a pure
memoryless strategy chooses for each player-1 state a unique successor state).
The existence of pure memoryless optimal strategies implies that the solution
problem for 21/2-player games with parity objectives lies in NP ∩ coNP.

Mean-payoff objectives. An important class of quantitative objectives is the
class of mean-payoff (or long-run average) objectives. In case of mean-payoff



objectives there is a real-valued reward at each state and the payoff of player 1
for a play is the long-run average of the rewards appearing in the play. The
objective of player 1 is to maximize the long-run average, and values are defined
in a similar way as for parity objectives. In 21/2-player games with mean-payoff
objectives pure memoryless optimal strategies exist [LL69]. Again, the existence
of pure memoryless optimal strategies implies that the solution problem for 21/2-
player games with mean-payoff objectives lies in NP ∩ coNP.

Our result. We present a polynomial time Turing reduction of 21/2-player parity
games to 21/2-player mean-payoff games for computation of values. Similar reduc-
tion was known for the special case of 2-player games [Jur98]. As a consequence
of our reduction all algorithms for 21/2-player mean-payoff games [FV97,Put94]
can now be used for 21/2-player parity games.

2 Definitions

We consider turn-based probabilistic games and some of its subclasses.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S1, S2, S©), δ) consists of a directed graph (S, E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S, E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set {t ∈ S | (s, t) ∈ E} of possible successors. The turn-

based deterministic game graphs (2-player game graphs) are the special case of
the 21/2-player game graphs with S© = ∅. The Markov decision processes (11/2-
player game graphs) are the special case of the 21/2-player game graphs with
S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1 MDPs, and to
the MDPs with S1 = ∅ as player-2 MDPs.

Plays and strategies. An infinite path, or a play, of the game graph G is an
infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write
Ωs ⊆ Ω for the set of plays that start from the state s. A strategy for player 1 is
a function σ: S∗ · S1 → D(S) that assigns a probability distribution to all finite
sequences w ∈ S∗ ·S1 of states ending in a player-1 state (the sequence represents
a prefix of a play). Player 1 follows the strategy σ if in each player-1 move, given
that the current history of the game is w ∈ S∗ · S1, she chooses the next state
according to the probability distribution σ(w). A strategy must prescribe only
available moves, i.e., for all w ∈ S∗, s ∈ S1, and t ∈ S, if σ(w · s)(t) > 0, then



(s, t) ∈ E. The strategies for player 2 are defined analogously. We denote by Σ
and Π the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. For a state s ∈ S and an event A ⊆ Ω, we write
Prσ,π

s (A) for the probability that a path belongs to A if the game starts from
the state s and the players follow the strategies σ and π, respectively. For a
measurable function f : Ω → IR we denote by E

σ,π
s [f ] the expectation of the

function f under the probability measure Prσ,π
s (·).

Strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
σ(w · s)(t) = 1. A memoryless player-1 strategy does not depend on the history
of the play but only on the current state; it can be represented as a function
σ: S1 → D(S). A pure memoryless strategy is a strategy that is both pure and
memoryless. A pure memoryless strategy for player 1 can be represented as a
function σ: S1 → S. We denote by ΣPM the set of pure memoryless strategies for
player 1. The pure memoryless player-2 strategies ΠPM are defined analogously.

Given a pure memoryless strategy σ ∈ ΣPM , let Gσ be the game graph
obtained from G under the constraint that player 1 follows the strategy σ. The
corresponding definition Gπ for a player-2 strategy π ∈ ΠPM is analogous, and
we write Gσ,π for the game graph obtained from G if both players follow the
pure memoryless strategies σ and π, respectively. Observe that given a 21/2-
player game graph G and a pure memoryless player-1 strategy σ, the result Gσ

is a player-2 MDP. Similarly, for a player-1 MDP G and a pure memoryless
player-1 strategy σ, the result Gσ is a Markov chain. Hence, if G is a 21/2-player
game graph and the two players follow pure memoryless strategies σ and π, the
result Gσ,π is a Markov chain.

Objectives. We specify objectives for the players by providing a set of winning

plays Φ ⊆ Ω for each player, or a measurable function f : Ω → IR for each player.
We say that a play ω satisfies the objective Φ if ω ∈ Φ. We study only zero-sum
games, where the objectives of the two players are complementary; i.e., if player 1
has the objective Φ, then player 2 has the objective Ω \ Φ; or if the objective
for player 1 is f , then the objective for player 2 is −f . We consider ω-regular

objectives [Tho97], specified as parity conditions, and mean-payoff (or long -run
average) objective. We also define the special case of reachability objectives.

– Reachability objectives. Given a set T ⊆ S of “target” states, the reachability
objective requires that some state of T be visited. The set of winning plays
is Reach(T ) = { ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0 }.

– Parity objectives. For c, d ∈ N, we write [c..d] = { c, c + 1, . . . , d }. Let p:
S → [0..d] be a function that assigns a priority p(s) to every state s ∈ S,
where d ∈ N. For a play ω = 〈s0, s1, . . .〉 ∈ Ω, we define Inf(ω) = { s ∈
S | sk = s for infinitely many k } to be the set of states that occur infinitely
often in ω. The even-parity objective is defined as Parity(p) = { ω ∈ Ω |



max
(

p(Inf(ω))
)

is even }, and the odd-parity objective as coParity(p) =

{ ω ∈ Ω | max
(

p(Inf(ω))
)

is odd }.
– Mean-payoff objectives. Let r : S → IR be a real-valued reward function that

assigns to every state s the reward r(s) assigned to s. The mean-payoff objec-
tive MP assigns to every play the long-run average of the rewards appearing
in the play. Formally, for a play ω = 〈s1, s2, s3, . . .〉 we have

MP(r)(ω) = lim inf
n→∞

1

n

n
∑

i=1

r(si).

The complementary objective −MP is defined as follows

−MP(r)(ω) = lim sup
n→∞

1

n

n
∑

i=1

−(r(si)).

Optimal strategies. Given objectives Φ ⊆ Ω for player 1 and Ω\Φ for player 2,
and measurable functions f and −f for player 1 and player 2, respectively, we
define the value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively,
as the following functions from the state space S to the set IR of reals: for all
states s ∈ S, let

〈〈1〉〉val (Φ)(s) = sup
σ∈Σ

inf
π∈Π

Prσ,π
s (Φ); 〈〈1〉〉val (f)(s) = sup

σ∈Σ

inf
π∈Π

E
σ,π
s [f ];

〈〈2〉〉val (Ω \ Φ)(s) = sup
π∈Π

inf
σ∈Σ

Prσ,π
s (Ω \ Φ); 〈〈2〉〉val (−f)(s) = sup

π∈Π

inf
σ∈Σ

E
σ,π
s [−f ].

In other words, the value 〈〈1〉〉val (Φ)(s) and 〈〈1〉〉val (f)(s) gives the maximal prob-
ability and expectation with which player 1 can achieve her objective Φ and f
from state s, and analogously for player 2. The strategies that achieve the value
are called optimal: a strategy σ for player 1 is optimal from the state s for the
objective Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ); and σ is optimal from the state s
for f if 〈〈1〉〉val (f)(s) = infπ∈Π E

σ,π
s [f ]. The optimal strategies for player 2 are de-

fined analogously. We now state the classical determinacy results for 21/2-player
parity and mean-payoff games.

Theorem 1 (Quantitative determinacy). For all 21/2-player game graphs

G = ((S, E), (S1, S2, S©), δ) the following assertions hold.

1. [LL69] For all reward functions r : S → IR, and all states s, we have

〈〈1〉〉val (MP(r))(s) + 〈〈2〉〉val (−MP(r))(s) = 0. Pure memoryless optimal

strategies exist for both players from all states s.
2. [CJH04,MM02,Zie04] For all parity objectives Φ, and all states s, we have

〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Ω \ Φ)(s) = 1. Pure memoryless optimal strategies

exist for both players from all states s.

Since in 21/2-player games with parity and mean-payoff objectives pure mem-
oryless strategies suffice for optimality, in the sequel we consider only pure mem-
oryless strategies.



3 Reduction of 21/2 Player Parity to Mean-payoff Games

In this section we present a polynomial time Turing reduction of 21/2-player
parity games to 21/2-player mean-payoff games. The reduction will be obtained
in two stages. The first stage consists of computation of set of states with value 1
for a parity objective (or the set of almost-sure winning states). The second stage
consists of the reduction after the computation of almost-sure winning states.
We first define the set of almost-sure winning states for parity objectives.

Almost-sure winning states. Given a 21/2-player game graph G with a parity
objective Φ for player 1 we denote by

WG
1 (Φ) = {s ∈ S | 〈〈1〉〉val (Φ)(s) = 1}; WG

2 (Ω\Φ) = {s ∈ S | 〈〈2〉〉val (Ω\Φ)(s) = 1};

the set of states such that the values for player 1 and player 2 are 1, respectively.
These sets of states are also referred as the almost-sure winning states for the
players.

Reduction for almost-sure winning states. The computation of almost-
sure winning states in 21/2-player games with parity objectives by computation
of values in mean-payoff games can be achieved as follows. The results of [CJH03]
shows that the computation of almost-sure winning states in a 21/2-player game
graph G = ((S, E), (S1, S2, S©), δ) with a parity objective with d priorities can
be achieved by a reduction to a 2-player game graph with |S| · d states, and a
parity objective with d+1 parities. The result of [Jur98] establishes a polynomial
time reduction of 2-player games with parity objectives to 2-player games with
mean-payoff objectives. The above two reduction ensures that the computation
of almost-sure winning states in 21/2-player games with parity objectives can be
reduced to the computation of 2-player games with mean-payoff objectives.

Reduction for value computation. We now present a reduction of 21/2-player
parity games to 21/2-player mean-payoff games for value computation. Note that
the computation of almost-sure winning states can be achieved by solving 2-
player (and hence 21/2-player) mean-payoff games. Theorem 2 presents the re-
duction for value computation. We first present a lemma that will be used in the
proof of Theorem 2.

Lemma 1. Let C be a closed connected recurrent set of states in a Markov chain

with minimum non-zero transition probability as δmin > 0. For s, s0 ∈ C, let

freq(s, s0) = lim inf
n→∞

1

n

n−1
∑

t=0

Prs0
(Xt = s),

where Xt is a random variable denoting the t-th state of a path, denote the

“long-run” frequency of state s with starting state s0. Then for all s, s0 ∈ C we

have

freq(s, s0) ≥
1

n
·
(

δmin

)n
,

where n = |C|.



Proof. For a state t ∈ C, let In(t) = { s ∈ C | δ(s)(t) > 0 } be the set of states
with incoming edges to t. We start with two simple facts.

– Fact 1. For a state t ∈ C, for all s0 ∈ C we have

freq(t, s0) ≥ freq(s, s0) · δ(s)(t) ≥ freq(s, s0) · δmin; for s ∈ In(t).

– Fact 2. We have
∑

t∈C freq(t, s0) = 1.

The first fact relates the “long-run” frequency of a state to the “long-run” fre-
quency of the predecessors, and since C is a closed connected recurrent set of
states, the sum of the “long-run” frequencies of states in C is 1. We prove the
desired result by an argument by contradiction. Assume towards contradiction

that there exist t, s0 ∈ C with freq(t, s0) <
1

n
·
(

δmin

)n
. It follows from fact 1,

that for all states s ∈ In(t) we have freq(s, s0) <
1

n
·
(

δmin

)n−1
. Again for a state

s ∈ In(t), for all s′ ∈ In(s) we have freq(s′, s0) <
1

n
·
(

δmin

)n−2
, and so on. Since

|C| = n, it follows that for all states s ∈ C we have freq(s, s0) < 1
n
. Again as

|C| = n, this contradicts fact 2 that
∑

s∈C freq(s, s0) = 1. Hence the desired
result follows.

Theorem 2. Let G = ((S, E), (S1, S2, S©), δ) be a 21/2-player game graph. Let

p : S → [0..d] be a priority function, and let W1 = WG
1 (Parity(p)) and W2 =

WG
2 (coParity(p)) be the set of almost-sure winning states for the players. Let

δmin = min{ δ(s)(t) | s ∈ S©, t ∈ S, δ(s)(t) > 0 } > 0.

Consider the reward function r : S → IR as follows:

r(s) =



















1 s ∈ W1;

−1 s ∈ W2;

(−1)k · (2 · n)k ·

(

1

δmin

)n·k

p(s) = k, s ∈ S \ (W1 ∪ W2);

where n = |S|. Then for all s ∈ S \ (W1 ∪ W2) we have

〈〈1〉〉val (Parity(p))(s) =
1

2
·

(

〈〈1〉〉val (MP(r))(s) + 1

)

.

Proof. We prove the following two inequalities.

1. We first prove that for all s ∈ S \ (W1 ∪ W2) we have

〈〈1〉〉val (Parity(p))(s) ≤
1

2
·

(

〈〈1〉〉val (MP(r))(s) + 1

)

.

Consider a pure memoryless optimal strategy σ for player 1 for the parity
objective Parity(p). Fix the strategy in the mean-payoff game, and consider



a pure memoryless counter-optimal strategy π for player 2 in the MDP Gσ

(i.e., the strategy π is optimal in Gσ for the objective −MP(r)). We first
show that

Prσ,π
s (Reach(W2)) ≤ 〈〈2〉〉val (coParity(p))(s) = 1 − 〈〈1〉〉val (Parity(p))(s).

Otherwise, if Prσ,π
s (Reach(W2)) > 〈〈2〉〉val (coParity(p))(s), then player 2

plays π to reach W2 and an almost-sure winning strategy for coParity(p)
from W2 to ensure that the probability to satisfy coParity(p) given σ is
greater than 〈〈2〉〉val (coParity(p))(s); this contradicts that σ is optimal. Now
consider the Markov chain Gσ,π. Let C be a closed connected recurrent
set of states in Gσ,π. If C ∩ (S \ (W1 ∪ W2)) 6= ∅, then there is a state
s′ ∈ C ∩ (S \ (W1 ∪ W2)) with 〈〈1〉〉val (Parity(p))(s′) > 0. Since σ is optimal
for player 1 for Parity(p) and in Gσ,π from s′ the set C is visited infinitely
often with probability 1, it follows that max(p(C)) is even. Let z ∈ C be a
state with p(z) = max(p(C)). Then since the minimum transition probability
is δmin and |C| ≤ |S|, it follows from Lemma 1 that the long-run frequency
for state z is at least 1

n
· (δmin)n. The reward assignment ensures that the

long-run average for the closed connected recurrent set C is at least 1. This
is obtained as follows. If p(z) = 0, then for all states s ∈ C we must have

p(s) = p(z) = 0, and then long-run average for C is (2 ·n)0 ·

(

1

δmin

)n·0

= 1.

We consider the case with p(z) ≥ 2 and then long-run average contribution
by z is at least

1

n
· (δmin)n · (2 · n)p(z) ·

(

1

δmin

)n·p(z)

= 2 ·

(

(2 · n)p(z)−1 ·

(

1

δmin

)n·(p(z)−1))

;

(this obtained by multiplying the long-run frequency of z along with its
reward). Since p(z) is the greatest priority appearing in C, the long-run
average contribution of all the other states in C is at least

−

(

(2 · n)p(z)−1 ·

(

1

δmin

)n·(p(z)−1))

,

(in the worst case all other states have priority p(z)−1). Hence the long-run
average in C is at least

(

(2 · n)p(z)−1 ·

(

1

δmin

)n·(p(z)−1))

;

the claim follows. A lower bound on the long-run average payoff for player 1
is obtained as follows: we consider the maximum probability of reaching W2

and consider the closed connected recurrent states C that intersect with W2

is contained in W2 (and the long-run average is −1 in this case) and with
the rest of the probability the long-run average is at least 1. Hence we have

〈〈1〉〉val (MP(r))(s) ≥ (−1) ·

(

1 − 〈〈1〉〉val (Parity(p))(s)

)

+ 1 · 〈〈1〉〉val (Parity(p))(s)

= 2 · 〈〈1〉〉val (Parity(p))(s) − 1.



2. We now prove that for all s ∈ S \ (W1 ∪ W2) we have

〈〈1〉〉val (Parity(p))(s) ≥
1

2
·

(

〈〈1〉〉val (MP(r))(s) + 1

)

.

Consider a pure memoryless optimal strategy π for player 2 for the objective
coParity(p). Fix the strategy in the mean-payoff game, and consider a pure
memoryless counter-optimal strategy σ for player 1 in the MDP Gπ (i.e., the
strategy σ is optimal in Gσ for the objective MP(r)). We first show that

Prσ,π
s (Reach(W1)) ≤ 〈〈1〉〉val (Parity(p))(s).

Otherwise, if Prσ,π
s (Reach(W1)) > 〈〈1〉〉val (Parity(p))(s), then player 1 plays

σ to reach W1 and an almost-sure winning strategy for Parity(p) from W1

to ensure that the probability to satisfy Parity(p) given π is greater than
〈〈1〉〉val (Parity(p))(s); this contradicts that π is optimal. Now consider the
Markov chain Gσ,π . Let C be a closed connected recurrent set of states in
Gσ,π. If C ∩ (S \ (W1 ∪ W2)) 6= ∅, then there is a state s′ ∈ C ∩ (S \ (W1 ∪
W2)) with 〈〈2〉〉val (coParity(p))(s′) > 0. Since π is optimal for player 2 for
coParity(p) and in Gσ,π from s′ the set C is visited infinitely often with
probability 1, it follows that max(p(C)) is odd. Let z ∈ C be a state with
p(z) = max(p(C)). Then since the minimum transition probability is δmin

and |C| ≤ |S|, it follows from Lemma 1 that the long-run frequency for
state z is at least 1

n
· (δmin)

n. The reward assignment ensures that the long-
run average for the closed connected recurrent set C is at most −1. This is
obtained as follows: the long-run average contribution by z is at most

1

n
·(δmin)

n·(−1)·(2·n)p(z)·

(

1

δmin

)n·p(z)

= (−2)·

(

(2·n)p(z)−1·

(

1

δmin

)n·(p(z)−1))

;

(this obtained by multiplying the long-run frequency of z along with its
reward). Since p(z) is the greatest priority appearing in C, the long-run
average contribution of all the other states in C is at most

(

(2 · n)p(z)−1 ·

(

1

δmin

)n·(p(z)−1))

.

(in the worst case all other states have priority p(z)−1). Hence the long-run
average in C is at most

−

(

(2 · n)p(z)−1 ·

(

1

δmin

)n·(p(z)−1))

;

the claim follows. An upper bound on the long-run average payoff for player 1
is obtained as follows: we consider the maximum probability of reaching W1

and consider the closed connected recurrent states C that intersect with W1



is contained in W1 (and the long-run average is 1 in this case) and with the
rest of the probability the long-run average is at most −1. Hence we have

〈〈1〉〉val (MP(r))(s) ≤ 1 · 〈〈1〉〉val (Parity(p))(s) + (−1) ·

(

1 − 〈〈1〉〉val (Parity(p))(s)

)

= 2 · 〈〈1〉〉val (Parity(p))(s) − 1

The desired result follows.

Remark. In the proof of Theorem 2 we used existence of pure memoryless opti-
mal strategies in 21/2-player games graphs with parity objectives and existence
of pure memoryless optimal strategies in MDPs with mean-payoff objectives.
The proof does not rely on existence of pure memoryless optimal strategies in
21/2-player game graphs with mean-payoff objectives.

Reduction to mean-payoff games. The reduction of 21/2-player games with
parity objectives to 21/2-player games with mean-payoff objectives is achieved
in Theorem 2. We argue that the reduction is polynomial. The size of a game
graph G = ((S, E), (S1, S2, S©), δ) is

|G| = |S| + |E| +
∑

t∈S

∑

s∈S©

|δ(s)(t)|;

where |δ(s)(t)| denotes the space to represent the transition probability δ(s)(t)
in binary. The reduction of Theorem 2 is polynomial, since the reward at every
state can be expressed in n · d · |G| · log(n) bits, and d ≤ n. Hence Theorem 2
achieves a polynomial time Turing reduction of 21/2-player parity games to 21/2-
player mean-payoff games.
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